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1. Abstract  13 

Environmental gradients affect vegetation structure and ecosystem productivity. Along the 14 

northern Australia tropical transect (NATT), which transitions from tropical moist 15 

conditions in the north to arid conditions in the south, vegetation composition and 16 

structure are closely tied to rainfall patterns. We hypothesise that biotic competition and 17 

abiotic stress exhibit opposing patterns along the NATT rainfall gradient and aim to 18 

disentangle these effects on vegetation structure and productivity. Using a trait-based 19 

dynamic vegetation model, we simulated vegetation responses to varying competition and 20 

stress along the NATT. The model successfully simulated spatial variations and temporal 21 

patterns in carbon and water �luxes, where evapotranspiration and gross primary 22 

productivity decrease with rainfall along the gradient. Simulation results showed that taller 23 

and medium-sized Eucalyptus had higher carbon mass, leaf area index, and foliar projective 24 

cover at the wet end of the gradient. In contrast, Acacia and grasses were dominant at the 25 

dry end. Crown coverage shows spatial and temporal variability with rainfall, with higher 26 

variability in tree plant functional types (PFTs) crown cover in the north and more uniform 27 

in the south, while grasses have maximum coverage during the wet season in the dry end 28 

of the gradient. These patterns suggest a shift in the importance of biotic versus abiotic 29 

factors, with competition playing a more signi�icant role in the wet region and stress 30 

becoming more in�luential as aridity increases in the south. Overall, our study underscores 31 

water availability as a primary driver of vegetation structure and highlights the role of 32 

competition and stress in modulating ecosystem structure, composition and productivity 33 

along the rainfall gradient.  34 

 35 

Keywords: savanna, competition, rainfall gradient, stress tolerance, plant traits, 36 

community assembly 37 

 38 

2. Introduction  39 

Vegetation structure and ecosystem productivity exhibit notable variation along 40 

environmental gradients (Asner et al., 2014; Clark et al., 2015; Hutley et al., 2011; Maharjan 41 

et al., 2021; Zhu et al., 2022). The intricate interplay between biotic (competition and 42 

facilitation) and abiotic (topography, climate, soil, and geology) factors determines 43 

patterns and dynamics of vegetation structure, composition, and productivity. These biotic 44 

and abiotic factors shape the environment by creating conditions that in�luence ecological 45 
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processes and interactions between species. In combination with eco-evolutionary trade-46 

offs in�luencing the relative performance of alternative plant strategies in different 47 

environments, the result may be that distinct phenological and morphological 48 

characteristics, niche differentiation, functional trait distributions, and competitive 49 

exclusion emerge at the community level, resulting in distinct community composition and 50 

structure (Asner et al., 2014; Muñoz Mazón et al., 2020). Understanding how vegetation 51 

patterns change across a spectrum of environments, from resource-abundant conditions 52 

characterised by competition for light, water and nutrients, to resource-limited conditions 53 

in which stress tolerance is a viable strategy, provides a window into community ecological 54 

processes, sometimes termed ‘community assembly’. Mechanistic modelling approaches 55 

that combine representations of physiological plant and soil processes with demographic 56 

and compositional dynamics of plant populations, offer a potential way to emulate the 57 

assumed steps involved in community assembly, and link this to plant strategies and traits. 58 

Good model performance in terms of replicating compositional patterns along 59 

environmental gradients may then provide con�irmation of assumptions as to the eco-60 

evolutionary basis of plant traits as encoded in the model. Dynamic vegetation models 61 

(DVMs) are one class of models that can be used for this purpose, providing a potential 62 

approach for analysing the interactions and relating them to observations of ecosystem 63 

composition, structure, and function in the �ield to unpack the eco-evolutionary basis of 64 

those observed patterns (Argles et al., 2022; Smith et al., 2001).  65 

 66 

DVMs simulate ecosystem functioning by considering environmental conditions, traits, and 67 

biotic interactions as underpinning factors (Argles et al., 2022; Snell et al., 2014; Wang et 68 

al., 2024). The current generation of DVMs used for global and regional global change 69 

studies bring together multiple drivers (climate, soil, disturbance) and processes (carbon 70 

cycle, population dynamics, recruitment and mortality, photosynthesis and respiration) 71 

and a spectrum of complexity in representing vegetation processes and attributes, 72 

including factors like competition and vegetation succession, to simulate key energy and 73 

material �luxes of life (Falster et al., 2021; Fisher et al., 2018; Smith et al., 2014). Distinct 74 

traits and life history strategies encoded in the parameters of different plant functional 75 

types (PFTs) in�luence their performance and interactions in model simulations  (Sitch et 76 

al., 2003). Integrating �ield traits information that aligned with regional environmental 77 

conditions  (Kuppler et al., 2020; Wang et al., 2024) that enhance resource acquisition in 78 
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resource-abundant conditions and prioritize resource conservation or survival 79 

mechanisms (e.g., drought tolerance) under stressful conditions allows for evaluation of 80 

how competition and stress in�luence ecosystem dynamics in different environments.  81 

 82 

Natural environmental gradients can serve as natural laboratories to examine the interplay 83 

of environment and species performance in governing compositional, structural and 84 

functional variation along the gradient. Competition and abiotic stress may play 85 

contrasting roles in shaping such variations at different points along the gradient. Moisture 86 

gradients encompassing distinct wet and dry growth conditions, are a case in point, 87 

transitioning from abundance to scarcity in terms of a key plant resource (soil water) as 88 

average rainfall declines along the gradient (Williams et al., 1997, Peel et al., 2005). The 89 

Northern Australia Tropical Transect (NATT) in tropical northern Australia 90 

is characterized by a sharp decrease in rainfall from north to south, with two distinct bio-91 

climatological patterns (wet and dry conditions in north and south, respectively Figure 1) 92 

(Hutley et al., 2011; Koch et al., 1995; Whitley et al., 2016). Along the NATT, vegetation has 93 

co-evolved with indigenous and managed �ire (Bird et al., 2024; Harrison et al., 2021) 94 

where vegetation structure, composition, richness, and canopy structure are strongly 95 

correlated with rainfall (Hutley et al., 2011; Ma et al., 2020) with tree and grass coexist 96 

persistently  (Holdo and Nippert, 2023). Competition in the relatively crowded tree stratum 97 

in the moister north gives way to water stress in the south, resulting in clear patterns in 98 

functional diversity along the transect. A realistic representation of the key factors shaping 99 

