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Abstract. Estimating regional CO2 sources and sinks is challenging due to limited data and uncertainties in 13 

transport models. Orbiting Carbon Observatory-2 (OCO-2) overcomes measurement limits, providing CO₂ 14 

variations beyond in-situ networks. This study analyses altitude-wise model-observation CO2 differences from 15 

surface to upper troposphere using aircraft observations from ATom, Amazon, and CONTRAIL campaigns over 16 

OCO-2 total column CO2 (XCO2) sampling location to characterise sources of uncertainty in MIROC4-ACTM. 17 

We show model aligns better with ATom tropospheric columns (0.03 ± 0.03 ppm) than OCO-2 XCO2 (0.2 ± 0.5 18 

ppm), especially over oceans, highlighting the need for expanded profile measurements to characterise errors 19 

robustly. Altitude-wise comparisons reveal this differences primarily occur in the lower troposphere (0-2 km), 20 

likely due to ACTM's near-surface land CO2 flux errors. In contrast, ACTM better matches aircraft CO2 in the 21 

middle (2-5 km) and upper (5-8 km) troposphere, likely due to accurate large-scale transport representation. Over 22 

the Amazon, CO2 differences with aircraft and OCO-2 differ, likely due to a lack of regional surface sites for 23 

inversion and insufficient high-altitude profile (~4km) not representative of XCO2. Over Asian megacity airports, 24 

which are significant emission hotspots, the model shows a large negative difference with CONTRAIL than OCO-25 

2. This discrepancy likely hints that MIROC4-ACTM is unable to capture urban fossil CO2 emission signals at 26 

airports due to coarse resolution (~2.8° x 2.8°) and higher resolution of OCO-2 limits ability to fully capture actual 27 

emission footprints. 28 

 29 
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1. Introduction 41 
 42 
Atmospheric CO2 is the most significant anthropogenic greenhouse gas (GHG) present in the Earth’s atmosphere, 43 

responsible for a major global warming and climate change since the preindustrial era, circa 1750 (Canadell et al., 44 

2022). Therefore, recognizing its importance in direct impact on climate, monitoring of highly accurate surface 45 

CO2 measurements were first started from the South Pole (SPO) and Mauna Loa (MLO), Hawaii (Keeling, 1960) 46 

and later expanded across the globe. These in-situ measurements are widely used for estimating surface CO2 47 

fluxes using Bayesian-based "top-down" chemistry transport models due to their long-term record and high 48 

measurement accuracy (Chandra et al., 2022; Chevallier et al., 2010; Peylin et al., 2013). However, in-situ CO2 49 

measurement sites around globe is sparse, mostly situated in mid-latitude north America and Europe, with less 50 

coverage over tropical land (Patra et al., 2011; Schimel et al., 2015) and open oceans, which increase difficulties 51 

in inferring surface CO2 fluxes from inverse models in data void regions (Chevallier et al., 2010, 2011).   52 

 53 

To increase spatiotemporal monitoring of CO2, spaced-based measurements such as SCanning Imaging 54 

Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY), Greenhouse Gases Observing Satellite 55 

“IBUKI” (GOSAT), and the Orbiting Carbon Observatory-2 (OCO-2) were launched to provide      column-56 

average dry-air mole fraction or mixing ratio of CO2, termed XCO2 (Bovensmann et al., 1999; Crisp, 2008; Kuze 57 

et al., 2009). NASA’s OCO-2 satellite launched in 2014 to achieve finer spatial resolution and better precision as 58 

compared to previous satellites. This advancement has proved beneficial for understanding global and regional 59 

carbon cycle science in various satellite based studies (Crisp, 2015; Das et al., 2023; Liang et al., 2017; Liu et al., 60 

2017; Chatterjee et al., 2027). OCO-2 version 10 XCO2  measurements has shown retrieval error with mean bias 61 

(RMSE) of 0.24 (0.81) ppm over land and 0.43 (0.84) ppm over ocean globally, compared against more accurate 62 

WMO scale maintained XCO2 from surface-based Total Carbon Column Observation Network (TCCON) sites 63 

(Taylor et al., 2023; Wunch et al., 2017). Studies reported that assimilation of OCO-2 XCO2 available at greater 64 

spatial density (~ 100 times of GOSAT) into an inversion requires the data to be extremely precise, stable and 65 

regionally unbiased to effectively estimate surface CO2 fluxes in regional scale (Byrne et al., 2017, 2023; Crowell 66 

et al., 2019; Philip et al., 2022; Rastogi et al., 2021). Also, Miller et al. (2007) reported that satellite-retrieved 67 

XCO2 needs regional precision of 1-2 ppm to reduce uncertainty in inversion-derived flux estimates from in-situ 68 

networks. Because, XCO2 retrievals having many sources of uncertainty hinder their fidelity to utilize inversion 69 

approach to accurately estimate surface CO2 flux (Chevallier et al., 2014; Villalobos et al., 2020). These retrieval 70 

errors in OCO-2 include cloud effects (Massie et al., 2021;Merrelli et al., 2015), instrumental errors, retrieved 71 

surface pressure, and then aerosol, the largest source of systematic error can be approximately 2 ppm over land 72 

regions (Connor et al., 2016). Therefore, to enhance the accuracy of surface CO2 flux estimations, studies are 73 

focussing on improving retrieval algorithm by correcting for cloud effects and incorporating a digital elevation 74 

model (DEM) to correct surface pressure (Jacobs et al., 2023; Mauceri et al., 2023). Apart from retrieval errors, 75 

misrepresentation of transport and uncertainty in prior fluxes can further reduce reliability in top-down model 76 

inferred surface CO2 fluxes (Chandra et al., 2022; Fu et al., 2021; Schuh et al., 2019). To address and assess such 77 

kind of errors impact on top-down CO2 budgets, OCO-2 model intercomparison project (MIP) is formed with 78 

different CO2 inverse modelling groups assimilating OCO-2, in-situ and combination of both ( 79 

https://gml.noaa.gov/ccgg/OCO2_v10mip/index.php).  80 
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Previous studies have attempted to reconstruct observation based CO2 profiles combining ship, aircraft and model 81 

simulation to compare with GOSAT XCO2, but are limited to characterise inversion errors (Müller et al., 2021; 82 

Inoue et al., 2013; Wofsy, 2011). Frankenberg et al. (2016), showed using HIPPO aircraft CO2 vertical profiles, 83 

that the retrievals of GOSAT, TES, AIRS satellites and inversion simulation can have large difference of ~ 4 ppm 84 

due to inaccurate vertical transport in higher latitude during vegetation growing or decaying periods. These studies 85 

often lack in providing uncertainties linked with inversion through altitude-based CO2 comparison from near 86 

surface to different tropospheric layers between inversion-based model simulations, surface, and aircraft data. 87 

This gap is particularly evident in regions with in-situ sparse data coverage, such as vast oceanic areas, as well as 88 

in emission or sink hotspots over land while OCO-2 dense measurements have not helped      to overcome precision 89 

issues providing global coverage. However, no studies attempted to understand how OCO-2 retrieval errors or 90 

accuracy hampers its full potential to uncover the uncertainties associated with inverse models. The present study 91 

aims to understand sources of error associated with the MIROC4-ACTM model through altitude-based CO2 92 

comparison among  MIROC4-ACTM, OCO-2 and aircraft observation across different tropospheric layers. To 93 

accomplish this we leverage highly accurate and precise aircraft vertical CO2 measurements from ATom 94 

campaigns over northern America, Pacific, Atlantic, Southern Ocean regions, CONTRAIL over airports in Asia 95 

and four specific sites in Amazon. Before analysing, we first validated the MIROC4-ACTM model simulated 96 

tropospheric column CO2 (XCO2) with highly precise CO2 vertical profiles from independent aircraft 97 

measurements       over open oceanic regions, Amazon  and local urban hotspot over Asia.  98 

