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1. Abstract  13 

Environmental gradients affect vegetation structure and ecosystem productivity. Along the 14 

northern Australia tropical transect (NATT), which transitions from tropical moist 15 

conditions in the north to arid conditions in the south, vegetation composition and 16 

structure are closely tied to rainfall patterns. We hypothesise that biotic competition and 17 

abiotic stress exhibit opposing patterns along the NATT rainfall gradient and aim to 18 

disentangle these effects on vegetation structure and productivity. Using a trait-based 19 

dynamic vegetation model, we simulated vegetation responses to varying competition and 20 

stress along the NATT. The model successfully simulated spatial variations and temporal 21 

patterns in carbon and water fluxes, where evapotranspiration and gross primary 22 

productivity decrease with rainfall along the gradient. Simulation results showed that taller 23 

and medium-sized Eucalyptus had higher carbon mass, leaf area index, and foliar projective 24 

cover at the wet end of the gradient. In contrast, Acacia and grasses were dominant at the 25 

dry end. Crown coverage shows spatial and temporal variability with rainfall, with higher 26 

variability in tree plant functional types (PFTs) crown cover in the north and more uniform 27 

in the south, while grasses have maximum coverage during the wet season in the dry end 28 

of the gradient. These patterns suggest a shift in the importance of biotic versus abiotic 29 

factors, with competition playing a more significant role in the wet region and stress 30 

becoming more influential as aridity increases in the south. Overall, our study underscores 31 

water availability as a primary driver of vegetation structure and highlights the role of 32 

competition and stress in modulating ecosystem structure, composition, and productivity 33 

along the rainfall gradient.  34 

 35 
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 38 

2. Introduction  39 

Vegetation structure and ecosystem productivity exhibit notable variation along 40 

environmental gradients (Asner et al., 2014; Clark et al., 2015; Hutley et al., 2011; Maharjan 41 

et al., 2021; Zhu et al., 2022). The intricate interplay between biotic (competition and 42 

facilitation) and abiotic (topography, climate, soil, and geology) factors determines 43 

patterns and dynamics of vegetation structure, composition, and productivity. These biotic 44 

and abiotic factors shape the environment by creating conditions that influence ecological 45 
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processes and interactions between species. In combination with eco-evolutionary trade-46 

offs influencing the relative performance of alternative plant strategies in different 47 

environments, the result may be that distinct phenological and morphological 48 

characteristics, niche differentiation, functional trait distributions, and competitive 49 

exclusion emerge at the community level, resulting in distinct community composition and 50 

structure (Asner et al., 2014; Mun oz Mazo n et al., 2020). Understanding how vegetation 51 

patterns change across a spectrum of environments, from resource-abundant conditions 52 

characterised by competition for light, water, and nutrients, to resource-limited conditions 53 

in which stress tolerance is a viable strategy, provides a window into community ecological 54 

processes, sometimes termed ‘community assembly’. Mechanistic modelling approaches 55 

that combine representations of physiological plant and soil processes with demographic 56 

and compositional dynamics of plant populations offer a potential way to emulate the 57 

assumed steps involved in community assembly, and link this to plant strategies and traits. 58 

Good model performance in terms of replicating compositional patterns along 59 

environmental gradients may then provide confirmation of assumptions as to the eco-60 

evolutionary basis of plant traits as encoded in the model. Dynamic vegetation models 61 

(DVMs) are one class of models that can be used for this purpose, providing a potential 62 

approach for analysing the interactions and relating them to observations of ecosystem 63 

composition, structure, and function in the field to unpack the eco-evolutionary basis of 64 

those observed patterns (Argles et al., 2022; Smith et al., 2001).  65 

 66 

DVMs simulate ecosystem functioning by considering environmental conditions, traits, and 67 

biotic interactions as underpinning factors (Argles et al., 2022; Snell et al., 2014; Wang et 68 

al., 2024). The current generation of DVMs used for global and regional global change 69 

studies bring together multiple drivers (climate, soil, disturbance) and processes (carbon 70 

cycle, population dynamics, recruitment and mortality, photosynthesis and respiration) 71 

and a spectrum of complexity in representing vegetation processes and attributes, 72 

including factors like competition and vegetation succession, to simulate key energy and 73 

material fluxes of life (Falster et al., 2021a; Fisher et al., 2018; Smith et al., 2014). Distinct 74 

traits and life history strategies encoded in the parameters of different plant functional 75 

types (PFTs) influence their performance and interactions in model simulations  (Sitch et 76 

al., 2003). Integrating field traits information that aligned with regional environmental 77 

conditions  (Kuppler et al., 2020; Wang et al., 2024) that enhance resource acquisition in 78 
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resource-abundant conditions and prioritize resource conservation or survival 79 

mechanisms (e.g., drought tolerance) under stressful conditions allows for evaluation of 80 

how competition and stress influence ecosystem dynamics in different environments.  81 

 82 

Natural environmental gradients can serve as natural laboratories to examine the interplay 83 

of environment and species performance in governing compositional, structural, and 84 

functional variation along the gradient. Competition and abiotic stress may play 85 

contrasting roles in shaping such variations at different points along the gradient. Moisture 86 

gradients encompassing distinct wet and dry growth conditions are a case in point, 87 

transitioning from abundance to scarcity in terms of a key plant resource (soil water) as 88 

average rainfall declines along the gradient (Williams et al., 1997, Peel et al., 2005). The 89 

Northern Australia Tropical Transect (NATT) in tropical northern Australia 90 

is characterized by a sharp decrease in rainfall from north to south, with two distinct bio-91 

climatological patterns (wet and dry conditions in north and south, respectively Figure 1) 92 

(Hutley et al., 2011; Koch et al., 1995; Whitley et al., 2016). Along the NATT, vegetation has 93 

co-evolved with indigenous and managed fire (Bird et al., 2024; Harrison et al., 2021), 94 

where vegetation structure, composition, richness, and canopy structure are strongly 95 

correlated with rainfall (Hutley et al., 2011; Ma et al., 2020) with trees and grass coexist 96 

persistently  (Holdo and Nippert, 2023). Competition in the relatively crowded tree stratum 97 

in the moister north gives way to water stress in the south, resulting in clear patterns in 98 

functional diversity along the transect. A realistic representation of the key factors shaping 99 