NATT composition, structure, and function, such as the relative abundance of different 100 

traits, plant strategies, post-�ire resprouting dynamics, phenological and morphological 101 

characteristics, and the balance between resource acquisition and conservation strategies, 102 

is essential for understanding variation in ecosystem productivity.  103 

 104 

Integrating �ield-derived trait information into DVMs as parameters of PFTs ensures model 105 

simulations are grounded in real processes and allows for testing and reproducing the 106 

mechanisms that govern PFT distribution, tree-grass interactions, and their transitions 107 

across the forest-to-savanna gradient (Baudena et al., 2015, 2010; Haverd et al., 2016; 108 

Nijzink et al., 2022; Whitley et al., 2017). For this study, we employed the standard version 109 

of the second-generation dynamic vegetation model LPJ-GUESS (Smith et al., 2014, 2001), 110 

to unpick structural, compositional, and functional shifts along the gradient in terms of 111 
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underlying drivers, processes, and ecological interactions. Our approach leverages 112 

empirical data on vegetation traits and life history strategies, re�lecting the adaptive 113 

responses and capturing local ecosystem processes to varying climatic conditions observed 114 

in the �ield. Our goal is not to benchmark this regionalised trait con�iguration against the 115 

default global LPJ-GUESS setup, but rather to test whether incorporating empirical trait 116 

data improves the model’s ability to realistically simulate observed structural, 117 

compositional, and functional variation. By parameterizing the characteristic savanna PFTs 118 

embedded in the model, we aim to reproduce ecosystem productivity variations and the 119 

underlying ecological mechanisms, allowing the role of competition and stress in shaping 120 

the savanna ecosystems to be assessed. Through this process-based modelling approach, 121 

we aim to investigate the contributions of biotic and abiotic factors to vegetation structure 122 

and function, with the goal of capturing the mechanisms that shape the ecosystem and 123 

enhance our understanding of the ecological processes governing savanna ecosystems 124 

along the rainfall gradient.  125 

 126 

2. Methods  127 

2.1 Study site 128 

This study was conducted along the NATT transect, which spans 1000 kilometres (Rogers 129 

and Beringer, 2017) in a generally north-south direction from near the city of Darwin on 130 

the northern Australian coast to Alice Springs in the arid centre of the Australian continent. 131 

The NATT was established in the mid-1990s as part of the International Geosphere 132 

Biosphere Program (IGBP) (Hutley et al., 2011; Koch et al., 1995). This transect represents 133 

two distinct bio-climatological patterns, with rainfall decreasing sharply from north to 134 

south. In the north, the inter-tropical convergence zone dominates, characterized by the 135 

seasonal monsoon climatic system with annual rainfall up to 1500mm. In contrast, the 136 

southern part of the gradient exhibits semi-arid climatic conditions (rainfall of around 650 137 

mm/year), characterized by prolonged drought with no consistent seasonality of rainfall 138 

(Rogers and Beringer, 2017; Williams et al., 1997).  139 
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 140 

Figure 1: Map showing rainfall gradient (data source Bureau of Meteorology: 141 

www.bom.gov.au) with simulated grid, study area, ecosystem �lux tower sites of the OzFlux 142 

network and vegetation types (data source Australia National Vegetation Information 143 

System: www.dcceew.gov.au) along the NATT.  144 

 145 

The northern part of the transect (~1500 mm rainfall, 12oS) is dominated by tropical 146 

savanna vegetation where evergreen eucalypt trees belonging to the Eucalyptus and 147 

Corymbia genera dominate the woody overstorey and C4 grasses and other forb and shrub 148 

species characterise the understorey. The southern semi-arid region (~500 mm rainfall, 149 

17oS) comprises shrublands and hummock grassland with scattered Acacia trees (Hutley 150 

et al., 2011). Along this transect, �ive ecosystem �lux tower sites (namely Howard Spring, 151 

Adelaide River, Daly River, Dry River, and Sturt Plain) belonging to the Terrestrial 152 

Ecosystem Research Network (TERN) OzFlux platform monitor meteorological, soil 153 

moisture, ecosystem �lux, and productivity covering all major ecosystem types along the 154 

transect (Hutley et al., 2011; Koch et al., 1995). In addition to the �lux tower measurements, 155 

TERN samples vegetation at each site through �ield plots, where limited measurements of 156 

http://www.bom.gov.au/
http://www.dcceew.gov.au/
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plant traits and biomass are conducted to assess ecosystem structure and function (TERN, 157 

2023). 158 

 159 

2.2 Ecosystem model description and customization.  160 

We employed the standard LPJ-GUESS DVM (Smith et al., 2014, 2001) as a modelling 161 

approach to simulate vegetation structure, composition and productivity along the NATT. 162 

LPJ-GUESS is a process-based DVM that simulates ecosystem function through 163 

biogeochemical and biophysical processes (Sitch et al., 2003) and integrates the structural 164 

dynamics resulting from plant growth, demography and composition from neighbourhood 165 

(patch) to landscape (grid cell) scales (Smith et al., 2014, 2001). DVMs of this kind that 166 

combine process-based physiology with explicit vegetation demography have been 167 

referred to as second-generation DVMs (Fisher et al., 2018, 2010). Vegetation response to 168 

climate, atmospheric CO2 levels, and nitrogen input through competition among co-169 

occurring PFTs for light, space, and soil resources are simulated at patch scale on a daily 170 

timestep. Similarly, the model incorporates stress factors such as drought, nutrient 171 

limitations, and soil moisture dynamics impacting growth and survival. Additionally, the 172 

model also considers nutrient (nitrogen) cycling (Smith et al., 2014), and �ire disturbance, 173 

the latter based in the present study on the BLAZE wild�ire module (Rabin et al., 2017). The 174 

BLAZE �ire model simulates combustion and tree mortality based on daily �ire-weather and 175 

fuel conditions across patches. Annual burned area is estimated using the SIMFIRE model 176 

(Knorr et al., 2014), which considers �ire weather, fuel continuity, and population density, 177 

and is distributed monthly using GFED3 climatology (Giglio et al., 2013). Fuel consumption 178 

and mortality are then simulated in BLAZE, with tree mortality based on height-dependent 179 

survival probabilities (Haverd et al., 2014), using functions from Bond (2008) for savanna 180 

broadleaved trees (Rabin et al., 2017). 181 

 182 

PFTs are functional ‘taxa’ that differ in growth form, phenology, and life-history strategies 183 

having different growth rates and competitive abilities in resource variability conditions 184 

in�luenced by traits like height, root depth, and speci�ic leaf area (SLA). C3 and C4 185 

photosynthetic pathways are differentiated for grass PFTs. Bioclimatic (temperature) 186 

limits determine the potential distribution of PFTs in climate space via establishment and 187 

survival limits, whereas mechanistic links between traits and competition of co-occurring 188 