 99 

2. Data and Methodology 100 
 101 
2.1 Aircraft and surface CO2 measurements 102 
 103 
We have used individual independent aircraft and surface in-situ CO2 measurements around the globes from 104 

NOAA’s obspack_co2_1_GLOBALVIEWplus_v8.0 data product (Schuldt et al., 2022) and WDCGG (World 105 

Data Centre for Greenhouse Gases) respectively. We have selected a few individual campaigns such as ATom, 106 

Amazon aircraft campaigns, CONTRAIL because of their extensive latitudinal/longitudinal spatial coverage over 107 

ocean and land regions, multiple vertical CO2 profile measurements and extended period of measurements. A 108 

brief description of each aircraft measurement is discussed in the next paragraphs.   109 

 110 

ATom is an aircraft field campaign, providing airborne measurements of remote tropospheric and lower 111 

stratospheric CO2 from Northern America, Arctic, Pacific, Southern and Atlantic Oceans (Thompson et al., 2022). 112 

ATom has four campaigns conducted using NASA DC-8 aircraft, taking vertical profile of CO2 from near surface 113 

(0.15 km) to13 km altitude range over four seasons from 2016 to 2018. Four campaigns each lasted around 28 114 

days, namely, ATom–1, 28 July-22 August 2016; ATom–2, 26 January–22 February 2017; ATom–3, 28 115 

September–26 October 2017;  ATom–4, 24 April to 21 May 2018 respectively (Wofsy et al., 2021). These vertical 116 

CO2 measurements enable the validation of XCO2 measurements from the satellites because most of XCO2 117 

variability is constrained in the troposphere, therefore, these vertical measurements effectively serve as a reference 118 

for satellite-retrieved CO2 validation (Frankenberg et al., 2016). We have utilised these CO2 measurements freely 119 

available at https://gml.noaa.gov/ccgg/obspack/data.php. 120 

 121 
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Additionally, aircraft vertical campaign CO2 measurements from four sites such as TEF (3.39° S, 65.6° W), SAN 122 

(2.86° S, 54.95° W), RBA (9.38° S, 67.62° W) and ALF (8.80° S, 56.75° W) in the Amazon region are also 123 

considered for the present study and more details about these measurements can be found in Gatti et al. (2021a). 124 

In ALF, RBA, SAN, CO2 measurements are available from 2010 to 2018, whereas TEF has measurements from 125 

2013-2018. Bi-monthly vertical CO2 profile measurements were taken during 12:00 and 13:00 local time at all 126 

these sites covering altitude from 0.3 to 4 km when the daytime boundary layer is well mixed. These measurements 127 

were taken using an automatic sampler onboarded in the light aircraft, which underwent accuracy and precision 128 

testing at greenhouse gas laboratory at National Institute of Space Research (LaGEE/INPE), Brazil (Gatti et al. 129 

2014). We have used a set of vertical CO2 profiles      during September, 2014 till 2018, freely available at: 130 

https://doi.pangaea.de/10.1594/PANGAEA.926834 (Gatti et al., 2021b).  131 

 132 

Further, CONTRAIL aircraft program CO2 measurements over Asian regions are also considered for the current 133 

analysis (Ishijima et al., 2021; Machida et al., 2008; Matsueda et al., 2008). In this program, several regular 134 

passenger aircraft operated by Japan Airlines (JAL) are installed with instruments like CME (Continuous CO2 135 

Measuring Equipment) to provide extensive spatial CO2 data coverage in the upper troposphere and lower 136 

stratosphere (UT/LS) region. We have only considered measurements during OCO-2 measurements period at four 137 

representative zones in Asia, specifically around airports, to retrieve vertical CO2 profiles during ascent or descent 138 

of the aircraft, following Niwa et al., 2011. The measurements dataset is freely accessible at 139 

https://www.cger.nies.go.jp/contrail/. 140 

 141 

2.2 OCO-2 142 

 143 

OCO-2 is a sun-synchronous satellite, retrieves XCO2 to understand the carbon source-sink activity throughout 144 

the globe (Eldering et al., 2017). The satellite uses three high-resolution grating spectrometers to retrieve the 145 

reflected sunlight spectral signature of weak CO2 (1.61 μm), strong CO2 (2.06 μm) and O2A (0.76 μm) which are 146 

later analysed through Atmospheric Carbon Observations from Space (ACOS) algorithm to estimate global 147 

spatiotemporal XCO2 distribution (Crisp, 2015; Crisp et al., 2017; Eldering et al., 2017). It has a spatial resolution 148 

of 1.29 km × 2.25 km (nadir mode), and a temporal periodicity of sixteen days. We have utilised OCO-2 version 149 

10 which is an update from previous version v8/v9 in terms of important changes in spectroscopy, aerosol, CO2 150 

prior source, and solar continuum model which reduced RMSE validated against XCO2 measured at TCCON sites 151 

for land and ocean-glint measurement (Taylor et al., 2023). In this study, we have used level–2 OCO-2 version 152 

10r data product (available at: 153 

https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Standard_10r/summary?keywords=OCO-2) and have considered 154 

only bias-corrected quality checked soundings (XCO2_quality_flag = 0 or good data) for analysis. 155 

 156 

2.3 Transport model 157 

 158 

The  Model for Interdisciplinary Research on Climate, version 4, based Atmospheric Chemistry Transport Model 159 

(MIROC4–ACTM) chemistry transport model is used, which is run at T42 spectral spatial resolution (∼2.8° × 160 

2.8° latitude-longitude grid) with 67 vertical hybrid-pressure levels from the surface to 90 km to simulate the CO2 161 
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concentration and fluxes (Patra et al., 2018). For realistic representation of the transport in the model, model 162 

meteorology, horizontal winds (zonal and meridional) and temperature is nudged to Japanese 55-year Reanalysis 163 

or JRA-55 data (Kobayashi et al., 2015). The MIROC4-ACTM model conducted two distinct simulations: one 164 

utilizing bottom-up model a prior or “FG” fluxes and the other employing a posteriori or “InvFG” fluxes derived 165 

from top-down inversion using 50 inversion sites (Figure S1). To derive total concentration in the simulation 166 

different bottom-up tracers are utilised, gridded GridFED fossil fuel; CO2,ff (Jones et al., 2021), annually balanced 167 

CASA biospheric flux; CO2,lnd (Randerson et al., 1997) and ocean exchange i.e., sea-air CO2 flux; CO2,ocn 168 

(Takahashi et al., 2009). Then, prior CO2 simulation case of MIROC4-ACTM is prepared by adding the prior 169 

tracers as follows: CO2,ff (GridFED) + CO2,lnd (CASA–3hr) + CO2,ocn (Taka–Ocn). A detailed discussion on this 170 

is given in Chandra et al. 2022. Further, to minimise the edge effect on the simulated dataset, we discarded the 171 

first two years and last one year of our simulation period (2012-2022), only analysed CO2 of both simulation and 172 

observation during 2014-2021. Model performance evaluated by comparing with each vertical profile of 173 

independent observations of ATom CO2 not used in the inversion as well as at two surface sites, MLO (19.53 °N, 174 

155.57 °W) and SYO (69.01 °S, 35.59 °W) representative of northern and southern hemisphere CO2 variability 175 

(Fig. S2, 3). To do that firstly, model simulated CO2 is resampled to the nearest grid of the aircraft and surface 176 

sampling locations, considering linear interpolations at spatial grid and time. We have not considered any other 177 

co-location criteria unless it is mentioned, e.g.,      geometric and dynamic for comparison;      therefore, estimated 178 