NATT composition, structure, and function, such as the relative abundance of different 100 

traits, plant strategies, post-fire resprouting dynamics, phenological and morphological 101 

characteristics, and the balance between resource acquisition and conservation strategies, 102 

is essential for understanding variation in ecosystem productivity.  103 

 104 

Integrating field-derived trait information into DVMs as parameters of PFTs ensures model 105 

simulations are grounded in real processes and allows for testing and reproducing the 106 

mechanisms that govern PFT distribution, tree-grass interactions, and their transitions 107 

across the forest-to-savanna gradient (Baudena et al., 2010, 2015; Haverd et al., 2016; 108 

Nijzink et al., 2022; Whitley et al., 2017). For this study, we employed the standard version 109 

of the second-generation dynamic vegetation model LPJ-GUESS (Smith et al., 2001, 2014) 110 

to unpick structural, compositional, and functional shifts along the gradient in terms of 111 
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underlying drivers, processes, and ecological interactions. Our approach leverages 112 

empirical data on vegetation traits and life history strategies, reflecting the adaptive 113 

responses and capturing local ecosystem processes to varying climatic conditions observed 114 

in the field. Our goal is not to benchmark this regionalised trait configuration against the 115 

default global LPJ-GUESS setup, but rather to test whether incorporating empirical trait 116 

data improves the model’s ability to realistically simulate observed structural, 117 

compositional, and functional variation. By parameterizing the characteristic savanna PFTs 118 

embedded in the model, we aim to reproduce ecosystem productivity variations and the 119 

underlying ecological mechanisms, allowing the role of competition and stress in shaping 120 

the savanna ecosystems to be assessed. Through this process-based modelling approach, 121 

we aim to investigate the contributions of biotic and abiotic factors to vegetation structure 122 

and function, with the goal of capturing the mechanisms that shape the ecosystem and 123 

enhance our understanding of the ecological processes governing savanna ecosystems 124 

along the rainfall gradient.  125 

 126 

2. Methods  127 

2.1 Study site 128 

This study was conducted along the NATT transect, which spans 1000 kilometres (Rogers 129 

and Beringer, 2017) in a generally north-south direction from near the city of Darwin on 130 

the northern Australian coast to Alice Springs in the arid centre of the Australian continent. 131 

The NATT was established in the mid-1990s as part of the International Geosphere 132 

Biosphere Program (IGBP) (Hutley et al., 2011; Koch et al., 1995). This transect represents 133 

two distinct bio-climatological patterns, with rainfall decreasing sharply from north to 134 

south. In the north, the inter-tropical convergence zone dominates, characterized by the 135 

seasonal monsoon climatic system with annual rainfall up to 1500mm. In contrast, the 136 

southern part of the gradient exhibits semi-arid climatic conditions (rainfall of around 650 137 

mm/year), characterized by prolonged drought with no consistent seasonality of rainfall 138 

(Rogers and Beringer, 2017; Williams et al., 1997).  139 
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 140 

Figure 1: Map showing rainfall gradient (data source Bureau of Meteorology: 141 

www.bom.gov.au) with simulated grid, study area, ecosystem flux tower sites of the OzFlux 142 

network and vegetation types (data source Australia National Vegetation Information 143 

System: www.dcceew.gov.au) along the NATT.  144 

 145 

The northern part of the transect (~1500 mm rainfall, 12 oS) is dominated by tropical 146 

savanna vegetation where evergreen eucalypt trees belonging to the Eucalyptus and 147 

Corymbia genera dominate the woody overstorey and C4 grasses and other forb and shrub 148 

species characterise the understorey. The southern semi-arid region (~500 mm rainfall, 17 149 

oS) comprises shrublands and hummock grassland with scattered Acacia trees (Hutley et 150 

al., 2011). Along this transect, five ecosystem flux tower sites (namely Howard Spring, 151 

Adelaide River, Daly River, Dry River, and Sturt Plain) belonging to the Terrestrial 152 

Ecosystem Research Network (TERN) OzFlux platform monitor meteorological, soil 153 

moisture, ecosystem flux, and productivity covering all major ecosystem types along the 154 

transect (Hutley et al., 2011; Koch et al., 1995). In addition to the flux tower measurements, 155 

TERN samples vegetation at each site through field plots, where limited measurements of 156 

http://www.bom.gov.au/
http://www.dcceew.gov.au/
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plant traits and biomass are conducted to assess ecosystem structure and function (TERN, 157 

2023). 158 

 159 

2.2 Ecosystem model description and customization.  160 

We employed the standard LPJ-GUESS DVM (Smith et al., 2001, 2014) as a modelling 161 

approach to simulate vegetation structure, composition, and productivity along the NATT. 162 

LPJ-GUESS is a process-based DVM that simulates ecosystem function through 163 

biogeochemical and biophysical processes (Sitch et al., 2003) and integrates the structural 164 

dynamics resulting from plant growth, demography, and composition from neighbourhood 165 

(patch) to landscape (grid cell) scales (Smith et al., 2001, 2014). DVMs of this kind that 166 

combine process-based physiology with explicit vegetation demography have been 167 

referred to as second-generation DVMs (Fisher et al., 2018, 2010). Vegetation response to 168 

climate, atmospheric CO2 levels, and nitrogen input through competition among co-169 

occurring PFTs for light, space, and soil resources is simulated at the patch scale on a daily 170 

timestep. Similarly, the model incorporates stress factors such as drought, nutrient 171 

limitations, and soil moisture dynamics impacting growth and survival. Additionally, the 172 

model also considers nutrient (nitrogen) cycling (Smith et al., 2014), and fire disturbance, 173 

the latter based on the present study on the BLAZE wildfire module (Rabin et al., 2017). 174 

The BLAZE fire model simulates combustion and tree mortality based on daily fire-weather 175 

and fuel conditions across patches. Annual burned area is estimated using the SIMFIRE 176 

model (Knorr et al., 2014), which considers fire weather, fuel continuity, and population 177 

density, and is distributed monthly using GFED3 climatology (Giglio et al., 2013). Fuel 178 

consumption and mortality are then simulated in BLAZE, with tree mortality based on 179 

height-dependent survival probabilities (Haverd et al., 2014), using functions from Bond 180 

(2008) for savanna broadleaved trees (Rabin et al., 2017). 181 

 182 

PFTs are functional ‘taxa’ that differ in growth form, phenology, and life-history strategies 183 

having different growth rates and competitive abilities in resource variability conditions 184 

influenced by traits like height, root depth, and specific leaf area (SLA). C3 and C4 185 

photosynthetic pathways are differentiated for grass PFTs. Bioclimatic (temperature) 186 

limits determine the potential distribution of PFTs in climate space via establishment and 187 

survival limits, whereas mechanistic links between traits and competition of co-occurring 188 

