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1. Abstract
Environmental gradients affect vegetation structure and ecosystem productivity. Along the
northern Australia tropical transect (NATT), which transitions from tropical moist
conditions in the north to arid conditions in the south, vegetation composition and
structure are closely tied to rainfall patterns. We hypothesise that biotic competition and
abiotic stress exhibit opposing patterns along the NATT rainfall gradient and aim to
disentangle these effects on vegetation structure and productivity. Using a trait-based
dynamic vegetation model, we simulated vegetation responses to varying competition and
stress along the NATT. The model successfully simulated spatial variations and temporal
patterns in carbon and water fluxes, where evapotranspiration and gross primary
productivity decrease with rainfall along the gradient. Simulation results showed that taller
and medium-sized Eucalyptus had higher carbon mass, leaf area index, and foliar projective
cover at the wet end of the gradient. In contrast, Acacia and grasses were dominant at the
dry end. Crown coverage shows spatial and temporal variability with rainfall, with higher
variability in tree plant functional types (PFTs) crown cover in the north and more uniform
in the south, while grasses have maximum coverage during the wet season in the dry end
of the gradient. These patterns suggest a shift in the importance of biotic versus abiotic
factors, with competition playing a more significant role in the wet region and stress
becoming more influential as aridity increases in the south. Overall, our study underscores
water availability as a primary driver of vegetation structure and highlights the role of
competition and stress in modulating ecosystem structure, composition, and productivity

along the rainfall gradient.

Keywords: savanna, competition, rainfall gradient, stress tolerance, plant traits,

community assembly

2. Introduction
Vegetation structure and ecosystem productivity exhibit notable variation along
environmental gradients (Asner etal., 2014; Clark et al., 2015; Hutley et al., 2011; Maharjan
et al, 2021; Zhu et al,, 2022). The intricate interplay between biotic (competition and
facilitation) and abiotic (topography, climate, soil, and geology) factors determines
patterns and dynamics of vegetation structure, composition, and productivity. These biotic

and abiotic factors shape the environment by creating conditions that influence ecological
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processes and interactions between species. In combination with eco-evolutionary trade-
offs influencing the relative performance of alternative plant strategies in different
environments, the result may be that distinct phenological and morphological
characteristics, niche differentiation, functional trait distributions, and competitive
exclusion emerge at the community level, resulting in distinct community composition and
structure (Asner et al.,, 2014; Mufioz Mazdn et al., 2020). Understanding how vegetation
patterns change across a spectrum of environments, from resource-abundant conditions
characterised by competition for light, water, and nutrients, to resource-limited conditions
in which stress tolerance is a viable strategy, provides a window into community ecological
processes, sometimes termed ‘community assembly’. Mechanistic modelling approaches
that combine representations of physiological plant and soil processes with demographic
and compositional dynamics of plant populations offer a potential way to emulate the
assumed steps involved in community assembly, and link this to plant strategies and traits.
Good model performance in terms of replicating compositional patterns along
environmental gradients may then provide confirmation of assumptions as to the eco-
evolutionary basis of plant traits as encoded in the model. Dynamic vegetation models
(DVMs) are one class of models that can be used for this purpose, providing a potential
approach for analysing the interactions and relating them to observations of ecosystem
composition, structure, and function in the field to unpack the eco-evolutionary basis of

those observed patterns (Argles et al., 2022; Smith et al,, 2001).

DVMs simulate ecosystem functioning by considering environmental conditions, traits, and
biotic interactions as underpinning factors (Argles et al., 2022; Snell et al.,, 2014; Wang et
al, 2024). The current generation of DVMs used for global and regional global change
studies bring together multiple drivers (climate, soil, disturbance) and processes (carbon
cycle, population dynamics, recruitment and mortality, photosynthesis and respiration)
and a spectrum of complexity in representing vegetation processes and attributes,
including factors like competition and vegetation succession, to simulate key energy and
material fluxes of life (Falster et al., 2021a; Fisher et al., 2018; Smith et al., 2014). Distinct
traits and life history strategies encoded in the parameters of different plant functional
types (PFTs) influence their performance and interactions in model simulations (Sitch et
al, 2003). Integrating field traits information that aligned with regional environmental

conditions (Kuppler et al., 2020; Wang et al., 2024) that enhance resource acquisition in
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resource-abundant conditions and prioritize resource conservation or survival
mechanisms (e.g., drought tolerance) under stressful conditions allows for evaluation of

how competition and stress influence ecosystem dynamics in different environments.

Natural environmental gradients can serve as natural laboratories to examine the interplay
of environment and species performance in governing compositional, structural, and
functional variation along the gradient. Competition and abiotic stress may play
contrasting roles in shaping such variations at different points along the gradient. Moisture
gradients encompassing distinct wet and dry growth conditions are a case in point,
transitioning from abundance to scarcity in terms of a key plant resource (soil water) as
average rainfall declines along the gradient (Williams et al., 1997, Peel et al,, 2005). The
Northern Australia Tropical Transect (NATT) in tropical northern Australia
is characterized by a sharp decrease in rainfall from north to south, with two distinct bio-
climatological patterns (wet and dry conditions in north and south, respectively Figure 1)
(Hutley et al., 2011; Koch et al., 1995; Whitley et al., 2016). Along the NATT, vegetation has
co-evolved with indigenous and managed fire (Bird et al.,, 2024; Harrison et al., 2021),
where vegetation structure, composition, richness, and canopy structure are strongly
correlated with rainfall (Hutley et al., 2011; Ma et al., 2020) with trees and grass coexist
persistently (Holdo and Nippert, 2023). Competition in the relatively crowded tree stratum
in the moister north gives way to water stress in the south, resulting in clear patterns in
functional diversity along the transect. A realistic representation of the key factors shaping
NATT composition, structure, and function, such as the relative abundance of different
traits, plant strategies, post-fire resprouting dynamics, phenological and morphological
characteristics, and the balance between resource acquisition and conservation strategies,

is essential for understanding variation in ecosystem productivity.

