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Abstract. Microwave radiometry and scatterometry, two complimentary modes of sensing the composition and structure of

the top meters to hundreds of meters of the subsurface, are often difficult to reconcile, both on the Earth cryosphere and on icy

moons of Saturn. To help interpret and model microwave scattering in porous, high-purity ices, we examine jointly 6.9 to 89

GHz AMSR2 radiometry in vertical (V) and horizontal (H) polarizations as well as 5.2 GHz ASCAT, 13.4 GHz QuikSCAT,

and 13.5 GHz OSCAT scatterometry in the wind-glazed region of the East Antarctic ice sheet. The data are simulated using5

the Snow Microwave Radiative Transfer (SMRT) with a simplified snowpack with constant temperature and continuously

increasing grain size and density with depth. For the first time, we show that scatterometry and 6.9 to 37 GHz radiometry at V

polarization can be successfully simulated with a unique simple snowpack model, indicating that incoherent volume scattering

on subsurface heterogeneities dominates both the active and passive signals. To also simulate H-polarized radiometry, a thin

surface ice layer as observed in the wind-glazed regions is necessary. Additional complexity, such as seasonal temperature10

variations, surface roughness, or non-continuous density variations, is necessary to explain the 89 GHz data and HH-polarized

backscatter. Meanwhile, applying the same approach to simulate simultaneously passive and active Ku-band observations of

icy moons improves on previous attempts but remains unable to reproduce the very high backscatter observed, highlighting the

importance of coherent scattering and possibly unknown large (at least millimetric) icy structures in the subsurface.

1 Introduction15

Planetary ices on Jupiter and Saturn’s icy moons present an anomalous behavior to microwave radars. Indeed, their radar

properties include very high backscatter – with Enceladus being the most radar-bright object in the solar system – diffuse scat-

tering, and very high linear and circular polarization ratios (Hapke, 1990; Ostro & Shoemaker, 1990; Ostro et al., 2006, 2010;
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Black, 2001; Le Gall et al., 2019; Hofgartner & Hand, 2023). These properties are attributed to volume scattering in a low-loss

medium, which is likely enhanced by coherent backscattering (Hofgartner & Hand, 2023, and references therein). However,20

Janssen et al. (2011); Bonnefoy et al. (2020); Le Gall et al. (2023) highlight another anomalous aspect of microwave scatter-

ing on Saturn’s icy moons: simple radiative transfer models are unable to simultaneously explain active (radar) and passive

(radiometry) observations at the same frequency. Indeed, the Cassini Radar instrument, which operated in the Ku-band (13.78

GHz frequency, 2.2 cm wavelength) measured high backscatter but also higher than expected microwave emissivities (Le Gall

et al., 2023).25

The surfaces of Saturn’s icy moons are constituted primarily of high-purity water ice, with a small quantity of unidentified

non-icy material that varies regionally and from moon to moon (e.g., Le Gall et al., 2023, and references therein). Most

observations indicate a composition of crystalline water ice, even if at the low surface temperatures (about 60 to 100 K)

amorphous water ice would also be stable. At these temperatures, ice is unlikely to melt or metamorphize, although large

impacts, micrometeorite gardening, and cryovolcanism can introduce heat and create large, though local and temporary, thermal30

gradients (Porter et al., 2010). Thermal infrared and microwave radiometry observations point to low thermal inertia and likely

loose, porous ice created by impacts reworking the surface into a regolith (Howett et al., 2010; Ries & Janssen, 2015; Howett

et al., 2016; Ferrari & Lucas, 2016; Bonnefoy et al., 2020). The very high radar backscatter from both Jupiter’s and Saturn’s

moons is consistent with an icy, porous medium with multiple embedded scattering structures (Le Gall et al., 2019; Hofgartner

& Hand, 2023). The high-porosity crystalline water ice of the surface and near-subsurface material (down to unknown depths35

varying from meters to hundreds of meters) is thus analogous to snow, even though its origin is very different: the impacts of

any material onto icy moons (icy E ring dust, Phoebe ring dust, other impactors) occur at very high speeds, thus sand-blasting

rather than "snowing on" the surface.

To find an analog of these environments on Earth, we therefore turn to cold, radar-bright snow and porous ice. Until now,

Earth analogs used to interpret microwave radar observations of Jupiter’s and Saturn’s icy moons have included the Greenland40

percolation zone (Rignot et al., 1993; Rignot, 1995), penitentes in Chile (Hobley et al., 2018), and Northwest Greenland

(Culberg et al., 2022). However, all of these analogs present seasonal melt, a process which does not affect icy moons. Herein,

we propose a new analog to understand microwave scattering on icy moon surfaces: the Antarctic wind-glazed and megadune

regions. More specifically, we focus on the large megadune field southward of Concordia station in the East Antarctic ice sheet

(shown in Fig. 1), between 100 and 150◦E, which is the least emissive and most scattering region of Antarctica at 19 and 3745

GHz (Fahnestock et al., 2000; Picard et al., 2009; Brucker et al., 2010). This region is the coldest and driest area on Earth

(Traversa et al., 2023), with average temperatures around -50◦C, and is swept by a constant katabatic wind which transports

and sublimates snow downslope (Scambos et al., 2012). The snow megadunes are low-amplitude (2–4 m tall), long-wavelength

(2–5 km spacing) eolian features with regions of snow accumulation separated by wide wind-glazed zones of near-zero net

snow accumulation or even erosion (Frezzotti et al., 2002; Traversa et al., 2023). The glazed areas consist in a millimeter-thick50

ice crust covering a heavily metamorphized snow with large crystals (Albert et al., 2004; Courville et al., 2007). Due to the

low accumulation rates, the snow within the top tens of centimeters to meters is exposed to seasonal temperature variations for

decades or centuries, giving time for large hoar crystals to develop despite the low temperatures (Albert et al., 2004; Courville
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et al., 2007; Scambos et al., 2012). These large crystals, very scattering at microwave frequencies, are responsible for the

observed low emissivities and high radar backscatter (Fahnestock et al., 2000).55

The wind-glazed regions of Antarctica have been associated with both high radar backscatter and low microwave emissivi-

ties, which are most likely due to large grain sizes in the subsurface (Fahnestock et al., 2000; Brucker et al., 2010). The large,

polygonal grains and chains formed by the sublimation-deposition cycles cause important scattering in the subsurface. Because

the deeper snow is older, it had time to form larger depth hoar, forming a vertical gradient in grain size (Picard et al., 2022b;