PFTs determine the structure, composition, and productivity at stand and landscape scales. 189 
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Key PFT parameters (traits) for trees include SLA, wood density, leaf longevity, leaf area to 190 

sapwood cross-section area (1/Huber value), and root distribution (root profile), which is 191 

defined for each PFT before simulation. These parameters influence different ecological 192 

processes like growth, biomass accumulation, establishment, and mortality, resulting in 193 

community assembly and a distribution of the plant communities along climate and soil 194 

gradients (Smith et al., 2001).  195 

 196 

Given Australia's unique environmental and ecological characteristics, we modified the 197 

following features to customize the model for application to our study.  198 

• The model uses a global set of 12 PFTs by default, representing dominant elements 199 

of the major global vegetation types (biomes). For this study, we defined a new PFT 200 

set specific to the local context using a multivariate clustering approach. The 201 

parameter values of each PFT were defined based on trait data of tree species that 202 

occur along the NATT. These PFTs were chosen to capture the diverse strategies 203 

employed by plants to cope with competition and stress conditions prevalent along 204 

the transect. C3 and C4 grass default PFTs were adopted for simulation with default 205 

parameter values.  For trees, values of wood density and Huber value were adjusted 206 

using trait observations from trait databases and literature reports (details below) 207 

to better represent ecosystem composition and productivity under general 208 

conditions across the study domain (field measured and adjusted values of 209 

traits/parameters; Supplementary Table 1).  210 

• LPJ-GUESS distributes roots in 15 layers, each 10cm in depth. However, some 211 

Eucalyptus species have roots extend much deeper (sometimes up to 60 m) to 212 

access water during the dry season (Janos et al., 2008)However, some Eucalyptus 213 

species have roots t extend much deeper (sometimes up to 60 m) to access water 214 

during the dry season (Janos et al., 2008). Deep water access is believed to be an 215 

important determinant of survivorship and productivity of the tree component of 216 

savanna ecosystems along the NATT (Chen et al., 2002; February et al., 2007; 217 

Whitley et al., 2017). To emulate such deep water access within the architectural 218 

constraints of the model, we optimized the model to meet plant water demand by 219 

amending the simulated water content of the 15th (lowest)and 14th soil layer to 220 

100% and 75% of available water holding capacity, respectively, emulating root 221 

access to water reserves within reach of tree roots. Apart from this adjustment, the 222 
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root profile for each PFT was adopted from the global synthesis of (Jackson et al., 223 

1996), which generally prescribes a higher proportion of deep roots for trees 224 

relative to grasses (80% of roots in the top 50 cm of soil for grass; 40-65% in the 225 

top 50 cm for trees).  226 

• Nitrogen-fixing Acacia species are an important component of the woody 227 

vegetation element at the dry end of the NATT transect. To emulate the better access 228 

to nitrogen supply that these species gain through symbiotic association with 229 

nitrogen-fixing rhizobia, we increased the optimum limit for utilizing nitrogen for 230 

nitrogen-fixing PFTs to a non-dimensional scalar value of 3, compared to 2 for non-231 

nitrogen-fixing PFTs.  232 

 233 

2.3 Data sources and parameterisation of model  234 

Trait values, phenological and morphological characteristics of 28 plant species, recorded 235 

across the rainfall gradient during the 2008 inventory (TERN, 2023) at flux tower sites, 236 

were compiled from the AusTraits database (Falster et al., 2021b) and other relevant 237 

literature sources, including Williams et al. (1997) and the Atlas of Living Australia, 238 

regardless of distribution in Australia.  239 

A hierarchical clustering process was used to group species into categories based on 240 

similarity in plant traits and life-history strategies. Specifically, we employed a divisive 241 

(top-down) clustering approach where species were progressively divided into 242 

functionally distinct groups. We used plant life history strategies - such as nitrogen fixation 243 

potentiality, leaf phenology (evergreen, rain green, summer green, broadleaved, and 244 

conifers), and water requirement for growth (mesic, Intermediate, xeric) - along with traits 245 

such as wood density and tree height (height at maturity) were used for clustering species 246 

into seven groups (Supplementary Figure 1). Three of these groups comprised tropical 247 

broadleaved raingreen trees, with one PFT being intermediate shade tolerant (Table 1). The 248 

following parameters: leaf phenology, drought tolerance, leaf longevity, wood density, 249 

nitrogen fixation potentiality, plant height, specific leaf area (SLA), shade tolerance, leaf 250 

area to sapwood cross-section area (klatosa, i.e. Huber value), root depth distribution, and 251 

leaf turnover rate of species correspond to prescribed parameters that discriminate PFTs 252 

in LPJ-GUESS. The values of these parameters compiled from different sources were 253 
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averaged across the species in each cluster to arrive at a representative value for each PFT 254 

(Table 1).  255 

 256 

Table 1: Tree PFTs and their parameter values used for simulation. 257 

Parameters PFTs 
Tall_euc 
(>30m) 

Med_eve 
(10-30m) 

Med_dec 
(10-30m) 

Acacia Small_eve 
(<10m) 

Small_dec 
(<10m) 

Nfix_
mesic 

Leaf phenology  
 

Broadleav
ed 

Broadleav
ed 

Broadleav
ed 

Broadleav
ed 

Broadleave
d 

Broadleav
ed 

Broadl
eaved 

Evergreen Evergree
n 

Rain 
green 

Evergree
n 

Evergreen Rain 
green 

Rain 
green 

Shade tolerance Intolerant Intolerant Intolerant Intolerant Intermediat
e tolerant 

Intolerant Intoler
ant 

SLA (m2/kgC) 11 11 18 12 11 26 20 
Wood Density 
(kgC/m3) 

230 250 250 350 190 250 250 

klatosa 5200 4500 4000 4500 4000 2000 3800 
Leaf longevity 
(years) 

1.5 1.5 0.5 2 2 0.4 0.7 

Turnover leaf 
(fraction/year) 

0.6 0.66 1 0.5 0.5 1 1 

Root in top 50 
cm (%) 