CO2 difference is essentially uncertainty either in observation or inversion (Kulawik et al., 2016, 2019). The      179 

result shows good performance with lesser bias with InvFG over prior at different latitudes, showing an overall 180 

good match of InvFG CO2 and ATom at different latitudes (Fig. S2, 3). Similarly at surface sites, InvFG showed      181 

better performance over prior with correlation of 0.99 with observation (p < 0.05) (Fig. S4). Then, to compare 182 

OCO-2 XCO2 and ACTM-XCO2, we formulated XCO2
ACTM following the Patra et al., 2017. Here, ACTM 183 

simulated CO2 profile or CO2
ACTM resampled at each OCO-2 retrieval location (latitude, longitude) with further 184 

use of corresponding OCO-2 priori and column average kernel sensitivity (Ai) represents instrumental sensitivity 185 

for 20 vertical levels from top of atmosphere (TOA) to surface to produce XCO2
ACTM using the following equation. 186 

 187 

                       XCO2
ACTM = ∑i (CO2

priori . dPi) + ∑i Ai . dPi (∑i CO2
ACTM

i - ∑i CO2
priori)            (1)  188 

𝐶𝑂2
𝑝𝑟𝑖𝑜𝑟𝑖

= OCO-2 priori;   𝐴𝑖= OCO-2 column averaging kernel; 𝑑𝑃𝑖= thickness of each pressure layer. 189 

      190 

We have also resampled XCO2
ACTM  at 21 TCCON sites around the globe to validate model performance with 191 

more accurate XCO2 measurements at surface-based TCCON sites (Wunch et al., 2011). To perform that we first 192 

filtered data points considering only good quality retrieval, then curve fitted the remaining retrieval to remove 193 

outliers and finally considered retrievals with solar zenith angle < 60° following methodology mentioned in 194 

Appendix C of Crowell et al. 2019. Figure S5 shows a good agreement between ACTM and TCCON XCO2 for 195 

majority of TCCON sites considering the fact that TCCON has its own bias due to topography, surface brightness 196 

and aerosols as well as latitudinal varying bias (Wunch et al., 2017). 197 

 198 

2.4 Data analysis 199 

      200 
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To conduct the spatial discrepancy analysis of XCO2 difference between ACTM and OCO-2, bias corrected and 201 

quality checked good soundings from OCO-2 XCO2 retrieval or XCO2
OCO-2 and ACTM simulated XCO2 or 202 

XCO2
ACTM is re-gridded into 0.5° × 0.5° latitude-longitude grid boxes. Further, to assess this XCO2

ACTM - 203 

XCO2
OCO-2 difference, we used aircraft vertical CO2 measurement available at different vertical tropospheric 204 

layers, essentially to conduct an altitude-wise comparison of CO2 among ACTM, OCO-2 and aircraft. Therefore, 205 

we have employed a methodology outlined using a schematic in Figure 1, specifically designed to provide CO2 206 

profile from aircraft, OCO-2 and ACTM.  207 

 208 

It shows typical CO2 concentration vertical profiles and relative altitude range captured in OCO-2, aircraft 209 

measurements, and corresponding MIROC4-ACTM simulations. OCO-2 measures XCO2 concentration from 210 

space, representing CO2 profile from top of the atmosphere to surface so as the ACTM simulation at those pressure 211 

levels is represented by a blue colour double-headed arrow. On the other hand, aircraft tropospheric columns of 212 

CO2 typically capture concentration variability up to an altitude of 15 km and ACTM resampled concentration 213 

values at those measurement locations represented by orange colour double headed arrows. Since the main 214 

purpose is to compare the aircraft tropospheric column CO2 against OCO-2 XCO2 and ACTM simulations, we 215 

subdivided the tropospheric CO2 column into three different vertical tropospheric layers, namely, the lower 216 

troposphere: lowest level to 2 km, middle troposphere: 2–5 km, and upper troposphere: 5–8 km to understand the 217 

model performance in each of the vertical layers. In addition, a total tropospheric vertical CO2 column of aircraft 218 

or aircraft XCO2 is calculated only when the vertical measurements reach at least 8 km altitude; otherwise, any 219 

profile not reaching 8 km is discarded from the analysis unless otherwise mentioned specifically. For each vertical 220 

tropospheric layer, pressure-weighted partial column CO2 is calculated to consider air mass variation between 221 

pressure levels for each considered tropospheric layer. Moreover, to become more robust on the analysis, each 222 

vertical depth layer is subdivided into 200 bins unless otherwise mentioned and 80% of vertical bins having 223 

measurements for the specific tropospheric layer only considered for analysis. For instance, middle troposphere 224 

(upper troposphere), i.e., 2–5 (5–8) km  is divided into 15 vertical bins each of 200 meters, then in a specific 225 

latitude or longitude while calculating a partial column of CO2, we only considered profiles that encompass a 226 

minimum 12 vertical bins in them. 227 

 228 
3. Results 229 
 230 
3.1. MIROC4-ACTM intercomparison with OCO-2 and surface measurements 231 
 232 
Figure 2a shows a monthly mean spatial XCO2 difference  (XCO2

ACTM - XCO2
OCO-2 ) during January, 2015 – 233 

December, 2021. It reveals a heterogeneous signature of spatial XCO2 difference or mismatch across the globe 234 

with maximum negative XCO2 difference of approximately 2 ppm over Amazon, Africa, south-east Asia, China, 235 

primarily in the global tropical land regions.  This  is likely due to the lack of long-term surface CO2 measurements 236 

(Figure S1) available for inversion particularly over the global tropics to constrain the prior CO2 flux (also 237 

discussed in Chandra et al., 2022). Further, humid tropics is also the region of lesser valid OCO-2 retrievals due 238 

to the persistent shallow cumulus cloud blocking the infrared signals, makes it challenging to validate the transport 239 

model and studies has shown sparse sampling over land increases chances of the error almost two times 240 

(Frankenberg et al., 2024; Kulawik et al., 2019). On the other hand, high-latitude land regions, North America 241 
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and Russia, exhibit a positive XCO2 difference of nearly 2 ppm, however, XCO2 differences over ocean regions 242 

are generally within ± 1 ppm, possibly because of lesser variability in ocean CO2 flux compared to land CO2 flux 243 

and oceanic regions are minimally affected by land air mass. Further, we observed a negative XCO2 difference 244 

especially over northern extra-tropics between 30° N to 60° N of nearly -0.6 ppm in agreement with Byrne et al. 245 

2023 likely attributed  to OCO-2 ocean glint (OG) retrieval biases that adds up a layer of complexity of diagnosing 246 

the transport model against OCO-2 retrievals over this vast ocean. Further, studies showed      that sampling 247 

variance between land and ocean could also lead significant uncertainty (Basu et al., 2018). Additionally, we 248 

observed a bias in the Southern Hemisphere, the underlying causes of which are still unknown and need further 249 

research (Byrne et al., 2023). Overall, our results show some regions under/over-estimated by ACTM, however, 250 

it is challenging to comprehend quantitatively and qualitatively about sources of error across diverse regions 251 

(source-sink dynamics and transport mechanism) as it could result either due to inaccuracies in the inversion (prior 252 

fluxes, transport) or errors in satellite retrievals (Chandra et al., 2022; Chevallier et al., 2014). Furthermore, to 253 

check the time variation of these XCO2 differences, we analysed the time versus latitude distribution of XCO2 254 

difference taking the average across global longitude from 180° W to 180° E (Fig. 2b). We observed that XCO2 255 

difference has a seasonal and spatially varying repeating signature, with maximum (minimum) difference during 256 

February-March-April (September-October-November) consistent across study period. A prominent positive 257 

(negative) systematic XCO2 difference is observed over the southern hemisphere tropic to mid-latitude from 10° 258 

