

Uncertainties in OCO-2 satellite retrievals of XCO₂ limit diagnosis of 1 transport model simulation uncertainty 2

3

Chiranjit Das¹, Ravi Kumar Kunchala¹, Prabir K. Patra^{2,3}, Naveen Chandra², Kentaro Ishijima⁴, 4 5 Toshinobu Machida⁵

6

7 ¹Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India

8 ² Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama 236-0001, Japan

9 ³ Research Institute for Humanity and Nature, Kyoto 6038047, Japan

10 ⁴Meteorological Research Institute, Tsukuba, Japan

11 ⁵National Institute for Environmental Studies, Tsukuba, Japan

12 Correspondence to: Prabir K. Patra (prabir@jamstec.go.jp) and Chiranjit Das (Chiranjit.Das@cas.iitd.ac.in)

13 Abstract. Estimating regional CO₂ sources and sinks is challenging due to limited data and uncertainties in 14 transport models. Orbiting Carbon Observatory-2 (OCO-2) overcomes measurement limits, providing CO2 15 variations beyond in-situ networks. This study analyses altitude-wise model-observation CO2 differences from 16 surface to upper troposphere using aircraft observations from ATom, Amazon, and CONTRAIL campaigns over 17 OCO-2 total column CO₂ (XCO₂) sampling location to characterise sources of uncertainty in MIROC4-ACTM. 18 We show model aligns better with ATom tropospheric columns (0.03 ± 0.03 ppm) than OCO-2 XCO₂ (0.2 ± 0.5 19 ppm), especially over oceans, highlighting the need for expanded profile measurements to characterise errors 20 robustly. Altitude-wise comparisons reveal this differences primarily occur in the lower troposphere (0-2 km), 21 likely due to ACTM's near-surface land CO2 flux errors. In contrast, ACTM better matches aircraft CO2 in the 22 middle (2-5 km) and upper (5-8 km) troposphere, likely due to accurate large-scale transport representation. Over 23 the Amazon, CO₂ differences with aircraft and OCO-2 differ, likely due to a lack of regional surface sites for 24 inversion and insufficient high-altitude profile (~4km) not representative of XCO2. Over Asian megacity airports, 25 which are significant emission hotspots, the model shows a large negative difference with CONTRAIL than OCO-26 2. This discrepancy likely hints that MIROC4-ACTM is unable to capture urban fossil CO2 emission signals at 27 airports due to coarse resolution ($\sim 2.8^{\circ} \times 2.8^{\circ}$) and higher resolution of OCO-2 limits ability to fully capture actual 28 emission footprints.

29

30 Keywords: Carbon dioxide; Aircraft; Transport Model; OCO-2

- 32 33 34 35 36 37
- 38
- 39 40

41 **1. Introduction** 42

43 Atmospheric CO₂ is the most significant anthropogenic greenhouse gas (GHG) present in the Earth's atmosphere, 44 responsible for a major global warming and climate change since the preindustrial era, circa 1750 (Canadell et al., 45 2022). Therefore, recognizing its importance in direct impact on climate, monitoring of highly accurate surface 46 CO2 measurements were first started from the South Pole (SPO) and Mauna Loa (MLO), Hawaii (Keeling, 1960) 47 and later expanded across the globe. These in-situ measurements are widely used for estimating surface CO₂ 48 fluxes using Bayesian-based "top-down" chemistry transport models due to their long-term record and high 49 measurement accuracy (Chandra et al., 2022; Chevallier et al., 2010; Peylin et al., 2013). However, in-situ CO₂ 50 measurement sites around globe is sparse, mostly situated in mid-latitude north America and Europe, with less 51 coverage over tropical land (Patra et al., 2011; Schimel et al., 2015) and open oceans, which increase difficulties 52 in inferring surface CO₂ fluxes from inverse models in data void regions (Chevallier et al., 2010, 2011).

53

54 To increase spatiotemporal monitoring of CO₂, spaced-based measurements such as SCanning Imaging 55 Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY), Greenhouse Gases Observing Satellite 56 "IBUKI" (GOSAT), and the Orbiting Carbon Observatory-2 (OCO-2) were launched to provide column-57 average dry-air mole fraction or mixing ratio of CO2, termed XCO2 (Bovensmann et al., 1999; Crisp, 2008; Kuze 58 et al., 2009). NASA's OCO-2 satellite launched in 2014 to achieve finer spatial resolution and better precision as 59 compared to previous satellites. This advancement has proved beneficial for understanding global and regional 60 carbon cycle science in various satellite based studies (Crisp, 2015; Das et al., 2023; Liang et al., 2017; Liu et al., 61 2017; Chatterjee et al., 2027). OCO-2 version 10 XCO₂ measurements has shown retrieval error with mean bias 62 (RMSE) of 0.24 (0.81) ppm over land and 0.43 (0.84) ppm over ocean globally, compared against more accurate 63 WMO scale maintained XCO₂ from surface-based Total Carbon Column Observation Network (TCCON) sites 64 (Taylor et al., 2023; Wunch et al., 2017). Studies reported that assimilation of OCO-2 XCO₂ available at greater 65 spatial density (~ 100 times of GOSAT) into an inversion requires the data to be extremely precise, stable and 66 regionally unbiased to effectively estimate surface CO₂ fluxes in regional scale (Byrne et al., 2017, 2023; Crowell 67 et al., 2019; Philip et al., 2022; Rastogi et al., 2021). Also, Miller et al. (2007) reported that satellite-retrieved 68 XCO2 needs regional precision of 1-2 ppm to reduce uncertainty in inversion-derived flux estimates from in-situ 69 networks. Because, XCO₂ retrievals having many sources of uncertainty hinder their fidelity to utilize inversion 70 approach to accurately estimate surface CO₂ flux (Chevallier et al., 2014; Villalobos et al., 2020). These retrieval 71 errors in OCO-2 include cloud effects (Massie et al., 2021;Merrelli et al., 2015), instrumental errors, retrieved 72 surface pressure, and then aerosol, the largest source of systematic error can be approximately 2 ppm over land 73 regions (Connor et al., 2016). Therefore, to enhance the accuracy of surface CO₂ flux estimations, studies are 74 focussing on improving retrieval algorithm by correcting for cloud effects and incorporating a digital elevation 75 model (DEM) to correct surface pressure (Jacobs et al., 2023; Mauceri et al., 2023). Apart from retrieval errors, 76 misrepresentation of transport and uncertainty in prior fluxes can further reduce reliability in top-down model 77 inferred surface CO₂ fluxes (Chandra et al., 2022; Fu et al., 2021; Schuh et al., 2019). To address and assess such 78 kind of errors impact on top-down CO2 budgets, OCO-2 model intercomparison project (MIP) is formed with 79 different CO2 inverse modelling groups assimilating OCO-2, in-situ and combination of both (80 https://gml.noaa.gov/ccgg/OCO2_v10mip/index.php).

81 Previous studies have attempted to reconstruct observation based CO2 profiles combining ship, aircraft and model 82 simulation to compare with GOSAT XCO₂, but are limited to characterise inversion errors (Müller et al., 2021; 83 Inoue et al., 2013; Wofsy, 2011). Frankenberg et al. (2016), showed using HIPPO aircraft CO₂ vertical profiles, 84 that the retrievals of GOSAT, TES, AIRS satellites and inversion simulation can have large difference of ~ 4 ppm 85 due to inaccurate vertical transport in higher latitude during vegetation growing or decaying periods. These studies 86 often lack in providing uncertainties linked with inversion through altitude-based CO₂ comparison from near 87 surface to different tropospheric layers between inversion-based model simulations, surface, and aircraft data. 88 This gap is particularly evident in regions with in-situ sparse data coverage, such as vast oceanic areas, as well as 89 in emission or sink hotspots over land while OCO-2 dense measurements have not helped to overcome precision 90 issues providing global coverage. However, no studies attempted to understand how OCO-2 retrieval errors or 91 accuracy hampers its full potential to uncover the uncertainties associated with inverse models. The present study 92 aims to understand sources of error associated with the MIROC4-ACTM model through altitude-based CO2 93 comparison among MIROC4-ACTM, OCO-2 and aircraft observation across different tropospheric layers. To 94 accomplish this we leverage highly accurate and precise aircraft vertical CO2 measurements from ATom 95 campaigns over northern America, Pacific, Atlantic, Southern Ocean regions, CONTRAIL over airports in Asia 96 and four specific sites in Amazon. Before analysing, we first validated the MIROC4-ACTM model simulated 97 tropospheric column CO₂ (XCO₂) with highly precise CO₂ vertical profiles from independent aircraft 98 measurements over open oceanic regions, Amazon and local urban hotspot over Asia.

99

101

103

100 2. Data and Methodology

102 2.1 Aircraft and surface CO₂ measurements

We have used individual independent aircraft and surface in-situ CO₂ measurements around the globes from
NOAA's obspack_co2_1_GLOBALVIEWplus_v8.0 data product (Schuldt et al., 2022) and WDCGG (World
Data Centre for Greenhouse Gases) respectively. We have selected a few individual campaigns such as ATom,
Amazon aircraft campaigns, CONTRAIL because of their extensive latitudinal/longitudinal spatial coverage over
ocean and land regions, multiple vertical CO₂ profile measurements and extended period of measurements. A
brief description of each aircraft measurement is discussed in the next paragraphs.

110

111 ATom is an aircraft field campaign, providing airborne measurements of remote tropospheric and lower 112 stratospheric CO₂ from Northern America, Arctic, Pacific, Southern and Atlantic Oceans (Thompson et al., 2022). 113 ATom has four campaigns conducted using NASA DC-8 aircraft, taking vertical profile of CO2 from near surface 114 (0.15 km) to13 km altitude range over four seasons from 2016 to 2018. Four campaigns each lasted around 28 115 days, namely, ATom-1, 28 July-22 August 2016; ATom-2, 26 January-22 February 2017; ATom-3, 28 116 September-26 October 2017; ATom-4, 24 April to 21 May 2018 respectively (Wofsy et al., 2021). These vertical 117 CO2 measurements enable the validation of XCO2 measurements from the satellites because most of XCO2 118 variability is constrained in the troposphere, therefore, these vertical measurements effectively serve as a reference 119 for satellite-retrieved CO₂ validation (Frankenberg et al., 2016). We have utilised these CO₂ measurements freely 120 available at https://gml.noaa.gov/ccgg/obspack/data.php.

122 Additionally, aircraft vertical campaign CO₂ measurements from four sites such as TEF (3.39° S, 65.6° W), SAN 123 (2.86° S, 54.95° W), RBA (9.38° S, 67.62° W) and ALF (8.80° S, 56.75° W) in the Amazon region are also 124 considered for the present study and more details about these measurements can be found in Gatti et al. (2021a). 125 In ALF, RBA, SAN, CO2 measurements are available from 2010 to 2018, whereas TEF has measurements from 126 2013-2018. Bi-monthly vertical CO₂ profile measurements were taken during 12:00 and 13:00 local time at all 127 these sites covering altitude from 0.3 to 4 km when the daytime boundary layer is well mixed. These measurements 128 were taken using an automatic sampler onboarded in the light aircraft, which underwent accuracy and precision 129 testing at greenhouse gas laboratory at National Institute of Space Research (LaGEE/INPE), Brazil (Gatti et al. 130 2014). We have used a set of vertical CO₂ profiles during September, 2014 till 2018, freely available at: 131 https://doi.pangaea.de/10.1594/PANGAEA.926834 (Gatti et al., 2021b).

132

133 Further, CONTRAIL aircraft program CO2 measurements over Asian regions are also considered for the current 134 analysis (Ishijima et al., 2021; Machida et al., 2008; Matsueda et al., 2008). In this program, several regular 135 passenger aircraft operated by Japan Airlines (JAL) are installed with instruments like CME (Continuous CO2 136 Measuring Equipment) to provide extensive spatial CO₂ data coverage in the upper troposphere and lower 137 stratosphere (UT/LS) region. We have only considered measurements during OCO-2 measurements period at four 138 representative zones in Asia, specifically around airports, to retrieve vertical CO₂ profiles during ascent or descent 139 of the aircraft, following Niwa et al., 2011. The measurements dataset is freely accessible at 140 https://www.cger.nies.go.jp/contrail/.

141

142 2.2 OCO-2

143

144 OCO-2 is a sun-synchronous satellite, retrieves XCO₂ to understand the carbon source-sink activity throughout 145 the globe (Eldering et al., 2017). The satellite uses three high-resolution grating spectrometers to retrieve the 146 reflected sunlight spectral signature of weak CO₂ (1.61 µm), strong CO₂ (2.06 µm) and O₂A (0.76 µm) which are 147 later analysed through Atmospheric Carbon Observations from Space (ACOS) algorithm to estimate global 148 spatiotemporal XCO₂ distribution (Crisp, 2015; Crisp et al., 2017; Eldering et al., 2017). It has a spatial resolution 149 of 1.29 km \times 2.25 km (nadir mode), and a temporal periodicity of sixteen days. We have utilised OCO-2 version 150 10 which is an update from previous version v8/v9 in terms of important changes in spectroscopy, aerosol, CO₂ 151 prior source, and solar continuum model which reduced RMSE validated against XCO2 measured at TCCON sites 152 for land and ocean-glint measurement (Taylor et al., 2023). In this study, we have used level-2 OCO-2 version 153 10r data product (available at: 154 https://disc.gsfc.nasa.gov/datasets/OCO2 L2 Standard 10r/summary?keywords=OCO-2) and have considered 155 only bias-corrected quality checked soundings (XCO_2 -quality_flag = 0 or good data) for analysis.