Brucker et al., 2010). The depth probed by a microwave radiometer is closely proportional to the wavelength, thus longer60

wavelengths (i.e., shorter frequencies) probe deeper. However, these longer wavelengths are also sensitive to larger grain sizes,

which occur at depth. These two effects compensate each other, and lead to a flat spectrum at 19 to 37 GHz; this effect was

successfully modeled by Brucker et al. (2010) using the dense-medium radiative transfer model multi layer model (DMRT-ML)

(Picard et al., 2013). Radiative transfer modeling has since been improved with the possibility to simulate active radar data

simultaneously, leading to the Snow Microwave Radiative Transfer model (SMRT) thermal emission and radar backscatter65

model (Picard et al., 2018). This model has recently been applied to a multi-frequency dataset in several regions in Antarctica

and the Canadian Arctic, where it is able to successfully reproduce brightness temperatures from 10 to 89 GHz using the sub-

surface structure measured on site (Picard et al., 2022b). Soriot et al. (2022) used the same model to simulate multi-frequency

radiometry and C-band scatterometry over sea ice, highlighting the importance of depth hoar in multi-year sea ice. Herein, we

apply this model to the Antarctic wind-glazed regions for the first time to simulate both microwave thermal emission at five70

frequencies from 6 to 89 GHz and radar backscatter at 5.2 and 13.4 GHz.

The goals of this study are twofold : 1) to use a unique snowpack and radiative transfer model to simulate jointly horizontally

(H) and vertically (V) polarized microwave radiometry from 6.9 to 89 GHz and scatterometry at 5.2 and 13.4 GHz in the

Antarctica wind-glazed region and 2) to infer novel interpretations on the comparative microwave scattering properties of cold

icy surfaces, in Antarctica and on icy moons. In Section 2, we present the datasets used herein, which include observations from75

AMSR2 (Advanced Microwave Scanning Radiometer), ASCAT (Advanced Scatterometer), OSCAT (Oceansat Scatterometer),

and QuikSCAT (Quick Scatterometer). Section 3 details the configuration of the SMRT model used to simulate these data, the

snowpack properties, and the model parameters. Section 4 presents the success of the model in reproducing most observations,

and the relative importance of each parameter in controlling the different frequencies, polarizations, or observation modes.

Finally, Section 5 discusses the validity of the Antarctic megadunes region as an icy moon analog and applies the same method80

with a two-layer snowpack to attempt to reproduce simultaneously unresolved radar and radiometry observations of Saturn’s

satellites.

2 Remote sensing data

Most of the radar and microwave radiometry data on Saturn’s icy moons were acquired with the Cassini Radar; it was thus

crucial for the Earth analog dataset to include both active and passive data in the Ku-band. Other frequencies, both in active and85

passive, help further constrain the interpretations, properly understand the frequency dependence of parameters like grain size
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Figure 1. Yearly averaged QuikSCAT 46◦ incidence HH-polarization view of Antarctica. The region of interest (ROI), which is plotted in

magenta, is the most radar-bright region of Antarctica.

and density, and test the capacity of the model to successfully model multi-frequency active and passive data. Frequencies above

about 100 GHz probe very shallow depths (Picard et al., 2012) and are not sensitive to the subsurface properties. Meanwhile,

over very thick ice and snow, frequencies lower than 2 GHz (available for example with SMOS and SMAP) may require a

coherent radiative transfer model to account for interference between layers (Leduc-Leballeur et al., 2015; Tan et al., 2015),90

whereas the SMRT models only incoherent scattering. We therefore restrict the analyzed data to frequencies from 5.2 to 89

GHz. The AMSR2, ASCAT, OSCAT and QuikSCAT datasets were all averaged over a year and gridded to a uniform resolution

of 12.5 km/pixel using the EASE-grid 2.0 Southern hemisphere grid projection (Brodzik et al., 2012, 2014).

To identify dominant behaviors in the active and passive microwave datasets, we use the Kohonen classification algorithm

(Kohonen, 1990), previously applied to a similar dataset in the Arctic by Soriot et al. (2022). This unsupervised machine95

learning algorithm identifies statistically significant clusters, which are self-organized with neighborhood requirements. The

classification in 10 clusters is shown in Figs. 2 and 3, whose comparison highlights the anticorrelation between active and

passive data, with very radar-bright regions exhibiting low emissivities.

2.1 Multi-frequency radiometry: AMSR2

The passive radiometry data used herein was acquired by the Advanced Microwave Scanning Radiometer (AMSR2) aboard the100

Japanese polar orbiting satellite GCOM-W. This instrument, which has been operational since 2012, measures the brightness

temperature TB in V and H polarizations at frequencies from 6.9 to 89 GHz at an incidence angle of 55°. The resolution varies

from 4 km at 89 GHz to 48 km at 6.9 GHz. Herein, we use the TB at frequencies of 6.9, 10.65, 18.7, 36.5, and 89 GHz (Maeda

et al., 2016), which correspond to wavelengths of 4.4, 2.8, 1.6, 0.82, and 0.34 cm respectively.
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Instrument ASCAT AMSR2 AMSR2 QuikSCAT OSCAT AMSR2 AMSR2 AMSR2

Mode Acitve Passive Passive Active Active Passive Passive Passive

Frequency (GHz) 5.2 6.9 10.65 13.4 13.5 18.7 36.5 89.0

Wavelength (cm) 5.8 4.4 2.8 2.2 2.2 1.6 0.82 0.34

Incidence angle 25–65◦ 55◦ 55◦ 46◦(HH)

54.1◦(VV)

49◦(HH)

57◦(VV)

55◦ 55◦ 55◦

Polarization VV V&H V&H VV&HH VV&HH V&H V&H V&H
Table 1. Instrument frequencies, wavelengths, and incidence angles.

AMSR2 emissivities have been computed using the AMSR2 brightness temperatures L1R data provided by the JAXA at105

their original spatial resolution for each frequency. The atmospheric contribution has been corrected using the radiative transfer

model of Rosenkranz (2017). The inputs used to calculate the atmospheric contribution (air temperature and humidity) have

been provided by the ECMWF Reanalysis data (ERA5). The surface temperature needed to compute the emissivity is the skin

temperature provided by ERA5 data. To remove seasonal temperature variations, AMSR2 data are averaged over the whole

year of 2019. We averaged only emissivities calculated with low cloud liquid water content (less that 0.05 kg.m−2, as indicated110

by the ERA5 reanalyses) to minimize cloud impact on the observed brightness temperatures. Pixels contaminated by Radio

Frequency Interferences (RFI) are also filtered out using the flags provided by the JAXA. This dataset is shown in Fig. 2.