PFTs determine the structure, composition, and productivity at stand and landscape scales. 189 
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Key PFT parameters (traits) for trees include SLA, wood density, leaf longevity, leaf area to 190 

sapwood cross-section area (1/Huber value), and root distribution (root pro�ile), which is 191 

de�ined for each PFT before simulation. These parameters in�luence different ecological 192 

processes like growth, biomass accumulation, establishment, mortality, resulting in 193 

community assembly, and a distribution of the plant communities along climate and soil 194 

gradients (Smith et al., 2001).  195 

 196 

Given Australia's unique environmental and ecological characteristics, we modi�ied the 197 

following features to customize the model for application to our study.  198 

• The model uses a global set of 12 PFTs by default, representing dominant elements 199 

of the major global vegetation types (biomes). For this study, we de�ined a new PFT 200 

set speci�ic to the local context using a multivariate clustering approach. The 201 

parameter values of each PFT were de�ined based on trait data of tree species that 202 

occur along the NATT. These PFTs were chosen to capture the diverse strategies 203 

employed by plants to cope with competition and stress conditions prevalent along 204 

the transect. C3 and C4 grass default PFTs were adopted for simulation with default 205 

parameter values.  For trees, values of wood density and Huber value were adjusted 206 

using trait observations from trait databases and literature reports (details below) 207 

to better represent ecosystem composition and productivity to general conditions 208 

across the study domain (�ield measured and adjusted values of traits/parameters; 209 

Supplementary Table 1).  210 

• LPJ-GUESS distributes roots in 15 layers, each 10cm in depth. However, some 211 

Eucalyptus species have roots extended much deeper (sometimes up to 60 m) to 212 

access water during the dry season (Janos et al., 2008). Deep water access is 213 

believed to be an important determinant of survivorship and productivity of the 214 

tree component of savanna ecosystems along the NATT (Chen et al., 2002; February 215 

et al., 2007; Whitley et al., 2017). To emulate such deep water access within the 216 

architectural constraints of the model we optimized the model to meet plant water 217 

demand by amending the simulated water content of the 15th (lowest)and 14th soil 218 

layer to 100% and 75% of available water holding capacity, respectively, emulating 219 

root access to water reserves within reach of tree roots. Apart from this adjustment, 220 

the root pro�ile for each PFT was adopted from the global synthesis of (Jackson et 221 

al., 1996), which generally prescribes a higher proportion of deep roots for trees 222 



 
 

9 
 

relative to grasses (80% of roots in the top 50 cm of soil for grass; 40-65% in the 223 

top 50 cm for trees).  224 

• Nitrogen-�ixing Acacia species are an important component of the woody 225 

vegetation element at the dry end of the NATT transect. To emulate the better access 226 

to nitrogen supply that these species gain through symbiotic association with 227 

nitrogen-�ixing rhizobia we increased the optimum limit for utilizing nitrogen for 228 

nitrogen-�ixing PFTs to a non-dimensional scalar value of 3, compared to 2 for non-229 

nitrogen-�ixing PFTs.  230 

 231 

2.3 Data sources and parameterisation of model  232 

Trait values, phenological and morphological characteristics of 28 plant species, recorded 233 

across the rainfall gradient during the 2008 inventory (TERN, 2023) at �lux tower sites, 234 

were compiled from the AusTraits database (Falster et al., 2021) and other relevant 235 

literature sources including Williams et al. (1997) and Atlas of Living Australia, regardless 236 

of distribution in Australia.  237 

A hierarchical clustering process was used to group species into categories based on 238 

similarity in plant traits and life-history strategies. Speci�ically, we employed a divisive 239 

(top-down) clustering approach where species were progressively divided into 240 

functionally distinct groups. We used plant life history strategies - such as nitrogen �ixation 241 

potentiality, leaf phenology (evergreen, rain green, summer green, broadleaved, and 242 

conifers), and water requirement for growth (mesic, Intermediate, xeric) - along with traits 243 

such as wood density and tree height (height at maturity) were used for clustering species 244 

into seven groups (Supplementary Figure 1). Three of these groups comprised tropical 245 

broadleaved raingreen trees, with one PFT being intermediate shade tolerant (Table 1). The 246 

following parameters: leaf phenology, drought tolerance, leaf longevity, wood density, 247 

nitrogen �ixation potentiality, plant height, speci�ic leaf area (SLA), shade tolerance, leaf 248 

area to sapwood cross-section area (klatosa, i.e. Huber value), root depth distribution, and 249 

leaf turnover rate of species correspond to prescribed parameters that discriminate PFTs 250 

in LPJ-GUESS. The values of these parameters compiled from different sources were 251 

averaged across the species in each cluster to arrive at a representative value for each PFT 252 

(Table 1).  253 

 254 
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Table 1: Tree PFTs and their parameter values used for simulation. 255 

Parameters PFTs 
Tall_euc 
(>30m) 

Med_eve 
(10-30m) 

Med_dec 
(10-30m) 

Acacia Small_eve 
(<10m) 

Small_dec 
(<10m) 

N�ix_
mesic 

Leaf phenology  
 

Broadleav
ed 

Broadleav
ed 

Broadleav
ed 

Broadleav
ed 

Broadleave
d 

Broadleav
ed 

Broadl
eaved 

Evergreen Evergree
n 

Rain 
green 

Evergree
n 

Evergreen Rain 
green 

Rain 
green 

Shade tolerance Intolerant Intolerant Intolerant Intolerant Intermediat
e tolerant 

Intolerant Intoler
ant 

SLA (m2/kgC) 11 11 18 12 11 26 20 
Wood Density 
(kgC/m3) 

230 250 250 350 190 250 250 

klatosa 5200 4500 4000 4500 4000 2000 3800 
Leaf longevity 
(years) 

1.5 1.5 0.5 2 2 0.4 0.7 

Turnover leaf 
(fraction/year) 

0.6 0.66 1 0.5 0.5 1 1 

Root in top 50 
cm (%) 