156

157 2.3 Transport model

158

159 The Model for Interdisciplinary Research on Climate, version 4, based Atmospheric Chemistry Transport Model 160 (MIROC4–ACTM) chemistry transport model is used, which is run at T42 spectral spatial resolution ($\sim 2.8^{\circ} \times$ 161 2.8° latitude-longitude grid) with 67 vertical hybrid-pressure levels from the surface to 90 km to simulate the CO₂

162 concentration and fluxes (Patra et al., 2018). For realistic representation of the transport in the model, model 163 meteorology, horizontal winds (zonal and meridional) and temperature is nudged to Japanese 55-year Reanalysis 164 or JRA-55 data (Kobayashi et al., 2015). The MIROC4-ACTM model conducted two distinct simulations: one 165 utilizing bottom-up model a prior or "FG" fluxes and the other employing a posteriori or "InvFG" fluxes derived 166 from top-down inversion using 50 inversion sites (Figure S1). To derive total concentration in the simulation 167 different bottom-up tracers are utilised, gridded GridFED fossil fuel; CO2,ff (Jones et al., 2021), annually balanced 168 CASA biospheric flux; CO_{2.Ind} (Randerson et al., 1997) and ocean exchange i.e., sea-air CO₂ flux; CO_{2.ocn} 169 (Takahashi et al., 2009). Then, prior CO₂ simulation case of MIROC4-ACTM is prepared by adding the prior 170 tracers as follows: CO_{2,ff} (GridFED) + CO_{2,Ind} (CASA-3hr) + CO_{2,ocn} (Taka-Ocn). A detailed discussion on this 171 is given in Chandra et al. 2022. Further, to minimise the edge effect on the simulated dataset, we discarded the 172 first two years and last one year of our simulation period (2012-2022), only analysed CO2 of both simulation and 173 observation during 2014-2021. Model performance evaluated by comparing with each vertical profile of 174 independent observations of ATom CO2 not used in the inversion as well as at two surface sites, MLO (19.53 °N, 175 155.57 °W) and SYO (69.01 °S, 35.59 °W) representative of northern and southern hemisphere CO2 variability 176 (Fig. S2, 3). To do that firstly, model simulated CO_2 is resampled to the nearest grid of the aircraft and surface 177 sampling locations, considering linear interpolations at spatial grid and time. We have not considered any other 178 co-location criteria unless it is mentioned, e.g., geometric and dynamic for comparison; therefore, estimated 179 CO₂ difference is essentially uncertainty either in observation or inversion (Kulawik et al., 2016, 2019). The 180 result shows good performance with lesser bias with InvFG over prior at different latitudes, showing an overall 181 good match of InvFG CO2 and ATom at different latitudes (Fig. S2, 3). Similarly at surface sites, InvFG showed 182 better performance over prior with correlation of 0.99 with observation (p < 0.05) (Fig. S4). Then, to compare 183 OCO-2 XCO₂ and ACTM-XCO₂, we formulated XCO₂^{ACTM} following the Patra et al., 2017. Here, ACTM simulated CO₂ profile or CO₂^{ACTM} resampled at each OCO-2 retrieval location (latitude, longitude) with further 184 185 use of corresponding OCO-2 priori and column average kernel sensitivity (Ai) represents instrumental sensitivity 186 for 20 vertical levels from top of atmosphere (TOA) to surface to produce XCO_2^{ACTM} using the following equation. 187

188

$$XCO_2^{ACTM} = \sum_i (CO_2^{priori} \cdot dP_i) + \sum_i A_i \cdot dP_i \left(\sum_i CO_2^{ACTM}_i - \sum_i CO_2^{priori} \right)$$
(1)

189 $CO_2^{priori} = OCO-2$ priori; $A_i = OCO-2$ column averaging kernel; $dP_i =$ thickness of each pressure layer.

190

191 We have also resampled XCO₂^{ACTM} at 21 TCCON sites around the globe to validate model performance with 192 more accurate XCO₂ measurements at surface-based TCCON sites (Wunch et al., 2011). To perform that we first 193 filtered data points considering only good quality retrieval, then curve fitted the remaining retrieval to remove 194 outliers and finally considered retrievals with solar zenith angle < 60° following methodology mentioned in 195 Appendix C of Crowell et al. 2019. Figure S5 shows a good agreement between ACTM and TCCON XCO₂ for 196 majority of TCCON sites considering the fact that TCCON has its own bias due to topography, surface brightness 197 and aerosols as well as latitudinal varying bias (Wunch et al., 2017).

198

199 2.4 Data analysis

200

)

201 To conduct the spatial discrepancy analysis of XCO₂ difference between ACTM and OCO-2, bias corrected and 202 quality checked good soundings from OCO-2 XCO₂ retrieval or XCO_2^{OCO-2} and ACTM simulated XCO₂ or 203 XCO_2^{ACTM} is re-gridded into $0.5^{\circ} \times 0.5^{\circ}$ latitude-longitude grid boxes. Further, to assess this XCO_2^{ACTM} -204 XCO_2^{OCO-2} difference, we used aircraft vertical CO₂ measurement available at different vertical tropospheric 205 layers, essentially to conduct an altitude-wise comparison of CO₂ among ACTM, OCO-2 and aircraft. Therefore, 206 we have employed a methodology outlined using a schematic in Figure 1, specifically designed to provide CO₂ 207 profile from aircraft, OCO-2 and ACTM.

208

209 It shows typical CO₂ concentration vertical profiles and relative altitude range captured in OCO-2, aircraft 210 measurements, and corresponding MIROC4-ACTM simulations. OCO-2 measures XCO₂ concentration from 211 space, representing CO_2 profile from top of the atmosphere to surface so as the ACTM simulation at those pressure 212 levels is represented by a blue colour double-headed arrow. On the other hand, aircraft tropospheric columns of 213 CO2 typically capture concentration variability up to an altitude of 15 km and ACTM resampled concentration 214 values at those measurement locations represented by orange colour double headed arrows. Since the main 215 purpose is to compare the aircraft tropospheric column CO₂ against OCO-2 XCO₂ and ACTM simulations, we 216 subdivided the tropospheric CO_2 column into three different vertical tropospheric layers, namely, the lower 217 troposphere: lowest level to 2 km, middle troposphere: 2-5 km, and upper troposphere: 5-8 km to understand the 218 model performance in each of the vertical layers. In addition, a total tropospheric vertical CO₂ column of aircraft 219 or aircraft XCO_2 is calculated only when the vertical measurements reach at least 8 km altitude; otherwise, any 220 profile not reaching 8 km is discarded from the analysis unless otherwise mentioned specifically. For each vertical 221 tropospheric layer, pressure-weighted partial column CO₂ is calculated to consider air mass variation between 222 pressure levels for each considered tropospheric layer. Moreover, to become more robust on the analysis, each 223 vertical depth layer is subdivided into 200 bins unless otherwise mentioned and 80% of vertical bins having 224 measurements for the specific tropospheric layer only considered for analysis. For instance, middle troposphere 225 (upper troposphere), i.e., 2-5 (5-8) km is divided into 15 vertical bins each of 200 meters, then in a specific 226 latitude or longitude while calculating a partial column of CO₂, we only considered profiles that encompass a 227 minimum 12 vertical bins in them.

228

232

229 3. Results230

231 3.1. MIROC4-ACTM intercomparison with OCO-2 and surface measurements

233 Figure 2a shows a monthly mean spatial XCO₂ difference (XCO₂^{ACTM} - XCO₂^{OCO-2}) during January, 2015 -234 December, 2021. It reveals a heterogeneous signature of spatial XCO₂ difference or mismatch across the globe 235 with maximum negative XCO₂ difference of approximately 2 ppm over Amazon, Africa, south-east Asia, China, 236 primarily in the global tropical land regions. This is likely due to the lack of long-term surface CO₂ measurements 237 (Figure S1) available for inversion particularly over the global tropics to constrain the prior CO₂ flux (also 238 discussed in Chandra et al., 2022). Further, humid tropics is also the region of lesser valid OCO-2 retrievals due 239 to the persistent shallow cumulus cloud blocking the infrared signals, makes it challenging to validate the transport 240 model and studies has shown sparse sampling over land increases chances of the error almost two times 241 (Frankenberg et al., 2024; Kulawik et al., 2019). On the other hand, high-latitude land regions, North America

242 and Russia, exhibit a positive XCO₂ difference of nearly 2 ppm, however, XCO₂ differences over ocean regions 243 are generally within ± 1 ppm, possibly because of lesser variability in ocean CO₂ flux compared to land CO₂ flux 244 and oceanic regions are minimally affected by land air mass. Further, we observed a negative XCO₂ difference 245 especially over northern extra-tropics between 30° N to 60° N of nearly -0.6 ppm in agreement with Byrne et al. 246 2023 likely attributed to OCO-2 ocean glint (OG) retrieval biases that adds up a layer of complexity of diagnosing 247 the transport model against OCO-2 retrievals over this vast ocean. Further, studies showed that sampling 248 variance between land and ocean could also lead significant uncertainty (Basu et al., 2018). Additionally, we 249 observed a bias in the Southern Hemisphere, the underlying causes of which are still unknown and need further 250 research (Byrne et al., 2023). Overall, our results show some regions under/over-estimated by ACTM, however, 251 it is challenging to comprehend quantitatively and qualitatively about sources of error across diverse regions 252 (source-sink dynamics and transport mechanism) as it could result either due to inaccuracies in the inversion (prior 253 fluxes, transport) or errors in satellite retrievals (Chandra et al., 2022; Chevallier et al., 2014). Furthermore, to 254 check the time variation of these XCO_2 differences, we analysed the time versus latitude distribution of XCO_2 255 difference taking the average across global longitude from 180° W to 180° E (Fig. 2b). We observed that XCO₂ 256 difference has a seasonal and spatially varying repeating signature, with maximum (minimum) difference during 257 February-March-April (September-October-November) consistent across study period. A prominent positive 258 (negative) systematic XCO₂ difference is observed over the southern hemisphere tropic to mid-latitude from 10° 259 S-40° S and northern latitude around 30° N (northern tropic to mid latitude) this is in agreement with Kulawik et 260 al. (2019). However, after separating time vs latitude distribution of XCO₂ difference into land and ocean, we 261 observed that this systematic XCO₂ difference mainly originates from the southern ocean part, which matches 262 well with overall (land and ocean) time vs latitude XCO2 difference distribution (Fig. S6). However, it is 263 challenging to explain the difference since ocean glint has biases (Byr ne et al., 2023) and a study by Kulawik 264 et al. (2019) also reported a systematic error of 0.6 ± 0.1 ppm could arise over the ocean and land in OCO-2 265 satellite XCO2 retrievals.

266

267 To further examine whether this difference comes from inversion or XCO₂ retrieval because both have 268 uncertainties. We similarly analysed time versus latitude distribution of surface CO₂ concentration difference with respect to ACTM simulation or CO2^{ACTM} - CO2^{In-situ} considering accurate surface CO2 concentration data from 53 269 270 measuring sites around the globe. Most of these sites are situated in the northern hemisphere having at least 90% 271 data during study period (all sites geographical location can be visualised in Figure S7 in supporting information). 272 MIROC4-ACTM simulated CO₂ near the surface is resampled to the nearest grid of surface sites (latitude, 273 longitude, altitude) and measurement time from hourly interval model output. For each of the 53 sites, CO₂ 274 concentration difference between ACTM and surface CO₂ concentration is calculated first, and then we linearly 275 interpolate it spatially as presented in Figure 2(c). Results show no such annually and spatially systematic 276 signature of CO₂ difference near the surface between equator to 45° S considering six stations (SEY: 4.7° S, ASC: 277 8° S, SMO: 14.2° S, NMB: 23.6° S, CPT: 34.4° S, CGO: 40.7° S) situated at different latitudes within this latitude 278 band (Fig. S7). Considering the fact that inferred CO₂ difference may arise due to much lower data density for the 279 in situ measurements within mentioned latitude bands, the analysis with the available sites suggests that systematic 280 signatures of difference exist when we compared with OCO-2 XCO₂ (Fig. 2b). It hints at uncertainties in OCO-2 281 retrieval or systematic vertical transport error in the model (Schuh et al., 2019), given the relatively lower

282 uncertainty in in-situ CO2 measurements compared to OCO-2 XCO2. This vast part of the region remained 283 challenging for a model to understand its error characteristics due to OCO-2 retrieval error. Further, we also 284 compared the latitudinal average time series of CO₂ (XCO₂) difference of ACTM with surface (OCO-2) in Fig. 285 2(d). It shows an overall agreement of CO₂ difference with a correlation coefficient of 0.68 at 99% significance 286 level with total time series variability (1-\sigma STDEV) of 0.28 and 0.19 ppm in CO2 difference in surface as compared 287 to OCO-2. Overall, this CO₂ space-time variability analysis clearly demonstrates that systematic signature in 288 XCO₂ difference, primarily concentrated in southern mid and northern high latitudes, previous studies also 289 indicated towards potential uncertainties may arise in retrieval over the ocean and or misrepresentation of vertical 290 transport in inversion (Byrne et al., 2023; Frankenberg et al., 2016; Schuh et al., 2019). Since systematic errors in 291 transport could result in inaccurate CO₂ flux estimates and, consequently, posterior simulated concentration (Deng 292 et al., 2015; Stephens et al., 2007). In an inversion estimation, transport, surface CO₂ flux and CO₂ spatial gradient 293 are closely interconnected so any misrepresentation in vertical or horizontal mixing consequently affects the 294 estimated flux. This highlights the complexity of interpreting CO₂ differences across diverse regions, 295 measurement platforms and error quantification of the optimised flux of inversions from surface and satellite 296 measurements. Therefore, to better understand the consistency of CO₂ differences across different global regions 297 and identify regions of major uncertainty which will enable us to address them effectively, we analysed CO_2 298 variation in different vertical tropospheric layers using vertical CO₂ profile datasets from aircraft measurements, 299 discussed in section 3.2.