2.2 C-band scatterometry: ASCAT

The Advanced Scatterometer ASCAT aboard the EUMETSAT’s MetOp (Meteorological Operational)-A, B, and C satellites

operates in VV polarization at 5.2 GHz (C-band), at incidence angles from 25° to 65° and 50 km resolution (Figa-Saldaña et al.,115

2002). We used the publicly available level-1 calibrated σ0 measured by ASCAT. Radar observations are not directly sensitive

to temperature and change very little with seasons in the region of interest (mean standard deviation=0.04 dB for ASCAT and

0.1 dB for OSCAT and QuikSCAT), but for consistency the ASCAT data were averaged over the year 2019 like the AMSR2

dataset. The ASCAT data are shown in Fig. 3.

2.3 Ku-band scatterometry: QuikSCAT and OSCAT120

The SeaWinds instrument aboard QuikSCAT measured the normalized backscatter cross-section σ0 at 13.4 GHz (Ku-band) in

HH polarization at an incidence angle of 46° and VV at 54°, at a resolution of 6×25 km, from 1999 to 2009. The Indian Space

Research Organization’s Oceansat Scatterometer (OSCAT) instrument aboard OceanSat-2 then ScatSat-1 also operates in Ku-

band, at 13.515 GHz. σ0 is measured in HH polarization at 49° and VV at 57°, at a resolution of 6× 30 km. QuikSCAT and

OSCAT data are both publicly available on the NASA Scatterometer Climate Record Pathfinder website (www.scp.byu.edu).125

We use both datasets to improve coverage in terms of incidence angles; QuikSCAT data is averaged over 2008 and OSCAT

over 2018. Although QuikSCAT did not observe over the same years as AMSR2, ASCAT, and OSCAT, the snow cover in
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Figure 2. Top: AMSR2 data at 6.9, 10.65, 18.7, 36.5, and 89 GHz in V polarization averaged over the year 2019 in the region of interest.

Note the color scale is the same for all frequencies. Bottom: Result of the Kohonen clustering algorithm with 10 clusters. Note that the

regions with lowest emissivity (cluster #10, in yellow) correspond to the radar-brightest regions and to the presence of megadunes.

the wind-glazed regions is unlikely to have substantially changed between 2008 and 2019; this is confirmed by the strong

consistency between OSCAT and QuikSCAT (Lindell & Long, 2016; Hill & Long, 2017). The QuikSCAT and OSCAT data

are shown in Fig. 3. At Ku-band, the radars are more sensitive to embedded scattering structures in the snow (depth hoar) and130

in the ice (bubbles) than at C-band, explaining the higher backscatter observed in QuikSCAT and OSCAT data than in ASCAT

data.

3 Method

3.1 SMRT model configuration

We simulate the scatterometry and radiometry data using the SMRT model (Picard et al., 2018), which is capable of simulating135

both active and passive microwave data. The snowpack is modeled as a stack of a plane-parallel horizontally infinite layers,

each with fixed properties. The SMRT model allows for flexibility in the scattering model, the radiative transfer solver, and the

microstructure model applied to each layer. Our specific choices and configuration are described below.

We use the symmetrized scaled strong contrast expansion theory (SymSCE) recently proposed by Picard et al. (2022a) based

on theoretical work by Torquato & Kim (2021). This choice is explained by the fact that at 10 to 30 meter depths, which are140
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Figure 3. Visualization of the scatterometry datasets : ASCAT (5.2 GHz), QuikSCAT (13.4 GHz), and OSCAT (13.5 GHz). The plot on

the right shows the dependence with incidence angle for all three datasets, using the same clusters and colors as in Fig. 2. Note also that

OSCAT and QuikSCAT are in HH polarization at the smaller incidence angles (46◦and 49◦, respectively) and VV at the larger incidence

angles (54◦and 57◦), as detailed in Table 1.

probed at several frequencies considered herein (Table 2), the Antarctic snowpack densities lie around 450−550 kg.m−3, which

is intermediate between snow and ice. However, most common scattering models, such as the improved Born approximation

(IBA) or the dense-media radiative transfer quasi-crystalline approximation (DMRT-QCA), become inaccurate within this

intermediate range, with a discontinuity between snow and ice (Picard et al., 2022a). The symmetrized version of the strong

contrast expansion addresses this issue.145

To solve the radiative transfer equation we selected the the Discrete Ordinate (DORT) method (Picard et al., 2022b) which

offers a consistent solution for both the active and passive mode.

The snow microstructure model used for each layer is the scaled exponential as modified in Picard et al. (2022a) with a

polydispersity of K = 0.62 found to be suitable in Antarctica. The model outputs the H- and V-polarized brightness temperature

TB in K at each AMSR2 frequency, as well as the HH- and/or VV- polarized ASCAT, QuikSCAT, and OSCAT normalized150

radar cross-sections σ0 at the frequencies and incidence angles of these instruments (see Table 1).

3.2 Snowpack model and parameters

Our snowpack model assumes continuous variations of grain size and density with depth. Field measurements have shown

that models with continuously increasing density and grain size fit reasonably well the observed behaviors (Albert et al., 2004;

Courville et al., 2007; Brucker et al., 2010; Picard et al., 2014; Leduc-Leballeur et al., 2015; Inoue et al., 2024). However,155

these models do not account for the random variations around these behavior, caused by seasonal and regional variations

in precipitation, wind, and temperature and especially important in the top few meters. Rather than identifying a realistic

snow profile corresponding to field measurements, as previously done by e.g. Picard et al. (2022b), we are attempting to fit

general behaviors in grain size and density over large regions. We therefore assume that random and unresolved fluctuations

do not significantly affect the microwave observations presented in Section 2 (Brucker et al., 2010; Leduc-Leballeur et al.,160

2015). The assumption of continuous variations in grain size and density is less valid in H polarization, which is sensitive to

7
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Frequency (GHz) 5.2 6.9 10.65 13.4 13.5 18.7 36.5 89.0

Maximum probed depths (m) 22–88 22–102 9.4–39 2.8–11 2.7–11 2.6–11 0.4–3.4 0.1–0.7
Table 2. Estimated maximum depths probed at each frequency, calculated following Section 3.2. The range of values corresponds to the

range of snowpack parameters given in Table 3. The depth is divided by 2 for frequencies corresponding to radar instruments (5.2, 13.4, and

13.5 GHz) to account for 2-way travel through the snowpack.

horizontal structures such as layers, and for high-frequency radiometry. The 89 GHz radiometry especially, which probes down

to centimetric depths (Picard et al., 2012), is very sensitive both to temperature variations and to the presence of an ice crust in

the wind-glazed regions.