43.1 43.1 47.6 45 55 47.6 62.8 

 256 

2.4 Simulation protocol 257 

LPJ-GUESS was con�igured using gridded meteorological, soil properties, and atmospheric 258 

nitrogen deposition rate at 0.5°×0.5° spatial resolution (CRUNCEP data (1901 - 2015)). The 259 

model was run with 15 patches in each grid cell, simulating the time period from 1901 to 260 

2015. We run the LPJ-GUESS in cohort mode, using the BLAZE �ire model to account for the 261 

impacts of weather-related �ire disturbances on vegetation structure (Rabin et al., 2017), 262 

and applied a generic return interval of 100 years for patch-destroying disturbances (Pugh 263 

et al., 2019; Smith et al., 2014). A spin-up of 500 years forced by recycling the �irst 30-years 264 

of the observed climate data set was performed to achieve an initial steady state for 265 

vegetation structure. The atmospheric CO2 concentration data from NOAA (1901- 2015) is 266 

used as input data (Friedlingstein et al., 2023).  267 

 268 

2.5 Model validation and Evaluation  269 

The long-term ecosystem productivity data (monthly evapotranspiration, gross primary 270 

productivity) recorded at �lux tower sites (2002-2015 – Howard Spring; 2008-2009– 271 

Adelaide River; 2008-2015– Daly River; 2011-2015- Dry River and 2008- 2015 – Sturt 272 

Plain) were extracted from TERN Oz �lux, a network of �lux tower sites across Australia and 273 

New Zealand that provides long-term data on ecosystem productivity and climate variables 274 

(Beringer et al., 2022; Isaac et al., 2016). The �lux-based monthly gross primary 275 

productivity (GPP) and evapotranspiration (ET) are used for validating model 276 
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performance. To validate vegetation structural component, remotely sensed leaf area index 277 

(LAI) from MODIS from 2002 to 2015  (Myneni et al., 2015) was compared with simulated 278 

LAI. In addition, species level fractional cover of plot-based point intercept data from 279 

ausplot (Munroe et al., 2021) was used for validating model-simulated foliar projective 280 

cover (FPC). Fire �lux validation was done using Global Fire Emission �lux data (Vernooij et 281 

al., 2023), which was compared with simulated �ire �lux output generated by the BAZE 282 

model.  283 

 284 

Model accuracy in predicting carbon and water cycle �luxes along the rainfall gradient was 285 

evaluated by comparing model outputs of gross primary production (GPP, gCm-2month-1) 286 

and evapotranspiration (ET, mm month-1), to observations/estimates of these quantities at 287 

�lux tower sites along the NATT. Spatial mapping of the gridded model output to the �lux 288 

tower location was achieved by distance-weighted averaging of model values for the four 289 

nearest grid centroids to the �lux tower location, as follows:  290 

𝑆𝑆𝑆𝑆 =
� (𝑆𝑆𝑖𝑖𝑖𝑖 × 𝑊𝑊𝑖𝑖)

𝑛𝑛

𝑛𝑛=1
∑ 𝑊𝑊𝑖𝑖
𝑛𝑛
𝑛𝑛=1

 291 

Where, Si,j is simulated values in ith grid for the jth month and Wi denotes the weighted 292 

distance between grid point and actual location of the �lux tower calculated using the 293 

inverse of square of distance (1/di2). The actual distance (di) is �(𝑥𝑥1 − 𝑥𝑥2)2 𝑦𝑦1 − 𝑦𝑦2)2⁄  , 294 

where x and y represent the coordinates of the gris point and the �lux towers (x1 and y1   are 295 

the coordinates of the grid point ; x2 and y2 are the coordinates of the �lux tower.) 296 

 297 

We employed the root mean square error (RMSE) and coef�icient of determination (R2) to 298 

assess the quality of �it matrix. The formulas for computing there two statistical indices are:  299 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
�(𝑆𝑆𝑖𝑖 − 𝑂𝑂𝑖𝑖)2
𝑛𝑛

𝑛𝑛=1

 300 

Where n is the number of months, Si is the model simulation value of ith month, Oi is the 301 

observed values of ith month. All �igures and statistical analyses were prepared using 302 

Python within the Jupyter Notebook environment. 303 

 304 

 305 

 306 
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3. Results  307 

3.1 Ecosystem Fluxes (ET, GPP and Fire �lux) along the gradient 308 

The comparison of simulated monthly evapotranspiration with observed values across �ive 309 

sites shows distinct spatial and temporal patterns (Figure 2). A consistent trend emerges, 310 

showing a decrease in ET with decrease in rainfall (>1300 kg m-2 year-1 in wet and <800 kg 311 

m-2 year-1). The RMSE and R2 show that the performance of the model differed by site. The 312 

RMSE was lowest at Adelaide River (17.00 mm month-1) followed by Daly River (18.77 mm 313 

month-1) sites, indicating closer agreement between observed and simulated ET values. R2 314 

shows the highest accuracy at Adelaide River (0.84) followed by Daly River (0.82), and 315 

lowest in Dry River (0.52). Additionally, there was no speci�ic patterns in monthly observed 316 

and simulated ET by seasons with some sites like Howard Spring and Dry River, there was 317 

slight underestimation in the dry season whereas in Sturt Plain there was overestimation. 318 

The model performed slightly better at sites with more consistent patterns in productivity, 319 

while it faces challenges in accurately predicting ET rates at extreme sites (high rainfall or 320 

high arid conditions).  321 

 322 

 323 
Figure 2: Observed versus simulated evapotranspiration (mm/month) across the studied 324 

sites by seasons. Points show values for individual months. Dry Season = (May, June, July, 325 

Aug, Sept., and Oct.); Wet Season = (Nov., Dec., Jan., Feb., March and April). 326 
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In this analysis, we compared observed monthly GPP data from different time frames; 327 

depending on the site, there is a decrease in productivity with a decrease in rainfall, 328 

showing a limitation of resources, especially water in dry regions. The monthly simulated 329 

and observed values (light blue lines) show, except for Sturt Plain, where the model 330 

overestimated GPP for all months (RMSE 69.53 g C m-2 Month-1), that the model was able 331 

to capture productivity along the rainfall gradient (Figure 3). Similarly, the model was able 332 

to capture both temporal and seasonal patterns with RMSE ranging from 48.46 g C m-2 333 

Month-1 to 69.53 g C m-2 Month-1 but consistently underestimated productivity in the dry 334 

season in all sites except Sturt plain.  335 

  336 

   337 

  338 

  339 
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Figure 3: Observed and simulated GPP by sites (g C m-2 Month-1) with simulated mean 340 