300

303

301 3.2 CO₂ difference in tropospheric layers

302 3.2.1 Over Globe

Figure 3 represents mean CO₂ difference or CO₂^{ACTM}-CO₂^{aircraft} across different latitudes using individual aircraft 304 305 observations for different tropospheric layers LT (light red), MT (orange), UT (dodger blue) and tropospheric 306 Total Column (teal), color coded to represent different altitude ranges. Aircraft measurements are generally 307 available in two modes: continuous measurements from the same site over a long period, and campaign 308 measurements that cover extensive vertical and horizontal distances with high data density over a limited period. 309 Therefore, we have subdivided aircraft measurements into two subcategories for our analysis: specific site 310 aircrafts having latitude coverage maximum 5°(Fig. 3a) and campaign aircrafts having latitude coverage 311 maximum 30° (Fig. 3b). Only those aircrafts having measurements during OCO-2 period are selected, each 312 aircraft sampling location, number of data points at different latitude bins of 30° and altitude bins of 1000 meters 313 is provided in the supplementary material (Fig. S8 and S9 gif for each aircraft category). Then, we calculated 314 model-observation CO₂ difference for each aircraft measurement category. Therefore, estimated CO₂ difference 315 serves as a model and observation mismatch for specific latitude (entire latitude range) for specific sites 316 (campaign) aircraft with latitude information mentioned inside parenthesis of first x-axis tick marks in Fig. 3a 317 (3b). Here, the second x-axis shows the number of data points in the corresponding aircraft campaign. Here, the 318 number of data points or samples is critical when comparing CO2 differences among aircraft. A higher number of 319 samples provides better confidence to the calculated CO₂ difference while aircraft with fewer samples are 320 considered less weightage.

321 Mean (variability) of CO2 difference for LT, MT, UT and tropospheric column for specific sites aircraft are -0.45 322 (± 0.49) , -0.32 (± 0.48) , -0.34 (± 0.5) , and -0.2 (± 0.41) respectively (Fig. 3a). It shows the highest mismatch in 323 terms of mean exist in LT as compared to other tropospheric layers MT, UT and total tropospheric column, likely 324 due to uncertainty in prior CO₂ flux or transport in LT. Studies have shown that in the LT, concentration changes 325 are mainly regulated by surface CO₂ fluxes and diurnal-synoptic mixing patterns (Law et al., 2008; Patra et al., 326 2008). However, CO₂ change in UT is mainly dominated by changes in large scale dynamical transport, where 327 surface emission has subdued influence. Hence, studies have found that coarse spatial resolution transport models 328 adequately simulated CO2 in the MT to UT regions (Baier et al., 2020; Niwa et al., 2011). Additionally, it is also 329 noted that there is a systematic underestimation by the model in terms of magnitude in all tropospheric layers. 330 Result shows minimum or maximum (near zero) model-observation CO2 difference (ppm) observed for "esp" or 331 "rta" (cma) aircraft at 49.48° N or 21.19° S (38.83° N) in the LT for specific sites aircraft. In the tropospheric 332 column, maximum (minimum) CO₂ difference is observed in "cma" ("car") aircraft at 38.83° N (40.66° N) 333 respectively. Further, it has been observed that the tropospheric column CO₂ difference matches pattern of CO₂ 334 difference at LT at most aircraft sites; LT apparently contributes more to the total tropospheric column than MT 335 and UT. Further, it could be seen that the overall mean model-observation CO2 difference is highest in the northern 336 mid-latitudes compared to the tropical latitudes of the northern and southern hemispheres.

337

338 Further, we have calculated XCO2^{ACTM} - XCO2^{OCO-2} at those specific sites aircraft location considering 5°× 5° grid 339 box surrounding it to check the difference similarity between XCO₂ and tropospheric column CO₂ selecting only 340 specific times from OCO-2 of aircraft measurement. Results show XCO₂ difference mean (variability) of -341 0.37 (±0.38), highlighting that the model is underestimating and also has minimum variability as compared to any 342 individual layers. On the other hand, CO₂ difference with campaign aircraft showed similar results; overall highest 343 mean and variability exists in LT observed. Further, the overall mean (variability) of the tropospheric column is -344 0.39 (±0.1) controlled largely by CO₂ difference in LT. Here, we also check XCO₂ difference at those campaign 345 aircraft considering their covered tracks and then taking the average of all XCO2 differences to calculate a mean 346 XCO2 difference. Results show lesser variability in XCO2 as compared to other layers and also negative mean 347 XCO_2 represents overall underestimation by the model. It has been observed in both aircraft categories that the 348 model has underestimated overall CO₂ concentration in all tropospheric layers and total columns, also the 349 maximum mean and variability of CO₂ difference are in LT. These differences are attributed possibly due to 350 underestimation by prior flux in the inversion or misrepresentation of transport in the model. To further investigate 351 CO₂ differences altitude-wise, we considered individual vertical CO₂ profiles from different campaigns for 352 different regions North America, Pacific, Southern Ocean, Atlantic, Amazon and Asia discussed in detail in 353 subsequent sections.

354

356

355 3.2.2 North America, Pacific, Southern and Atlantic ocean

Figure 4(a) illustrates integrated tracks traversed by the aircraft during ATom campaign (ATom-1, ATom-2, ATom-3, ATom-4) across oceanic and land parts, subdivided into four segmented track categories corresponding to specific geographical regions delineated with different colours. Represented segments are North America and neighbours; east to west aircraft campaigning (magenta), Pacific; north to south aircraft campaigning (yellow), Southern Ocean; west to east aircraft campaigning (red), and Atlantic; south to north aircraft campaigning (green).

362 Figure 4(b) shows the mean XCO₂ difference taken considering a collocation criteria of $5^{\circ} \times 5^{\circ}$ latitude-longitude 363 grid box around sampling location and XCO₂ retrievals during corresponding ATom campaign period. We 364 observed a maximum XCO₂ difference of nearly 2 ppm over 120° W and 90° W in North America and 365 neighbouring land regions whereas oceanic regions, particularly Pacific and Atlantic are mostly confined within 366 ±1 ppm at any specific latitude. We also checked the latitudinal bias MIROC4-ACTM against TCCON XCO₂ 367 across the latitude during the ATom campaign period shown in Figure S11. This comparison also showed higher 368 bias over this latitude location against TCCON sites at Park Falls, JPL, Lamont and East Trout Lake. Therefore, 369 model bias is consistent both against OCO-2 and TCCON. Then, to understand the altitude-wise variation of 370 CO₂^{ACTM} - CO₂^{aircraft} difference at different tropospheric depths (LT, MT, UT, tropospheric column), we used 371 ATom vertical CO2 dataset. We also compared these CO2 differences with OCO-2 across segmented ATom tracks 372 (Fig. 4c-f). Result shows largest CO₂ difference in terms of mean \pm STDEV (calculated taking 1- σ standard 373 deviation) of CO₂ differences across longitude range is -0.41 ± 0.94 ppm exist in LT as compared to the other 374 tropospheric layers likely due to uncertainty and large variability in prior land CO₂ flux near surface (Fig. 4c). 375 When we compare CO2 differences from other layers of different track segments, North America and neighbour's 376 CO₂ difference at LT appears to be the highest, mainly occurring during the ATom-1 period (Figure S10). 377 Moreover, OCO-2 XCO₂ difference also showed large variability with longitudinal mean CO₂ difference of -0.34 378 \pm 1.07 ppm compared to aircraft tropospheric column CO₂ of -0.01 \pm 0.48 ppm. This essentially reflects the 379 model's overall good performance against ATom as compared to OCO-2 XCO₂. Similarly, ACTM and ATom 380 CO_2 discrepancy was also evident in vertical cross-section, highest approximately ~ 2 ppm appeared at high 381 latitude land regions during vegetation growing (respiration) period of northern hemisphere July-August, 2016 in 382 ATom-1 (April-May, 2018 in ATom-4) (Figure S10). This large difference occurs across the vertical altitude 383 range prominent above 8000 meters likely arises due to the coarse resolution of the ACTM model unable to 384 represent the vertical transport. Needs further research on improving convective transport parameterization in 385 forward model to improve vertical mixing (Patra et al., 2018). These results are also in line with the study 386 Frankenberg et al., 2016. We have also validated model simulation with TCCON measurements during the ATom 387 period, results also shown differences up to 1 ppm at the sites over northern America (Figure S11).

388

389 Other three segments of CO2^{ACTM} - CO2^{aircraft} difference are primarily focused over oceanic regions (Southern, 390 Pacific, Atlantic) where magnitude of ocean CO₂ flux variability is less as compared to land regions as much as 391 10 times less. Land and ocean CO₂ flux variability over the longitude and latitude band around ATom tracks for 392 different campaigns is shown in Figure S12. Figure 4d shows that over the Southern Ocean, the model-observation 393 CO_2 difference is lowest within ±0.2 ppm for each vertical tropospheric layer and 0.06 ppm for the aircraft 394 tropospheric column, with minimal variability compared to other layers. When compared with other ATom 395 segments, the Southern Ocean shows the lowest CO2 difference in both mean and variability. This is because the 396 aircraft sampling is at the background troposphere and is farthest from land having little influence from land CO₂ 397 air mass. This reflects that the optimized MIROC4-ACTM model, considering 50 ground-based sites, simulates 398 fairly well the aircraft background concentrations, however, it is unable to match a similar level of reproducibility 399 for OCO-2 XCO₂. Further, the latitudinal CO₂ difference variability against the aircraft tropospheric column 400 (lowest 8 km) is 0.15, compared to 0.77 with OCO-2 XCO₂. In most latitudes, OCO-2 XCO₂ differences are larger 401 than aircraft CO₂, indicating likely retrieval errors in OCO-2 given the lower uncertainty in aircraft CO₂

402 measurements. This XCO₂ difference with OCO-2 over the southern ocean is mainly during the ATom-2 period 403 (Fig. S14); however large XCO₂ difference pixels near 50° W and 70° W are during ATom-3 (September-October 404 2017; Fig. S15). Previous studies reported that OCO-2 ocean glint retrieval over southern ocean has more residual 405 biases while comparing against individual measurements (TCCON, In-situ, OCO-2 land) in top-down inversion 406 (Byrne et al. 2023; O'Dell et al., 2018). In addition, this is also location of the southern hemisphere zone of 407 stratosphere-troposphere exchange (STE) vary greatly spatiotemporally due to significant vertical mixing which 408 strongly changes with season, less constrained by model transport, which may also result in an error in estimated 409 posterior concentration. Next, we analysed CO₂ differences over the southbound Pacific segments of the ATom 410 campaign (Fig. 4e), it shows latitudinal CO₂ difference mean (variability) is highest of about -0.16 (\pm 0.53) ppm 411 in LT, compared to MT and UT. On the other hand, aircraft tropospheric columns showed a mean (variability) 412 difference of approximately -0.04 (\pm 0.38) ppm whereas OCO-2 XCO₂ with a value of 0.27 (\pm 0.42) ppm. This 413 shows although the mean is significantly different however the variability in both CO₂ differences is close to each 414 other, this is reflected in overall matching of both aircraft columns and OCO-2 XCO₂ (Fig. 4e). Lastly, we 415 analysed CO₂ difference over the Atlantic i.e., longest northbound part of ATom campaign shown in Figure 4(f). 416 Aircraft tropospheric column CO₂ difference of aircraft shows value of 0.03 ppm as compared to XCO₂ difference 417 with OCO-2 showing value of 0.26 ppm. Although, it has been observed that the latitudinal CO₂ difference in the 418 aircraft tropospheric column closely matches pattern in OCO-2 XCO₂. Another important point is that overall 419 CO2 differences variability in the Atlantic is observed higher as compared to the pacific segment especially over 420 tropics within 30° S–30° N, more in-situ aircraft measurements are required to better understand the underlying 421 error. Individual ATom campaigns results are presented in supplementary Figure S13-16.