We simulate a 10-layer snowpack, with or without the presence of a thin, uniform ice crust on top. The maximum depth165

is chosen to be 200 m, at which the snowpack has always densified to solid ice (Hörhold et al., 2011; Leduc-Leballeur et al.,

2015). The dielectric properties of the substrate follow the default SMRT framework, which follows (Matzler et al., 2006, p.

456–461) and are valid for the frequency range of 0.01-3000 GHz and ice temperatures of 20-273.15 K; the same model has

been used on Jupiter’s icy moons by Brown et al. (2023). Within the framework of the SMRT model with the exponential

microstructure, each layer is characterized by four parameters: layer thickness, temperature, density, and correlation length.170

Layer thickness: The SMRT model, which does not account for coherent effects, imposes that every layer must be thicker

than λ/4, which for the lowest frequency (5.2 GHz; ASCAT) is 1.44 cm. Using the extreme low and high values of each

parameter described above and in Table 3, we estimate the depths probed by each frequency. The maximum depth probed is

calculated as the depth zi beyond which the optical depth of the above layers
∫ zi

0
τ(z)dz is > 2; beyond this point, the structure

of the snowpack does not significantly affect the signal at a given frequency. The optical depth of a given layer is calculated175

as τ = κe× dz, where κe = κa + κs is the power extinction coefficient accounting for losses due to both absorption (κa)and

scattering (κs), provided for each layer as an SMRT output, and dz is the layer thickness. The resulting maximum probed

depths for the full range of parameters are provided in Table 2. Note that the minimum values of these depths correspond to

large grain sizes leading to very high scattering (κs dominates) whereas the highest values correspond to small grain sizes and

very low scattering (κa dominates). To fully sample the depths probed by each frequency, we chose 10 layers at exponentially180

increasing depths from 2 cm to 100 meters. Increasing the number of layers has no effect on the resulting emissivities and

σ0, indicating that the chosen sampling is sufficient. The bottom of the snowpack is modeled as a semi-infinite solid ice with

density 917 kg.m−3 and grain size identical to that at 100 m depth.

Layer temperature: Because the microwave radiometry is averaged over a full year, we assume that the temperature is

constant with depth, at least down to the depths probed at these frequencies. The temperatures are varied between -40 and185

-50◦C. These values are typical of the region of interest, although they do not encompass the full range of annually averaged

temperatures (-34° to -53°). Because we find that temperature influences both emissivities and backscatter values very little

(Section 4), we do not test more values herein.
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Layer density: The density variation with depth follows a simple exponential model reaching the value for solid water ice

at depth (Bingham & Drinkwater, 2000; Leduc-Leballeur et al., 2015):190

ρ(z) = ρice− (ρice− ρtop)e−Bz (1)

where ρice = 917 kg.m−3 is the density of water ice, ρtop is the value at the surface, and B is an empirical value in m−1,

whose value depends on the snow type (Bingham & Drinkwater, 2000). Leduc-Leballeur et al. (2015) find B = 0.017 m−1 at

Dome C in Antarctica. This density profile matches well those found in Antarctic firn regions with low accumulation, where

the pore close-off occurs deeper than is typical elsewhere (Van Den Broeke, 2008; Hörhold et al., 2011; Leduc-Leballeur et al.,195

2015).

Layer correlation length: Previous work has found that, for the grain sizes used in microwave radiometry simulations to

be comparable to the optical grain size measured in the field, a corrective factor must be used (e.g. the stickiness). Recently,

Picard et al. (2022a) has identified this factor as the polydispersity K, an intrinsic property of the snow microstructure, which

can be measured from e.g. micro-computed tomography (Coléou et al., 2001). To use the correct value as correlation length,200

we use the microwave grain size, defined by Picard et al. (2022a) as:

lMW = K × lP (2)

where lP is the Porod length, calculated from the layer density ρ, ice density ρice = 917 kg/m3 and optical grain radius ropt

as follows (Picard et al., 2022b):

lc = 4/3(1− ρ/ρice)ropt (3)205

By comparing AMSR2 observations to SMRT simulations in a region where the vertical structure of the snowpack had been

measured, Picard et al. (2022a) found that the best value for K for Antarctic snow is 0.62. We therefore use this value herein,

making the optical grain size ropt directly comparable to field measurements but this does not affect our results as fitting lp or

lMW given a constant K is equivalent.

We model the increase of optical grain radius ropt with depth z as follows (Brucker et al., 2010; Bingham & Drinkwater,210

2000):

rn
opt(z) = rn

top + Qnz (4)

where rtop is the grain radius at the surface in m, Qn is the snow grain-size gradient in mnm−1, and n is the growth exponent.

This model assumes a linear increase in grain radius (n = 1), surface (n = 2), or volume (n = 3) with time from metamorphism,

and therefore with depth assuming that snow accumulation is constant. It was shown by Brucker et al. (2010) to reproduce well215

the emissivities at 19 and 37 GHz within the Antarctic snow cover, and to be consistent with relative grain sizes over different

regions of Antarctica.

Surface ice crust: The wind-glazed regions are covered by an ice crust formed by snow ablation from wind and sublimation

(Courville et al., 2007). The thickness of this crust is likely millimetric, but there are other similarly thin ice layers embedded
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Parameter Symbol Unit Values Reference

Ice crust thickness zcrust mm 0 (no crust) to 10 Albert et al. (2004); Courville et al. (2007)

Surface density ρtop kg.m−3 300 to 450 Albert et al. (2004); Leduc-Leballeur et al. (2015)

Surface grain radius rtop mm 0.1 to 0.5 Courville et al. (2007); Brucker et al. (2010)

Density exponent factor B m−1 0.016 to 0.017 Bingham & Drinkwater (2000); Leduc-Leballeur et al. (2015)

Snow grain-size gradient Q1 mm.m−1 0.005 to 0.1

Q2 mm2.m−1 0.02 to 0.1 Brucker et al. (2010)

Q3 mm3.m−1 0.01 to 0.1

Temperature T ◦C -40 to -50 Picard et al. (2022a)

Polydispersity K 0.62 Picard et al. (2022a)
Table 3. Snowpack parameters for Antarctica SMRT simulations

within the top few meters of the snowpack (Albert et al., 2004). Exact simulation of the thickness or depth of these ice layers220

is irrelevant because it is highly variable over the 12.5 km resolution used herein. We therefore model the ice crust as a single

high-density (917 kg.m−3) ice layer on top of the snowpack, of thickness varying from 1 to 10 mm. Some of these thicknesses

are smaller than λ/4 for ASCAT waves and the longest AMSR2 wavelengths. The SMRT can accomodate a single layer thinner

than λ/4 by calculating explicitly the coherent effect through this layer following Montpetit et al. (2013); Proksch et al. (2015).