S–40° S and northern latitude around 30° N (northern tropic to mid latitude) this is in agreement with Kulawik et 259 

al. (2019). However, after separating time vs latitude distribution of XCO2 difference into land and ocean, we 260 

observed that this systematic XCO2 difference mainly originates from the southern ocean part, which matches 261 

well with overall (land and ocean) time vs latitude XCO2 difference distribution (Fig. S6). However, it is 262 

challenging to explain the difference since ocean glint has biases (Byr     ne et al., 2023) and a  study by Kulawik 263 

et al. (2019) also reported a systematic error of 0.6 ± 0.1 ppm could arise over the ocean and land in OCO-2 264 

satellite XCO2 retrievals.  265 

 266 

To further examine whether this difference comes from inversion or XCO2 retrieval because both have 267 

uncertainties. We similarly analysed time versus latitude distribution of surface CO2 concentration difference with 268 

respect to ACTM simulation or CO2
ACTM - CO2

In-situ considering accurate surface CO2 concentration data from 53 269 

measuring sites around the globe. Most of these sites are situated in the northern hemisphere having at least 90% 270 

data during study period (all sites geographical location can be visualised in Figure S7 in supporting information). 271 

MIROC4-ACTM simulated CO2  near the surface is resampled to the nearest grid of surface  sites (latitude, 272 

longitude, altitude) and measurement time from hourly interval model output. For each of the 53 sites, CO2 273 

concentration difference between ACTM and surface CO2 concentration is calculated first, and then we linearly 274 

interpolate it spatially as presented in Figure 2(c). Results show no such annually and spatially systematic 275 

signature of CO2 difference near the surface between equator to 45° S considering six stations (SEY: 4.7° S, ASC: 276 

8° S, SMO: 14.2° S, NMB: 23.6° S, CPT: 34.4° S, CGO: 40.7° S) situated at different latitudes within this latitude 277 

band (Fig. S7). Considering the fact that inferred CO2 difference may arise due to much lower data density for the 278 

in situ measurements within mentioned latitude bands, the analysis with the available sites suggests that systematic 279 

signatures of difference exist when we compared with OCO-2 XCO2 (Fig. 2b). It hints at uncertainties in OCO-2 280 

retrieval or systematic vertical transport error in the model (Schuh et al., 2019), given the relatively lower 281 
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uncertainty in in-situ CO2 measurements compared to OCO-2 XCO2. This vast part of the region      remained 282 

challenging for a model to understand its error characteristics due to OCO-2 retrieval error. Further, we also 283 

compared the latitudinal average time series of CO2 (XCO2) difference of ACTM with surface (OCO-2) in Fig. 284 

2(d). It shows an overall agreement of CO2 difference with a correlation coefficient of 0.68 at 99% significance 285 

level with total time series variability (1-σ STDEV) of 0.28 and 0.19 ppm in CO2 difference in surface as compared 286 

to OCO-2. Overall, this CO2 space-time variability analysis clearly demonstrates that systematic signature in 287 

XCO2 difference, primarily concentrated in southern mid and northern high latitudes, previous studies also 288 

indicated towards potential uncertainties may arise in retrieval over the ocean and or misrepresentation of vertical 289 

transport in inversion (Byrne et al., 2023; Frankenberg et al., 2016; Schuh et al., 2019). Since systematic errors in 290 

transport could result in inaccurate CO2 flux estimates and, consequently, posterior simulated concentration (Deng 291 

et al., 2015; Stephens et al., 2007). In an inversion estimation, transport, surface CO2 flux and CO2 spatial gradient 292 

are closely interconnected so any misrepresentation in vertical or horizontal mixing consequently affects the 293 

estimated flux. This highlights the complexity of interpreting CO2 differences across diverse regions, 294 

measurement platforms and error quantification of the optimised flux of inversions from surface and satellite 295 

measurements. Therefore, to better understand the consistency of CO2 differences across different global regions 296 

and identify regions of major uncertainty which will enable us to address them effectively, we analysed CO2 297 

variation in different vertical tropospheric layers using vertical CO2 profile datasets from aircraft measurements, 298 

discussed in section 3.2. 299 

 300 

3.2  CO2 difference in tropospheric layers 301 

3.2.1 Over Globe 302 
 303 
Figure 3 represents mean CO2 difference or CO2

ACTM-CO2
aircraft across different latitudes using individual aircraft 304 

observations for different tropospheric layers LT (light red), MT (orange), UT (dodger blue) and tropospheric 305 

Total Column (teal), color coded to represent different altitude ranges. Aircraft measurements are generally 306 

available in two modes: continuous measurements from the same site over a long period, and campaign 307 

measurements that cover extensive vertical and horizontal distances with high data density over a limited period.  308 

Therefore, we have subdivided aircraft measurements into two subcategories for our analysis: specific site 309 

aircrafts having latitude coverage maximum 5°(Fig. 3a) and campaign aircrafts having latitude coverage 310 

maximum 30° (Fig. 3b). Only those aircrafts having measurements during OCO-2 period are selected, each 311 

aircraft sampling location, number of data points at different latitude bins of 30° and altitude bins of 1000 meters 312 

is provided in the supplementary material (Fig. S8 and S9 gif for each aircraft category). Then, we calculated 313 

model-observation CO2 difference for each aircraft measurement category. Therefore, estimated CO2 difference 314 

serves as a model and observation mismatch for specific latitude (entire latitude range) for specific sites 315 

(campaign) aircraft with latitude information mentioned inside parenthesis of first x-axis tick marks in Fig. 3a 316 

(3b). Here, the second x-axis shows the number of data points in the corresponding aircraft campaign. Here, the 317 

number of data points or samples is critical when comparing CO2 differences among aircraft. A higher number of 318 

samples provides better confidence to the calculated CO2 difference while aircraft with fewer samples are 319 

considered less weightage. 320 
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Mean (variability) of CO2 difference for LT, MT, UT and tropospheric column for specific sites aircraft are -0.45 321 

(± 0.49), -0.32 (± 0.48), -0.34 (± 0.5), and -0.2 (± 0.41) respectively (Fig. 3a). It shows the highest mismatch in 322 

terms of mean exist in LT as compared to other tropospheric layers MT, UT and total tropospheric column, likely 323 

due to uncertainty in prior CO2 flux or transport in LT. Studies have shown that in the LT, concentration changes 324 

are mainly regulated by surface CO2 fluxes and diurnal-synoptic mixing patterns (Law et al., 2008; Patra et al., 325 

2008). However, CO2 change in UT is mainly dominated by changes in large scale dynamical transport, where 326 

surface emission has subdued influence. Hence, studies have found that coarse spatial resolution transport models 327 

adequately simulated CO2 in the MT to UT regions (Baier et al., 2020; Niwa et al., 2011). Additionally, it is also 328 

noted that there is a systematic underestimation by the model in terms of magnitude in all tropospheric layers. 329 

Result shows minimum or maximum (near zero) model-observation CO2 difference (ppm) observed for “esp” or 330 

“rta” (cma) aircraft at 49.48° N or 21.19° S (38.83° N) in the LT for specific sites aircraft. In the tropospheric 331 

column, maximum (minimum) CO2 difference is observed in “cma” (“car”) aircraft at 38.83° N (40.66° N) 332 

respectively. Further, it has been observed that the tropospheric column CO2 difference matches pattern of CO2 333 

difference at LT at most aircraft sites; LT apparently contributes more to the total tropospheric column than MT 334 

and UT. Further, it could be seen that the overall mean model-observation CO2 difference is highest in the northern 335 

mid-latitudes compared to the tropical latitudes of the northern and southern hemispheres.  336 

 337 

Further, we have calculated XCO2
ACTM - XCO2

OCO-2 at those specific sites aircraft location considering 5°× 5° grid 338 

box surrounding it to check the difference similarity between XCO2 and tropospheric column CO2 selecting only 339 

specific times from OCO-2 of aircraft measurement. Results show      XCO2 difference mean (variability) of -340 