422

424

423 3.2.3 Amazon

425 The climate-sensitive global tropic is a crucial part of the global carbon cycle due to the threats posed by climate 426 change, especially the Amazon region, which holds the largest above-ground biomass (AGB) pool of 427 approximately 123 ± PgC (Malhi et al., 2006; Santoro et al., 2010). Inversion based estimate showed Amazon 428 was a carbon source of 0.3 ± 0.2 PgC/yr in agreement with bottom-up calculation (Alden et al., 2016; Beienen et 429 al., 2015; Gatti et al., 2014, 2021a,c) during 2010-2019, though significant uncertainty remain. This is also the 430 region under-sampled by OCO-2 retrievals due to clouds and high spatial resolution satellite monitoring is needed 431 in the future (Frankenberg et al., 2024). Prevalent uncertainty in flux estimation in modelling approach and low 432 sampling of satellites highlight the need for more research in understanding error better way and improving both 433 inversion and retrievals methods over Amazon. In section 3.1, we observed large model-observation XCO₂ 434 differences exist over South America, especially over Amazon. To investigate it further, we have utilised the 435 vertical profile (VP) of CO2 measurements from vertical aircraft campaigns across Brazilian Amazon sites, SAN, 436 ALF, RBA, and TEF presented in Figure 5(a). The aircraft measurement has an accuracy of ~0.03 ppm (Gatti et 437 al., 2023) and a detailed description of measurements can be found in Gatti et al., 2021a. Studies have shown that 438 although these VPs are taken up to an altitude range of 4 km, they provide important insights into CO_2 variability 439 near the surface (Gatti et al., 2023; Tejada et al., 2023). An important point to note here, since Amazon aircraft 440 campaigns measure VPs of CO2 approximately at an altitude up to 4 km, therefore, we considered the tropospheric 441 column as 0 to 4 km and only those VPs having measurements at least 4 km are chosen for calculation. We kept

the same criteria for the data availability of 80% vertical bin filter for 500-meter bin resolution as mentionedpreviously in the methodology section.

444

445 Before analysing the ACTM bias against the Amazon aircraft CO_2 , we validated ACTM simulated CO_2 with the 446 aircraft CO_2 at these sites which are not used in the inversion, showing a good correlation (r) of ~0.8 at 95% 447 significance level shown in Figure S17. We also checked that model able to capture TCCON XCO₂ at Manaus, 448 Brazil with time series XCO₂ difference mean of 0.05 ppm, but the model shows higher differences (-1 ppm) with 449 OCO-2 XCO₂ in Figure 2. It hints, OCO-2 retrieval likely have error could arise from Amazon dense vegetation cover, cloud cover-aerosols and high humid conditions which can block sunlight spectra, reduce the signal 450 451 strength, limit valid sampling and increase retrieval error (Frankenberg et al., 2024; Taylor et al., 2016; Yu et al, 452 2019). These retrieval challenges precludes robust understanding of inversion error across the broader Amazonian 453 region. To further check this error altitude wise, a monthly mean time series of ACTM-aircraft CO₂ difference 454 considering all vertical profiles within a month is calculated for three vertical tropospheric layers, LT (lowest-2 455 km), MT (2-4 km) and tropospheric column (lowest-4 km) during OCO-2 measurement periods is presented in 456 Figure 5c-f. Figure 5c represents CO₂ difference at SAN aircraft campaign sites having data gaps from mid-2015 457 to early-2017 because of no measurements conducted during this period. Maximum model-observation 458 differences in terms of mean(variability) of 0.93(± 3.36) ppm observed in LT as compared to MT and tropospheric 459 column. This mismatch is comparable with previous study by Basso et al. 2023. Further, OCO-2 XCO₂ difference 460 showed overall negative mean of -0.83 ppm with variability of \pm 1.04 ppm as compared to aircraft VPs profile 461 with aircraft tropospheric column shown better constrained having value of 0.76 ppm. Further, we analysed VPs 462 at the ALF site presented in Figure 5(d) shows overall that aircraft model-observation CO2 difference matches 463 well with XCO₂. CO₂ differences at LT, MT, tropospheric column, XCO₂ shows mean (STDEV) are -0.9 (±4.24), 464 $0.08 (\pm 2.03)$, $-0.13 (\pm 2.48)$, $-0.65 (\pm 1.03)$ respectively. Basso et al. 2023 has shown that some of this difference 465 between inversion and aircraft CO₂ could be significantly improved (57% below 1.5 km and 49% above 3.5 km) 466 when using regional aircraft CO₂ data in the inversions. . In RBA, CO₂ difference at LT, MT, tropospheric 467 column, XCO₂ shows mean (STDEV) are -0.61 (\pm 4.33), -0.03 (\pm 2.52), 0.27 (\pm 2.95), -0.69 (\pm 1.04) respectively 468 shown in Figure 5e. Therefore, it shows CO₂ difference with the aircraft tropospheric column (OCO-2 XCO₂) has 469 opposite signature; it represents ACTM over (under) estimates considering the whole time window. In TEF, CO2 470 difference at LT, MT, tropospheric column, XCO₂ shows mean (STDEV) are -0.4 (± 4.29), 0.64 (± 3.02), 0.19 (± 471 2.89), -1.37 (± 0.99) respectively presented in Figure 5f. Except for SAN, at all other sites, we observed that the 472 ACTM matches in total column better with aircraft than OCO-2, and but this profile is still insufficient to match 473 with XCO₂ needs further high profile measurement over this location. It is worth noting that the large discrepancy 474 or bias in LT in RBA, TEF (SAN, ALF) during January-March (August-December) in west-central (south-east) 475 Amazon regions may potentially arise due to fire CO2 emission is reported in Basso et al. 2023. Since our inverse 476 simulations using CASA biospheric flux lack observation-based biomass burning data, this could also affect the 477 overall simulated concentration as well. We also checked monthly land CO₂ flux anomaly, calculated by taking 478 area mean around campaign sites within $5^{\circ} \times 5^{\circ}$ degree and then removing seasonal cycle from actual time series. 479 We noticed no such anomalous flux change during the anomalous CO₂ difference period, likely due to the coarse 480 resolution of the MIROC4-ACTM and also because no regional CO2 data from Amazon is used in our inversion 481 which could potentially capture Amazon land CO₂ flux changes better way (Fig. 5b; Fig. S1). Basso et al. 2023

highlighted the importance of assimilating Amazon aircraft measurements in deriving regional land CO₂ flux. In
all Amazon aircraft sites, an increase in land CO₂ flux during 2015-16 was observed due to strong ENSO events
occurred during this period also reported in Das et al. (2022).

485

486 3.2.4 Asia

487 In Asia there are very few aircraft campaigns for CO₂ measurements compared to Northern America and Europe 488 (Crevoisiera et al., 2010; Xueref-Remy et al., 2011). Although, efforts have been made to measure CO2 vertical 489 profile over monsoon-dominated Indian subcontinents for a shorter time period (Vogel et al., 2023). Therefore, 490 available long-term CO2 measurements like CONTRAIL is very important to provide unprecedented insights into 491 long-term CO₂ variability in UT/LS and model evaluations over these regions (Bisht et al., 2021; Das et al., 2022; 492 Niwa et al., 2011). Therefore, we have utilised these measurements to compare and understand model-493 observations CO₂ difference for OCO-2 and CONTRAIL aircraft in different regions across Asia. Figure 6a 494 depicts the spatial distribution of the CONTRAIL campaign CO₂ sampling location from January 2015-December, 495 2021, covering altitudes ranging up to ~12 to 14 km with topographic altitudes information (topography elevation 496 data is downloaded from https://www.ncei.noaa.gov/products/etopo-global-relief-model). Here, we have selected 497 four separate regions around airport locations delineated through deep green colors having CO2 vertical profiles 498 resulting from aircraft ascent or descent near airports. The four regions are namely Far East Asia, Southeast 499 China, northern Southeast Asia and Equatorial Southeast Asia, based on the locations of airports. In Far East Asia, 500 two airports are considered: Tokyo International Airport, Japan (site code: HND) (35.6° N, 139.8° E) and Narita 501 International Airport (site code: NRT) (35.8° N, 140.4° E) are considered together, named TYO (35.7° N, 140.8° 502 E); in Southeast China, Hong Kong International Airport (site code: HKG) (22.2° N, 113.6° E); in northern 503 Southeast Asia, Suvarnabhumi International Airport, Thailand (site code: BKK) (13.7° N, 100.7° E); and in 504 southern Southeast Asia, Singapore Changi International Airport, Singapore (site code: SIN) (1.4° N, 104.0° E), 505 all airports are marked with a small square box in Figure 6a ,b. During the aforementioned period, no vertical 506 sampling was performed over the Indian subcontinent and other two airports highlighted on map Incheon 507 International Airport (site code: ICN) and Shanghai Pudong International Airport (site code: PVG), were not 508 considered due to less number of sampling dataset. Figure 6b presents mean model-OCO-2 XCO₂ differences over 509 sampling locations of CONTRAIL, showing mainly negative CO₂ difference ranging -0.5 to -1 ppm over boxed 510 airports location highlighting likely reason is underestimation overall fossil emission of urban CO₂ signature in 511 the model. There is very limited TCCON sites over city scale that validates OCO-2 XCO₂, however, Rißmann et 512 (2022) using Munich Urban Carbon Column network (MUCCnet) XCO₂ across three sites over Germany al. 513 found out OCO-2 has a RMSE of 0.6 ppm in urban site. Since OCO-2 has retrieval error over city scale it makes 514 it challenging to discuss the sources of error could come from the model.

515 To understand this we analysed more robust CONTRAIL aircraft CO₂ (~0.2 ppm for each CONTRAIL data point), 516 figure 6c-f represents a time series of model-observation CO₂ differences over each airport for different vertical 517 depths of troposphere and XCO₂. Here, we have considered all CO₂ vertical profiles, selecting aircraft ascent and 518 descent flight modes over airports within a month and done a monthly average for 200-meter vertical bins to 519 calculate partial column CO₂ for aircraft and similarly for model simulations resampled at aircraft measurement 520 location considering methodology described in section 2.4. For OCO-2, we computed the mean over designated

521 airports to calculate model-observation difference for XCO2 for the specific months. Results show in far east Asia, 522 TYO location CO₂ difference in LT, MT, UT, tropospheric column, XCO₂ shows mean of -2.0, -0.88, -0.73, -523 1.02, and -0.3 respectively. In HKG airport, the number of samples in LT was very less therefore ignored in the 524 analysis however CO₂ difference in MT, UT, tropospheric column, XCO₂ shows values of -1.2, -0.99, -1.13 and 525 -0.02 respectively. For northern Southeast Asia, BKK airport CO₂ difference at LT, MT, UT, tropospheric 526 column, XCO₂ shows mean (STDEV) of -2.71 (\pm 1.67), -0.83 (\pm 0.74), -0.6 (\pm 0.59), -1.06 (\pm 0.71), and -0.1 (\pm 527 0.71) respectively. Further, in equatorial Southeast Asia, SIN airport difference at LT, MT, UT, tropospheric 528 column, XCO₂ shows mean (STDEV) of -1.89 (\pm 1.26), -1.03 (\pm 0.54), -0.81 (\pm 0.59), -1.05 (\pm 0.56), and -0.25 529 (± 0.42) respectively.

530 Result indicates that in northern Southeast Asia and southern Southeast Asia, mean and variability of model-531 observation CO₂ difference is higher in LT as compared to UT, MT and weighs more. In all regions, model-532 observation difference for OCO-2 showed better constrained compared to aircraft measurements and readily 533 observable that it closely matches the tropospheric column pattern. A notable fact in all regions is that the total 534 time series mean of model-observation difference is negative for both aircraft (-1.02 to -1.13 ppm) and OCO-2 (-535 0.02 to -0.3 ppm), which would imply an underestimation of model simulated CO₂. While the OCO-2 XCO₂ vs 536 MIROC4-ACTM differences are not statistically significant but the large and systematic CONTRAIL CO2 vs 537 MIROC4-ACTM differences may suggest that actual emission footprints captured by satellite observations are 538 greater than the measurement resolution (\sim 1.29 \times 2.25 km² for OCO-2). It suggests OCO-2 capturing emissions 539 from broader urban areas than its nominal resolution, possibly either due to the well-mixed nature of CO2 and 540 OCO-2 measuring total column or the spatial extent of urban footprint. Further, the large variability and significant 541 differences between the aircraft CO₂ column and XCO₂ are evident in all regions. This is likely attributable to the 542 selection of a specific box area, which surrounds airport locations situated in urban areas, one of the significant 543 sources for fossil CO₂ emission. This inference is discussed in earlier studies (Patra et al., 2011; Umezawa et al. 544 2020), wherein they reported an urban emission footprint in CONTRAIL aircraft measurements conducted over 545 airport megacities. The inversion process, utilized in this context, exclusively optimizes total CO2 fluxes, for 546 biosphere and ocean regions considering background sites, whereas this CONTRAIL measurement over airports 547 having signature of urban interiors. Consequently, noteworthy disparities may emerge due to uncertainties 548 associated with fossil fuel CO2 emissions and also coarse horizontal resolution of MIROC4-ACTM (T42, ~2.8° 549 $\times 2.8^{\circ}$) unable to reproduce the sub-grid-scale variations. This limitation does not influence optimized flux for the 550 large area studies but affect our ability to simulate posterior concentrations, leading to underprediction of 551 concentration near the surface over the emissions or sinks hotspots, e.g., anthropogenic emissions at the megacity 552 areas or plumes of intense biomass burning. Note that the location of ascent and descent of the aircraft may change 553 by seasons following the meteorological conditions, and thus the location of measurements less strictly follows 554 year around. Previous studies underscore the critical role of fossil fuels in shaping simulated CO₂ dynamics, 555 emphasizing their potential to introduce systematic errors in optimized surface fluxes (Suntharalingam et al., 556 2005; Wang et al., 2020).