(1990-2015) and observed mean (faint lines = observed fluxes for individual years; orange 341 

shading = variability (standard deviation) of simulated fluxes for individual years and light-342 

gray shading = dry season). 343 

 344 

We compared (Figure 4) the simulated carbon flux from fire using the BLAZE model (1990-345 

2015) with carbon emission data (2000-2015) from the GFED. It shows that both datasets 346 

follow a similar pattern, and fire flux depends on water availability and fuel loads, which 347 

decrease with decreasing latitude. The latitudinal trend in the mean fire flux (top panel) 348 

shows a decline from north to south, with higher mean fluxes in the last 25 years around 349 

14-15°S and reduced values beyond 16°S. Even though the model slightly underestimates 350 

emissions at the northern end of the gradient, the overall pattern corresponds closely with 351 

the GFED (bottom panel), where northern regions (particularly those below 15 °S) exhibit 352 

higher fire activity emissions (Figure 4).   353 

  354 
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 355 

 356 
Figure 4: Simulated carbon flux from fire (g C m-2 year-1) with simulated mean (1990-2015) 357 

and annual fire flux (2000-2015) map from Global Fire Emission data (GFED) along the 358 

rainfall gradient. 359 

 360 

3.2 PFTs composition shift with rainfall  361 

Figure 5 depicts compositional variation along the rainfall gradient in terms of FPC as a 362 

proxy of PFT abundance. Both observed projective foliar cover (PFC) patterns and 363 

simulated FPC show that PFT composition varies with water availability, with grass 364 

dominance increasing as water availability decreases (Figure 5, top panel). The simulation 365 

result also shows the dominance of taller evergreen trees (Tall_euc) (>25 m high) and other 366 
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medium eucalypts at the northern end of the gradient and short evergreen nitrogen-�ixing 367 

Acacia and deciduous trees (Med_dec) at the southern end (Figure 5). The dominance of 368 

tall and medium-sized eucalypts (Tall_euc and Med_eve) decreases with increased aridity, 369 

with other PFTs having minimal FPCs in wet regions. In contrast, with a decrease in rainfall, 370 

the dominance of C4 grasses increases, reaching more than 50% FPC in a dry part of the 371 

gradient. Similarly, the contribution of PFTs other than grass in FPC remains similar in the 372 

dry end of the gradient, indicating water stress and competition for resources other than 373 

light, as FPC is evenly distributed among tree PFTs (PFT-wise simulated FPC and observed 374 

PFC are kept in Supplementary Figure 5).  375 

  376 
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 377 

 378 
Figure 5: Plot level projective foliar cover from ausplot (top panel) and simulated foliar 379 

projective cover by PFTs along the NATT (bottom panel). Bars represent mean value and 380 

error bar depicts standard deviation. Blue line shows mean rainfall with standard deviation 381 

(Acacia, C4G - grasses, Med_dec - Medium sized deciduous trees, Med_eve - medium sized 382 

evergreen trees, N�ix_mesic - Nitrogen �ixing mesic trees, Small_dec - Small sized deciduous 383 

trees, Small_eve - Small sized evergreen trees, Tall_euc - tall eucalyptus trees). 384 

 385 

Figure 6 depicts the variability of production in carbon mass and its relative contribution 386 

to carbon mass production along the rainfall gradient. Carbon mass production per year 387 
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decreases with rainfall, ranging from 3.35 to 12.80 kg C m-2 year-1 in wet regions to 0.76 to 388 

6.33 kg C m-2 year-1 in dry regions among PFTs. Mirroring FPC composition, the simulation 389 

also reveals that eucalypts contribute signi�icantly more to carbon mass production in the 390 

wet end (3-6 kg C m-2 year-1) but minimally at the dry end of the gradient (<less than 0.2 kg 391 

C/m2 per year). However, in the dry areas, Acacia (0.8 kg C m-2 year-1), medium-sized 392 

deciduous species (0.5 kg C m-2 year-1), and grass (0.45 kg C m-2 year-1) are major 393 

contributors to carbon production, showing the difference in vegetation composition with 394 

rainfall. In terms of relative contribution in carbon mass, eucalypt contributes up to 65% 395 

in wet areas, while in the dry end, three PFTs, namely Acacia (35.78%), Medium-sized 396 

deciduous (25.15%), and C4 grass (24.82%), are signi�icant contributors. Similar 397 

contributions in overall productivity and decreases in carbon mass with an increase in 398 

dryness re�lect that PFTs are adopted for limited water availability in dry conditions.  399 

Nitrogen-�ixing mesic trees show notable productivity in the wet end of the gradient (2.05 400 

kg C m-2 year-1) with eucalypt, while other PFTs have a relatively small contribution to 401 

carbon productivity, re�lecting asymmetric competition for light. Similarly, grass 402 

productivity increased from 0.17 to 0.44 kg C m-2 year-1 with decreases in rainfall, becoming 403 

a signi�icant contributor in the dry end of the gradient (up to 70% in some years) (Figure 404 

6).  405 
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 406 

Figure 6: Carbon mass and relative contribution in carbon mass production by PFTs in 407 

along the latitude (average across rows of simulated grids) (Tall_eue- tall eucalyptus trees, 408 

Acacia, Med_eve- medium sized evergreen trees, Med_dec- Medium sized deciduous trees, 409 

Small_eve- Small sized evergreen trees, Small_dec- Small sized deciduous trees, Nfix_mesic- 410 

Nitrogen fixing mesic trees, C4G- grasses). 411 

 412 

Figure 7 illustrates the seasonal variation in MODIS LAI and simulated monthly LAI values 413 

from 2000 to 2015 along NATT in relation to rainfall and seasons. Both LAI datasets exhibit 414 

the same pattern, i.e., a decrease in LAI with decreases in rainfall. The MODIS LAI shows 415 

more variability in LAI compared to the simulated LAI, where simulated LAI was within the 416 

range of MODIS LAI (Figure 7). Across the simulated longitude, MODIS LAI has a denser 417 

value within the range of 1 to 2 m²/m² in the wetter end of the gradient, with a maximum 418 

of 7 m²/m² in both seasons. In both LAI, at the wetter end of the gradient, LAI remains 419 

relatively constant throughout the year, whereas in the dry season, LAI at the dry end of the 420 

gradient is smaller (less than 2 m²/m2). It re�lects that the PFTs’ composition (Figure 5) 421 

and their adaptive mechanisms vary with water availability, as rainfall in the wet season is 422 

signi�icantly higher than in the dry season.  423 
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 424 