43.1 43.1 47.6 45 55 47.6 62.8 

 258 

2.4 Simulation protocol 259 

LPJ-GUESS was configured using gridded meteorological, soil properties, and atmospheric 260 

nitrogen deposition rate at 0.5°×0.5° spatial resolution (CRUNCEP data (1901 - 2015)). The 261 

model was run with 15 patches in each grid cell, simulating the time period from 1901 to 262 

2015. We run the LPJ-GUESS in cohort mode, using the BLAZE fire model to account for the 263 

impacts of weather-related fire disturbances on vegetation structure (Rabin et al., 2017), 264 

and applied a generic return interval of 100 years for patch-destroying disturbances (Pugh 265 

et al., 2019; Smith et al., 2014). A spin-up of 500 years forced by recycling the first 30 years 266 

of the observed climate data set was performed to achieve an initial steady state for 267 

vegetation structure. The atmospheric CO2 concentration data from NOAA (1901- 2015) is 268 

used as input data (Friedlingstein et al., 2023).  269 

 270 

2.5 Model validation and Evaluation  271 

The long-term ecosystem productivity data (monthly evapotranspiration, gross primary 272 

productivity) recorded at flux tower sites (2002-2015 – Howard Spring; 2008-2009– 273 

Adelaide River; 2008-2015– Daly River; 2011-2015- Dry River and 2008- 2015 – Sturt 274 
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Plain) were extracted from TERN Oz flux, a network of flux tower sites across Australia and 275 

New Zealand that provides long-term data on ecosystem productivity and climate variables 276 

(Beringer et al., 2022; Isaac et al., 2016). The flux-based monthly gross primary 277 

productivity (GPP) and evapotranspiration (ET) are used for validating model 278 

performance. To validate the vegetation structural component, remotely sensed leaf area 279 

index (LAI) from MODIS from 2002 to 2015  (Myneni et al., 2015) was compared with 280 

simulated LAI. In addition, species-level fractional cover of plot-based point intercept data 281 

from ausplot (Munroe et al., 2021) was used for validating model-simulated foliar 282 

projective cover (FPC). Fire flux validation was done using Global Fire Emission flux data 283 

(Vernooij et al., 2023), which was compared with simulated fire flux output generated by 284 

the BAZE model.  285 

 286 

Model accuracy in predicting carbon and water cycle fluxes along the rainfall gradient was 287 

evaluated by comparing model outputs of gross primary production (GPP, gCm-2month-1) 288 

and evapotranspiration (ET, mm month-1), to observations/estimates of these quantities at 289 

flux tower sites along the NATT. Spatial mapping of the gridded model output to the flux 290 

tower location was achieved by distance-weighted averaging of model values for the four 291 

nearest grid centroids to the flux tower location, as follows:  292 

𝑆𝑖 =

∑ (𝑆𝑖𝑗 ×𝑊𝑖)
𝑛

𝑛=1

∑ 𝑊𝑖
𝑛
𝑛=1

 293 

Where, Si,j is the simulated value in the ith grid for the jth month, and Wi denotes the 294 

weighted distance between the grid point and the actual location of the flux tower, 295 

calculated using the inverse of the square of distance (1/di2). The actual distance (di) is 296 

√(𝑥1 − 𝑥2)
2 𝑦1 − 𝑦2)

2⁄  , where x and y represent the coordinates of the grid point and the 297 

flux towers (x1 and y1   are the coordinates of the grid point; x2 and y2 are the coordinates 298 

of the flux tower.) 299 

 300 

We employed the root mean square error (RMSE) and coefficient of determination (R2) to 301 

assess the quality of the fit matrix. The formula used for computing RMSE is:  302 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑆𝑖 − 𝑂𝑖)

2

𝑛

𝑛=1

 303 
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Where n is the number of months, Si is the model simulation value of the ith month, Oi is 304 

the observed value of the ith month. All figures and statistical analyses were prepared using 305 

Python within the Jupyter Notebook environment. 306 

 307 

 308 

3. Results  309 

3.1 Ecosystem Fluxes (ET, GPP, and Fire flux) along the gradient 310 

The comparison of simulated monthly evapotranspiration with observed values across five 311 

sites shows distinct spatial and temporal patterns (Figure 2). A consistent trend emerges, 312 

showing a decrease in ET with a decrease in rainfall (>1300 kg m-2 year-1 in wet and <800 313 

kg m-2 year-1). The RMSE and R2 show that the performance of the model differed by site. 314 

The RMSE was lowest at Adelaide River (17.00 mm month-1), followed by Daly River (18.77 315 

mm month-1) sites, indicating closer agreement between observed and simulated ET 316 

values. R2 shows the highest accuracy at Adelaide River (0.84), followed by Daly River 317 

(0.82), and the lowest in Dry River (0.52). Additionally, there were no specific patterns in 318 

monthly observed and simulated ET by seasons, with some sites, like Howard Spring and 319 

Dry River, showing slight underestimation in the dry season, whereas in Sturt Plain, there 320 

was overestimation. The model performed slightly better at sites with more consistent 321 

patterns in productivity, while it faces challenges in accurately predicting ET rates at 322 

extreme sites (high rainfall or high arid conditions).  323 

  324 
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 325 

 326 
Figure 2: Observed versus simulated evapotranspiration (mm/month) across the studied 327 

sites by seasons. Points show values for individual months. Dry Season = (May, June, July, 328 

Aug, Sept., and Oct.); Wet Season = (Nov., Dec., Jan., Feb., March, and April). 329 

 330 

In this analysis, we compared observed monthly GPP data from different time frames; 331 

depending on the site, there is a decrease in productivity with a decrease in rainfall, 332 

showing a limitation of resources, especially water in dry regions. The monthly simulated 333 

and observed values (light blue lines) show, except for Sturt Plain, where the model 334 

overestimated GPP for all months (RMSE 69.53 g C m-2 Month-1), that the model was able 335 

to capture productivity along the rainfall gradient (Figure 3). Similarly, the model was able 336 

to capture both temporal and seasonal patterns with RMSE ranging from 48.46 g C m-2 337 

Month-1 to 69.53 g C m-2 Month-1, but consistently underestimated productivity in the dry 338 

season in all sites except Sturt plain.  339 

  340 
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   341 

  342 

  343 
Figure 3: Observed and simulated GPP by sites (g C m-2 Month-1) with simulated mean 344 

(1990-2015) and observed mean (faint lines = observed fluxes for individual years; orange 345 

shading = variability (standard deviation) of simulated fluxes for individual years and light-346 

gray shading = dry season). 347 

 348 

We compared (Figure 4) the simulated carbon flux from fire using the BLAZE model (1990-349 