557 3.3 Discussion and conclusions

558	The availability of the OCO-2, aircraft, and in-situ CO2 observations, along with MIROC4-ACTM simulation at
559	their corresponding measurement location and time, allows us with an opportunity to understand fine-scale CO_2
560	difference between the ACTM and OCO-2 more robustly. Because, this enables diagnosing CO_2 difference from
561	near surface to different tropospheric layers, utilising surface, and aircraft observation to highlight persistent
562	limitations in addressing inversion uncertainties.

- We demonstrated that MIROC4-ACTM, using only 50 surface-based CO₂ sites globally, accurately simulates tropospheric column and OCO-2 XCO₂, showing strong agreement with aircraft and TCCON data (correlation = 0.9, p < 0.0001) at most sampling sites.
- 566 Our analysis highlighted that the regional hemispheric MIROC4-ACTM CO2 difference with OCO-2 567 and in-situ measurements has heterogeneous signatures of CO₂ differences, particularly over land. However, Kulawik et al. 2019, noting that OCO-2 retrievals over lands have more random errors 568 569 especially over Amazon which is less sampled by OCO-2 makes retrieval less reliable for comparison 570 (Frankenberg et al., 2024). Additionally, comparison against in-situ indicates that OCO-2 likely has a 571 systematic retrieval error over the southern hemisphere oceanic region. Both random error over land, less 572 sampling of OCO-2 over global tropics and systematic error over ocean makes it difficult to detect and 573 understand the uncertainties in inverse models in a global perspective. We need more vertical aircraft 574 profile measurements to more robustly understand this error especially over the global tropics.
- 575 Altitude wise comparison of CO₂ difference from categorical specific and campaign aircraft 576 measurements around the globe consistently highlight the model's highest mismatch in LT as compared 577 to MT, UT, and tropospheric columns. Additionally, LT contributes more to the mean and variability 578 to the total tropospheric column than the MT, UT. This maximum uncertainty in the LT likely arises 579 from the uncertainties in prior fluxes near the surface. In contrast, the MT and UT, where large-scale 580 dynamical mixing predominates, show better model performance, likely due to realistic transport of the 581 Further, aircraft tropospheric CO2 columns are better reproduced by MIROC4-ACTM forward model. 582 compared to individual tropospheric layers and OCO-2 XCO₂. Further, studies have shown OCO-2 583 XCO₂ is more prone to erroneous retrieval due to near surface aerosol and cloud contamination in LT 584 which makes it challenging for total column comparison with model (Connor et al., 2016; Massie et al., 585 2021).
- 586 Results from ATom show large CO2 difference variability over North America regions as compared to 587 other integrated tracks over ocean, likely because of the influence of land air mass having large variability 588 in land CO₂ flux. Similarly, large CO₂ differences in aircraft sites over Amazon may likely arise due to 589 uncertainty in prior flux and coarse resolution of the model unable to represent small scale variation 590 requires more regional measurements in inversion, however, comparison against OCO-2 highlights 591 robust requirement of good amount of valid retrievals to diagnose the inversion from large region 592 perspective as well as insufficient high-altitude profile measurements (~4 km) demands more high profile 593 measurements. Aircraft measurements over the remote background troposphere in the Pacific, Southern 594 Ocean, and Atlantic showed the best match within 0.03 ppm when compared to OCO-2 with 0.2 ppm,

595	especially over the Southern Ocean. However, the model comparison with CONTRAIL has shown
596	consistent more (less) underestimation against aircraft (OCO-2) CO2 measurements for all airports in
597	Asia. This discrepancy is likely due to the coarse resolution of the inversions unable to capture the
598	signature of urban fossil CO_2 emissions and also for OCO-2 unable to capture the whole urban footprint.

599

600 Code availability

- 601 Data and figure processing codes prepared for this study will be made available upon reasonable request from the
- 602 corresponding author. Inversion code used here is available on https://github.com/prabirp/co2l2r84.

603 Data availability

604 product The ObsPack data available at https://gml.noaa.gov/ccgg/obspack/, CONTRAIL is 605 at https://www.cger.nies.go.jp/contrail/, Amazon aircraft campaign at 606 https://doi.pangaea.de/10.1594/PANGAEA.926834. ACTM model outputs at aircraft sampling and OCO-2 607 sounding locations will be made accessible upon requests from corresponding authors.

608 Author contributions

- 609 CD, PKP and RKK developed the idea and methodology of the study. CD ran the entire analysis and prepared the
- 610 main manuscript and supplementary. PKP, RKK and NC helped in review and editing. KI, and TM are part of the
- 611 CONTRAIL CO₂ measurement group. All co-authors actively engaged in scientific discussions.

612 Competing interests

- 613
- 614 The authors declare that they have no conflict of interest.

615 Acknowledgments

616 All co-authors sincerely thanks to National Oceanic and Atmospheric Administration (NOAA), Japan 617 Meteorological Agency (JMA), Commonwealth Scientific and Industrial Research Organisation (CSIRO), 618 Laboratoire des sciences du climat et de l'environnement/Institut Pierre Simon Laplace (LSCE/IPSL), Scripps 619 Institution of Oceanography (SIO), South African Weather Service (SAWS), Environment and Climate Change 620 Canada (ECCC), Mt. Waliguan/ China Meteorological Administration (WLG/CMA), Tae-ahn Peninsula/Korean 621 Meteorological Administration (TAP/KMA) for site observations, and the CONTRAIL, Amazon, ATom 622 campaign teams for the aircraft observations. Surface in-situ CO2 observations from Jungfraujoch are supported 623 by the Swiss Federal Office for the Envrionment and ICOS Switzerland (ICOS-CH). This study would not have 624 been possible without these CO₂ concentration measurements datasets around the globe.

625

626 Financial support

627

628 CD thanks to the Director of IIT Delhi, for providing PhD fellowship to carry out this work. This research is partly

629 supported by the Environment Research and Technology Development Fund (JPMEERF24S12205) of the

- 630 Environmental Restoration and Conservation Agency of Japan, and the Arctic Challenge for Sustainability phase
- 631 II (ArCS-II; JPMXD1420318865) Projects of the Ministry of Education, Culture, Sports, Science and Technology
- 632 (MEXT).

633 Reference

634	Alden, C. B., Miller, J. B., Gatti, L. V., Gloor, M. M., Guan, K., Michalak, A. M., van der Laan-Luiikx, I. T.,
635	Touma, D., Andrews, A., Basso, L. S., Correia, C. S. C., Domingues, L. G., Joiner, J., Krol, M. C.,
636	Lyapustin, A. I., Peters, W., Shiga, Y. P., Thoning, K., van der Velde, I. R., Diffenbaugh, N. S.: Regional
637	atmospheric CO2 inversion reveals seasonal and geographic differences in Amazon net biome exchange.
638	Global Change Biology, 22(10). https://doi.org/10.1111/gcb.13305, 2016.
639	Basso, L. S., Wilson, C., Chipperfield, M. P., Tejada, G., Cassol, H. L. G., Arai, E., Williams, M., Smallman, T.
640	L., Peters, W., Naus, S., Miller, J. B., & Gloor, M.: Atmospheric CO ₂ inversion reveals the Amazon as a
641	minor carbon source caused by fire emissions, with forest uptake offsetting about half of these emissions.
642	Atmospheric Chemistry and Physics, 23(17). https://doi.org/10.5194/acp-23-9685-2023, 2023.
643	Baier, B. C., Sweeney, C., Choi, Y., Davis, K. J., DiGangi, J. P., Feng, S., Fried, A., Halliday, H., Higgs, J.,
644	Lauvaux, T., Miller, B. R., Montzka, S. A., Newberger, T., Nowak, J. B., Patra, P., Richter, D., Walega, J.,
645	& Weibring, P.: Multispecies Assessment of Factors Influencing Regional CO ₂ and CH ₄ Enhancements
646	During the Winter 2017 ACT-America Campaign. Journal of Geophysical Research: Atmospheres, 125(2).
647	https://doi.org/10.1029/2019JD031339, 2020.
648	Bisht, J. S. H., Machida, T., Chandra, N., Tsuboi, K., Patra, P. K., Umezawa, T., Niwa, Y., Sawa, Y., Morimoto,
649	S., Nakazawa, T., Saitoh, N., and Takigawa, M.: Seasonal variations of SF6, CO2, CH4, and N2O in the
650	UT/LS region due to emissions, transport, and chemistry. Journal of Geophysical Research:
651	Atmospheres, 126, e2020JD033541. https://doi.org/10.1029/2020JD033541, 2021.
652	Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., & Goede,
653	A. P. H.: SCIAMACHY: Mission objectives and measurement modes. Journal of the Atmospheric Sciences,
654	56(2). https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999.
655	Basu, S., Baker, D. F., Chevallier, F., Patra, P. K., Liu, J., and Miller, J. B.: The impact of transport model
656	differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2, Atmos. Chem.
657	Phys., 18, 7189–7215, https://doi.org/10.5194/acp-18-7189-2018, 2018.
658	Buchwitz, M., Reuter, M., Schneising, O., Hewson, W., Detmers, R. G., Boesch, H., Hasekamp, O. P., Aben, I.,
659	Bovensmann, H., Burrows, J. P., Butz, A., Chevallier, F., Dils, B., Frankenberg, C., Heymann, J.,
660	Lichtenberg, G., De Mazière, M., Notholt, J., Parker, R., Wunch, D.: Global satellite observations of
661	column-averaged carbon dioxide and methane: The GHG-CCI XCO ₂ and XCH ₄ CRDP3 data set. Remote
662	Sensing of Environment, 203. https://doi.org/10.1016/j.rse.2016.12.027, 2017.
663	Byrne, B., Baker, D. F., Basu, S., Bertolacci, M., Bowman, K. W., Carroll, D., Chatterjee, A., Chevallier, F.,
664	Ciais, P., Cressie, N., Crisp, D., Crowell, S., Deng, F., Deng, Z., Deutscher, N. M., Dubey, M. K., Feng, S.,
665	García, O. E., Griffith, D. W. T., Zeng, N.: National CO ₂ budgets (2015-2020) inferred from atmospheric
666	CO ₂ observations in support of the global stocktake. Earth System Science Data, 15(2), 963–1004.
667	https://doi.org/10.5194/essd-15-963-2023, 2023.
668	Byrne, B., Jones, D. B. A., Strong, K., Zeng, Z. C., Deng, F., & Liu, J.: Sensitivity of CO ₂ surface flux constraints
669	to observational coverage. Journal of Geophysical Research, 122(12).
670	https://doi.org/10.1002/2016JD026164, 2017.
671	Canadell, J.G., P.M.S. Monteiro, M.H. Costa, L. Cotrim da Cunha, P.M. Cox, A.V. Eliseev, S. Henson, M. Ishii,
672	S. Jaccard, C. Koven, A. Lohila, P.K. Patra, S. Piao, J. Rogelj, S. Syampungani, S. Zaehle, and K. Zickfeld,
673	2021: Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The
674	Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the
675	Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C.
676	Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R.
6//	Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University
678	Press, Cambridge, United Kingdom and New York, NY, USA, pp. 673–816,
6/9	doi: 10.1017/9781009157896.007, 2021
680	Chandra, N., Patra, P. K., Niwa, Y., Ito, A., Iida, Y., Goto, D., Morimoto, S., Kondo, M., Takigawa, M., Hajima,
681	T., & Watanabe, M.: Estimated regional CO_2 flux and uncertainty based on an ensemble of atmospheric
082	CO ₂ inversions, Atmos. Chem. Phys., 22, 9215–9243, <u>https://doi.org/10.5194/acp-22-9215-2022</u> , 2022.
C00	Cnevallier, F., Clais, P., Conway, T. J., Aalto, T., Anderson, B. E., Bousquet, P., Brunke, E. G., Ciattaglia, L.,
684 COL	Esaki, Y., Fröhlich, M., Gomez, A., Gomez-Pelaez, A. J., Haszpra, L., Krummel, P. B., Langenfelds, R. L.,
685	Leuenberger, M., Machida, T., Maignan, F., Matsueda, H., Worthy, D.: CO ₂ surface fluxes at grid point