0.37 (±0.38), highlighting that the model is underestimating and also has minimum variability as compared to any 341 

individual layers. On the other hand, CO2 difference with campaign aircraft showed similar results; overall highest 342 

mean and variability exists in LT observed. Further, the overall mean (variability) of the tropospheric column is -343 

0.39 (±0.1) controlled largely by CO2 difference in LT. Here, we also check XCO2 difference at those campaign 344 

aircraft considering their covered tracks and then taking the average of all XCO2 differences to calculate a mean 345 

XCO2 difference. Results show lesser variability in XCO2 as compared to other layers and also negative mean 346 

XCO2 represents overall underestimation by the model. It has been observed in both aircraft categories that the 347 

model has underestimated overall CO2 concentration in all tropospheric layers and total columns, also the 348 

maximum mean and variability of CO2 difference are in LT. These differences are attributed possibly due to 349 

underestimation by prior flux in the inversion or misrepresentation of transport in the model. To further investigate 350 

CO2 differences altitude-wise, we considered individual vertical CO2 profiles from different campaigns for 351 

different regions North America, Pacific, Southern Ocean, Atlantic, Amazon and Asia discussed in detail in 352 

subsequent sections. 353 

 354 

3.2.2 North America, Pacific, Southern and Atlantic ocean 355 

 356 
Figure 4(a) illustrates integrated tracks traversed by the aircraft during ATom campaign (ATom-1, ATom-2, 357 

ATom-3, ATom-4) across oceanic and land parts, subdivided into four segmented track categories corresponding 358 

to specific geographical regions delineated with different colours. Represented segments are North America and 359 

neighbours; east to west aircraft campaigning (magenta), Pacific; north to south aircraft campaigning (yellow), 360 

Southern Ocean; west to east aircraft campaigning (red), and Atlantic; south to north aircraft campaigning (green). 361 
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Figure 4(b) shows the mean  XCO2 difference taken considering a collocation criteria of 5° × 5° latitude-longitude 362 

grid box around sampling location and XCO2 retrievals during  corresponding ATom campaign period. We 363 

observed a maximum XCO2 difference of nearly 2 ppm over 120° W and  90° W in North America and 364 

neighbouring land regions whereas oceanic regions, particularly Pacific and Atlantic are mostly confined within 365 

±1 ppm at any specific latitude. We also checked the latitudinal bias MIROC4-ACTM against TCCON XCO2 366 

across the latitude during the ATom campaign period shown in Figure S11. This comparison also showed      higher 367 

bias over this latitude location against TCCON sites at Park Falls, JPL, Lamont and East Trout Lake. Therefore, 368 

model bias is consistent both against OCO-2 and TCCON. Then, to understand the altitude-wise variation of 369 

CO2
ACTM - CO2

aircraft difference at different tropospheric depths (LT, MT, UT, tropospheric column), we used 370 

ATom vertical CO2 dataset. We also compared these CO2 differences with OCO-2 across segmented ATom tracks 371 

(Fig. 4c-f). Result shows largest CO2 difference in terms of mean ± STDEV (calculated taking 1-σ  standard 372 

deviation) of CO2 differences across longitude range is -0.41 ± 0.94 ppm exist in LT as compared to the other 373 

tropospheric layers likely due to uncertainty and large variability in prior land CO2 flux near surface (Fig. 4c). 374 

When we compare CO2 differences from other layers of different track segments, North America and neighbour’s 375 

CO2 difference at LT appears to be the highest, mainly occurring during the ATom-1 period (Figure S10). 376 

Moreover, OCO-2 XCO2 difference also showed large variability with longitudinal mean CO2 difference of -0.34 377 

± 1.07 ppm compared to aircraft tropospheric column CO2 of -0.01 ± 0.48 ppm. This essentially reflects the 378 

model’s overall good performance against ATom as compared to OCO-2 XCO2. Similarly, ACTM and ATom 379 

CO2 discrepancy was also evident in vertical cross-section, highest approximately ~ 2 ppm appeared at high 380 

latitude land regions during vegetation growing (respiration) period of northern hemisphere July-August, 2016 in 381 

ATom-1 (April-May, 2018 in ATom-4) (Figure S10). This large difference occurs across the vertical altitude 382 

range prominent above 8000 meters likely arises due to the coarse resolution of the ACTM model unable to 383 

represent the vertical transport. Needs further research on improving convective transport parameterization in 384 

forward model to improve vertical mixing (Patra et al., 2018). These results are also in line with the study 385 

Frankenberg et al., 2016. We have also validated model simulation with TCCON measurements during the ATom 386 

period, results also shown differences up to 1 ppm at the sites over northern America (Figure S11). 387 

 388 

Other three segments of CO2
ACTM - CO2

aircraft difference are primarily focused over oceanic regions (Southern, 389 

Pacific, Atlantic) where magnitude of ocean CO2 flux variability is less as compared to land regions as much as 390 

10 times less.  Land and ocean CO2 flux variability over the longitude and latitude band around ATom tracks for 391 

different campaigns is shown in Figure S12. Figure 4d shows that over the Southern Ocean, the model-observation 392 

CO2 difference is lowest within ±0.2 ppm for each vertical tropospheric layer and 0.06 ppm for the aircraft 393 

tropospheric column, with minimal variability compared to other layers. When compared with other ATom 394 

segments, the Southern Ocean shows the lowest CO2 difference in both mean and variability. This is because the 395 

aircraft sampling is at the background troposphere and is farthest from land having little influence from land CO2 396 

air mass. This reflects that the optimized MIROC4-ACTM model, considering 50 ground-based sites, simulates 397 

fairly well the aircraft background concentrations, however, it is unable to match a similar level of reproducibility 398 

for OCO-2 XCO2. Further, the latitudinal CO2 difference variability against the aircraft tropospheric column 399 

(lowest 8 km) is 0.15, compared to 0.77 with OCO-2 XCO2. In most latitudes, OCO-2 XCO2 differences are larger 400 

than aircraft CO2, indicating likely retrieval errors in OCO-2 given the lower uncertainty in aircraft CO2 401 
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measurements. This XCO2 difference with OCO-2 over the southern ocean is mainly during the ATom-2 period 402 

(Fig. S14); however large XCO2 difference pixels near 50° W and 70° W are during ATom-3 (September-October 403 

2017; Fig. S15). Previous studies reported that OCO-2 ocean glint retrieval over southern ocean has more residual 404 

biases while comparing against individual measurements (TCCON, In-situ, OCO-2 land) in top-down inversion 405 

(Byrne et al. 2023; O’Dell et al., 2018). In addition, this is also location of the southern hemisphere zone of 406 

stratosphere-troposphere exchange (STE) vary greatly spatiotemporally due to significant vertical mixing which 407 

strongly changes with season, less constrained by model transport, which may also result in an error in estimated 408 

posterior concentration. Next, we analysed CO2 differences over the southbound Pacific segments of the ATom 409 

campaign (Fig. 4e), it shows latitudinal CO2 difference mean (variability) is highest of about -0.16 (± 0.53)  ppm 410 

in LT, compared to MT and UT. On the other hand, aircraft tropospheric columns showed a mean (variability) 411 

difference of approximately -0.04 (± 0.38) ppm whereas OCO-2 XCO2 with a value of  0.27 (± 0.42) ppm. This 412 

shows although the mean is significantly different however the variability in both CO2 differences is close to each 413 

other, this is reflected in overall matching of both aircraft columns and OCO-2 XCO2 (Fig. 4e). Lastly, we 414 

analysed CO2 difference over the Atlantic i.e., longest northbound part of ATom campaign shown in Figure 4(f). 415 

Aircraft tropospheric column CO2 difference of aircraft shows value of 0.03 ppm as compared to XCO2 difference 416 

with OCO-2 showing value of 0.26 ppm. Although, it has been observed that the latitudinal CO2 difference in the 417 

aircraft tropospheric column closely matches pattern in OCO-2 XCO2. Another important point is that overall 418 