Integrating field-derived trait information into DVMs as parameters of PFTs ensures model
simulations are grounded in real processes and allows for testing and reproducing the
mechanisms that govern PFT distribution, tree-grass interactions, and their transitions
across the forest-to-savanna gradient (Baudena et al.,, 2010, 2015; Haverd et al., 2016;
Nijzink et al., 2022; Whitley et al., 2017). For this study, we employed the standard version
of the second-generation dynamic vegetation model LPJ-GUESS (Smith et al,, 2001, 2014)

to unpick structural, compositional, and functional shifts along the gradient in terms of
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underlying drivers, processes, and ecological interactions. Our approach leverages
empirical data on vegetation traits and life history strategies, reflecting the adaptive
responses and capturing local ecosystem processes to varying climatic conditions observed
in the field. Our goal is not to benchmark this regionalised trait configuration against the
default global LPJ-GUESS setup, but rather to test whether incorporating empirical trait
data improves the model’s ability to realistically simulate observed structural,
compositional, and functional variation. By parameterizing the characteristic savanna PFTs
embedded in the model, we aim to reproduce ecosystem productivity variations and the
underlying ecological mechanisms, allowing the role of competition and stress in shaping
the savanna ecosystems to be assessed. Through this process-based modelling approach,
we aim to investigate the contributions of biotic and abiotic factors to vegetation structure
and function, with the goal of capturing the mechanisms that shape the ecosystem and
enhance our understanding of the ecological processes governing savanna ecosystems

along the rainfall gradient.

2. Methods

2.1 Study site

This study was conducted along the NATT transect, which spans 1000 kilometres (Rogers
and Beringer, 2017) in a generally north-south direction from near the city of Darwin on
the northern Australian coast to Alice Springs in the arid centre of the Australian continent.
The NATT was established in the mid-1990s as part of the International Geosphere
Biosphere Program (IGBP) (Hutley et al.,, 2011; Koch et al., 1995). This transect represents
two distinct bio-climatological patterns, with rainfall decreasing sharply from north to
south. In the north, the inter-tropical convergence zone dominates, characterized by the
seasonal monsoon climatic system with annual rainfall up to 1500mm. In contrast, the
southern part of the gradient exhibits semi-arid climatic conditions (rainfall of around 650
mm/year), characterized by prolonged drought with no consistent seasonality of rainfall

(Rogers and Beringer, 2017; Williams et al., 1997).
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Figure 1: Map showing rainfall gradient (data source Bureau of Meteorology:

www.bom.gov.au) with simulated grid, study area, ecosystem flux tower sites of the OzFlux
network and vegetation types (data source Australia National Vegetation Information

System: www.dcceew.gov.au) along the NATT.

The northern part of the transect (~1500 mm rainfall, 12 ©S) is dominated by tropical
savanna vegetation where evergreen eucalypt trees belonging to the Eucalyptus and
Corymbia genera dominate the woody overstorey and Cs grasses and other forb and shrub
species characterise the understorey. The southern semi-arid region (~500 mm rainfall, 17
oS) comprises shrublands and hummock grassland with scattered Acacia trees (Hutley et
al, 2011). Along this transect, five ecosystem flux tower sites (namely Howard Spring,
Adelaide River, Daly River, Dry River, and Sturt Plain) belonging to the Terrestrial
Ecosystem Research Network (TERN) OzFlux platform monitor meteorological, soil
moisture, ecosystem flux, and productivity covering all major ecosystem types along the
transect (Hutley etal.,, 2011; Koch et al., 1995). In addition to the flux tower measurements,

TERN samples vegetation at each site through field plots, where limited measurements of
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plant traits and biomass are conducted to assess ecosystem structure and function (TERN,

2023).

2.2 Ecosystem model description and customization.

We employed the standard LPJ-GUESS DVM (Smith et al, 2001, 2014) as a modelling
approach to simulate vegetation structure, composition, and productivity along the NATT.
LPJ-GUESS is a process-based DVM that simulates ecosystem function through
biogeochemical and biophysical processes (Sitch et al., 2003) and integrates the structural
dynamics resulting from plant growth, demography, and composition from neighbourhood
(patch) to landscape (grid cell) scales (Smith et al.,, 2001, 2014). DVMs of this kind that
combine process-based physiology with explicit vegetation demography have been
referred to as second-generation DVMs (Fisher et al., 2018, 2010). Vegetation response to
climate, atmospheric CO: levels, and nitrogen input through competition among co-
occurring PFTs for light, space, and soil resources is simulated at the patch scale on a daily
timestep. Similarly, the model incorporates stress factors such as drought, nutrient
limitations, and soil moisture dynamics impacting growth and survival. Additionally, the
model also considers nutrient (nitrogen) cycling (Smith et al.,, 2014), and fire disturbance,
the latter based on the present study on the BLAZE wildfire module (Rabin et al., 2017).
The BLAZE fire model simulates combustion and tree mortality based on daily fire-weather
and fuel conditions across patches. Annual burned area is estimated using the SIMFIRE
model (Knorr et al.,, 2014), which considers fire weather, fuel continuity, and population
density, and is distributed monthly using GFED3 climatology (Giglio et al., 2013). Fuel
consumption and mortality are then simulated in BLAZE, with tree mortality based on
height-dependent survival probabilities (Haverd et al., 2014), using functions from Bond

(2008) for savanna broadleaved trees (Rabin et al., 2017).

PFTs are functional ‘taxa’ that differ in growth form, phenology, and life-history strategies
having different growth rates and competitive abilities in resource variability conditions
influenced by traits like height, root depth, and specific leaf area (SLA). C3 and Cs
photosynthetic pathways are differentiated for grass PFTs. Bioclimatic (temperature)
limits determine the potential distribution of PFTs in climate space via establishment and
survival limits, whereas mechanistic links between traits and competition of co-occurring

PFTs determine the structure, composition, and productivity at stand and landscape scales.
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Key PFT parameters (traits) for trees include SLA, wood density, leaf longevity, leaf area to

sapwood cross-section area (1/Huber value), and root distribution (root profile), which is

defined for each PFT before simulation. These parameters influence different ecological

processes like growth, biomass accumulation, establishment, and mortality, resulting in

community assembly and a distribution of the plant communities along climate and soil

gradients (Smith et al,, 2001).