686	scale estimated from a global 21 year reanalysis of atmospheric measurements. Journal of Geophysical
687	Research Atmospheres, 115(21), https://doi.org/10.1029/2010JD013887, 2010.
688	Chevallier, F., Deutscher, N. M., Conway, T. J., Ciais, P., Ciattaglia, L., Dohe, S., Fröhlich, M., Gomez-Pelaez,
689	A. J., Griffith, D., Hase, F., Haszpra, L., Krummel, P., Kyrö, E., Labuschagne, C., Langenfelds, R., Machida,
690	T., Maignan, F., Matsueda, H., Morino, I., Notholt, J., Ramonet, M., Sawa, Y., Schmidt, M., Sherlock, V.,
691	Steele, P., Strong, K., Sussmann, R., Wennberg, P., Wofsy, S., Worthy, D., Wunch, D., and Zimnoch, M.:
692	Global CO ₂ fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO ₂
693	total column. Geophys. Res. Lett., 38. L24810. https://doi.org/10.1029/2011GL049899. 2011.
694	Chevallier, F., Palmer, P. J., Feng, L., Boesch, H., O'Dell, C. W., & Bousauet, P.: Toward robust and consistent
695	regional CO_2 flux estimates from in situ and spaceborne measurements of atmospheric CO_2 . Geophysical
696	Research Letters 41(3) https://doi.org/10.1002/2013GL058772.2014
697	Ciais, P., Ravner, P., Chevallier, F., Bousquet, P., Logan, M., Pevlin, P., & Ramonet, M.: Atmospheric inversions
698	for estimating CO ₂ fluxes: Methods and perspectives Climatic Change $103(1-2)$
699	https://doi.org/10.1007/s10584-010-9909-3.2010
700	Connor B. Bösch H. McDuffie J. Taylor T. Fu D. Frankenberg C. O'Dell C. Payne V. H. Gunson M.
701	Pollock R Hobs I Ovalues F & liang Y : Quantification of uncertainties in QCO-2 measurements of
702	XCO ₂ : Simulations and linear entry analysis Atmospheric Measurement Techniques 9(10)
703	https://doi.org/10.5194/amt-9-5227-2016.2016
704	Crevoisera C. Sweeney C. Gloor M. Sarmiento J. L. & Tans P. P. Regional US carbon sinks from three-
705	dimensional atmospheric CO ₂ sampling. Proceedings of the National Academy of Sciences of the United
706	States of America 107(43) https://doi.org/10.1073/pnas.0900062107.2010
707	Crise D. Measuring atmospheric carbon diaxide from space with the Orbiting Carbon Observatory-2 (OCO-2)
708	Earth Observing Systems XX 9607 https://doi.org/10.1117/12.2187291_2015
709	Crowell S Baker D Schuh A Basu S Jacobson A R Chevallier F Liu I Deng F Feng L McKain
710	K. Chatteriee, A. Miller, J. B. Stenhens, B. B. Eldering, A. Cristo, D. Schimel, D. Nassar, R. O'Dell
711	C. W. Oda T. Jones D. B. A : The 2015-2016 carbon cycle as seen from OCO-2 and the global in situ
712	network Atmospheria Chemistry and Physics 10(15) https://doi.org/10.5104/acp.10.0707.2010.
712	network. Annospieric chemistry and Hysics, 19(13). https://doi.org/10.174/activity.2017.
713	Das, C., Kunchala, K. K., Chandra, N., Chinadra, A., & Pandya, M. K.: Characterizing the regional ACO2
715	characterized Science of The Total Evidence 002 166176
716	btte://doi.org/10.1016/i.soitotary.2023.166176.2023
717	<u>intps://doi.org/10.1010/j.solitochv.2025.1001/0,2025.</u>
718	diovide (CO.) growth rate and flux anomalies from the tropics due to ENSO Geophysical Bacearch Latters
719	49 a2022[100105 https://doi.org/10.1029/7022GL100105.2022]
720	T, CO22CE DORO, Maler T, W Keller M, Rowman K, W Henze D, K. Nascar R, Kort F A
721	Wofey S. C. Walker K A Bourgess A F & Degenetatin D A Sensitivity analysis of the notential
722	worsy, S. C., Warki, K. A., Domassa, A. L., α beginstering Δ . A. Schsturing analysis of the potential impact of discrepancies in strategy here. transplace average exchange on inferred sources and sinks of CO ₂
722	An explored of unschedulers in stratesphere-toposphere exchange on inference solutions and sinks of CO ₂ .
723	Atmospheric Chemistry and Physics, 15(20). https://doi.org/10.3194/act-15-11//3-2015, 2015.
724	Eldering, A., O'Dell, C. W., Wennberg, P. O., Crisp, D., Gunson, M. R., Viatte, C., Avis, C., Braverman, A.,
725	Castano, R., Chang, A., Chapsky, L., Cheng, C., Connor, B., Dang, L., Doran, G., Fisher, B., Frankenberg,
726	C., Fu, D., Granat, R., Hobbs, J., Lee, R. A. M., Mandrake, L., McDuttie, J., Miller, C. E., Myers, V., Natraj,
727	V., O'Brien, D., Osterman, G. B., Oyatuso, F., Payne, V. H., Pollock, H. R., Polonsky, I., Roehl, C. M.,
120	Kosenberg, K., Schwandner, F., Smyth, M., Tang, V., Taylor, T. E., 10, C., Wunch, D., and Yoshimizu, J.: The Orbiting Corbon Observatory, 2, first 18 months of colored data and data and data. 200 Mar. To 1, 10
729	The Orbiting Carbon Observatory-2: first 18 months of science data products, Atmos. 800 Meas. 1ech., 10,
730	549-505, 001:10.5194/amt-10-549-2017, 2017.
/31	Frankenberg, C., Bar-On, Y. M., Yin, Y., Wennberg, P. O., Jacob, D. J., & Michalak, A. M.: Data Drought in the
752	numid fropics: How to Overcome the Cloud Barrier in Greenhouse das Remote Sensing. Geophysical
733	Research Letters, 51(6). https://doi.org/10.1029/202406L108/91,2024.
734	Frankenberg, C., Kulawik, S. S., Wolsy, S. C., Chevainer, F., Daube, B., Kort, E. A., O Den, C., Oisen, E. I., &
735	osterman, G.: Using anoone HIAPER pole-to-pole observations (HIPPO) to evaluate model and remote ensing estimates of etmospheric eacher dioxide. A transpheric Chambridge and Division 16(12)
727	sensing estimates of autospheric carbon doxide. Atmospheric Chemistry and Physics, 16(12).
728	<u>Intps.//uor.org/10.J174/acp-10-700/-2010,</u> 2010. Friedlingstein D. O'Sullivan M. Jones M. W. Andrew D. M. Dakker D. C. E. Hauak I. Landashötzer D.
720	La Ourárá C. Luilly, I.T. Datars, G. D. Datars, W. Dongratz, I. Schull, S. C. E., Hauts, J., Lällössellulzet, P., La Ourárá C. Luilly, I.T. Datars, G. D. Datars, W. Dongratz, I. Schulland, C. Sich, S. Conzold, I.
7/0	Le Quere, C., Luijka, I. I., reieis, O. r., reieis, W., Poligiaiz, J., Schwingshacki, C., Shifi, S., Canadell, J. G. Ciais D. Jackson D. B. Alin S. D. Anthoni D. – Thoma D. Clabal Carbon Dudget 2022. Earth
7/1	System Science Data 15(12) https://doi.org/10.5104/aged 15.5201.2022.2022
741	System Science Data, 15(12). <u>https://doi.org/10.519/(5580-15-5501-2025,2025</u> .
742	of Atmospheric CO ₂ Concentrations Journal of Coophysical Desearch: Atmospherics 126(19)
7//	https://doi.org/10.1003/02110034704.2021
/ 44	nups.//doi.org/10.1029/2021JD034794, 2021

745	Gatti, L. V., Basso, L. S., Miller, J. B., Gloor, M., Gatti Domingues, L., Cassol, H. L. G., Tejada, G., Aragão, L.
746	E. O. C., Nobre, C., Peters, W., Marani, L., Arai, E., Sanches, A. H., Corrêa, S. M., Anderson, L., Von
747	Randow, C., Correia, C. S. C., Crispim, S. P., & Neves, R. A. L.: Amazonia as a carbon source linked to
748	deforestation and climate change. Nature, 595(7867). https://doi.org/10.1038/s41586-021-03629-6, 2021a.
749	Gatti L.V. Correa C.C.S. Domingues L.G. Miller J.B. Gloor M. Martinewski A. Basso J.S. Santana R.
750	Crispin S.P. Marani I. Neves R.: CO. Vertical Profiles on Four Sites over Amazon from 2010 to
750	2019 DANCAEA https://doi.org/10.150//DANCAEA.02623/2021h
751	2018. PANGAEA, <u>https://doi.org/10.1594/PANGAEA.920854</u> , 2021b.
752	Gatti, L. V., Cunna, C. L., Marani, L., Cassol, H. L. G., Messias, C. G., Arai, E., Denning, A. S., Soler, L. S.,
/53	Almeida, C., Setzer, A., Domingues, L. G., Basso, L. S., Miller, J. B., Gloor, M., Correia, C. S. C., Tejada,
754	G., Neves, R. A. L., Rajao, R., Nunes, F., Machado, G. B. M.: Increased Amazon carbon emissions
755	mainly from decline in law enforcement. Nature, 621(7978). https://doi.org/10.1038/s41586-023-06390-0,
756	2023.
757	Gatti L. V. Gloor M. Miller J. B. Doughty, C. E. Malhi, Y. Domingues, J. G. Basso, L. S. Martinewski, A.
758	Correia C S C Borges V E Fraita S Braz P Anderson I O Rocha H Grace I Phillips O I
750	b Lloyd L. Drought constitutive of American carbon belong avoided by demonstration macrosurements
759	& Lloyd, J.: Diougin sensitivity of Amazonian carbon carbon by autospheric measurements,
760	Nature, 506, 76–80, <u>https://doi.org/10.1038/nature12957</u> , 2014.
/61	Gatti, L. V, Melack, J., Basso, L. S., Restrepo-Coupe, N., Aguiar, A. P., Pangala, S., Saleska, S. R., Aragão, L. E.
762	O., Phillips, O. L., & Armenteras, D.: Chapter 6A: The Amazon Carbon Budget. In Amazon Assessment
763	Report 2021 https://doi.org/10.55161/ynby7494_2021c
764	Incure M. Morino, I. Uchino, O. Miyamoto, Y. Vashida, Y. Vakota, T. Mashida, T. Sawa, Y. Matsuada, H.
704	mode, M., Morino, F., Ocimio, O., Miyanoto, F., Tosnida, F., Tokota, T., Macinda, T., Sawa, T., Matsueda, H.,
705	Sweeney, C., Tans, P. P., Andrews, A. E., Biraud, S. C., Tanaka, T., Kawakami, S., and Patra, P. K.:
/66	Validation of XCO2 de- rived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data,
767	Atmos. Chem. Phys., 13, 9771–9788, <u>https://doi</u> .org/10.5194/acp-13-9771-2013, 2013.
768	Ishijima, K., Machida, T., Niwa, Y., Tsuboi, K., Sawa, Y., Matsueda, H. & Sasakawa, M.: Atmospheric CO ₂ mole
769	fraction data of CONTRAIL-CME (most recent data), v2023.1.0, Center for Global Environmental
770	Research, NIES, DOI:10.17595/20210827.001, (Reference date: 2023/08/13), 2021.
771	Jacobs, N., O'dell, C. W., Taylor, T. E., Logan, T. L., Byrne, B. K., Kiel, M., Kivi, R., Heikkinen, P., Merrelli,
772	A Payne V H & Chatteries A The importance of digital elevation model accuracy in XCOs retriavals:
772	A, Tayler, V. II., & Chatterjee, Al. The importance of digital circulation model actuated in XCO ₂ fethewars.
//3	improving the OCO-2 ACOS v11 product. <u>https://doi.org/10.5194/amt-2023-151</u> , 2023.
774	Keeling, C. D.: The Concentration and Isotopic Abundances of Carbon Dioxide in the Atmosphere. Tellus, 12(2),
775	200–203. https://doi.org/10.1111/j.2153-3490.1960.tb01300.x, 1960.
776	Kulawik, S. S., Crowell, S., Baker, D., Liu, J., McKain, K., Sweeney, C., Biraud, S. C., Wofsy, S., O'Dell, C. W.,
777	Wennberg, P. O., Wunch, D., Roehl, C. M., Deutscher, N. M., Kiel, M., Grif- fith, D. W. T., Velazco, V.
778	A Notholt I Warneke T Petri C De Mazière M Sha M K Sussmann R Rettinger M Pollard
770	D E Morino I Uchino O Hasse E Fairt D C Pocha S Strong K Kiyi P Iragi I Shiomi K
700	D. F., Holmo, I., Oemio, O., Hase, F., Felst, D. O., Rothe, S., Subig, R., Rivi, R., Hati, L., Sinohi, R., Diber, M. K. Sarahada, E. Bakirana, O. E. C. Té, Y. Lacada, D. Halddina, D. Dharahanaka, E. J.
700	Dubey, M. K., Sepurveda, E., Rodriguez, O. E. G., Te, T., Jeseck, P., Heikkinen, P., Diugokencky, E. J.,
/81	Gunson, M. R., Elder- ing, A., Crisp, D., Fisher, B., and Osterman, G. B.: Characterization of OCO-2 and
/82	ACOS-GOSAT biases and errors for CO_2 flux estimates, Atmos. Meas. Tech. Discuss. [preprint],
783	<u>https://doi</u> .org/10.5194/amt-2019-257, 2019.
784	Kuze, A., Suto, H., Nakajima, M., & Hamazaki, T.: Thermal and near infrared sensor for carbon observation
785	Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases
786	monitoring Applied Optics 48(35) https://doi.org/10.1364/AO.48.00671.2009
787	I aw P. M. Peters W. Rödenbeck C. Aulamier C. Baker I. Bergman, D. I. Bousquet P. Brandt I.
707	Law, R. M., Felers, W., Kolenovek, C., Autaginer, C., Baker, F., Berginam, D. J., Bousquet, F., Brandi, J.,
700	Bunwher, E., Cameron-Siniti, P. J., Christensen, J. H., Derage, F., Denning, A. S., Fan, S., Geers, C.,
/89	Houweling, S., Imasu, R., Karstens, U., Kawa, S. R., Zhu, Z.: IransCom model simulations of hourly
/90	atmospheric CO2: Experimental overview and diurnal cycle results for 2002. Global Biogeochemical
791	<i>Cycles</i> , 22(3). <u>https://doi.org/10.1029/2007GB003050</u> , 2008.
792	Liang, A., Gong, W., Han, G., & Xiang, C. (2017). Comparison of satellite-observed XCO ₂ from GOSAT, OCO-
793	2, and ground-based TCCON. Remote Sensing, 9(10). https://doi.org/10.3390/rs9101033, 2017.
794	Taylor, T. E., O'Dell, C. W., Baker, D., Bruegge, C., Chang, A., Chansky, L., Chatteriee, A., Cheng, C.,
795	Chevallier E. Criss, D. Dang, J. Drouin, R. Eldering, A. Fang, J. Eicher, R. Fu, D. Gungon, M.
796	Haemmerle, V. Keller, G. R. – Zong L. Evglusting the consistency lattices D. (20, 2000) and OCO 2 VCO
707	astimates defined from the NASA ACOS provides 10 without 1 defined a Autority of the Autority of the States and
191	estimates derived from the NASA ACOS version 10 retrieval algorithm. Atmospheric Measurement
198	Iechniques, 16(12). https://doi.org/10.5194/amt-16-3173-2023,2023.
799	Taylor, T. E., O'Dell, C. W., Crisp, D., Kuze, A., Lindqvist, H., Wennberg, P. O., Chatterjee, A., Gunson, M.,
800	Eldering, A., Fisher, B., Kiel, M., Nelson, R. R., Merrelli, A., Osterman, G., Chevallier, F., Palmer, P. I.,
801	Feng, L., Deutscher, N. M., Dubey, M. K., Wunch, D.: An 11-year record of XCO ₂ estimates derived
802	from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm. Earth System Science
803	Data 14(1) https://doi.org/10.5194/esd-14.325-2022 2022
	$D_{\text{max}} = 1(1) \cdot \frac{1}{10} \frac{1}{1000} $