CO2 differences variability in the Atlantic is observed higher as compared to the pacific segment especially over 419 

tropics within 30° S–30° N, more in-situ aircraft measurements are      required to better understand the underlying 420 

error. Individual ATom campaigns results are presented in supplementary Figure S13-16. 421 

 422 

3.2.3 Amazon 423 
 424 
The climate-sensitive global tropic is a crucial part of the global carbon cycle due to the threats posed by climate 425 

change, especially the Amazon region, which holds the largest above-ground biomass (AGB) pool of 426 

approximately 123 ± PgC (Malhi et al., 2006; Santoro et al., 2010). Inversion based estimate showed Amazon 427 

was a carbon source of 0.3 ± 0.2 PgC/yr in agreement with bottom-up calculation (Alden et al., 2016; Beienen et 428 

al., 2015; Gatti et al., 2014, 2021a,c) during 2010-2019, though significant uncertainty remain. This is also the 429 

region under-sampled by OCO-2 retrievals due to clouds and high spatial resolution satellite monitoring is  needed 430 

in the future (Frankenberg et al., 2024). Prevalent uncertainty in flux estimation in modelling approach and low 431 

sampling of satellites highlight the need for more research in understanding error better way and improving both 432 

inversion and retrievals methods over Amazon. In section 3.1, we observed large model-observation XCO2 433 

differences exist over South America, especially over Amazon. To investigate it further, we have utilised the 434 

vertical profile (VP) of CO2 measurements from vertical aircraft campaigns across Brazilian Amazon sites, SAN, 435 

ALF, RBA, and TEF presented in Figure 5(a). The aircraft measurement has an accuracy of ~0.03 ppm (Gatti et 436 

al., 2023) and a detailed description of measurements can be found in Gatti et al., 2021a. Studies have shown that 437 

although these VPs are taken up to an altitude range of 4 km, they provide important insights into CO2 variability 438 

near the surface (Gatti et al., 2023; Tejada et al., 2023). An important point to note here, since Amazon aircraft 439 

campaigns measure VPs of CO2 approximately at an altitude up to 4 km, therefore, we considered the tropospheric 440 

column as 0 to 4 km and only those VPs having measurements at least 4 km are chosen for calculation. We kept 441 
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the same criteria for the data availability of  80% vertical bin filter for 500-meter bin resolution as mentioned 442 

previously in the methodology section.   443 

 444 

Before analysing the ACTM bias against the Amazon aircraft CO2, we validated ACTM simulated CO2  with the 445 

aircraft CO2 at these sites which are not used in the inversion, showing a good correlation (r) of ~0.8 at 95% 446 

significance level shown in Figure S17. We also checked that model able to capture TCCON XCO2 at Manaus, 447 

Brazil with time series XCO2 difference mean of 0.05 ppm, but the model shows higher differences (-1 ppm) with 448 

OCO-2 XCO2 in Figure 2. It hints, OCO-2 retrieval likely have error could arise from Amazon dense vegetation 449 

cover, cloud cover-aerosols and high humid conditions which can block sunlight spectra, reduce the signal 450 

strength, limit valid sampling and increase retrieval error (Frankenberg et al., 2024; Taylor et al., 2016; Yu et al, 451 

2019). These retrieval challenges precludes robust understanding of inversion error across the broader Amazonian 452 

region.  To further check this error altitude wise, a monthly mean time series of ACTM-aircraft CO2 difference 453 

considering all vertical profiles within a month is calculated for three vertical tropospheric layers, LT (lowest–2 454 

km), MT (2–4 km) and tropospheric column (lowest-4 km) during OCO-2 measurement periods is presented in 455 

Figure 5c-f. Figure 5c represents CO2 difference at SAN aircraft campaign sites having data gaps from mid-2015 456 

to early-2017 because of no measurements conducted during this period. Maximum model-observation 457 

differences in terms of mean(variability) of 0.93(± 3.36) ppm observed in LT as compared to MT and tropospheric 458 

column. This mismatch is comparable with previous study by Basso et al. 2023. Further, OCO-2 XCO2 difference 459 

showed overall negative mean of -0.83 ppm with variability of ± 1.04 ppm as compared to aircraft VPs profile 460 

with aircraft tropospheric column shown better constrained having value of 0.76 ppm. Further, we analysed VPs 461 

at the ALF site presented in Figure 5(d) shows overall that aircraft model-observation CO2 difference matches 462 

well with XCO2. CO2 differences at LT, MT, tropospheric column, XCO2 shows mean (STDEV) are -0.9 (± 4.24), 463 

0.08 (± 2.03), -0.13 (± 2.48), -0.65 (± 1.03) respectively. Basso et al. 2023 has shown that some of this difference 464 

between inversion and aircraft CO2 could be significantly improved (57% below 1.5 km and 49% above 3.5 km) 465 

when using regional  aircraft CO2 data in the inversions. . In RBA, CO2 difference at LT, MT, tropospheric 466 

column, XCO2 shows mean (STDEV) are -0.61 (± 4.33), -0.03 (± 2.52), 0.27 (± 2.95), -0.69 (± 1.04) respectively 467 

shown in Figure 5e. Therefore, it shows CO2 difference with the aircraft tropospheric column (OCO-2 XCO2) has 468 

opposite signature; it represents ACTM  over (under) estimates considering the whole time window. In TEF, CO2 469 

difference at LT, MT, tropospheric column, XCO2 shows mean (STDEV) are -0.4 (± 4.29), 0.64 (± 3.02), 0.19 (± 470 

2.89), -1.37 (± 0.99) respectively presented in Figure 5f. Except for SAN, at all other sites, we observed that the 471 

ACTM matches in total column better with aircraft than OCO-2, and but this profile is still insufficient to match 472 

with XCO2 needs further high profile measurement over this location. It is worth noting that the large discrepancy 473 

or bias in LT in RBA, TEF (SAN, ALF) during January-March (August-December) in west-central (south-east) 474 

Amazon regions may potentially arise due to fire CO2 emission is reported in Basso et al. 2023. Since our inverse 475 

simulations using CASA biospheric flux lack observation-based biomass burning data, this could also affect the 476 

overall simulated concentration as well.  We also checked monthly land CO2 flux anomaly, calculated by taking 477 

area mean around campaign sites within 5° × 5° degree and then removing seasonal cycle from actual time series. 478 

We noticed no such anomalous flux change during the anomalous CO2 difference period, likely due to the coarse 479 

resolution of the MIROC4-ACTM and also because no regional CO2 data from Amazon is used in our inversion 480 

which could potentially capture Amazon land CO2 flux changes better way (Fig. 5b; Fig. S1). Basso et al. 2023 481 

https://doi.org/10.5194/egusphere-2024-3976
Preprint. Discussion started: 21 January 2025
c© Author(s) 2025. CC BY 4.0 License.