Figure 7: MODIS LAI (2000-2015) and simulated monthly LAI (2000-2015) with rainfall by 425 

season along the NATT. Black line plot represents the mean simulated LAI value, and the 426 

error bar depicts the standard deviation. Blue line shows the mean rainfall with standard 427 

deviation (error bar). 428 

 429 

Figure 8 shows the relationship between LAI and latitude for PFTs. The LAI of tall 430 

Eucalyptus trees decreases as rainfall decreases, with a maximum LAI of 2.02 m-2m-2 at 431 

latitude 13.25 0S and a minimum at 17.75 0S (0.3 m-2m-2), reflecting the competitive 432 

dominance of these PFTs in wet conditions. For medium deciduous species (Med_dec), LAI 433 

increases with a decrease in rainfall before decreasing again, showing a non-linear 434 

response to rainfall, which can be interpreted as PFT adaptation to fluctuating competition 435 

and stress conditions. Overall, the LAI trend for trees shows a negative correlation between 436 

LAI and rainfall, i.e., with a decrease in rainfall, the LAI of trees decreases. By contrast, the 437 

LAI of grass increases towards the dry end of the transect (0.4 m-2m-2 at 11.75 0S and 0.75 438 

m-2m-2 at 17.75 0S), showing dominancy of grasses in arid regions, which is the opposite of 439 

the trend for trees. Similarly, at the dry end of the gradient, Acacia dominancy in LAI 440 

becomes more apparent, as this genus, characteristic of the Australian inland arid region, 441 

is generally more adapted to water stress conditions compared to eucalypts.  442 
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 443 

Figure 8: LAI by PFTs along the NATT (simulated grid), solid point showing mean and error 444 

bar showing standard deviation of mean for each PFT. Blue line shows mean rainfall with 445 

standard deviation in each latitude (Acacia, C4G - grasses, Med_dec - Medium sized 446 

deciduous trees, Med_eve - medium sized evergreen trees, Nfix_mesic - Nitrogen fixing 447 

mesic trees, Small_dec - Small sized deciduous trees, Small_eve - Small sized evergreen 448 

trees, Tall_euc - tall eucalyptus trees). 449 

 450 

3.3 Grass abundance increases with a decrease in rainfall   451 

Across the rainfall gradient, productivity and flux decreased with declining rainfall (Figure 452 

9). Simulated GPP, data from Haverd et al. (2016), and flux tower observed data 453 

consistently show a decline in GPP with rainfall across four sites, accompanied by strong 454 

seasonal fluctuations. The tree component in Haverd et al. (2016) exhibits less seasonal 455 

fluctuation in flux compared to grass, where grass productivity drops to almost zero during 456 

the dry season. This lower variability in the tree component is evident in the consistent 457 

fPAR throughout the year for trees. However, in the simulated results, the tree component 458 

also fluctuated due to the presence of deciduous PFTs in the simulation inputs. The 459 

seasonal cycle in GPP exhibits sharper fluctuations in drier regions, where grass becomes 460 

productive during the wet season, and the overall productivity of the ecosystem peaks, 461 

reflecting a strong phenological response of vegetation to rainfall. Furthermore, the 462 
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contribution of C4 grasses to overall GPP increases with decreasing rainfall, reaching 463 

maximum productivity at the drier sites. In these regions, approximately 30-35% of total 464 

annual production is attributed to grass. These spatial and temporal patterns highlight a 465 

structural shift in ecosystem function, and the composition of the ecosystem is controlled 466 

by rainfall and PFTs' adaptation to water stress and competition.   467 

 468 

Figure 9: Monthly time series of simulated GPP of trees and grasses (2002-2015) and 469 

monthly fPAR and daily GPP adopted from (Haverd et al., 2016) along the rainfall gradient 470 

(HS- Howard Spring; AR- Adelaide River; DU-Daly Uncleared (River), DR- Dry River). 471 

 472 

Along the rainfall gradient, variation in the simulated monthly leaf area index of trees and 473 

grasses demonstrates a relationship between seasonal rainfall patterns (Figure 10) and 474 

vegetation composition. In both wet and dry seasons, the monthly LAI of the trees 475 

decreased with a decrease in rainfall and contributed maximum monthly LAI at the wet 476 

end of the gradient. The LAI of trees in both dry and wet seasons is relatively similar (less 477 

than 0.5 m-2m-2) in dry end of gradient which is almost one-fourth compared to wet end of 478 

gradient. However, the monthly LAI of grasses exhibits distinct behaviour. In the dry 479 

season, the monthly LAI of grass was almost same throughout the gradient averaging 480 

around 0.2 m-2m-2. However, during the wet season in drier regions of the gradient, grass 481 

have higher leaf area index than trees reaching more than 1 m-2m-2. Here, the difference in 482 
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LAI of trees in wet and dry seasons remains smaller compared to grass, which increases 483 

with a decrease in rainfall, illustrating the role of internal annual variability of rainfall and 484 

stress caused by it on determining structural variability and interaction between trees and 485 

grass along the gradient.  486 

 487 

Figure 10: Leaf area index in wet and dry seasons for trees and grass along the rainfall 488 

gradient (average across simulated grids from longitude 130.75 0E to 134.25 0E) and their 489 

variability 490 

 491 

4. Discussion  492 

We evaluated the interactions between environmental variables, and underlying 493 

mechanisms, and associated traits and life history strategies by de�ining and integrating 494 

regional PFTs with updated parameter values to represent local savanna composition using 495 

observations across the NATT. Our model con�irmed that, along the gradient, rainfall is a 496 

major driving factor, creating an opposing gradient in terms of competition for light and 497 

nutrients at the northern end and water stress in the southern end during prolonged dry 498 

months. Consequently, ecosystem structure, composition, and productivity vary spatio-499 

temporally. The variation in resource availability, especially water, along the gradient, 500 

impacts both the structure and composition of the savanna ecosystem, re�lected by the 501 
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dominance of trees and grass at respective ends of the gradient in terms of carbon mass 502 

production,  LAI and FPC, presence of nitrogen-�ixing mesic Trees at the wet end and the 503 

emergence of Acacia as a dominant tree genus at the dry end of the transect.  504 