Given Australia's unique environmental and ecological characteristics, we modified the

following features to customize the model for application to our study.

The model uses a global set of 12 PFTs by default, representing dominant elements
of the major global vegetation types (biomes). For this study, we defined a new PFT
set specific to the local context using a multivariate clustering approach. The
parameter values of each PFT were defined based on trait data of tree species that
occur along the NATT. These PFTs were chosen to capture the diverse strategies
employed by plants to cope with competition and stress conditions prevalent along
the transect. C3 and Cs grass default PFTs were adopted for simulation with default
parameter values. For trees, values of wood density and Huber value were adjusted
using trait observations from trait databases and literature reports (details below)
to better represent ecosystem composition and productivity under general
conditions across the study domain (field measured and adjusted values of
traits/parameters; Supplementary Table 1).

LPJ-GUESS distributes roots in 15 layers, each 10cm in depth. However, some
Eucalyptus species have roots extend much deeper (sometimes up to 60 m) to
access water during the dry season (Janos et al.,, 2008)However, some Eucalyptus
species have roots t extend much deeper (sometimes up to 60 m) to access water
during the dry season (Janos et al.,, 2008). Deep water access is believed to be an
important determinant of survivorship and productivity of the tree component of
savanna ecosystems along the NATT (Chen et al.,, 2002; February et al., 2007;
Whitley et al., 2017). To emulate such deep water access within the architectural
constraints of the model, we optimized the model to meet plant water demand by
amending the simulated water content of the 15t (lowest)and 14t soil layer to
100% and 75% of available water holding capacity, respectively, emulating root

access to water reserves within reach of tree roots. Apart from this adjustment, the
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root profile for each PFT was adopted from the global synthesis of (Jackson et al,,
1996), which generally prescribes a higher proportion of deep roots for trees
relative to grasses (80% of roots in the top 50 cm of soil for grass; 40-65% in the
top 50 cm for trees).

e Nitrogen-fixing Acacia species are an important component of the woody
vegetation element at the dry end of the NATT transect. To emulate the better access
to nitrogen supply that these species gain through symbiotic association with
nitrogen-fixing rhizobia, we increased the optimum limit for utilizing nitrogen for
nitrogen-fixing PFTs to a non-dimensional scalar value of 3, compared to 2 for non-

nitrogen-fixing PFTs.

2.3 Data sources and parameterisation of model

Trait values, phenological and morphological characteristics of 28 plant species, recorded
across the rainfall gradient during the 2008 inventory (TERN, 2023) at flux tower sites,
were compiled from the AusTraits database (Falster et al., 2021b) and other relevant
literature sources, including Williams et al. (1997) and the Atlas of Living Australia,

regardless of distribution in Australia.

A hierarchical clustering process was used to group species into categories based on
similarity in plant traits and life-history strategies. Specifically, we employed a divisive
(top-down) clustering approach where species were progressively divided into
functionally distinct groups. We used plant life history strategies - such as nitrogen fixation
potentiality, leaf phenology (evergreen, rain green, summer green, broadleaved, and
conifers), and water requirement for growth (mesic, Intermediate, xeric) - along with traits
such as wood density and tree height (height at maturity) were used for clustering species
into seven groups (Supplementary Figure 1). Three of these groups comprised tropical
broadleaved raingreen trees, with one PFT being intermediate shade tolerant (Table 1). The
following parameters: leaf phenology, drought tolerance, leaf longevity, wood density,
nitrogen fixation potentiality, plant height, specific leaf area (SLA), shade tolerance, leaf
area to sapwood cross-section area (Kiatosa, i.e. Huber value), root depth distribution, and
leaf turnover rate of species correspond to prescribed parameters that discriminate PFTs

in LPJ-GUESS. The values of these parameters compiled from different sources were
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averaged across the species in each cluster to arrive at a representative value for each PFT

(Table 1).

Table 1: Tree PFTs and their parameter values used for simulation.

Parameters PFTs
Tall_euc Med_eve | Med_dec | Acacia Small_eve Small_dec | Nfix_
(>30m) (10-30m) | (10-30m) (<10m) (<10m) mesic
Leaf phenology | Broadleav | Broadleav | Broadleav | Broadleav | Broadleave | Broadleav | Broadl
ed ed ed ed d ed eaved
Evergreen | Evergree | Rain Evergree | Evergreen Rain Rain
n green n green green
Shade tolerance | Intolerant | Intolerant | Intolerant | Intolerant | Intermediat | Intolerant | Intoler
e tolerant ant
SLA (m?/kgC) 11 11 18 12 11 26 20
Wood Density 230 250 250 350 190 250 250
(kgC/m3)
Kiatosa 5200 4500 4000 4500 4000 2000 3800
Leaf longevity 1.5 1.5 0.5 2 2 0.4 0.7
(years)
Turnover leaf 0.6 0.66 1 0.5 0.5 1 1
(fraction/year)
Root in top 50 43.1 43.1 47.6 45 55 47.6 62.8
cm (%)

2.4 Simulation protocol

LPJ-GUESS was configured using gridded meteorological, soil properties, and atmospheric
nitrogen deposition rate at 0.5°x0.5° spatial resolution (CRUNCEP data (1901 - 2015)). The
model was run with 15 patches in each grid cell, simulating the time period from 1901 to
2015. We run the LPJ-GUESS in cohort mode, using the BLAZE fire model to account for the
impacts of weather-related fire disturbances on vegetation structure (Rabin et al., 2017),
and applied a generic return interval of 100 years for patch-destroying disturbances (Pugh
etal, 2019; Smith et al., 2014). A spin-up of 500 years forced by recycling the first 30 years
of the observed climate data set was performed to achieve an initial steady state for
vegetation structure. The atmospheric CO2 concentration data from NOAA (1901- 2015) is
used as input data (Friedlingstein et al.,, 2023).