13 
 

highlighted the importance of assimilating Amazon aircraft measurements in deriving regional land CO2 flux. In 482 

all Amazon aircraft sites, an increase in land CO2 flux during 2015-16 was observed due to strong ENSO events 483 

occurred during this period also reported in Das et al. (2022). 484 

  485 

3.2.4 Asia 486 

In Asia there are very few aircraft campaigns for CO2 measurements compared to Northern America and Europe 487 

(Crevoisiera et al., 2010; Xueref-Remy et al., 2011). Although, efforts have been made to measure CO2 vertical 488 

profile over monsoon-dominated Indian subcontinents for a shorter time period (Vogel et al., 2023). Therefore, 489 

available long-term CO2 measurements like CONTRAIL is very important to provide unprecedented insights into 490 

long-term CO2 variability in UT/LS and model evaluations over these regions (Bisht et al., 2021; Das et al., 2022; 491 

Niwa et al., 2011). Therefore, we have utilised these measurements to compare and understand model-492 

observations CO2 difference for OCO-2 and CONTRAIL aircraft in different regions across Asia. Figure 6a 493 

depicts the spatial distribution of the CONTRAIL campaign CO2 sampling location from January 2015-December, 494 

2021, covering altitudes ranging up to ~12 to 14 km with topographic altitudes information (topography elevation 495 

data is downloaded from https://www.ncei.noaa.gov/products/etopo-global-relief-model). Here, we have selected 496 

four separate regions around airport locations delineated through deep green colors having CO2 vertical profiles 497 

resulting from aircraft ascent or descent near airports. The four regions are namely Far East Asia,  Southeast 498 

China, northern Southeast Asia and Equatorial Southeast Asia, based on the locations of airports. In Far East Asia, 499 

two airports are considered: Tokyo International Airport, Japan (site code: HND) (35.6° N, 139.8° E) and Narita 500 

International Airport (site code: NRT) (35.8° N, 140.4° E) are considered together, named TYO (35.7° N, 140.8° 501 

E); in Southeast China, Hong Kong International Airport (site code: HKG) (22.2° N, 113.6° E); in northern 502 

Southeast Asia, Suvarnabhumi International Airport, Thailand (site code: BKK) (13.7° N, 100.7° E); and in 503 

southern Southeast Asia, Singapore Changi International Airport, Singapore (site code: SIN) (1.4° N, 104.0° E), 504 

all airports are marked with a small square box in Figure 6a ,b. During the aforementioned period, no vertical 505 

sampling was performed over the Indian subcontinent and other two airports highlighted on map Incheon 506 

International Airport (site code: ICN) and Shanghai Pudong International Airport  (site code: PVG), were not 507 

considered due to less number of sampling dataset. Figure 6b presents mean model-OCO-2 XCO2 differences over 508 

sampling locations of CONTRAIL, showing mainly negative CO2 difference ranging -0.5 to -1 ppm over boxed 509 

airports location highlighting likely reason is underestimation overall fossil emission of urban CO2 signature in 510 

the model. There is very limited TCCON sites over city scale that validates OCO-2 XCO2, however, Rißmann et 511 

al.      (2022) using Munich Urban Carbon Column network (MUCCnet) XCO2 across three sites over Germany 512 

found out OCO-2 has a RMSE of 0.6 ppm in urban site. Since OCO-2 has retrieval error over city scale it makes 513 

it challenging to discuss the sources of error could come from the model. 514 

To understand this we analysed more robust CONTRAIL aircraft CO2 (~0.2 ppm for each CONTRAIL data point), 515 

figure 6c-f represents a time series of model-observation CO2 differences over each airport for different vertical 516 

depths of troposphere and XCO2. Here, we have considered all CO2 vertical profiles, selecting aircraft ascent and 517 

descent flight modes over airports within a month and done a monthly average for 200-meter vertical bins to 518 

calculate partial column CO2 for aircraft and similarly for model simulations resampled at aircraft measurement 519 

location considering methodology described in section 2.4. For OCO-2, we computed the mean over designated 520 
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airports to calculate model-observation difference for XCO2 for the specific months. Results show in far east Asia, 521 

TYO location CO2 difference in LT, MT, UT, tropospheric column, XCO2 shows mean of -2.0, -0.88, -0.73, -522 

1.02, and -0.3 respectively. In HKG airport, the number of samples in LT was very less therefore ignored in the 523 

analysis however CO2 difference in MT, UT, tropospheric column, XCO2 shows values of -1.2, -0.99, -1.13 and 524 

-0.02 respectively. For northern Southeast Asia, BKK airport CO2 difference at LT,  MT, UT, tropospheric 525 

column, XCO2 shows mean (STDEV) of -2.71 (± 1.67), -0.83 (± 0.74), -0.6 (± 0.59), -1.06 (± 0.71), and -0.1 (± 526 

0.71)  respectively.  Further, in equatorial Southeast Asia, SIN airport difference at LT, MT, UT, tropospheric 527 

column, XCO2 shows mean (STDEV) of -1.89 (± 1.26), -1.03 (± 0.54), -0.81 (± 0.59), -1.05 (± 0.56), and -0.25 528 

(± 0.42) respectively.  529 

Result indicates that in northern Southeast Asia and southern Southeast Asia, mean and variability of model-530 

observation CO2 difference is higher in LT as compared to UT, MT and weighs more. In all regions, model-531 

observation difference for OCO-2 showed better constrained compared to aircraft measurements and readily 532 

observable that it closely matches the tropospheric column pattern. A notable fact in all regions is that the total 533 

time series mean of model-observation difference is negative for both aircraft (-1.02 to -1.13 ppm) and OCO-2 (-534 

0.02 to -0.3 ppm), which would imply an underestimation of model simulated CO2. While the OCO-2 XCO2 vs 535 

MIROC4-ACTM differences are not statistically significant but the large and systematic CONTRAIL CO2 vs 536 

MIROC4-ACTM differences may suggest that actual emission footprints captured by satellite observations are 537 

greater than the measurement resolution (~1.29 × 2.25 km2 for OCO-2). It suggests OCO-2 capturing emissions 538 

from broader urban areas than its nominal resolution, possibly either due to the well-mixed nature of CO2 and 539 

OCO-2 measuring total column or the spatial extent of urban footprint. Further, the large variability and significant 540 

differences between the aircraft CO2 column and XCO2 are evident in all regions. This is likely attributable to the 541 

selection of a specific box area, which surrounds airport locations situated in urban areas, one of the significant 542 

sources for fossil CO2 emission. This inference is discussed in earlier studies (Patra et al., 2011; Umezawa et al. 543 

2020), wherein they reported an urban emission footprint in CONTRAIL aircraft measurements conducted over 544 

airport megacities. The inversion process, utilized in this context, exclusively optimizes total CO2 fluxes, for 545 

biosphere and ocean regions considering background sites, whereas this CONTRAIL measurement over airports 546 

having signature of urban interiors. Consequently, noteworthy disparities may emerge due to uncertainties 547 

associated with fossil fuel CO2 emissions and also coarse horizontal resolution of MIROC4-ACTM (T42, ~2.8° 548 

× 2.8°) unable to reproduce the sub-grid-scale variations. This limitation does not influence optimized flux for the 549 

large area studies but affect our ability to simulate posterior concentrations, leading to underprediction of 550 

concentration near the surface over the emissions or sinks hotspots, e.g., anthropogenic emissions at the megacity 551 

areas or plumes of intense biomass burning. Note that the location of ascent and descent of the aircraft may change 552 

by seasons following the meteorological conditions, and thus the location of measurements less strictly follows 553 

year around. Previous studies underscore the critical role of fossil fuels in shaping simulated CO2 dynamics, 554 

emphasizing their potential to introduce systematic errors in optimized surface fluxes (Suntharalingam et al., 555 

2005; Wang et al., 2020).  556 

3.3 Discussion and conclusions 557 
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The availability of the OCO-2, aircraft, and in-situ CO2 observations, along with MIROC4-ACTM simulation at 558 

their corresponding measurement location and time, allows us with an opportunity to understand fine-scale CO2 559 

difference between the ACTM and OCO-2 more robustly. Because, this enables diagnosing CO2 difference from 560 

near surface to different tropospheric layers, utilising  surface, and aircraft observation to highlight persistent 561 

limitations in addressing inversion uncertainties. 562 

● We demonstrated that MIROC4-ACTM, using only 50 surface-based CO2 sites globally, accurately 563 

simulates tropospheric column and OCO-2 XCO2, showing strong agreement with aircraft and TCCON 564 

data (correlation = 0.9, p < 0.0001) at most sampling sites. 565 

● Our analysis highlighted that the regional hemispheric MIROC4-ACTM CO2 difference with OCO-2 566 

and in-situ measurements has heterogeneous signatures of CO2 differences, particularly  over  land. 567 