This is implemented by setting the option process_coherent_layer=True, but can only process coherent scattering due to the225

layer thickness, not due to grain size.

The simulated snowpack therefore has six parameters, summarized in Table 3. The resulting depth and density profiles are

shown in Fig. 4.

The SMRT model outputs the simulated brightness temperature TB at each AMSR2 frequency in H and V polarizations. The

emissivity is found by dividing the simulated TB by the assumed snowpack temperature. The model also outputs the simulated230

normalized radar cross-section σ0 at each sensed polarization and incidence angle for QuikSCAT and OSCAT (see Table 1),

and for ASCAT in VV polarization at incidence angles of 30°, 40°, 50°, and 60°.

4 Results and interpretation

4.1 Uniform density or grain size

We first tested the model with either density or grain size uniform with depth, while the other of the two varies as described235

above (Section 3.2). The result of the simulation for AMSR2 V-polarized emissivities is shown in Fig. 5 for physically reason-

able values of the parameters; other values only lead to worse fits. As shown in this figure, the model is unable to simultaneously

fit all AMSR2 frequencies if either the grain size or the density are kept constant.

Attempting to reproduce the observations with either the density or the grain size uniform with depth is unsuccessful. If the

grain size is kept uniform, then we generally find excessive scattering (low emissivities) at high frequencies and insufficient240
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Figure 4. Schematic representation of the modeled snowpack, with (left) the density and (right) the grain radius variations with depth.

Different line patterns correspond to different parameter values. The snow grains are shown here as circles for simplicity, but are not spherical

neither in reality nor in the model; the complex grain shape is accounted for by the polydispersity K. On the grain radius plot, the profiles

which reproduce the best the simulations are shown for Q1, Q2, and Q3 in black; note that these three profiles are very similar in the top 15

meters, to which the observations are most sensitive.

scattering (high emissivities) at low frequencies (Fig. 5, left). This demonstrates that grain size must increase with depth to fit

the observed spectra. The increase in grain size with depth in the Antarctica snowpack, as well as its influence on microwave

emissivities, have long been known (e.g. Jay Zwally, 1977; Brucker et al., 2010). If instead the density is kept uniform, the

simulated emissivities as a function of frequency have a concave shape, whereas a convex one is expected: the lowest and

highest frequencies appear to scatter excessively (Fig. 5, right). This would not occur if the density was not constant, consistent245

with increasing density with depth and a likely crusted surface affecting the 89 GHz values.

Brucker et al. (2010) modeled the Antarctic snowpack at 19.3 and 37 GHz with increasing grain size but constant density

and found a reasonable match to the data (i.e. a roughly flat emissivity spectrum). We are also able to reproduce the data with

the same model within this range, although with different values for the parameters rtop (we find rtop ≈ 0.2 mm; they find

0.45 < rtop < 0.65 mm) and Q2 (we find Q2 ≈ 60000 µm2.m−1; they find 400000 < Q2 < 820000 µm2.m−1) . This discrep-250

ancy is due to modeling differences between our simulations and those of Brucker et al. (2010). They used the DMRT-ML
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Figure 5. AMSR2 V-polarized emissivities simulated by the SMRT for a snowpack with either (left) uniform grain size with depth or (right)

uniform density with depth. The grayed region shows the full range of observed values within the ROI. The parameter values used for each

simulation are indicated in the title.

model composed of spheres, whereas we use the SymSCE model while accounting for polydispersity (as defined by Picard

et al. (2022b)). In any case, we show that while assuming constant density can be reasonable at 19.3 to 37 GHz, it is inconsis-

tent with observations over a wider spectrum range.

255

4.2 Variable density and grain size, without an ice crust

We then vary simultaneously the grain size and the density with depth, as described in Section 3.2, but without any icy crust

at the surface. We are not attempting to fit the model to the data, but instead to simulate the correct range of values for several

different datasets with a snowpack model as simple as possible. For simplicity, we only show in Fig. 6 the combination of

parameters which best match the observations, for linear (Q1), square (Q2), and cubic (Q3) increase in grain size with depth.260

We plot emissivity in each polarization eV and eH versus frequency and σ0 versus incidence angle in C-band (ASCAT) and in

Ku-band (QuikSCAT and OSCAT).

We find that all considered microwave active and passive observations except H-polarized emissivities can be simultaneously

simulated by the SMRT for reasonable values of the parameters. A summarized analysis of the influence of each parameter is

given below.265

Within the ranges expected in the Antarctic megadunes region, the snowpack temperature T and the density e-folding

factor B have very little influence on both the emissivities and the σ0 values (∆e < 0.05 and ∆σ0 < 0.6 dB). To simplify the

visualization, simulated values are shown only for B =−0.017, the value deduced from fitting two 80-m-long density profiles
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Figure 6. Best fitting simulations of AMSR2 V-polarized (a) and H-polarized (b) emissivity spectra and C-band ASCAT (c) and Ku-band

QuikSCAT and OSCAT (d) backscatter σ0 for different surface densities ρtop and grain size profiles (gradient Qn and surface grain radius

rtop), while fixing the temperature T =−50 ◦C and density e-folding factor B = 0.017 m−1. For each set of data, the range of observations

is shaded in gray. For simplicity, only the minimum and maximum values of density tested are shown: varying the surface density therefore

corresponds to the space between the two lines of a given color. The range between the yellow lines (for Q3) thus results in good fits for all

except H-polarized data.
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at dome C by Leduc-Leballeur et al. (2015), and T =−50◦C, the annual mean temperature measured by Picard et al. (2022b)

in the Antarctic megadunes.270

The grain size, defined by the parameters rtop and Qn, is the primary control on the shape of the microwave emissivity

spectrum. The surface grain size rtop affects high frequencies (which probe shallower depths) the most, whereas Qn controls

the grain size profile with depth and therefore influences lower frequencies. Assuming a linear increase of grain size with depth

(Q1) leads to high grain sizes at depth and small at the surface; ASCAT data, which is at lower frequency than 10–89 GHz

AMSR2 and therefore probes deeper, can never be reproduced for the same configuration as AMSR2 data. Meanwhile, all data275

except H-polarized emissivities can be simulated with a cubic increase with depth (Q3), while the square option (Q2) also has

difficulties with the 89 GHz data (see Fig. 6). As found by Brucker et al. (2010), we can thus exclude the case n = 1, but both

other options are acceptable approximations: grain size in the subsurface is probably a more complex function of precipitation

rates, temperature, and random variations. The grain radii we find in the subsurface are very large, with values around 1 mm at

15 m depths. Since the concept of grain size can be approached in many different ways (e.g., Picard et al., 2022b), we do not280

speculate on the subsurface grain size.