804 805 806 807 808 809 810 811	 Tejada, G., Gatti, L. V., Basso, L. S., Cassol, H. L. G., Silva-Junior, C. H. L., Mataveli, G., Marani, L., Arai, E., Gloor, M., Miller, J. B., Cunha, C. L., Domingues, L. G., Ipia, A., Correia, C. S. C., Crispim, S. P., Neves, R. A. L., & Von Randow, C.: CO₂ emissions in the Amazon: are bottom-up estimates from land use and cover datasets consistent with top-down estimates based on atmospheric measurements? Frontiers in Forests and Global Change, 6. https://doi.org/10.3389/ffgc.2023.1107580, 2023. Machida, T., Matsueda, H., Sawa, Y., Nakagawa, Y., Hirotani, K., Kondo, N., Goto, K., Nakazawa, T., Ishikawa, K., and Ogawa, T.:Worldwide measurements of atmospheric CO₂ and other trace gas species using commercial airlines. Journal of Atmospheric and Oceanic Technology. 25(10) 1744–1754
812	https://doi.org/10.1175/2008JTECHA1082.1.2008.
813	Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane, T., Meir, P., Chave, J., Almeida, S.,
814	Arroyo, L., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Monteagudo, A.,
815	Neill, D. A., Vargas, P. N., Pitman, N. C. A., Vinceti, B.: The regional variation of aboveground live
816	biomass in old-growth Amazonian forests. Global Change Biology, 12(7). https://doi.org/10.1111/j.1365-
817	2486.2006.01120.x, 2006.
818	Massie, S. T., Cronk, H., Merrelli, A., O'Dell, C., Sebastian Schmidt, K., Chen, H., & Baker, D.: Analysis of 3D
819	cloud effects in OCO-2 XCO ₂ retrievals. Atmospheric Measurement Techniques, 14(2).
820	https://doi.org/10.5194/amt-14-1475-2021, 2021.
821	Matsueda, H., Machida, T., Sawa, Y., Nakagawa, Y., Hirotani, K., Ikeda, H., Kondo, N., and Goto, K.: Evaluation
822	of atmospheric CO_2 measurements from new flask air sampling of JAL airliner observations. Papers in
823	Meteorology and Geophysics, 59, 1–17. https://doi.org/10.246//mripapers.59.1, 2008.
824 825	Maucen, S., Massie, S., & Schmidt, S.: Correcting 3D cloud effects in XCO ₂ retrievals from the Orbiting Carbon
025	14(1.0022.0022)
020	1401-2023, 2023.
878	Mertein, A., Beinautz, K., O Den, C. w., and Taylor, T. E.: Estimating bias in the OCO-2 fetteval algorithm
829	1656 https://doi.org/10.5194/amt.8.1641.2015.2015
830	Miller, C. E., Criso, D., DeCola, P. L., Olsen, S. C., Randerson, J. T., Michalak, A. M., Alkhaled, A., Ravner, P.,
831	Jacob, D. J., Suntharalingam, P., Jones, D. B. A., Denning, A. S., Nicholls, M. E., Doney, S. C., Pawson,
832	S., Boesch, H., Connor, B. J., Fung, I. Y., O'Brien, D., Law, R. M.: Precision requirements for space-
833	based XCO ₂ data. Journal of Geophysical Research Atmospheres, 112(10).
834	https://doi.org/10.1029/2006JD007659, 2007.
835	Müller, A., Tanimoto, H., Sugita, T., Machida, T., Nakaoka, S., Pa- tra, P. K., Laughner, J., and Crisp, D.: New
836	approach to eval- uate satellite-derived XCO2 over oceans by integrating ship and aircraft observations,
837	Atmos. Chem. Phys., 21, 8255–8271, https://doi.org/10.5194/acp-21-8255-2021, 2021.
838	Niwa, Y., Patra, P. K., Sawa, Y., Machida, T., Matsueda, H., Belikov, D., Maki, T., Ikegami, M., Imasu, R.,
839	Maksyutov, S., Oda, T., Satoh, M., & Takigawa, M.: Three-dimensional variations of atmospheric CO ₂ :
840 971	Aircraft measurements and multi-transport model simulations. Atmospheric Chemistry and Physics, 11(24), 1250–1275, https://doi.org/10.5104/norp.11.1250.2011
8/12	O'Dell C. W. Eldering, A. Wannbarg, P. O. Crien, D. Gunson, M. P. Eisher, R. Frankanbarg, C. Kial, M.
843	Lindavist H Mandrake I Merrelli & Natra V Nelson R R Osterman G B Paver V H Tavlor
844	T.E. Wunch, D. Drouin, B.J. Ovafiso, F, Velazco, V.A.: Improved retrievals of carbon dioxide from
845	Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmospheric Measurement
846	Techniques, 11(12). https://doi.org/10.5194/amt-11-6539-2018, 2018.
847	Patra, P.K., Crisp, D., Kaiser, J.W., Wunch, D., Saeki, T., Ichii, K., Sekiya, T., Wennberg, P.O., Feist, D.G.,
848	Pollard, D.F., Griffith, D.W.T., Velazco, V.A., De Maziere, M., Sha, M.K., Roehl, C., Chatterjee, A.,
849	Ishijima, K.: The Orbiting Carbon Observatory (OCO-2) tracks 2-3 peta-gram increase in carbon release to
850	the atmosphere during the 2014-2016 El Nino. Sci. Rep. 7, 13567 https://doi.org/ 10.1038/s41598-017-
851	13459-0, 2017.
852	Patra, P. K., Law, R. M., Peters, W., Rödenbeck, C., Takigawa, M., Aulagnier, C., Baker, I., Bergmann, D. J.,
853 957	Bousquet, P., Brandt, J., Brunwiler, L., Cameron-Smith, P. J., Christensen, J. H., Delage, F., Denning, A.
855	atmospheric CO2: Analysis of synoptic-scale variations for the period 2002-2003. <i>Clobal Riogeochemical</i>
856	Cycles, 22(4), https://doi.org/10.1029/2007GB003081, 2008
857	Patra, P. K., Maksyutov, S., Sasano, Y., Nakajima, H., Inoue, G., & Nakazawa, T.: An evaluation of CO ₂
858	observations with solar occultation FTS for inclined-orbit satellite sensor for surface source inversion.
859	Journal of Geophysical Research: Atmospheres, 108(24). https://doi.org/10.1029/2003jd003661, 2003.
860	Patra, P. K., Niwa, Y., Schuck, T. J., Brenninkmeijer, C. A. M., Machida, T., Matsueda, H., & Sawa, Y.: Carbon
861	balance of South Asia constrained by passenger aircraft CO2 measurements. Atmospheric Chemistry and
862	Physics, 11(9). https://doi.org/10.5194/acp-11-4163-2011, 2011.

863	Patra, P. K., Takigawa, M., Watanabe, S., Chandra, N., Ishi- jima, K., and Yamashita, Y.: Improved Chemical
864	Tracer Simulation by MIROC4.0-based Atmospheric Chemistry- Transport Model (MIROC4-ACTM),
865	SOLA, 14, 91–96, https://doi.org/10.2151/sola.2018-016, 2018.
866	Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., Niwa, Y., Patra, P. K., Peters,
867	W., Ravner, P. J., Rödenbeck, C., Van Der Laan-Luijkx, I. T., & Zhang, X.: Global atmospheric carbon
868	budget: Results from an ensemble of atmospheric CO ₂ inversions. Biogeosciences, $10(10)$, 6699–6720,
869	https://doi.org/10.5194/bg-10-6699-2013.2013
870	Philin S Johnson M S Baker D F Basu S Tiwari Y K Indira N K Ramonet M & Poulter B OCO-
871	2 Satellite_Imposed Constraints on Terrestrial Riospheric CO ₂ Fluxes Over South Asia Journal of
872	Geophysical Research: Atmospheres 127(3) https://doi.org/10.1029/20211D035035.2022
872 872	Geophysical Research, Annospheres, 127(5), https://doi.org/10.102/20215005055, 2022.
873 874	Kastogi, D., Miner, J. B., Hudeau, M., Andrews, A. E., Hu, L., Mountani, M., Neinkolli, T., Balet, D., McKani, K. Mund, L. Guan, K. & Aldan, C. B.: Evaluating apariting and the strugger total column CO, retrieval from
074	K_{i} , Mulid, J., Odali, K., & Aldeli, C. D., Evaluating consistency between total countin CO_2 retrevals from OOQ 2 and the interaction of North America Language for each of the form the standard standa
075	Close and the in stul network over North America, implications for carbon nux estimation. Atmospheric
0/0	Chemistry and Physics, 21(18). $1100000000000000000000000000000000000$
8// 070	Rismann, M., Chen, J., Österman, G., Zhao, X., Dietrich, F., Makowski, M., Hase, F., and Kiel, M.: Comparison
8/8	of OCO-2 target observations to MUCChet – is it possible to capture urban XCO2 gradients from space?,
8/9	Atmos. Meas. 1ech., 15, 6605–6623, https://doi.org/10.5194/amt-15-6605-2022, 2022.
880	Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D. M. A., Avitabile, V., Araza, A., de Bruin, S., Herold, M.,
881	Quegan, S., Rodríguez-Veiga, P., Balzter, H., Carreiras, J., Schepaschenko, D., Korets, M., Shimada, M.,
882	Itoh, T., Moreno Martínez, A., Cavlovic, J., Cazzolla Gatti, R., da Conceição Bispo, P., Dewnath, N.,
883	Labrière, N., Liang, J., Lindsell, J., Mitchard, E. T. A., Morel, A., Pacheco Pascagaza, A. M., Ryan, C. M.,
884	Slik, F., Vaglio Laurin, G., Verbeeck, H., Wijaya, A., and Willcock, S.: The global forest above-ground
885	biomass pool for 2010 estimated from high-resolution satellite observations, Earth Syst. Sci. Data, 13,
886	3927–3950, <u>https://doi</u> .org/10.5194/essd-13-3927-2021, 2021.
887	Schimel, D., Pavlick, R., Fisher, J. B., Asner, G. P., Saatchi, S., Townsend, P., Miller, C., Frankenberg, C.,
888	Hibbard, K., & Cox, P.: Observing terrestrial ecosystems and the carbon cycle from space. In Global Change
889	Biology (Vol. 21, Issue 5). https://doi.org/10.1111/gcb.12822, 2015.
890	Schuh, A. E., Jacobson, A. R., Basu, S., Weir, B., Baker, D., Bowman, K., Chevallier, F., Crowell, S., Davis, K.
891	J., Deng, F., Denning, S., Feng, L., Jones, D., Liu, J., & Palmer, P. I.: Quantifying the Impact of Atmospheric
892	Transport Uncertainty on CO ₂ Surface Flux Estimates. Global Biogeochemical Cycles, 33(4).
893	https://doi.org/10.1029/2018GB006086, 2019.
894	Schuldt, K.N., Mund, J., Luijkx, I.T., Aalto, T., Abshire, J.B., Aikin, K., Andrews, A., Aoki, S., Apadula, F.,
895	Baier, B., Bakwin, P., Bartyzel, J., Bentz, G., Bergamaschi, P., Beyersdorf, A., Biermann, T., Biraud, S.C.,
896	Boenisch, H., Bowling, D.,, Bulk, P. v.: Multi-laboratory compilation of atmospheric carbon dioxide data
897	for the period 1957-2021; obspack_co2_1_GLOBALVIEWplus_v8.0_2022-08-27. NOAA Global
898	Monitoring Laboratory. <u>http://doi</u> .org/10.25925/20220808, 2022.
899	Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., Bruhwiler, L., Ciais, P., Ramonet, M.,
900	Bousquet, P., Nakazawa, T., Aoki, S., Machida, T., Inoue, G., Vinnichenko, N., Lloyd, J., Jordan, A.,
901	Heimann, M., Shibistova, O., Langenfelds, R. L., Denning, A. S.: Weak northern and strong tropical
902	land carbon uptake from vertical profiles of atmospheric CO2. Science, 316(5832).
903	https://doi.org/10.1126/science.1137004, 2007.
904	Suntharalingam, P., Randerson, J. T., Krakauer, N., Logan, J. A., & Jacob, D. J.: Influence of reduced carbon
905	emissions and oxidation on the distribution of atmospheric CO ₂ : Implications for inversion analyses. Global
906	Biogeochemical Cycles, 19(4). https://doi.org/10.1029/2005GB002466, 2005.
907	Thoning, K. W., Tans, P. P., & Komhyr, W. D.: Atmospheric Carbon Dioxide at Mauna Loa Observatory 2.
908	Analysis of the NOAA GMCC Data, 1974-1985. In JOURNAL OF GEOPHYSICAL RESEARCH (Vol.
909	94, Issue D6), 1989.
910	Umezawa, T., Matsueda, H., Oda, T., Higuchi, K., Sawa, Y., Machida, T., Niwa, Y., & Maksyutov, S.: Statistical
911	characterization of urban CO2 emission signals observed by commercial airliner measurements. Scientific
912	Reports, 10(1). <u>https://doi.org/10.1038/s41598-020-64769-9</u> , 2020.
913	Villalobos, Y., Rayner, P., Thomas, S., & Silver, J.: The potential of Orbiting Carbon Observatory-2 data to reduce
914	the uncertainties in CO ₂ surface fluxes over Australia using a variational assimilation scheme. Atmospheric
915	Chemistry and Physics, 20(14). https://doi.org/10.5194/acp-20-8473-2020, 2020.
916	Vogel, B., Volk, C. M., Wintel, J., Lauther, V., Müller, R., Patra, P. K., Riese, M., Terao, Y., & Stroh, F.:
917	Reconstructing high-resolution in-situ vertical carbon dioxide profiles in the sparsely monitored Asian
918	monsoon region. Communications Earth and Environment, 4(1). https://doi.org/10.1038/s43247-023-
919	00725-5, 2023.
020	Ware LC Od T. Kame C. D. Charles C. A. Delan D. E. Ott L. E. & Deman C. The impact of familiar