2.5 Model validation and Evaluation
The long-term ecosystem productivity data (monthly evapotranspiration, gross primary
productivity) recorded at flux tower sites (2002-2015 - Howard Spring; 2008-2009-
Adelaide River; 2008-2015- Daly River; 2011-2015- Dry River and 2008- 2015 - Sturt

10
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Plain) were extracted from TERN Oz flux, a network of flux tower sites across Australia and
New Zealand that provides long-term data on ecosystem productivity and climate variables
(Beringer et al, 2022; Isaac et al, 2016). The flux-based monthly gross primary
productivity (GPP) and evapotranspiration (ET) are used for validating model
performance. To validate the vegetation structural component, remotely sensed leaf area
index (LAI) from MODIS from 2002 to 2015 (Myneni et al., 2015) was compared with
simulated LA In addition, species-level fractional cover of plot-based point intercept data
from ausplot (Munroe et al, 2021) was used for validating model-simulated foliar
projective cover (FPC). Fire flux validation was done using Global Fire Emission flux data
(Vernooij et al., 2023), which was compared with simulated fire flux output generated by

the BAZE model.

Model accuracy in predicting carbon and water cycle fluxes along the rainfall gradient was
evaluated by comparing model outputs of gross primary production (GPP, gCm-2month-1)
and evapotranspiration (ET, mm month-1), to observations/estimates of these quantities at
flux tower sites along the NATT. Spatial mapping of the gridded model output to the flux
tower location was achieved by distance-weighted averaging of model values for the four

nearest grid centroids to the flux tower location, as follows:

n
z (Sij x W)
n=1
n=1 W;

Where, Sij is the simulated value in the ith grid for the jth month, and Wi denotes the

Si =

weighted distance between the grid point and the actual location of the flux tower,

calculated using the inverse of the square of distance (1/di?). The actual distance (di) is

J(x1 — x2)%/y1 — y2)? , where x and y represent the coordinates of the grid point and the
flux towers (x1 and y1 are the coordinates of the grid point; x2 and y2 are the coordinates

of the flux tower.)

We employed the root mean square error (RMSE) and coefficient of determination (R2) to

assess the quality of the fit matrix. The formula used for computing RMSE is:

n

1

n=1

11



304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

Where n is the number of months, Si is the model simulation value of the ith month, Oi is
the observed value of the ith month. All figures and statistical analyses were prepared using

Python within the Jupyter Notebook environment.

3. Results

3.1 Ecosystem Fluxes (ET, GPP, and Fire flux) along the gradient

The comparison of simulated monthly evapotranspiration with observed values across five
sites shows distinct spatial and temporal patterns (Figure 2). A consistent trend emerges,
showing a decrease in ET with a decrease in rainfall (>1300 kg m-2 year-! in wet and <800
kg m-2 year-1). The RMSE and R? show that the performance of the model differed by site.
The RMSE was lowest at Adelaide River (17.00 mm month-1), followed by Daly River (18.77
mm month1) sites, indicating closer agreement between observed and simulated ET
values. R? shows the highest accuracy at Adelaide River (0.84), followed by Daly River
(0.82), and the lowest in Dry River (0.52). Additionally, there were no specific patterns in
monthly observed and simulated ET by seasons, with some sites, like Howard Spring and
Dry River, showing slight underestimation in the dry season, whereas in Sturt Plain, there
was overestimation. The model performed slightly better at sites with more consistent
patterns in productivity, while it faces challenges in accurately predicting ET rates at

extreme sites (high rainfall or high arid conditions).

12
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Figure 2: Observed versus simulated evapotranspiration (mm/month) across the studied

sites by seasons. Points show values for individual months. Dry Season = (May, June, July,

Aug, Sept., and Oct.); Wet Season = (Nov,, Dec., Jan., Feb., March, and April).

In this analysis, we compared observed monthly GPP data from different time frames;
depending on the site, there is a decrease in productivity with a decrease in rainfall,
showing a limitation of resources, especially water in dry regions. The monthly simulated
and observed values (light blue lines) show, except for Sturt Plain, where the model
overestimated GPP for all months (RMSE 69.53 g C m-2 Month-1), that the model was able
to capture productivity along the rainfall gradient (Figure 3). Similarly, the model was able
to capture both temporal and seasonal patterns with RMSE ranging from 48.46 g C m
Month-1 to 69.53 g C m2 Month-1, but consistently underestimated productivity in the dry

season in all sites except Sturt plain.

13



341

342

343
344

345
346
347
348
349
350
351
352
353

Howard Spring (131°09'E 12°29'S) Adelaide River (131°07'E 13°04'S)

300 300
RMSE: 50.89 MSE: 48.46
250 4. 250 1
= 2004 2004 /|
: ;
~
:E_ S 4
E 150 1 150 - - !
%) A ’, !
A
=) ~ ‘s !
o \\ ¢ I’
2 100 100 1 s\ /-,-‘-—
N e
I~ /J‘:‘-'_"" II
~ - 4
50 1 50 P S 4
\_‘,I
0 T T T T T T T T 0 T T T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
300 Daly River (131°23°E 14°09'S) Dry River (132°22°E 15°15'S)
300 .
RMSE: 60.31 RMSE: 54.04
2507 250 i
= 200 A 200 -
< 1
g 4
= s
E 1501 :, 150 |
& r ’
/
a
a 100 4
5 100 ¥
s
= 50 1
50 1 -~
~ |
ol— ! ! . : . . . T T T
[+] T T T T T T T t T Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Month
Sturt Plain (133°21'E 17°09'S)
300
RMSE: 69.53 —— Simulated (mean)
—=—Observed (mean)
250 T std_dev (observed)
= 200
IS
o
£
150 Mmmw=">
g A
=2
a -
5 100 | ]
A=
vl
50 4 |7
4] T

Jan Féb Mlar A;:‘)r May jL;ﬁ Jul  Aug Sep Oct Nov Dec

Figure 3: Observed and simulated GPP by sites (g C m-2 Month-1) with simulated mean
(1990-2015) and observed mean (faint lines = observed fluxes for individual years; orange
shading = variability (standard deviation) of simulated fluxes for individual years and light-

gray shading = dry season).