The surface density ρtop affects the backscatter and emissivity at all frequencies almost equally (Fig. 6). The density

controls the effective dielectric constant of the medium, and therefore strongly affects the probed depths (with a denser medium

being less transparent). Thus, to first order, the lower the density, the larger the path length within the medium, and the more

opportunities for multiple subsurface scattering, leading to lower emissivities and higher σ0. Scattering also varies in a complex285

manner with density (figure 2 of Picard et al. (2022a)); however, in our case this effect is difficult to disentangle from that of

grain size, since both properties vary simultaneously with depth.

We find that the H-polarized AMSR2 emissivities, shown in Fig. 6b, are poorly reproduced by the parameters that match

the rest of the data best, and would require higher grain sizes (rtop and/or Q2) than the V-polarized emissivities. This is likely

due to the polarization properties of the medium, caused by layers of varying density (embedded thin ice layers) and by a290

surface crust. Indeed, ice layers remain mostly invisible to V-polarized radiation near the Brewster angle, whereas H-polarized

radiation is very sensitive to these vertical dielectric contrasts (Leduc-Leballeur et al., 2015).

The simulated 89 GHz emissivity (λ = 3.34 mm) in V polarization is often very low, especially for surface grain sizes

rtop ≥ 0.2 mm. These large grains (compared to the wavelength) cause very important simulated scattering at 89 GHz. The

n = 3 option allows to start with very low grain size at the surface and increase quickly with depth; yet even so, the 89-37 GHz295

slope is never reproduced (Fig. 6). At the depths probed at 89 GHz (a few centimeters), the simulated snowpack is in fact not

realistic. Indeed, it does not account for the observed ice crust in the wind-glazed regions, the variations of temperature with

depth and season, and the random variations of density and grain size at these depths.

4.3 With an ice crust

To attempt to fit the H-polarized AMSR2 emissivities and the 89 GHz V-polarized AMSR2 emissivities, we add an ice crust of300

variable thickness on top of the snowpack. Such an ice crust is common within the wind-glazed regions and is likely to polarize

the outgoing signal, decreasing H-polarized emissivities. The results of these simulations are shown for eV , eH , C-band σ0,
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Figure 7. AMSR2 V-polarized (a) and H-polarized (b) emissivity spectra and C-band ASCAT (c) and Ku-band QuikSCAT and OSCAT (d)

backscatter σ0 for different values of the surface density ρtop and ice crust thickness zcrust while fixing the surface grain radius rtop =

0.1 mm , grain-size gradient Q3 = 50 µm3.m−1, temperature T =−50 ◦C, and density e-folding factor B = 0.017 m−1. As in previous

plots, the full range of observed emissivities and backscatter values within the region of interest is shaded in gray. The simulated scatterometry

is identical for zcrust = 2,6, or 10 mm, and overlap in c) and d). Note that, for zcrust = 0 (no crust), the simulated values are the same as

highlighted in green in the previous section.

and Ku-band σ0 (Fig. 7), for T =−50◦C B =−0.017 m−1, rtop = 0.1 mm, and Q3 = 50 µm3.m−1. These parameter values,

which reproduce reasonably well the expected σ0 and eV without an ice crust, were chosen for the figure, but the effect of the

ice crust is similar for all other tested parameter combinations.305

V polarized emissivities eV : As shown in Fig. 7a, an ice crust ≤ 1 cm thick can change the 89 GHz emissivities by at

most 0.04, and remains insufficient to explain the observed 37-89 GHz slope. A thicker crust might be able to reproduce the

observations, but would not be realistic: the thickness of the ice crust and underlying ice layers observed in the field is of the

order of millimeters, not centimeters. Here, our simplified model seems insufficient, and it may be necessary to add complexity
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such as superimposed layers of randomly varying density to improve the fit. At 89 GHz, radiometry is also very sensitive to310

surface temperature, which is seasonally much more variable than the temperature at depth.

H polarized emissivities eH : Comparing the emissivity spectra for zcrust = 0 (no ice crust) with the others (all identical

below 37 GHz), Fig. 7b shows that the polarization induced by the ice crust decreases eH . This decrease is sufficient, and even

slightly in excess, to reproduce the H-polarized observations. This is true regardless of the thickness of the ice crust, because

the air-surface interface, which controls the H polarization, is the same.315

Scatterometry σ0: The ice crust decreases the simulated QuikSCAT and OSCAT backscatter in HH polarization, but does

not affect the VV-polarized scatterometry (Fig. 7c and d). Regardless of the crust thickness, the effect on the HH-polarization

is so strong in the simulations that σ0 is predicted to be lower at 46° and 49° incidence in HH than at 54° and 57° in VV. This

does not match the OSCAT and QuikSCAT observations, which show σ0 decreasing with incidence angle regardless of the

polarization (Fig. 3). This could perhaps be explained by the presence of surface roughness, regional heterogeneity within the320

12.5 km pixels, or coherent scattering, which can affect the polarization ratio of active data (Hofgartner & Hand, 2023).

Including a thin ice crust in SMRT simulations helps lower the H-polarized emissivities, but is insufficient to explain the

89 GHz eV and eH , and even introduces new discrepancies to the H-polarized scatterometry. Thus, a simple snowpack model

is sufficient to reproduce the 6.9–37 GHz eV and 5.2–13.5 GHz σ0, but more complexity must be introduced for higher

frequencies and for H polarization. This complexity can include a thin ice layer as tested here, but also a time- and depth-325

varying temperature profile, random layer densities and grain sizes, a different grain size gradient in the top few centimeters,

or surface roughness. While this result illustrates the limits of a simple snowpack model, it also highlights the richness of

these complementary datasets, which used in synergy can provide constraints on subsurface properties inaccessible from one

frequency, polarization, or mode alone.

5 Discussion330

5.1 Wind-glazed regions of Antarctica as an analog for Saturn’s icy moons

The Antarctic wind-glazed regions are an excellent analog for microwave observations of icy moons. Their very low temper-

atures year-round do not allow melting of the snow and ice (Traversa et al., 2023). The high purity of the water ice, due to

the distance to both sea and rocky outcrops, is also analogous to icy moons, especially Enceladus (e.g., Le Gall et al., 2023).