2015) with carbon emission data (2000-2015) from the GFED. It shows that both datasets 350 

follow a similar pattern, and fire flux depends on water availability and fuel loads, which 351 

decrease with decreasing latitude. The latitudinal trend in the mean fire flux (top panel) 352 

shows a decline from north to south, with higher mean fluxes in the last 25 years around 353 
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14-15°S and reduced values beyond 16°S. Even though the model slightly underestimates 354 

emissions at the northern end of the gradient, the overall pattern corresponds closely with 355 

the GFED (bottom panel), where northern regions (particularly those below 15 °S) exhibit 356 

higher fire activity emissions (Figure 4).   357 

 358 

 359 

 360 
Figure 4: Simulated carbon flux from fire (g C m-2 year-1) with simulated mean (1990-2015) 361 

and annual fire flux (2000-2015) map from Global Fire Emission data (GFED) along the 362 

rainfall gradient. 363 

 364 

 365 
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3.2 PFTs composition shift with rainfall  366 

Figure 5 depicts compositional variation along the rainfall gradient in terms of FPC as a 367 

proxy of PFT abundance. Both observed projective foliar cover (PFC) patterns and 368 

simulated FPC show that PFT composition varies with water availability, with grass 369 

dominance increasing as water availability decreases (Figure 5, top panel). The simulation 370 

result also shows the dominance of taller evergreen trees (Tall_euc) (>25 m high) and other 371 

medium eucalypts at the northern end of the gradient and short evergreen nitrogen-fixing 372 

Acacia and deciduous trees (Med_dec) at the southern end (Figure 5). The dominance of 373 

tall and medium-sized eucalypts (Tall_euc and Med_eve) decreases with increased aridity, 374 

with other PFTs having minimal FPCs in wet regions. In contrast, with a decrease in rainfall, 375 

the dominance of C4 grasses increases, reaching more than 50% FPC in a dry part of the 376 

gradient. Similarly, the contribution of PFTs other than grass in FPC remains similar in the 377 

dry end of the gradient, indicating water stress and competition for resources other than 378 

light, as FPC is evenly distributed among tree PFTs (PFT-wise simulated FPC and observed 379 

PFC are kept in Supplementary Figure 5).  380 

  381 
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 382 

 383 
Figure 5: Plot level projective foliar cover from ausplot (top panel) and simulated foliar 384 

projective cover by PFTs along the NATT (bottom panel). Bars represent mean value and 385 

error bar depicts standard deviation. Blue line shows mean rainfall with standard deviation 386 

(Acacia, C4G - grasses, Med_dec - Medium sized deciduous trees, Med_eve - medium sized 387 

evergreen trees, Nfix_mesic - Nitrogen fixing mesic trees, Small_dec - Small sized deciduous 388 

trees, Small_eve - Small sized evergreen trees, Tall_euc - tall eucalyptus trees). 389 

 390 

Figure 6 depicts the variability of production in carbon mass and its relative contribution 391 

to carbon mass production along the rainfall gradient. Carbon mass production per year 392 
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decreases with rainfall, ranging from 3.35 to 12.80 kg C m-2 year-1 in wet regions to 0.76 to 393 

6.33 kg C m-2 year-1 in dry regions among PFTs. Mirroring FPC composition, the simulation 394 

also reveals that eucalypts contribute significantly more to carbon mass production in the 395 

wet end (3-6 kg C m-2 year-1) but minimally at the dry end of the gradient (<less than 0.2 kg 396 

C/m2 per year). However, in the dry areas, Acacia (0.8 kg C m-2 year-1), medium-sized 397 

deciduous species (0.5 kg C m-2 year-1), and grass (0.45 kg C m-2 year-1) are major 398 

contributors to carbon production, showing the difference in vegetation composition with 399 

rainfall. In terms of relative contribution in carbon mass, eucalypt contributes up to 65% 400 

in wet areas, while in the dry end, three PFTs, namely Acacia (35.78%), Medium-sized 401 

deciduous (25.15%), and C4 grass (24.82%), are significant contributors. Similar 402 

contributions in overall productivity and decreases in carbon mass with an increase in 403 

dryness reflect that PFTs are adopted for limited water availability in dry conditions.  404 

Nitrogen-fixing mesic trees show notable productivity in the wet end of the gradient (2.05 405 

kg C m-2 year-1) with eucalypt, while other PFTs have a relatively small contribution to 406 

carbon productivity, reflecting asymmetric competition for light. Similarly, grass 407 

productivity increased from 0.17 to 0.44 kg C m-2 year-1 with decreases in rainfall, becoming 408 

a significant contributor in the dry end of the gradient (up to 70% in some years) (Figure 409 

6).  410 
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 411 

Figure 6: Carbon mass and relative contribution in carbon mass production by PFTs in 412 

along the latitude (average across rows of simulated grids) (Tall_eue- tall eucalyptus trees, 413 

Acacia, Med_eve- medium sized evergreen trees, Med_dec- Medium sized deciduous trees, 414 

Small_eve- Small sized evergreen trees, Small_dec- Small sized deciduous trees, Nfix_mesic- 415 

Nitrogen fixing mesic trees, C4G- grasses). 416 

 417 

Figure 7 illustrates the seasonal variation in MODIS LAI and simulated monthly LAI values 418 

from 2000 to 2015 along NATT in relation to rainfall and seasons. Both LAI datasets exhibit 419 

the same pattern, i.e., a decrease in LAI with decreases in rainfall. The MODIS LAI shows 420 

more variability in LAI compared to the simulated LAI, where the simulated LAI was within 421 

the range of MODIS LAI (Figure 7). Across the simulated longitude, MODIS LAI has a denser 422 

value within the range of 1 to 2 m²m-2 in the wetter end of the gradient, with a maximum 423 

of 7 m²m-2 in both seasons. In both LAI, at the wetter end of the gradient, LAI remains 424 

relatively constant throughout the year, whereas in the dry season, LAI at the dry end of the 425 

gradient is smaller (less than 2 m²m-2). It reflects that the PFTs’ composition (Figure 5) and 426 

their adaptive mechanisms vary with water availability, as rainfall in the wet season is 427 

significantly higher than in the dry season.  428 
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 429 