We compared (Figure 4) the simulated carbon flux from fire using the BLAZE model (1990-
2015) with carbon emission data (2000-2015) from the GFED. It shows that both datasets
follow a similar pattern, and fire flux depends on water availability and fuel loads, which
decrease with decreasing latitude. The latitudinal trend in the mean fire flux (top panel)

shows a decline from north to south, with higher mean fluxes in the last 25 years around
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14-15°S and reduced values beyond 16°S. Even though the model slightly underestimates
emissions at the northern end of the gradient, the overall pattern corresponds closely with
the GFED (bottom panel), where northern regions (particularly those below 15 °S) exhibit

higher fire activity emissions (Figure 4).
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Figure 4: Simulated carbon flux from fire (g C m-2 year-1) with simulated mean (1990-2015)
and annual fire flux (2000-2015) map from Global Fire Emission data (GFED) along the

rainfall gradient.
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3.2 PFTs composition shift with rainfall

Figure 5 depicts compositional variation along the rainfall gradient in terms of FPC as a
proxy of PFT abundance. Both observed projective foliar cover (PFC) patterns and
simulated FPC show that PFT composition varies with water availability, with grass
dominance increasing as water availability decreases (Figure 5, top panel). The simulation
result also shows the dominance of taller evergreen trees (Tall_euc) (>25 m high) and other
medium eucalypts at the northern end of the gradient and short evergreen nitrogen-fixing
Acacia and deciduous trees (Med_dec) at the southern end (Figure 5). The dominance of
tall and medium-sized eucalypts (Tall_euc and Med_eve) decreases with increased aridity,
with other PFTs having minimal FPCs in wet regions. In contrast, with a decrease in rainfall,
the dominance of Cs grasses increases, reaching more than 50% FPC in a dry part of the
gradient. Similarly, the contribution of PFTs other than grass in FPC remains similar in the
dry end of the gradient, indicating water stress and competition for resources other than
light, as FPC is evenly distributed among tree PFTs (PFT-wise simulated FPC and observed
PFC are kept in Supplementary Figure 5).
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Figure 5: Plot level projective foliar cover from ausplot (top panel) and simulated foliar
projective cover by PFTs along the NATT (bottom panel). Bars represent mean value and
error bar depicts standard deviation. Blue line shows mean rainfall with standard deviation
(Acacia, CaG - grasses, Med_dec - Medium sized deciduous trees, Med_eve - medium sized
evergreen trees, Nfix_mesic - Nitrogen fixing mesic trees, Small_dec - Small sized deciduous

trees, Small_eve - Small sized evergreen trees, Tall_euc - tall eucalyptus trees).

Figure 6 depicts the variability of production in carbon mass and its relative contribution

to carbon mass production along the rainfall gradient. Carbon mass production per year
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decreases with rainfall, ranging from 3.35 to 12.80 kg C m-2 year-1in wet regions to 0.76 to
6.33 kg C m-2 year-! in dry regions among PFTs. Mirroring FPC composition, the simulation
also reveals that eucalypts contribute significantly more to carbon mass production in the
wet end (3-6 kg C m2 year-1) but minimally at the dry end of the gradient (<less than 0.2 kg
C/m? per year). However, in the dry areas, Acacia (0.8 kg C m2 year1), medium-sized
deciduous species (0.5 kg C m2 yearl), and grass (0.45 kg C m2 yearl) are major
contributors to carbon production, showing the difference in vegetation composition with
rainfall. In terms of relative contribution in carbon mass, eucalypt contributes up to 65%
in wet areas, while in the dry end, three PFTs, namely Acacia (35.78%), Medium-sized
deciduous (25.15%), and Cs4 grass (24.82%), are significant contributors. Similar
contributions in overall productivity and decreases in carbon mass with an increase in
dryness reflect that PFTs are adopted for limited water availability in dry conditions.
Nitrogen-fixing mesic trees show notable productivity in the wet end of the gradient (2.05
kg C m2 year1) with eucalypt, while other PFTs have a relatively small contribution to
carbon productivity, reflecting asymmetric competition for light. Similarly, grass
productivity increased from 0.17 to 0.44 kg C m-2 year-! with decreases in rainfall, becoming
a significant contributor in the dry end of the gradient (up to 70% in some years) (Figure

6).
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Figure 6: Carbon mass and relative contribution in carbon mass production by PFTs in
along the latitude (average across rows of simulated grids) (Tall_eue- tall eucalyptus trees,
Acacia, Med_eve- medium sized evergreen trees, Med_dec- Medium sized deciduous trees,
Small_eve- Small sized evergreen trees, Small_dec- Small sized deciduous trees, Nfix_mesic-

Nitrogen fixing mesic trees, C4+G- grasses).

Figure 7 illustrates the seasonal variation in MODIS LAI and simulated monthly LAI values
from 2000 to 2015 along NATT in relation to rainfall and seasons. Both LAI datasets exhibit
the same pattern, i.e., a decrease in LAI with decreases in rainfall. The MODIS LAI shows
more variability in LAl compared to the simulated LAI, where the simulated LAI was within
the range of MODIS LAI (Figure 7). Across the simulated longitude, MODIS LAI has a denser
value within the range of 1 to 2 m?m-2 in the wetter end of the gradient, with a maximum
of 7 m?m=2 in both seasons. In both LAI, at the wetter end of the gradient, LAI remains
relatively constant throughout the year, whereas in the dry season, LAl at the dry end of the
gradient is smaller (less than 2 m*m-2). It reflects that the PFTs’ composition (Figure 5) and
their adaptive mechanisms vary with water availability, as rainfall in the wet season is

significantly higher than in the dry season.
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Figure 7: MODIS LAI (2000-2015) and simulated monthly LAI (2000-2015) with rainfall by
season along the NATT. Black line plot represents the mean simulated LAI value, and the
error bar depicts the standard deviation. Blue line shows the mean rainfall with standard

deviation (error bar).