However, Kulawik et al. 2019, noting that OCO-2  retrievals over lands have more random errors 568 

especially over Amazon which is less sampled by OCO-2 makes retrieval less reliable for comparison 569 

(Frankenberg et al., 2024). Additionally, comparison against in-situ indicates that OCO-2 likely has a 570 

systematic retrieval error over the southern hemisphere oceanic region. Both random error over land, less 571 

sampling of OCO-2 over global tropics and systematic error over ocean makes it difficult to detect and 572 

understand the uncertainties in inverse models in a global perspective. We need more vertical aircraft 573 

profile measurements to more robustly understand this error especially over the global tropics. 574 

● Altitude wise comparison of CO2 difference from categorical specific and campaign aircraft 575 

measurements around the globe consistently highlight the  model's highest mismatch in LT as compared 576 

to MT, UT, and tropospheric columns. Additionally, LT contributes  more to the  mean and variability 577 

to the total tropospheric column than the MT, UT. This maximum uncertainty in the LT likely arises 578 

from the  uncertainties in prior fluxes near the surface. In contrast, the MT and UT, where large-scale 579 

dynamical mixing predominates, show better model performance, likely due to realistic transport of the 580 

forward model.      Further, aircraft tropospheric CO2 columns are better reproduced by MIROC4-ACTM 581 

compared to individual tropospheric layers and OCO-2 XCO2. Further, studies have shown OCO-2 582 

XCO2 is more prone to erroneous retrieval due to near surface      aerosol and cloud contamination in LT 583 

which makes it challenging for total column comparison with model (Connor et al., 2016; Massie et al., 584 

2021). 585 

● Results from ATom show large CO2 difference variability over North America regions as compared to 586 

other integrated tracks over ocean, likely because of the influence of land air mass having large variability 587 

in land CO2 flux. Similarly, large CO2 differences in aircraft sites over Amazon may likely arise due to 588 

uncertainty in prior flux and coarse resolution of the model unable to represent small scale variation 589 

requires more regional measurements in inversion, however, comparison against OCO-2 highlights 590 

robust requirement of good amount of valid retrievals to diagnose the inversion from large region 591 

perspective as well as insufficient high-altitude profile measurements (~4 km) demands more high profile 592 

measurements. Aircraft measurements over the remote background troposphere in the Pacific, Southern 593 

Ocean, and Atlantic showed the best match within 0.03 ppm when compared to OCO-2  with 0.2 ppm, 594 
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especially over the Southern Ocean.  However, the model comparison with CONTRAIL has shown 595 

consistent more (less) underestimation against aircraft (OCO-2) CO2 measurements for all airports in 596 

Asia. This discrepancy is likely due to the coarse resolution of the inversions unable to capture the 597 

signature of urban fossil CO2 emissions and also for OCO-2 unable to capture the whole urban footprint.       598 

 599 

Code availability 600 
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Figures 977 
 978 
 979 
 980 

 981 

 982 
 983 

Figure 1: Schematic of CO2 concentration vertical profile (dark blue line) by satellite, ACTM, and aircraft CO2 984 

(orange, golden) Arrowheads represent different layers of the atmosphere, specifically LT (lowest–2 km),  MT 985 

(2–5 km), UT  (5–8 km), and the tropospheric column (lowest–8 km) corresponds to the aircraft CO2 986 

measurement. Blue arrow represents total variation captured by satellite covers from surface to top of the 987 

atmosphere. 988 

 989 

 990 

 991 

Figure 2: CO2 space-time variability with (a) spatial mean XCO2 difference map between InvFG and OCO-2 992 

during January,2015-December,2021. (b) Time vs latitude distribution of XCO2 difference between InvFG and 993 

OCO-2 considering mean across global longitude. (c) Time vs latitude cross-section of CO2 concentration 994 

difference between InvFG and in-situ CO2 measurement, considering CO2 from 53 surface sites. (d) Latitude 995 

https://doi.org/10.5194/egusphere-2024-3976
Preprint. Discussion started: 21 January 2025
c© Author(s) 2025. CC BY 4.0 License.



24 
 

averaged time series of CO2 (XCO2) concentration difference between InvFG and Surface (OCO-2) respectively 996 

represented by black (red) colours. “r” value in panel-d represents correlation between time series of surface and 997 

OCO-2 difference at 99% significance level. 998 

 999 
 1000 

 1001 

 1002 

Figure 3. Mean model-observation CO2 difference (ppm) at different vertical tropospheric depths LT (light red), 1003 

MT (orange), UT (dodger blue), total column (teal) and XCO2 for specific sites aircraft (panel–a) and campaign 1004 

aircraft measurements having latitudinal coverage maximum 30° (panel–b). Aircrafts names are organized based 1005 

on aircraft observations location, progressing from high latitudes in the Northern Hemisphere, through the equator, 1006 

to southern latitudes. The second x-axis represents a number of data points for specific aircraft observation. The 1007 

first and second number inside the panel represents mean and 1-σ  standard deviation (STDEV) of model-1008 

observation difference across latitude for each tropospheric layer. 1009 
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 1011 
 1012 

Figure 4: (a) Integrated tracks traversed during ATom campaigns (ATom-1, ATom-2, ATom-3 and ATom-4). 1013 

(b) Spatial model-observation XCO2 difference against OCO-2 over ATom integrated track during campaign (c), 1014 

(d), (e), and (f) shows model-observation CO2 difference over different tropospheric layers from vertical CO2 1015 

profile measurements of ATom and XCO2 from OCO-2 for North America and neighbours, Southern Ocean, 1016 

Pacific, and Atlantic segments respectively. Tropospheric layers are LT (light red), MT (orange), UT (dodger 1017 

blue) and Total Column (teal), and OCO-2 XCO2 (black) representation for difference against OCO-2. The first 1018 

and second number on the right side of each middle and bottom panel represents the mean and 1-σ standard 1019 

deviation (STDEV) of model-observation difference across latitude or longitude, respectively. 1020 

 1021 
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 1022 

 1023 

 1024 

Figure 5: (a) Amazon aircraft vertical CO2 profile campaign sites, SAN, ALF, RBA, and TEF. (b) Time series of 1025 

land carbon flux anomalies at the campaign sites. (c), (d), (e) and (f) represent a time series of model-observation 1026 

CO2 differences for LT, MT, and tropospheric column, and XCO2  during OCO-2 measurement periods for SAN, 1027 

ALF, RBA and TEF, respectively. The numbers inside the middle and bottom panels represent the mean and 1-σ 1028 

standard deviation (STDEV) of model-observation CO2 difference over the time period.  1029 
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 1031 

Figure 6: (a) CONTRAIL aircraft sampling locations with associated colours represent sampling altitude in km 1032 

over Asia regions with surface elevation in km. There are four defined regions, each associated with specific 1033 

airports, covering various vertical zones of carbon dioxide (CO2) profiles. Far East Asia consisting of two airports, 1034 

HND, NRT merged to prepare TYO, Southeast China with one airport HKG, northern Southeast Asia with one 1035 

airport BKK, and equatorial Southeast Asia encompassing one airport SIN. (b) mean model-OCO2 XCO2 1036 

differences over sampling locations during the mentioned period. (c), (d) (e), and (f) are time series of model-1037 

observation CO2 differences over representative airports at different vertical depths of troposphere MT, LT and 1038 

tropospheric column and XCO2 utilising aircraft measurement and OCO-2. The numbers inside the (c), (d), (e), 1039 

and (f) panels represent the mean and 1-σ standard deviation (STDEV) of model-observation difference over the 1040 

period. 1041 
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