Figure 7: MODIS LAI (2000-2015) and simulated monthly LAI (2000-2015) with rainfall by 430 

season along the NATT. Black line plot represents the mean simulated LAI value, and the 431 

error bar depicts the standard deviation. Blue line shows the mean rainfall with standard 432 

deviation (error bar). 433 

 434 

Figure 8 shows the relationship between LAI and latitude for PFTs. The LAI of tall 435 

Eucalyptus trees decreases as rainfall decreases, with a maximum LAI of 2.02 m-2m-2 at 436 

latitude 13.25 0S and a minimum at 17.75 0S (0.3 m-2m-2), reflecting the competitive 437 

dominance of these PFTs in wet conditions. For medium deciduous species (Med_dec), LAI 438 

increases with a decrease in rainfall before decreasing again, showing a non-linear 439 

response to rainfall, which can be interpreted as PFT adaptation to fluctuating competition 440 

and stress conditions. Overall, the LAI trend for trees shows a negative correlation between 441 

LAI and rainfall, i.e., with a decrease in rainfall, the LAI of trees decreases. By contrast, the 442 

LAI of grass increases towards the dry end of the transect (0.4 m-2m-2 at 11.75 0S and 0.75 443 

m-2m-2 at 17.75 0S), showing dominancy of grasses in arid regions, which is the opposite of 444 

the trend for trees. Similarly, at the dry end of the gradient, Acacia dominancy in LAI 445 

becomes more apparent, as this genus, characteristic of the Australian inland arid region, 446 

is generally more adapted to water stress conditions compared to eucalypts.  447 
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 448 

Figure 8: LAI by PFTs along the NATT (simulated grid), solid point showing mean, and error 449 

bar showing standard deviation of mean for each PFT. Blue line shows mean rainfall with 450 

standard deviation in each latitude (Acacia, C4G - grasses, Med_dec - Medium sized 451 

deciduous trees, Med_eve - medium sized evergreen trees, Nfix_mesic - Nitrogen fixing 452 

mesic trees, Small_dec - Small sized deciduous trees, Small_eve - Small sized evergreen 453 

trees, Tall_euc - tall eucalyptus trees). 454 

 455 

3.3 Grass abundance increases with a decrease in rainfall   456 

Across the rainfall gradient, productivity and flux decreased with declining rainfall (Figure 457 

9). Simulated GPP, data from Haverd et al. (2016), and flux tower observed data 458 

consistently show a decline in GPP with rainfall across four sites, accompanied by strong 459 

seasonal fluctuations. The tree component in Haverd et al. (2016) exhibits less seasonal 460 

fluctuation in flux compared to grass, where grass productivity drops to almost zero during 461 

the dry season. This lower variability in the tree component is evident in the consistent 462 

fPAR throughout the year for trees. However, in the simulated results, the tree component 463 

also fluctuated due to the presence of deciduous PFTs in the simulation inputs. The 464 

seasonal cycle in GPP exhibits sharper fluctuations in drier regions, where grass becomes 465 

productive during the wet season, and the overall productivity of the ecosystem peaks, 466 

reflecting a strong phenological response of vegetation to rainfall. Furthermore, the 467 
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contribution of C4 grasses to overall GPP increases with decreasing rainfall, reaching 468 

maximum productivity at the drier sites. In these regions, approximately 30-35% of total 469 

annual production is attributed to grass. These spatial and temporal patterns highlight a 470 

structural shift in ecosystem function, and the composition of the ecosystem is controlled 471 

by rainfall and PFTs' adaptation to water stress and competition.   472 

 473 

Figure 9: Monthly time series of simulated GPP of trees and grasses (2002-2015) and 474 

monthly fPAR and daily GPP adopted from (Haverd et al., 2016) along the rainfall gradient 475 

(HS- Howard Spring; AR- Adelaide River; DU-Daly Uncleared (River), DR- Dry River). 476 

 477 

Along the rainfall gradient, variation in the simulated monthly leaf area index of trees and 478 

grasses demonstrates a relationship between seasonal rainfall patterns (Figure 10) and 479 

vegetation composition. In both wet and dry seasons, the monthly LAI of the trees 480 

decreased with a decrease in rainfall and contributed maximum monthly LAI at the wet 481 

end of the gradient. The LAI of trees in both dry and wet seasons is relatively similar (less 482 

than 0.5 m-2m-2) at the dry end of the gradient, which is almost one-fourth compared to the 483 

wet end of the gradient. However, the monthly LAI of grasses exhibits distinct behaviour. 484 

In the dry season, the monthly LAI of grass was almost the same throughout the gradient, 485 

averaging around 0.2 m-2m-2. However, during the wet season in drier regions of the 486 

gradient, grasses have a higher leaf area index than trees, reaching more than 1 m-2m-2. 487 
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Here, the difference in LAI of trees in wet and dry seasons remains smaller compared to 488 

grass, which increases with a decrease in rainfall, illustrating the role of internal annual 489 

variability of rainfall and stress caused by it on determining structural variability and 490 

interaction between trees and grass along the gradient.  491 

 492 

 493 

Figure 10: Leaf area index in wet and dry seasons for trees and grass along the rainfall 494 

gradient (average across simulated grids from longitude 130.75 0E to 134.25 0E) and their 495 

variability 496 

 497 

4. Discussion  498 

We evaluated the interactions between environmental variables and underlying 499 

mechanisms, and associated traits and life history strategies by defining and integrating 500 

regional PFTs with updated parameter values to represent local savanna composition using 501 

observations across the NATT. Our model confirmed that, along the gradient, rainfall is a 502 

major driving factor, creating an opposing gradient in terms of competition for light and 503 

nutrients at the northern end and water stress in the southern end during prolonged dry 504 

months. Consequently, ecosystem structure, composition, and productivity vary spatio-505 

temporally. The variation in resource availability, especially water, along the gradient, 506 
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impacts both the structure and composition of the savanna ecosystem, reflected by the 507 

dominance of trees and grass at respective ends of the gradient in terms of carbon mass 508 

production,  LAI and FPC, presence of nitrogen-fixing mesic Trees at the wet end and the 509 

emergence of Acacia as a dominant tree genus at the dry end of the transect.  510 