Figure 8 shows the relationship between LAI and latitude for PFTs. The LAI of tall
Eucalyptus trees decreases as rainfall decreases, with a maximum LAI of 2.02 m2m-2 at
latitude 13.25 °S and a minimum at 17.75 °S (0.3 m2m2), reflecting the competitive
dominance of these PFTs in wet conditions. For medium deciduous species (Med_dec), LAI
increases with a decrease in rainfall before decreasing again, showing a non-linear
response to rainfall, which can be interpreted as PFT adaptation to fluctuating competition
and stress conditions. Overall, the LAl trend for trees shows a negative correlation between
LAI and rainfall, i.e., with a decrease in rainfall, the LAI of trees decreases. By contrast, the
LAI of grass increases towards the dry end of the transect (0.4 m2m-=2at 11.75 %S and 0.75
m-2m-2at 17.75 9S), showing dominancy of grasses in arid regions, which is the opposite of
the trend for trees. Similarly, at the dry end of the gradient, Acacia dominancy in LAI
becomes more apparent, as this genus, characteristic of the Australian inland arid region,

is generally more adapted to water stress conditions compared to eucalypts.
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Figure 8: LAl by PFTs along the NATT (simulated grid), solid point showing mean, and error
bar showing standard deviation of mean for each PFT. Blue line shows mean rainfall with
standard deviation in each latitude (Acacia, C4G - grasses, Med_dec - Medium sized
deciduous trees, Med_eve - medium sized evergreen trees, Nfix_mesic - Nitrogen fixing
mesic trees, Small_dec - Small sized deciduous trees, Small_eve - Small sized evergreen

trees, Tall_euc - tall eucalyptus trees).

3.3 Grass abundance increases with a decrease in rainfall

Across the rainfall gradient, productivity and flux decreased with declining rainfall (Figure
9). Simulated GPP, data from Haverd et al. (2016), and flux tower observed data
consistently show a decline in GPP with rainfall across four sites, accompanied by strong
seasonal fluctuations. The tree component in Haverd et al. (2016) exhibits less seasonal
fluctuation in flux compared to grass, where grass productivity drops to almost zero during
the dry season. This lower variability in the tree component is evident in the consistent
fPAR throughout the year for trees. However, in the simulated results, the tree component
also fluctuated due to the presence of deciduous PFTs in the simulation inputs. The
seasonal cycle in GPP exhibits sharper fluctuations in drier regions, where grass becomes
productive during the wet season, and the overall productivity of the ecosystem peaks,

reflecting a strong phenological response of vegetation to rainfall. Furthermore, the
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contribution of C4 grasses to overall GPP increases with decreasing rainfall, reaching
maximum productivity at the drier sites. In these regions, approximately 30-35% of total
annual production is attributed to grass. These spatial and temporal patterns highlight a
structural shift in ecosystem function, and the composition of the ecosystem is controlled

by rainfall and PFTs' adaptation to water stress and competition.
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Figure 9: Monthly time series of simulated GPP of trees and grasses (2002-2015) and
monthly fPAR and daily GPP adopted from (Haverd et al., 2016) along the rainfall gradient
(HS- Howard Spring; AR- Adelaide River; DU-Daly Uncleared (River), DR- Dry River).

Along the rainfall gradient, variation in the simulated monthly leaf area index of trees and
grasses demonstrates a relationship between seasonal rainfall patterns (Figure 10) and
vegetation composition. In both wet and dry seasons, the monthly LAI of the trees
decreased with a decrease in rainfall and contributed maximum monthly LAI at the wet
end of the gradient. The LAI of trees in both dry and wet seasons is relatively similar (less
than 0.5 m-2m-2) at the dry end of the gradient, which is almost one-fourth compared to the
wet end of the gradient. However, the monthly LAI of grasses exhibits distinct behaviour.
In the dry season, the monthly LAI of grass was almost the same throughout the gradient,
averaging around 0.2 m~2m-2. However, during the wet season in drier regions of the

gradient, grasses have a higher leaf area index than trees, reaching more than 1 m-2m-2.
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Here, the difference in LAI of trees in wet and dry seasons remains smaller compared to
grass, which increases with a decrease in rainfall, illustrating the role of internal annual
variability of rainfall and stress caused by it on determining structural variability and

interaction between trees and grass along the gradient.
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Figure 10: Leaf area index in wet and dry seasons for trees and grass along the rainfall
gradient (average across simulated grids from longitude 130.75 9E to 134.25 °E) and their

variability

4. Discussion
We evaluated the interactions between environmental variables and underlying
mechanisms, and associated traits and life history strategies by defining and integrating
regional PFTs with updated parameter values to represent local savanna composition using
observations across the NATT. Our model confirmed that, along the gradient, rainfall is a
major driving factor, creating an opposing gradient in terms of competition for light and
nutrients at the northern end and water stress in the southern end during prolonged dry
months. Consequently, ecosystem structure, composition, and productivity vary spatio-

temporally. The variation in resource availability, especially water, along the gradient,
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impacts both the structure and composition of the savanna ecosystem, reflected by the
dominance of trees and grass at respective ends of the gradient in terms of carbon mass
production, LAI and FPC, presence of nitrogen-fixing mesic Trees at the wet end and the

emergence of Acacia as a dominant tree genus at the dry end of the transect.