The very low precipitation rates and near-zero snow accumulation (Traversa et al., 2023) may be as close as we can get to335

atmosphere-less lunar environments with almost no external material brought to the surface, and allow the development of

structures stable for years. Another advantage of studying this region is the large amount of available satellite observations and

the few in-situ campaigns in these regions, providing strong constraints to test the modeling approach before its application to

more uncertain conditions on icy moons.

Yet, like all Earth analogs for other planetary surfaces, this one is also imperfect. The temperature remains much higher than340

in the outer solar system, where airless bodies can also witness large surface temperature variations (e.g., between 40 and 140

K for Saturn’s moons, Howett et al., 2010). The higher Earth temperatures lead to faster sublimation and development of depth
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hoar, as well as slightly different dielectric properties and higher absorption losses: microwaves can probe considerably deeper

in colder ice. The second major difference is the presence of an atmosphere, with important katabatic winds (Scambos et al.,

2012) and occasional precipitation. Meanwhile, icy moons are airless but are affected by exogenic processes, including impact345

gardening and electron bombardment, likely causing differences in the surface structure (crystal size, presence of a crust, depth

of regolith...), which remains poorly understood on icy moons.

The introduction of a new icy moon analog is encouraging for further work analyzing the microwave properties of icy moons.

It could be used to examine the role of coherent backscatter in Earth snow (Stefko et al., 2022) or the variations of microwave

signals with the presence of non-icy material even in small quantities, which has been observed on icy moons (Le Gall et al.,350

2019, 2023).

5.2 Implications for Saturn’s icy moons

We have seen that the SMRT is able to successfully simulate simultaneously active and passive Ku-band observations in the

Antarctica megadunes region (Section 4). Our main objective now is to check if a simple configuration of the SMRT is also

able to reproduce at the same time the Ku-band radiometry and radar observations of Saturn’s mid-sized icy moons Mimas,355

Enceladus, Tethys, Dione, Rhea, Iapetus, and Phoebe by the Cassini Radar (Le Gall et al., 2019, 2023). We therefore chose a

simple two-layer model of regolith (modeled as snow in the SMRT) on top of ice, with a constant temperature profile, at the

Cassini Radar frequency (13.78 GHz), and with the default dielectric properties from Matzler et al. (2006). There are thus six

parameters as shown in Table 4: the density and grain radius of each layer, the thickness of the regolith, and the temperature.

Given the large uncertainties and likely large inter- and intra-satellite variations in the density, grain size, composition, and360

structure of icy moon regoliths, each parameter is left to vary within a very large range.

The regolith of icy moons at meter depths is poorly understood, with some parameters entirely unconstrained. Measured

surface porosities vary depending on the satellite, model, and data from 0.05 to 0.99 (Carvano et al., 2007, and references

therein), but generally need to be very high to match near to far infrared observations (Carvano et al., 2007; Ciarniello et al.,

2011; Ito et al., 2022). Compaction due to gravity is insignificant for hundreds of meters to tens of kilometers of depth,365

especially on Saturn’s mid-sized moons (Mergny & Schmidt, 2024), but other processes such as cryovolcanic or tectonic

activity, impacts, radiation, or sintering could affect both density and grain size (Molaro et al., 2019). Grain size is similarly

poorly constrained, with surface values measured between 1 µm (Ito et al., 2022), tens of µm, and up to 200 µm in the

Enceladus South polar terrain (Jaumann et al., 2008; Taffin et al., 2012); subsurface values remain unknown. Grain radii

beyond 1 mm are possible, but are not simulated herein due to the transition to a Mie scattering regime, which is not included370

in the SMRT model. Grain radii below 50 µm are too small to significantly affect the scattering at 2.2 cm wavelength, so are not

tested in the model. The temperature can vary from about 40 to 140 K at the surface (Howett et al., 2010), but is less extreme in

the subsurface probed by microwaves (Bonnefoy et al., 2020; Le Gall et al., 2023): we therefore chose a range of 60 to 120 K,

which is still very wide. Finally, the thickness of the porous regolith is generally assumed to be of the order of meters (Bland

et al., 2015; Ries & Janssen, 2015), but is of the order of hundreds of meters at least near the pit chains of Enceladus (Martin375

et al., 2023). These various observations justify the large parameter ranges shown in Table 4. Meanwhile, polydispersity is
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Parameter Symbol Unit Values Comments and reference

Regolith grain radius rtop mm 0.05 to 1 Jaumann et al. (2008); Taffin et al. (2012); Ito et al. (2022)

Regolith density ρtop kg.m−3 10 to 450 Carvano et al. (2007); Ciarniello et al. (2011); Ito et al. (2022)

Ice grain radius rice mm 0.05 to 1

Ice density ρice kg.m−3 500 to 900

Regolith thickness Ztop m 1 to 1000 Bland et al. (2015); Martin et al. (2023)

Temperature T K 60 to 120 Howett et al. (2010); Le Gall et al. (2023)

Polydispersity K 0.62
Table 4. Snowpack parameters for icy moon SMRT simulations

assumed to be the same as in Antarctica. Grain radii are kept below 1 mm because beyond that value, Mie scattering, which is

not accounted for the SMRT, becomes significant in Ku band (2.2 cm for the Cassini Radar).

Most observations of the icy moons by the Cassini Radar/radiometer were not resolved, and included multiple incidence

angles simultaneously. We therefore request the SMRT to output the NRCS σ0 and the brightness temperature TB in both380

polarizations (H and V for radiometry; HH and VV for radar) and for all incidence angles with a step of 5◦. Emissivities eV

and eH are calculated by dividing the brightness temperature by the assumed medium temperature T . Both σ0 and e are then

integrated over the disk (only in same-sense-linear polarization for σ0), following Wye et al. (2007) and Le Gall et al. (2019)

while also accounting for both polarizations:

Adisk
SL =

π/2∫

0

2π∫

0

(σ0
V V (θ,ϕ)cos2 ϕ + σ0

HH(θ,ϕ)sin2 ϕ)sinθdϕdθ/π (5)385

edisk =

π/2∫

0

2π∫

0

(eV (θ,ϕ)cos2 ϕ + eH(θ,ϕ)sin2 ϕ)sinθ cosθdϕdθ/π (6)

The resulting disk-integrated values are then directly comparable to those observed by the Cassini Radar/radiometer and ex-

amined by Le Gall et al. (2023). For comparison, we also simulate equivalent disk-integrated observations for the Antarc-

tica megadunes region. Using the same SMRT configuration as in Section 3 with our best-fitting parameters (T =−50◦C,390

B =−0.017 m−1, rtop = 0.3 mm, Q2 = 100000 µm.m−1, and 300 g.m−3 < ρtop < 450 g.m−3), we simulate Ku-band ob-

servations at all incidence angles and calculate Adisk
SL and edisk as above.