 511 

The simulated evapotranspiration, GPP, and fire flux agree with the observed decrease in 512 

these quantities with a decrease in rainfall, showing the dependency of the vegetation 513 

structure and composition on rainfall. Similarly, Haverd et al. (2016) ; Kanniah et al. (2011) 514 

and  Ma et al. (2020) also observed decreasing trends and patterns in GPP along the 515 

gradient from north to south using both remote sensing and modelling approaches. Our 516 

model was able to capture both seasonal and temporal patterns of GPP and ET on the 517 

rainfall gradient with lower accuracy in dry months and at the dry end of the gradient, 518 

potentially reflecting the influences of inter-annual variability of rainfall. Similar to our 519 

study, Havard et al. (2016) found that both HAVANNA-POP and CABLE models also slightly 520 

overestimated ET and GPP at the dry end of the transect. This difference was attributed to 521 

the simplistic representation of the grass PFTs in this model. Moore et al. (2016) estimated 522 

that approximately 40% of the total annual GPP in the Australian tropical savanna could be 523 

attributed to C4 grasses. The carbon flux from fires decreases with decreases in rainfall, as 524 

fuel load also decreases with rainfall. Deceukelier (2021) evaluated the performance of LPJ-525 

GUESS with the BLAZE module for Australian ecosystems and noted that while the model 526 

captures key fire processes, it struggles to capture emissions at a finer spatial scale. The 527 

fire model tends to slightly underpredict emission, especially at the wet end of the gradient, 528 

potentially due to fire–climate interactions and higher inter-annual climatic variability 529 

(Canadell et al., 2021).  530 

 531 

The seasonal difference in evapotranspiration (less than 50 g m-2month-1 in dry months to 532 

180 g m-2month-1), monthly GPP, seasonal responses of grass, and LAI of grasses (less than 533 

0.2 m-2m-2 in dry months and 1.2 m-2m-2 in wet months in dry end of gradient) show the 534 

role of rainfall patterns in ecosystem productivity and adaptation of vegetation in water 535 

availability conditions. This disparity in GPP, ET, and LAI between the dry and wet seasons 536 

at the dry end suggests a significant response of grasses to increased rainfall, resulting in a 537 

substantial expansion of leaf area and re-greening of existing leaf area by perennial grasses 538 

as an adaptation to water stress and a response to temporal dynamics in water availability. 539 
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Ma et al. (2020) also reported that productivity along the NATT depends on rainfall and the 540 

response of grass to rainfall to the rainfall dynamics as grass in dry savanna exhibits a 541 

higher hydrological sensitivity with their contribution being strongly seasonal with around 542 

75-80% in wet season and 18% in dry seasonal along the NATT (Moore et al., 2016).  543 

 544 

The dominance of taller Eucalyptus and other medium eucalypt PFTs at the northern end 545 

of the gradient, with higher carbon mass production and a major contributor in FPC and 546 

LAI shows the competition for light with tall trees limiting light for understory growth and 547 

small trees. Eucalyptus miniate and Eucalyptus tetrodonta form the top canopy of more than 548 

50% cover (Hutley et al., 2000) with more than 500 stands per hectare in the wet region 549 

with Sorghum intrans, Sorghum plumosum, Heteropogon triticeus, and other C4 grasses 550 

making up the understory (TERN, 2023). Several studies have concluded that in closed-551 

canopy forests where stand density is high, intense competition for light not only structures 552 

the vegetation but also determines the growth patterns and biomass partitioning (Matsuo 553 

et al., 2024; Woinarski et al., 2020). At the dry end of the gradient, grass, Acacia, and other 554 

deciduous tree PFTs have similar carbon mass production, with C4 grass dominating FPC 555 

and LAI. Hutley et al. (2011) reported that in the southern semi-arid region, shrublands 556 

and hummock and tussock grassland become increasingly prominent with scattered Acacia 557 

trees. Plot-based measurement of foliar cover (Munroe et al., 2021) data also shows that 558 

hummock and tussock grasses dominance increases in the drier end of the gradient. The 559 

relative contribution of different PFTs to FPC varies along the rainfall gradient, with tall and 560 

medium-size eucalypt (Tall_euc and Med_eve) PFTs contributing most to wet regions, but 561 

these contributions decline as aridity increases. This can be interpreted as an outcome of 562 

asymmetric competition for light and resources. Similarly, the relative contribution of 563 

drought-deciduous trees in LAI, FPC, and carbon mass production increases with a 564 

decrease in rainfall, showing the adaptation of the relevant taxa to water stress conditions. 565 

Eamus and Prior (2001) found that even though around 50% of species in NATT savannas 566 

are deciduous, 90% of the projected crown cover is formed by evergreen species, which 567 

exhibit water uptake throughout the year. The presence of fine roots even down to 9 m 568 

depth (Chen et al., 2004) suggests that the water table fluctuates by seasons, as woody 569 

species in savannas are able to acquire deep soil water, making them productive year-570 

round, as suggested by Hutley et al. (2000) and Chen et al. (2002). 571 

 572 
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We found that the GPP, LAI, carbon mass, and FPC of trees decrease with a decrease in water 573 

availability, whereas the contribution of C4 grass and Acacia increases with increased 574 

aridity. During the wet season, particularly in the drier regions of the gradient, grasses 575 

display a noteworthy increase in LAI compared to trees, with values exceeding 1 m²m-² 576 

showing seasonal adaptation of grass in stress conditions. The decrease in GPP coincides 577 

with a decrease in LAI and FPC of tree components along the gradient, where, in the dry 578 

end of the gradient, the FPC of tree PFTs remains similar and the dominance of single PFTs 579 

decreases, showing evidence that competition for light among PFTs decreased from north 580 

to south. Taken together, the variations our model predicted along the rainfall gradient are 581 

consistent with the following interpretation: in the northern, high-rainfall end of the 582 

gradient, vegetation competes for light with shading effects on understory vegetation, 583 

including grass, whereas in the dry end, vegetations are adapted to stress and seasonal 584 

rainfall. Structurally and compositionally, tall and medium-sized eucalypts dominate the 585 

northern part and short and small trees the drier conditions of the south, in line with the 586 

differential strategies and traits of the respective groups. Variations in resource availability 587 

and intensity of competition along the productivity gradient not only shape the structure 588 

and composition of the ecosystem but also govern the productivity in varying 589 

environmental conditions (Michalet et al., 2021; Rees, 2013; Sauter et al., 2021). Similarly, 590 

other environmental factors such as temperature and disturbance, including fire (Emmett 591 

et al., 2021; Werner and Prior, 2013) may be responsible for changes in trees and grass 592 

productivity and an increase in the dominance of Acacia species with short height, ability 593 

to fix nitrogen, and reduced stomatal conductance in the dry end of the gradient. 594 