Wang, J. S., Oda, T., Kawa, S. R., Strode, S. A., Baker, D. F., Ott, L. E., & Pawson, S.: The impacts of fossil fuel
 emission uncertainties and accounting for 3-D chemical CO₂ production on inverse natural carbon flux

922 estimates from satellite and in situ data. Environmental Research Letters, 15(8).
 923 https://doi.org/10.1088/1748-9326/ab9795, 2020.

- 924 WDCGG (World Data Centre for Greenhouse Gases): World Data Centre (WDC) operated by the Japan
 925 Meteorological Agency (JMA) under the Global Atmosphere Watch (GAW) programme of the World
 926 Meteorological Organization (WMO) [data set], https://gaw.kishou.go.jp/
- Wofsy, S. C.: HIAPER Pole-to-Pole Observations (HIPPO): fine- grained, global-scale measurements of climatically important atmospheric gases and aerosols, Philos. T. R. Soc. A., 369, 2073–2086, https://doi.org/10.1098/rsta.2010.0313, 2011.
- 930 Wofsy, S.C., S. Afshar, H.M. Allen, E.C. Apel, E.C. Asher, B. Barletta, J. Bent, H. Bian, B.C. Biggs, D.R. Blake, 931 N. Blake, I. Bourgeois, C.A. Brock, W.H. Brune, J.W. Budney, T.P. Bui, A. Butler, P. Campuzano-Jost, 932 C.S. Chang, M. Chin, R. Commane, G. Correa, J.D. Crounse, P. D. Cullis, B.C. Daube, D.A. Day, J.M. 933 Dean-Day, J.E. Dibb, J.P. DiGangi, G.S. Diskin, M. Dollner, J.W. Elkins, F. Erdesz, A.M. Fiore, C.M. 934 Flynn, K.D. Froyd, D.W. Gesler, S.R. Hall, T.F. Hanisco, R.A. Hannun, A.J. Hills, E.J. Hintsa, A. Hoffman, 935 R.S. Hornbrook, L.G. Huey, S. Hughes, J.L. Jimenez, B.J. Johnson, J.M. Katich, R.F. Keeling, M.J. Kim, 936 A. Kupc, L.R. Lait, K. McKain, R.J. Mclaughlin, S. Meinardi, D.O. Miller, S.A. Montzka, F.L. Moore, E.J. 937 Morgan, D.M. Murphy, L.T. Murray, B.A. Nault, J.A. Neuman, P.A. Newman, J.M. Nicely, X. Pan, W. 938 Paplawsky, J. Peischl, M.J. Prather, D.J. Price, E.A. Ray, J.M. Reeves, M. Richardson, A.W. Rollins, K.H. 939 Rosenlof, T.B. Ryerson, E. Scheuer, G.P. Schill, J.C. Schroder, J.P. Schwarz, J.M. St.Clair, S.D. Steenrod, 940 B.B. Stephens, S.A. Strode, C. Sweeney, D. Tanner, A.P. Teng, A.B. Thames, C.R. Thompson, K. Ullmann, 941 P.R. Veres, N.L. Wagner, A. Watt, R. Weber, B.B. Weinzierl, P.O. Wennberg, C.J. Williamson, J.C. 942 Wilson, G.M. Wolfe, C.T. Woods, L.H. Zeng, and N. Vieznor.: ATom: Merged Atmospheric Chemistry, 943 Trace Gases, and Aerosols, Version 2. ORNL DAAC, Oak Ridge, Tennessee. 944 USA. https://doi.org/10.3334/ORNLDAAC/1925, 2021.
- Wunch, D., Wennberg, P. O., Osterman, G., Fisher, B., Naylor, B., Roehl, M. C., O'Dell, C., Mandrake, L., Viatte,
 C., Kiel, M., Griffith, D. W. T., Deutscher, N. M., Velazco, V. A., Notholt, J., Warneke, T., Petri, C., De
 Maziere, M., Sha, M. K., Sussmann, R., ... Eldering, A. (2017). Comparisons of the Orbiting Carbon
 Observatory-2 (OCO-2) XCO₂ measurements with TCCON. In Atmospheric Measurement Techniques
 (Vol. 10, Issue 6). https://doi.org/10.5194/amt-10-2209-2017, 2017.
- Store Press, I., Bousquet, P., Carouge, C., Rivier, L., & Ciais, P.: Variability and budget of CO₂ in Europe:
 Analysis of the CAATER airborne campaigns-Part 2: Comparison of CO₂ vertical variability and fluxes
 between observations and a odelling framework. Atmospheric Chemistry and Physics, 11(12).
 https://doi.org/10.5194/acp-11-5673-2011, 2011.
- Yu, L., Wen, J., Chang, C. Y., Frankenberg, C., & Sun, Y.: High-Resolution Global Contiguous SIF of OCO *2. Geophysical Research Letters*, 46, 1449–1458. <u>https://doi.org/10.1029/2018GL081109</u>, 2019.
- 956 957 958

- 960
- 961
- 962
- 963 964
- 965
- 966
- 967
- 968

- 970
- 971 972
- 973
- 974
- 975
- 976

977

982 983

984 Figure 1: Schematic of CO₂ concentration vertical profile (dark blue line) by satellite, ACTM, and aircraft CO₂ (orange, golden) Arrowheads represent different layers of the atmosphere, specifically LT (lowest-2 km), MT 985 986 (2-5 km), UT (5-8 km), and the tropospheric column (lowest-8 km) corresponds to the aircraft CO₂ 987 measurement. Blue arrow represents total variation captured by satellite covers from surface to top of the 988 atmosphere.

989

992 Figure 2: CO₂ space-time variability with (a) spatial mean XCO₂ difference map between InvFG and OCO-2 993 during January,2015-December,2021. (b) Time vs latitude distribution of XCO₂ difference between InvFG and 994 OCO-2 considering mean across global longitude. (c) Time vs latitude cross-section of CO₂ concentration 995 difference between InvFG and in-situ CO₂ measurement, considering CO₂ from 53 surface sites. (d) Latitude

- averaged time series of CO₂ (XCO₂) concentration difference between InvFG and Surface (OCO-2) respectively
- 997 represented by black (red) colours. "r" value in panel-d represents correlation between time series of surface and
- **998** OCO-2 difference at 99% significance level.

999 1000

(a) Specific sites aircrafts (b) Campaign aircrafts -0.2 ± 0.41 -0.39 ± 0.1 -0.33±0.24 -0.37±0.38 2 observation(ppm) ration(ppm) 0 Model-obser Aodel-_1 LT(lowest -2 Km) Tropospheric Column (lowest - 8 Km) MT(3-5 Km) 0CO-2 XCO2 UT(5-8 Km) (N8 hil(40.13N) (N) car(40.66N) sgp(36.61N) sca(33.25N) tgc(27.78N) ta(21.19S) acg(57.34N-77.8N) co(28.47N-43.31N) pfa(64.82N) lef(45.92N) iha(42.78N) (N90.14)pu; (MS8.83N) nan(2.46S) acg(61.44N-89.92N) ibove(59.88N-71.27N) 79N-49.4N) ict(27.23N-49.71N) act(28.34N-48.31N) ×2015(26.41N-49.9N) aoa(24.0N-34.56N) ict(28.51N-46.02N) esp(49. dnd(47.4 ct(27.7 Aircraft name 1379 1621 372 1467 1218 1063 1281 1303 1074 1402 1308 742 3194 521 No Aircraft name 190 14313 344 2897 50802 350559 12659 3031 30468 1879 No of data points

1001

1003 Figure 3. Mean model-observation CO₂ difference (ppm) at different vertical tropospheric depths LT (light red), **1004** MT (orange), UT (dodger blue), total column (teal) and XCO₂ for specific sites aircraft (panel–a) and campaign aircraft measurements having latitudinal coverage maximum 30° (panel–b). Aircrafts names are organized based **1006** on aircraft observations location, progressing from high latitudes in the Northern Hemisphere, through the equator, **1007** to southern latitudes. The second x-axis represents a number of data points for specific aircraft observation. The **1008** first and second number inside the panel represents mean and 1- σ standard deviation (STDEV) of modelobservation difference across latitude for each tropospheric layer. **1010**

LT(lowest-2 km) — MT(2-5 km) — UT(5-8 km) — Tropospheric Column(lowest-8 km) — OCO-2 XCO₂

1013 Figure 4: (a) Integrated tracks traversed during ATom campaigns (ATom-1, ATom-2, ATom-3 and ATom-4). 1014 (b) Spatial model-observation XCO₂ difference against OCO-2 over ATom integrated track during campaign (c), 1015 (d), (e), and (f) shows model-observation CO₂ difference over different tropospheric layers from vertical CO₂ 1016 profile measurements of ATom and XCO₂ from OCO-2 for North America and neighbours, Southern Ocean, 1017 Pacific, and Atlantic segments respectively. Tropospheric layers are LT (light red), MT (orange), UT (dodger 1018 blue) and Total Column (teal), and OCO-2 XCO2 (black) representation for difference against OCO-2. The first 1019 and second number on the right side of each middle and bottom panel represents the mean and $1-\sigma$ standard 1020 deviation (STDEV) of model-observation difference across latitude or longitude, respectively.

1022

1023 1024

Figure 5: (a) Amazon aircraft vertical CO₂ profile campaign sites, SAN, ALF, RBA, and TEF. (b) Time series of
 land carbon flux anomalies at the campaign sites. (c), (d), (e) and (f) represent a time series of model-observation
 CO₂ differences for LT, MT, and tropospheric column, and XCO₂ during OCO-2 measurement periods for SAN,
 ALF, RBA and TEF, respectively. The numbers inside the middle and bottom panels represent the mean and 1-σ
 standard deviation (STDEV) of model-observation CO₂ difference over the time period.

1032 Figure 6: (a) CONTRAIL aircraft sampling locations with associated colours represent sampling altitude in km 1033 over Asia regions with surface elevation in km. There are four defined regions, each associated with specific 1034 airports, covering various vertical zones of carbon dioxide (CO2) profiles. Far East Asia consisting of two airports, 1035 HND, NRT merged to prepare TYO, Southeast China with one airport HKG, northern Southeast Asia with one 1036 airport BKK, and equatorial Southeast Asia encompassing one airport SIN. (b) mean model-OCO2 XCO2 1037 differences over sampling locations during the mentioned period. (c), (d) (e), and (f) are time series of model-1038 observation CO₂ differences over representative airports at different vertical depths of troposphere MT, LT and 1039 tropospheric column and XCO2 utilising aircraft measurement and OCO-2. The numbers inside the (c), (d), (e), 1040 and (f) panels represent the mean and $1-\sigma$ standard deviation (STDEV) of model-observation difference over the 1041 period.