The simulated evapotranspiration, GPP, and fire flux agree with the observed decrease in
these quantities with a decrease in rainfall, showing the dependency of the vegetation
structure and composition on rainfall. Similarly, Haverd et al. (2016) ; Kanniah et al. (2011)
and Ma et al. (2020) also observed decreasing trends and patterns in GPP along the
gradient from north to south using both remote sensing and modelling approaches. Our
model was able to capture both seasonal and temporal patterns of GPP and ET on the
rainfall gradient with lower accuracy in dry months and at the dry end of the gradient,
potentially reflecting the influences of inter-annual variability of rainfall. Similar to our
study, Havard et al. (2016) found that both HAVANNA-POP and CABLE models also slightly
overestimated ET and GPP at the dry end of the transect. This difference was attributed to
the simplistic representation of the grass PFTs in this model. Moore et al. (2016) estimated
that approximately 40% of the total annual GPP in the Australian tropical savanna could be
attributed to Cs grasses. The carbon flux from fires decreases with decreases in rainfall, as
fuel load also decreases with rainfall. Deceukelier (2021) evaluated the performance of LP]-
GUESS with the BLAZE module for Australian ecosystems and noted that while the model
captures key fire processes, it struggles to capture emissions at a finer spatial scale. The
fire model tends to slightly underpredict emission, especially at the wet end of the gradient,
potentially due to fire-climate interactions and higher inter-annual climatic variability

(Canadell et al., 2021).

The seasonal difference in evapotranspiration (less than 50 g m2month-1in dry months to
180 g m2month-1), monthly GPP, seasonal responses of grass, and LAI of grasses (less than
0.2 m2m=2in dry months and 1.2 m2m-2 in wet months in dry end of gradient) show the
role of rainfall patterns in ecosystem productivity and adaptation of vegetation in water
availability conditions. This disparity in GPP, ET, and LAI between the dry and wet seasons
at the dry end suggests a significant response of grasses to increased rainfall, resulting in a
substantial expansion of leaf area and re-greening of existing leaf area by perennial grasses

as an adaptation to water stress and a response to temporal dynamics in water availability.
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Ma etal. (2020) also reported that productivity along the NATT depends on rainfall and the
response of grass to rainfall to the rainfall dynamics as grass in dry savanna exhibits a
higher hydrological sensitivity with their contribution being strongly seasonal with around

75-80% in wet season and 18% in dry seasonal along the NATT (Moore et al., 2016).

The dominance of taller Eucalyptus and other medium eucalypt PFTs at the northern end
of the gradient, with higher carbon mass production and a major contributor in FPC and
LAI shows the competition for light with tall trees limiting light for understory growth and
small trees. Eucalyptus miniate and Eucalyptus tetrodonta form the top canopy of more than
50% cover (Hutley et al., 2000) with more than 500 stands per hectare in the wet region
with Sorghum intrans, Sorghum plumosum, Heteropogon triticeus, and other Cs grasses
making up the understory (TERN, 2023). Several studies have concluded that in closed-
canopy forests where stand density is high, intense competition for light not only structures
the vegetation but also determines the growth patterns and biomass partitioning (Matsuo
et al.,, 2024; Woinarski et al.,, 2020). At the dry end of the gradient, grass, Acacia, and other
deciduous tree PFTs have similar carbon mass production, with Cs4 grass dominating FPC
and LAIL Hutley et al. (2011) reported that in the southern semi-arid region, shrublands
and hummock and tussock grassland become increasingly prominent with scattered Acacia
trees. Plot-based measurement of foliar cover (Munroe et al., 2021) data also shows that
hummock and tussock grasses dominance increases in the drier end of the gradient. The
relative contribution of different PFTs to FPC varies along the rainfall gradient, with tall and
medium-size eucalypt (Tall_euc and Med_eve) PFTs contributing most to wet regions, but
these contributions decline as aridity increases. This can be interpreted as an outcome of
asymmetric competition for light and resources. Similarly, the relative contribution of
drought-deciduous trees in LAI, FPC, and carbon mass production increases with a
decrease in rainfall, showing the adaptation of the relevant taxa to water stress conditions.
Eamus and Prior (2001) found that even though around 50% of species in NATT savannas
are deciduous, 90% of the projected crown cover is formed by evergreen species, which
exhibit water uptake throughout the year. The presence of fine roots even down to 9 m
depth (Chen et al., 2004) suggests that the water table fluctuates by seasons, as woody
species in savannas are able to acquire deep soil water, making them productive year-

round, as suggested by Hutley et al. (2000) and Chen et al. (2002).
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We found that the GPP, LAI, carbon mass, and FPC of trees decrease with a decrease in water
availability, whereas the contribution of Cs4 grass and Acacia increases with increased
aridity. During the wet season, particularly in the drier regions of the gradient, grasses
display a noteworthy increase in LAl compared to trees, with values exceeding 1 m?*m-?
showing seasonal adaptation of grass in stress conditions. The decrease in GPP coincides
with a decrease in LAI and FPC of tree components along the gradient, where, in the dry
end of the gradient, the FPC of tree PFTs remains similar and the dominance of single PFTs
decreases, showing evidence that competition for light among PFTs decreased from north
to south. Taken together, the variations our model predicted along the rainfall gradient are
consistent with the following interpretation: in the northern, high-rainfall end of the
gradient, vegetation competes for light with shading effects on understory vegetation,
including grass, whereas in the dry end, vegetations are adapted to stress and seasonal
rainfall. Structurally and compositionally, tall and medium-sized eucalypts dominate the
northern part and short and small trees the drier conditions of the south, in line with the
differential strategies and traits of the respective groups. Variations in resource availability
and intensity of competition along the productivity gradient not only shape the structure
and composition of the ecosystem but also govern the productivity in varying
environmental conditions (Michalet et al., 2021; Rees, 2013; Sauter et al., 2021). Similarly,
other environmental factors such as temperature and disturbance, including fire (Emmett
et al.,, 2021; Werner and Prior, 2013) may be responsible for changes in trees and grass
productivity and an increase in the dominance of Acacia species with short height, ability

to fix nitrogen, and reduced stomatal conductance in the dry end of the gradient.