 595 

Recognizing the seasonality in productivity, variability in interannual rainfall, adaptive 596 

strategies of trees, and the combined role of biotic and abiotic factors in shaping vegetation 597 

structure, composition, and productivity provided crucial insight for both ecological theory 598 

and practical implications. These insights can inform reforestation and restoration 599 

projects, ensuring the selection of species that are well-suited to local climatic conditions 600 

and capable of withstanding competition and resilient to stress associated with low soil 601 

moisture. Thus, our results are relevant to the management and conservation of NATT 602 

ecosystems and other similar savanna and woodland ecosystems.  603 

 604 

 605 
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4.1 Limitations 606 

Our process-based modelling approach allowed us to reproduce ecosystem structure, 607 

composition, and functioning along the rainfall gradient and interpret underpinning 608 

mechanisms of plant community – and related ecosystem functional – responses in relation 609 

with differing environmental conditions. However, several limitations existed, and future 610 

work can improve the representation of spatio-temporal dynamics of composition, 611 

structure, and productivity of the savannas in contrasting gradients of competition and 612 

stress. A primary limitation is the dependency of PFT parameter values on limited 613 

observational trait data for tropical climatic conditions, as the model becomes less accurate 614 

(higher RMSE in dry conditions) as environmental conditions become more extreme, both 615 

regarding wet and dry conditions. We emulated deep water access by eucalypt trees by 616 

adding additional water to the soil profile, overriding the internally simulated hydrological 617 

dynamics. In tropical savannas, fine root biomass and abundance, and their depth depend 618 

on season, phenology, competition, and water availability (Eamus and Prior, 2001; Holdo, 619 

2013) enabling plant access to deep water in dry seasons. Detailed observations of entire 620 

tree root profiles, replicated for a range of environments and hydroclimate episodes (such 621 

as positive and negative ENSO cycles) would be needed to adequately represent root 622 

dynamics under varying environmental stress. Such observations are unfortunately rare 623 

and were not available for the taxa and ecosystems we here studied. Deep water access by 624 

trees would ideally be better captured by explicitly prescribing or simulating groundwater 625 

reserves and tree-rooting strategies to access these, but this would require significant and 626 

novel extensions to the model, and, similar to root profiles, is likely to be data-limited. 627 

Prospects for including such details in regional models are currently limited by available 628 

data on groundwater distribution and depth, as well as detailed knowledge of the below-629 

ground allocation patterns of the trees.  630 

 631 

In our model setup, overall patterns in carbon flux from fire were captured by the BLAZE 632 

model. However, fire in these systems is a complex phenomenon influenced by multiple 633 

interacting drivers, including natural ignitions, vegetation structure, plant-specific traits,  634 

climate variability, and cultural practices such as indigenous burning (Deceukelier, 2021; 635 

Kelley et al., 2014; Murphy et al., 2023). However, parameterizing tree PFTs with traits 636 

representative of savanna species (e.g., adjusted wood density, leaf phenology, Huber value) 637 

has been shown to compensate for some of these limitations by improving the simulation 638 
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of fire resilience and post-fire recovery (Deceukelier, 2021; Kelley et al., 2014). Accurately 639 

analyzing and attributing fire impacts, including disentangling them from climate-640 

vegetation interactions, would require a dedicated analysis with further fire-specific 641 

simulations and data inputs. Similarly, post-fire recovery traits, particularly resprouting 642 

capacity, which are ecologically important in the Australian savanna system (Ondei et al., 643 

2016; Tangney et al., 2022), are not explicitly included in the model setup due to limitations 644 

in observational data regarding phenology of carbohydrate storage under different 645 

conditions and remobilisation in response to different disturbances.  646 

  647 

In our simulations, we used traits governing growth allometry that were inherited from the 648 

default global PFT parameter set of LPJ-GUESS. Local species and functional groups of our 649 

study region may show different allometric growth patterns. Allometry and associated 650 

plant biomass allocation (growth) strategies have an important influence on competition 651 

and carbon partitioning in different environmental conditions. Height, crown shape, and 652 

size of the tree depend on the space and growth conditions (Pretzsch et al., 2015), and 653 

competition for light not only structures the vegetation but also determines the growth 654 

patterns and biomass partitioning (Damgaard, 2003; Matsuo et al., 2024). Accurately 655 

describing allometric relations for growing trees would help us understand how light 656 

competition in high rainfall areas and free light availability in dry regions impact the 657 

composition, structure, and function of savannas over the stand development cycle. A 658 

subsequent study will explore how alternative allometries impact the simulation of growth 659 

efficiency, carbon partitioning, root development, and nutrient acquisition, thereby 660 

shaping competitive exclusion and the resulting structure and composition of PFTs at stand 661 

to landscape scales. 662 

 663 

5. Conclusions  664 

By integrating field-based trait observations with regional PFTs into LPJ-GUESS, we 665 

elucidated spatial and temporal patterns of vegetation structure, composition, and 666 

productivity along a savanna rainfall gradient. We found that tall and medium-sized 667 

eucalypts have higher contributions in LAI, FPC, and carbon mass production in high 668 

rainfall areas, whereas in drier areas, short Acacia trees and C4 grass dominated. GPP, ET, 669 

and LAI of trees decrease with a decrease in rainfall. Similar values of productivity-related 670 

variables for trees with a decrease in water availability may reflect adaptive strategies of 671 
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trees that allow them to tolerate or avoid water stress, maintaining relatively strong 672 

productivity towards the dry end of the gradient. The increase in the relative contribution 673 

of grass to carbon mass, GPP, and LAI in the wet season illustrates differential seasonality 674 

in productivity of trees versus grasses, particularly at the dry end of the gradient. As a case 675 

study of how water availability as a key environmental driver, plant functional strategies, 676 

and resource capture interact to govern outcomes of savanna stand development and 677 

composition, this comprehensive analysis provides critical insights into the complex 678 

dynamics of savanna ecosystems. Our model was able to replicate key patterns of 679 

composition, structure, and function along the gradient, on a credible mechanistic basis. 680 

This suggests it could be a relevant tool to predict the impacts of climate change on 681 

savannas and guide mitigation, ecosystem management, and conservation strategies to 682 

ensure their future resilience and sustainability.  Future research should focus on better 683 

characterising soil water reserves at depth, plant use of these, and on refining tree growth 684 

allometries to further enhance our understanding of savanna ecosystems and their 685 

response to environmental change.  686 
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