- 1 The effect of a short oxygen exposure period on algal biomass degradation and
- 2 methane release from eutrophic and oligotrophic lake sediments
- 3
- 4 Sigrid van Grinsven^{1*}, Natsumi Maeda¹, Clemens Glombitza², Mark A. Lever²,
- 5 Carsten J. Schubert^{1,2}
- 6

7 Supplemental information

- 8
- 9 Table S1. Methane emission from the slurry experiments.
- 10

Total methane emission

Oligotrophic sediments			Eutrophic sediments		
ICL		Standard	[C	ICH.1b	Standard
		deviation		[CH4]	deviation
Permanently anoxic, algae	1893	178	Permanently anoxic, algae	4063	68
1 week oxic, algae	1497	147	3 week oxic, algae	2576	105
3 week oxic, algae	1186	81			
Permanently anoxic, control	211	108	Permanently anoxic, control	2127	293
1 week oxic, control	23	25	3 week oxic, control	1367	162
3 week oxic, control	19	7			
			1		

I

a. Concentration in headspace in µM after 28 weeks (constant since 14 weeks)

b. Concentration in headspace in μM after 24 weeks

11

- 14 Fig. S1. Map of the surroundings and location of the study sites: Oligotrophic Lake
- 15 Lucerne (orange) and eutrophic Lake Baldegg (yellow) in Switzerland, central
- 16 Europe (blue marker on overview map).

- Fig. S3. Oxygen concentration (in % of gas headspace) in the whole core oxic
- 30 experiments. Green: oxic algal biomass addition experiment, purple: oxic control
- 31 experiment.
- 32

Fig. S4. Cut-out image of Fig. 3, highlighting the lower part of the y-axis.

Fig. S5. Relative abundance of OTUs assigned to known methanogenic (A; eutrophic, C; oligotrophic) and methanotrophic (B; eutrophic, D; oligotrophic) clades, in the slurry experiments. Note that the oxic experiments received additional sediments, of the 5 – 15 cm depth interval, after the initiation of the anoxic conditions, after 1 or 3 weeks.

Oligotrophic

- Methanomassiliicoccales
- Methanosarciniales
- Methanobacteriales
- Methanofastidiosales

43

47

- 48 Fig. S6. Distribution of OTUs assigned to methanogenic orders over the five most
- 49 abundant orders for both the eutrophic and oligotrophic experiments. The y-axis
- 50 shows the time in weeks since the start of the experiment.

Fig. S7. Distribution of OTUs assigned to methanotrophic orders over the most
abundant orders for both the eutrophic and oligotrophic experiments. The y-axis

55 shows the time in weeks since the start of the experiment.

Fig. S8. Volatile fatty acid (VFA) concentrations in the oligotrophic incubations under
different oxygen regimes, with algal biomass (left) and control (right) conditions.

Fig. S9. CO₂ concentrations in the headspace of the slurry experiments. The sudden
drop is caused by the flushing of the headspace with N₂ at the oxic-anoxic switch
after 3 weeks.