Plotting all disk-integrated values simulated by the SMRT regardless of the parameters over the Jupiter and Saturn moon

observations from Le Gall et al. (2023) shows that the model can reproduce observations of Jupiter’s icy moons, but never of

Saturn’s moons, which remain too radar-bright (Fig. 8) . This is likely because the model simulates only incoherent scattering,395

whereas the coherent backscatter opposition effect (CBOE) has been hypothesized to be the main cause for icy moons unusual

radar properties (Black, 2001; Le Gall et al., 2019, 2023; Hofgartner & Hand, 2023). The CBOE can at most multiply the
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Figure 8. The results of SMRT simulations for a two-layer icy satellite model are shown, along with observations on Jupiter’s and Saturn’s

icy satellites (from Le Gall et al., 2023) and simulated disk-integrated observations corresponding to the Antarctica megadunes region. Since

the SMRT does not simulate the coherent backscatter opposition effect, Adisk
SL is multiplied by 2 to provide a maximum theoretical value;

even so, the model is unable to reproduce most Cassini observations of Saturn’s icy moons.

radar returns (σ0 and therefore also Adisk) by a factor of 2. We plot SMRT simulations multiplied by 2, which correspond to

maximum values, and find that these are consistent with some Saturn moon observations, but still insufficient for Enceladus,

the radar-brightest object in the solar system.400

6 Conclusions

We use the SMRT model to simulate AMSR2 6.9 to 89 GHz emissivities as well as C- and Ku-band scatterometry measured

by ASCAT, OSCAT, and QuikSCAT in the Antarctic megadunes region. Modeling the Antarctic snowpack as layers with

increasing density and grain size with depth allows us to reproduce simultaneously, for the first time, all V-polarized emissivities

from 6.9 to 37 GHz and backscatter at 5.2 and 13.4 GHz. The observed microwave emissivity spectrum is slightly convex, but405

remains within the range 0.7 < eV < 0.9: this shape can only be explained with both density and grain size increasing with

depth, which result from densification and metamorphism, respectively. Combining multiple frequencies thus provides insight
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into the vertical profile, an approach which is also useful on icy satellites such as Iapetus (Bonnefoy et al., 2024) and Ganymede

(Zhang et al., 2023; Brown et al., 2023), although variations in composition will also have to be considered.

The fact that 5–37 GHz Antarctica radar and radiometry data can be successfully simulated while ignoring coherent scatter-410

ing, surface roughness, and random density and grain size fluctuations in the top few meters implies that both the active and

passive V-polarized microwave signals at these frequencies are dominated by incoherent scattering on large subsurface grains.

Meanwhile, to reproduce H-polarized emissivities, an ice crust over the snowpack is necessary, as observed in the wind-glazed

regions; however it also reduces the HH-polarized scatterometry. This could likely be remedied by adding further complexity

to the model, such as surface roughness which tends to moderate the polarization effect of flat interfaces. It is also possible415

that coherent scattering, either on large grains (Hapke, 1990) or caused by interference between layers (Leduc-Leballeur et al.,

2015), plays a role in the scatterometry data. A strong difference between H and V (or HH and VV) is an indicator of a stratified

snowpacks, or the presence of pure ice at the surface. Similarly, the observed 37–89 GHz slope in V- and H-polarized emis-

sivities cannot be reproduced by the model, even when including a thin ice crust. A more realistic near-surface model appears

to be required for the 89 GHz data, for instance with a seasonally varying temperature, or by modeling the strong gradient in420

grain size in the topmost 10-20 cm of the snowpack as observed in the field (Picard et al., 2022b).

The relative success of the simple snowpack representation and of the SMRT in reproducing 5–37 GHz active and passive

microwave observations in the Antarctic megadunes region encourages its application to the radar and radiometry observations

on icy moons, characterized by even higher scattering. A first application to icy moons using a wide range of parameters on

a two-layer model is able to reproduce observations of Jupiter’s moons. Meanwhile, to approach the observed radar and ra-425

diometry data on Saturn’s moons, it is necessary to invoke coherent backscattering, consistent with previous work (Hofgartner

& Hand, 2023). Even so, Saturn’s satellites and especially Enceladus remain too radar-bright for the model configuration and

range of parameters tested, hinting for example at very large grain sizes. The SMRT, with realistic hypotheses, thus signifi-

cantly improves upon simulations by previous analytical models (Le Gall et al., 2023), but also highlights the importance of

coherent scattering, which future work could incorporate into the model, for instance using the formulations of Markkanen &430

Penttilä (2023) or Muinonen & Penttilä (2024). CBOE is also likely on Earth (Stefko et al., 2022): successfully understanding,

measuring, and modeling it will benefit both communities. It would also be interesting to attempt to reproduce resolved obser-

vations of Saturn’s moons using more constraints such as resolved observations (Le Gall et al., 2014, 2017; Bonnefoy et al.,

2020) or radiometry at multiple frequencies (Bonnefoy et al., 2024), for instance on Enceladus or Iapetus. Meanwhile, inte-

grating non-icy components into the model may help understand both regional and satellite-to-satellite variations in microwave435

emissivity and radar brightness.

7 Environmentally responsible research

The work presented herein makes use of data from four Earth observation space missions: QuikSCAT, whose launch mass was

970 kg; ASCAT on the Metop-C satellite, whose launch mass was 3950 kg; OSCAT on Scatsat-1, whose launch mass was 377

kg; and AMSR2 aboard GCOM, whose launch mass was 2000 kg. Using a life-cycle emission factor of 50(±10) tCO2e.kg−1440
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(Wilson, 2019; Knödlseder et al., 2022; Marc et al., 2024), these satellites have estimated carbon footprints of, respectively,

18,500 tCO2e, 197,500 tCO2e, 18,850 tCO2e, and 100,000 tCO2e, without accounting for other environmental impacts

such as local pollution due to mining or ozone layer depletion caused by the launches. Since data from these satellites are not

used only for research purposes but also for weather forecasting and private applications, it is difficult to estimate the impact

per scientific paper. We also made use of data from the Cassini mission, which using the same method had an estimated carbon445

footprint of 392,902 tCO2e, corresponding to 42 tCO2e per paper as of 2022 (Knödlseder et al., 2022). We wish to warn

against unnecessary proliferation of infrastructures with such high environmental impact and instead promote sufficiency in

both Earth and Planetary Science.
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