 505 

The simulated evapotranspiration, GPP, and �ire �lux agree with the observed decrease in 506 

these quantities with a decrease in rainfall, showing the dependency of the vegetation 507 

structure and composition on rainfall. Similarly, Haverd et al. (2016) ; Kanniah et al. (2011) 508 

and  Ma et al. (2020) also observed decreasing trends and patterns in GPP along the 509 

gradient from north to south using both remote sensing and modelling approaches. Our 510 

model was able to capture both seasonal and temporal patterns of GPP and ET on the 511 

rainfall gradient with lower accuracy in dry months and at the dry end of the gradient, 512 

potentially re�lecting the in�luences of inter-annual variability of rainfall. Similar to our 513 

study, Havard et al. (2016) found that both HAVANNA-POP and CABLE models also slightly 514 

overestimated ET and GPP at the dry end of the transect. This difference was attributed to 515 

the simplistic representation of the grass PFTs in this model. Moore et al. (2016) estimated 516 

that approximately 40% of the total annual GPP in the Australian tropical savanna could be 517 

attributed to C4 grasses. The carbon �lux from �ires decreases with decreases in rainfall, as 518 

fuel load also decreases with rainfall. Deceukelier (2021) evaluated the performance of LPJ-519 

GUESS with the BLAZE module for Australian ecosystems and noted that while the model 520 

captures key �ire processes, it struggles to capture emissions at a �iner spatial scale. The 521 

�ire model tends to slightly underpredict emission, especially at the wet end of the gradient, 522 

potentially due to �ire–climate interactions and higher inter-annual climatic variability 523 

(Canadell et al., 2021).  524 

 525 

The seasonal difference in evapotranspiration (less than 50 g m-2month-1 in dry months to 526 

180 g m-2month-1), monthly GPP, seasonal responses of grass, and LAI of grasses (less than 527 

0.2 m-2m-2 in dry months and 1.2 m-2m-2 in wet months in dry end of gradient) show the 528 

role of rainfall patterns in ecosystem productivity and adaptation of vegetation in water 529 

availability conditions. This disparity in GPP, ET, and LAI between the dry and wet seasons 530 

at the dry end suggests a signi�icant response of grasses to increased rainfall, resulting in a 531 

substantial expansion of leaf area and re-greening of existing leaf area by perennial grasses 532 

as an adaptation to water stress and a response to temporal dynamics in water availability. 533 

Ma et al. (2020) also reported that productivity along the NATT depends on rainfall and the 534 
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response of grass to rainfall to the rainfall dynamics as grass in dry savanna exhibits a 535 

higher hydrological sensitivity with their contribution being strongly seasonal with around 536 

75-80% in wet season and 18% in dry seasonal along the NATT (Moore et al., 2016).  537 

 538 

The dominance of taller Eucalyptus and other medium eucalypt PFTs at the northern end 539 

of the gradient with higher carbon mass production and major contributor in FPC and LAI 540 

shows the competition for light with tall trees limiting light for understory growth and 541 

small trees. Eucalyptus miniate and Eucalyptus tetrodonta form top canopy of more than 542 

50% cover (Hutley et al., 2000) with more than 500 stand per hectare in the wet region 543 

with Sorghum intrans, Sorghum plumosum, Heteropogon triticeus, and other C4 grasses 544 

making up the understory (TERN, 2020). Several studies have concluded that in closed-545 

canopy forests where stand density is high, intense competition for light not only structures 546 

the vegetation but also determines the growth patterns and biomass partitioning (Matsuo 547 

et al., 2024; Woinarski et al., 2020). At the dry end of the gradient, grass, Acacia and other 548 

deciduous tree PFTs have similar carbon mass production with C4 grass dominating FPC 549 

and LAI. Hutley et al. (2011) reported that in the southern semi-arid region, shrublands 550 

and hummock and tussock grassland become increasingly prominent with scattered Acacia 551 

trees. Plot-based measurement of foliar cover (Munroe et al., 2021) data also shows that 552 

hummock and tussock grasses dominance increases in drier end of the gradient. The 553 

relative contribution of different PFTs to FPC varies along the rainfall gradient, with tall and 554 

medium-size eucalypt (Tall_euc and Med_eve) PFTs contributing most to wet regions, but 555 

these contributions decline as aridity increases. This can be interpreted as an outcome of 556 

asymmetric competition for light and resources. Similarly, the relative contribution of 557 

drought-deciduous trees in LAI, FPC and carbon mass production increases with a decrease 558 

in rainfall, showing the adaption of the relevant taxa to water stress conditions. Eamus and 559 

Prior (2001) found that even though around 50% of species in NATT savannas are 560 

deciduous, 90% of the projected crown cover is formed by evergreen species which exhibit 561 

water uptake throughout the year. The presence of �ine roots even down to 9m depth (Chen 562 

et al., 2004) suggests water table �luctuates by seasons as woody species in savannas are 563 

able to acquire deep soil water making them productive year-round as suggested by Hutley 564 

et al. (2000) and Chen et al. (2002). 565 

 566 
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We found that the GPP, LAI, carbon mass and FPC of trees decrease with a decrease in water 567 

availability, whereas the contribution of C4 grass and Acacia increases with increased 568 

aridity. During the wet season, particularly in the drier regions of the gradient, grasses 569 

display a noteworthy increase in LAI compared to trees, with values exceeding 1 m²m-² 570 

showing seasonal adaptation of grass in stress conditions. The decrease in GPP coincides 571 

with a decrease in LAI and FPC of tree components along the gradient, where, in the dry 572 

end of the gradient, the FPC of tree PFTs remains similar and dominance of single PFTs 573 

decreases, showing evidence that competition for light among PFTs decreased from north 574 

to south. Taken together, the variations our model predicted along the rainfall gradient are 575 

consistent with the following interpretation: in the northern, high-rainfall end of the 576 

gradient, vegetation competes for light with shading effects on understory vegetation 577 

including grass, whereas in the dry end, vegetation are adapted to stress and seasonal 578 

rainfall. Structurally and compositionally, tall and medium-sized eucalypts dominate the 579 

northern part and short and small trees the drier conditions of the south, in line with the 580 

differential strategies and traits of the respective groups. Variations in resources 581 

availability and intensity of competition along the productivity gradient not only shape the 582 

structure and composition of the ecosystem but also govern the productivity in varying 583 

environmental condition (Michalet et al., 2021; Rees, 2013; Sauter et al., 2021). Similarly, 584 

other environmental factors such as, temperature and disturbance including �ire (Emmett 585 

et al., 2021; Werner and Prior, 2013) may be responsible for changes in trees and grass 586 

productivity and an increase in the dominance of Acacia species with short height, ability 587 

to �ix nitrogen, and reduced stomatal conductance in the dry end of the gradient. 588 