Recognizing the seasonality in productivity, variability in interannual rainfall, adaptive
strategies of trees, and the combined role of biotic and abiotic factors in shaping vegetation
structure, composition, and productivity provided crucial insight for both ecological theory
and practical implications. These insights can inform reforestation and restoration
projects, ensuring the selection of species that are well-suited to local climatic conditions
and capable of withstanding competition and resilient to stress associated with low soil
moisture. Thus, our results are relevant to the management and conservation of NATT

ecosystems and other similar savanna and woodland ecosystems.
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4.1 Limitations

Our process-based modelling approach allowed us to reproduce ecosystem structure,
composition, and functioning along the rainfall gradient and interpret underpinning
mechanisms of plant community - and related ecosystem functional - responses in relation
with differing environmental conditions. However, several limitations existed, and future
work can improve the representation of spatio-temporal dynamics of composition,
structure, and productivity of the savannas in contrasting gradients of competition and
stress. A primary limitation is the dependency of PFT parameter values on limited
observational trait data for tropical climatic conditions, as the model becomes less accurate
(higher RMSE in dry conditions) as environmental conditions become more extreme, both
regarding wet and dry conditions. We emulated deep water access by eucalypt trees by
adding additional water to the soil profile, overriding the internally simulated hydrological
dynamics. In tropical savannas, fine root biomass and abundance, and their depth depend
on season, phenology, competition, and water availability (Eamus and Prior, 2001; Holdo,
2013) enabling plant access to deep water in dry seasons. Detailed observations of entire
tree root profiles, replicated for a range of environments and hydroclimate episodes (such
as positive and negative ENSO cycles) would be needed to adequately represent root
dynamics under varying environmental stress. Such observations are unfortunately rare
and were not available for the taxa and ecosystems we here studied. Deep water access by
trees would ideally be better captured by explicitly prescribing or simulating groundwater
reserves and tree-rooting strategies to access these, but this would require significant and
novel extensions to the model, and, similar to root profiles, is likely to be data-limited.
Prospects for including such details in regional models are currently limited by available
data on groundwater distribution and depth, as well as detailed knowledge of the below-

ground allocation patterns of the trees.

In our model setup, overall patterns in carbon flux from fire were captured by the BLAZE
model. However, fire in these systems is a complex phenomenon influenced by multiple
interacting drivers, including natural ignitions, vegetation structure, plant-specific traits,
climate variability, and cultural practices such as indigenous burning (Deceukelier, 2021;
Kelley et al., 2014; Murphy et al., 2023). However, parameterizing tree PFTs with traits
representative of savanna species (e.g., adjusted wood density, leaf phenology, Huber value)

has been shown to compensate for some of these limitations by improving the simulation

27



639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

of fire resilience and post-fire recovery (Deceukelier, 2021; Kelley et al., 2014). Accurately
analyzing and attributing fire impacts, including disentangling them from climate-
vegetation interactions, would require a dedicated analysis with further fire-specific
simulations and data inputs. Similarly, post-fire recovery traits, particularly resprouting
capacity, which are ecologically important in the Australian savanna system (Ondei et al.,
2016; Tangney etal., 2022), are not explicitly included in the model setup due to limitations
in observational data regarding phenology of carbohydrate storage under different

conditions and remobilisation in response to different disturbances.

In our simulations, we used traits governing growth allometry that were inherited from the
default global PFT parameter set of LP]J-GUESS. Local species and functional groups of our
study region may show different allometric growth patterns. Allometry and associated
plant biomass allocation (growth) strategies have an important influence on competition
and carbon partitioning in different environmental conditions. Height, crown shape, and
size of the tree depend on the space and growth conditions (Pretzsch et al., 2015), and
competition for light not only structures the vegetation but also determines the growth
patterns and biomass partitioning (Damgaard, 2003; Matsuo et al., 2024). Accurately
describing allometric relations for growing trees would help us understand how light
competition in high rainfall areas and free light availability in dry regions impact the
composition, structure, and function of savannas over the stand development cycle. A
subsequent study will explore how alternative allometries impact the simulation of growth
efficiency, carbon partitioning, root development, and nutrient acquisition, thereby
shaping competitive exclusion and the resulting structure and composition of PFTs at stand

to landscape scales.

5. Conclusions
By integrating field-based trait observations with regional PFTs into LPJ-GUESS, we
elucidated spatial and temporal patterns of vegetation structure, composition, and
productivity along a savanna rainfall gradient. We found that tall and medium-sized
eucalypts have higher contributions in LAI, FPC, and carbon mass production in high
rainfall areas, whereas in drier areas, short Acacia trees and C4 grass dominated. GPP, ET,
and LAI of trees decrease with a decrease in rainfall. Similar values of productivity-related

variables for trees with a decrease in water availability may reflect adaptive strategies of
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trees that allow them to tolerate or avoid water stress, maintaining relatively strong
productivity towards the dry end of the gradient. The increase in the relative contribution
of grass to carbon mass, GPP, and LAI in the wet season illustrates differential seasonality
in productivity of trees versus grasses, particularly at the dry end of the gradient. As a case
study of how water availability as a key environmental driver, plant functional strategies,
and resource capture interact to govern outcomes of savanna stand development and
composition, this comprehensive analysis provides critical insights into the complex
dynamics of savanna ecosystems. Our model was able to replicate key patterns of
composition, structure, and function along the gradient, on a credible mechanistic basis.
This suggests it could be a relevant tool to predict the impacts of climate change on
savannas and guide mitigation, ecosystem management, and conservation strategies to
ensure their future resilience and sustainability. Future research should focus on better
characterising soil water reserves at depth, plant use of these, and on refining tree growth
allometries to further enhance our understanding of savanna ecosystems and their

response to environmental change.

Code and Data Availability

The customized LP]-GUESS version used in this study has been archived in the LPJ-GUESS
Zenodo community [DOI 10.5281/zenodo0.16920285]. The forcing data and simulated
output, that reproduce the analyses presented in the manuscript have been deposited in
Zenodo [DO110.5281/zenodo.17034489]. The evaluation data, the flux tower data, were
collected from the OZ flux data portal (https://data.ozflux.org.au/portal/home.jspx),
which belongs to the Australian Terrestrial Ecosystem Network (TERN), and the Traits data
are freely available from Zenodo (https://zenodo.org/records/7368074#.Y5v1bHZBxhk).
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