 589 

Recognizing the seasonality in productivity, variability in interannual rainfall, adaptative 590 

strategies of trees and combined role of biotic and abiotic factors in shaping vegetation 591 

structure, composition, and productivity provided crucial insight for both ecological theory 592 

and practical implications. These insights can inform reforestation and restoration 593 

projects, ensuring selection of species that are well-suited to local climatic conditions and 594 

capable of withstanding competition and resilient to stress associated with low soil 595 

moisture. Thus, our results are relevant to the management and conservation of NATT 596 

ecosystems and other similar savannas and woodlands ecosystems.  597 

 598 

 599 
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4.1 Limitations 600 

Our process-based modelling approach allowed us to reproduce ecosystem structure, 601 

composition and functioning along the rainfall gradient and interpret underpinning 602 

mechanisms of plant community – and related ecosystem functional – responses in relation 603 

with differing environmental conditions. However, several limitations existed, and future 604 

work can improve the representation of spatio-temporal dynamics of composition, 605 

structure, and productivity of the savannas in contrasting gradient of competition and 606 

stress. A primary limitation is the dependency of PFT parameter values on limited 607 

observational trait data for tropical climatic conditions as the model becomes less accurate 608 

(higher RMSE in dry conditions) as environmental conditions become more extreme, both 609 

regarding wet and dry conditions. We emulated deep water access by eucalypt trees by 610 

adding additional water to the soil pro�ile, overriding the internally simulated hydrological 611 

dynamics. In tropical savannas, �ine root biomass and abundance and their depth depend 612 

on season, phenology, competition, and water availability (Eamus and Prior, 2001; Holdo, 613 

2013) enabling plant access to deep water in dry seasons. Detailed observations of entire 614 

tree root pro�iles, replicated for a range of environments and hydroclimate episodes (such 615 

as positive and negative ENSO cycles) would be needed to adequately represent root 616 

dynamics under varying environmental stress. Such observations are unfortunately rare 617 

and were not available for the taxa and ecosystems we here studied. Deep water access by 618 

trees would ideally be better captured by explicitly prescribing or simulating groundwater 619 

reserves and tree-rooting strategies to access these, but this would require signi�icant and 620 

novel extensions to the model, and, similar to root pro�iles, is likely to be data-limited. 621 

Prospects for including such details in regional models are currently limited by available 622 

data on groundwater distribution and depth, as well as detailed knowledge of the below-623 

ground allocation patterns of the trees.  624 

 625 

In our model setup, overall patterns in carbon �lux from �ire were captured by the BLAZE 626 

model. However, �ire in these systems is a complex phenomenon in�luenced by multiple 627 

interacting drivers, including natural ignitions, vegetation structure, plant-speci�ic traits,  628 

climate variability, and cultural practices such as indigenous burning (Deceukelier, 2021; 629 

Kelley et al., 2014; Murphy et al., 2023). However, parameterizing tree PFTs with traits 630 

representative of savanna species (e.g., adjusted wood density, leaf phenology, Huber value) 631 

has been shown to compensate for some of these limitations by improving the simulation 632 
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of �ire resilience and post-�ire recovery (Deceukelier, 2021; Kelley et al., 2014). Accurately 633 

analyzing and attributing �ire impacts, including disentangling them from climate-634 

vegetation interactions, would require a dedicated analysis with further �ire-speci�ic 635 

simulations and data inputs. Similarly, post-�ire recovery traits, particularly resprouting 636 

capacity, which are ecologically important in the Australian savanna system (Ondei et al., 637 

2016; Tangney et al., 2022), are not explicitly included in the model setup due to limitation 638 

in observational data regarding phenology of carbohydrate storage under different 639 

conditions and remobilisation in response to different disturbances.  640 

  641 

In our simulations, we used traits governing growth allometry that were inherited from the 642 

default global PFT parameter set of LPJ-GUESS. Local species and functional groups of our 643 

study region may show different allometric growth patterns. Allometry, and associated 644 

plant biomass allocation (growth) strategies have an important in�luence on competition 645 

and carbon partitioning in different environmental conditions. Height, crown shape and 646 

size of the tree depends on the space and growth conditions (Pretzsch et al., 2015), and 647 

competition for light not only structures the vegetation but also determines the growth 648 

patterns and biomass partitioning (Damgaard, 2003; Matsuo et al., 2024). Accurately 649 

describing allometric relations for growing trees would help us understand how light 650 

competition in high rainfall areas and free light availability in dry regions impact 651 

composition, structure and function of savannas over the stand development cycle. A 652 

subsequent study will explore how alternative allometries impact the simulation of growth 653 

ef�iciency, carbon partitioning, root development, and nutrient acquisition, thereby 654 

shaping competitive exclusion and the resulting structure and composition of PFTs at stand 655 

to landscape scales. 656 

 657 

5. Conclusions  658 

By integrating �ield-based trait observations with regional PFTs into LPJ-GUESS, we 659 

elucidated spatial and temporal patterns of vegetation structure, composition, and 660 

productivity along a savanna rainfall gradient. We found that tall and medium-sized 661 

eucalypts have higher contributions in LAI, FPC and carbon mass production in high rainfall 662 

areas, whereas in drier areas, short Acacia trees and C4 grass dominated. GPP, ET, and LAI 663 

of trees decrease with a decrease in rainfall. Similar values of productivity-related variables 664 

for trees with a decrease in water availability may re�lect adaptative strategies of trees that 665 
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allow them to tolerate or avoid water stress, maintaining relatively strong productivity 666 

towards the dry end of the gradient. The increase in the relative contribution of grass to 667 

carbon mass, GPP, and LAI in the wet season illustrate differential seasonality in 668 

productivity of trees versus grasses, particularly at the dry end of the gradient. As a case 669 

study of how water availability as a key environmental driver, plant functional strategies 670 

and resource capture interact to govern outcomes of savanna stand development and 671 

composition, this comprehensive analysis provides critical insights into the complex 672 

dynamics of savanna ecosystems. Our model was able to replicate key patterns of 673 

composition, structure and function along the gradient, on a credible mechanistic basis. 674 

This suggests it could be a relevant tool to predict the impacts of climate change on 675 

savannas, and guide mitigation, ecosystem management, and conservation strategies to 676 

ensure their future resilience and sustainability.  Future research should focus on better 677 

characterising soil water reserves at depth, plant use of these, and on re�ining tree growth 678 

allometries to further enhance our understanding of savanna ecosystems and their 679 

response to environmental change.  680 
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