Retrieving frozen ground surface temperature under the snowpack in
Arctic permafrost area from SMOS observations

Comments from Reviewer 1

Comments from the reviewer
Answers from the authors

Reviewer 1: General Comments

In this study the authors developed an approach for estimating frozen ground surface temperature underlying
snow in Arctic tundra environments. Their approach is based on the inversion of a relatively simple microwave
emission model (MEM), tailored to arctic tundra winter conditions, and driven by SMOS L-band brightness
temperature observations. Differing MEM types are applied; the first assuming homogeneous surface conditions
and the second applying a fractional water cover (FW) correction for snow and ice covered water bodies to
reduce associated bias on ground temperature retrievals. The retrievals were derived and evaluated against
global reanalysis data (ERA-5) and in situ temperature measurements across 21 Arctic tundra reference sites
in northern Alaska permafrost locations from 2011-2020. The results reveal the important influence of FW
on SMOS ground temperature retrievals in the Arctic and demonstrate an effective method for temperature
retrievals spanning a range of FW conditions characteristic of the Arctic tundra winter environment.

Overall, the paper is well written with clearly explained methods and interesting and well justified results, and
conclusions. The figures and table summaries are clearly depicted and provide adequate support to the major
points of the paper. The study also shows the potential for effective monitoring of Arctic winter ground tem-
peratures beneath the tundra snowpack from SMOS and other low frequency satellite microwave radiometers
using a relatively simple MEM with minimal ancillary data requirements. Significant broader impacts from this
study include the potential for satellite based monitoring of winter soil temperatures in the Arctic, which are
generally poorly characterized in global land models and from available sparse monitoring sites. Winter ground
temperatures also have strong science value due to amplified Arctic warming trends and the strong association
of ground temperatures on permafrost and soil carbon stability. I consider the paper suitable for publication in
it’s present form pending consideration of the following minor revisions.

Reply : Many thanks for your valuable comments. Please find our responses below. We have numbered the
items for referencing. We are limiting the response to items highlighting potential issues and stating specific
questions and we corrected all suggested editorial changes.

Reviewer 1:

R1-C1

Section 1: Include a concise statement of the broader science objective or goal of the study at the end of the
Introduction section.

Reply : A sentence was added at the end of to the Introduction, highlighting the the broader science objec-
tive explore in this study.

New (56 - 57): "This satellite-based approach opens a new path towards soil temperatures monitoring under
the snowpack in the Arctic with expected improvement in land and carbon cycle modeling in permafrost area."

R1-C2

Section 2.4: Given the enhanced influence of topography on microclimate heterogeneity at high latitudes, con-
sider adding the terrain elevation heterogeneity surrounding site location grid as an additional factor that may
help explain differences between the relatively coarse resolution satellite and reanalysis observations, and the in
situ site measurements.

Reply : Topography can indeed impact the SMOS measured brightness temperatures by up to 5 K
. However, one has to keep in mind that the topography at L-band and at SMOS scale is different
from the topography for optical sensors. |[Mialon et al.| (2008) identified SMOS pixels affected by the topography
based on an emissivity model and Digital Elevation Model (DEM, from the Shutter Radar Topography Mission




-STRM). They evaluated the impact of topography on the SM retrieval, and classified SMOS footprints as:
not impacted by topography, slightly impacted by topography, i.e. SMOS SM should be considered with care;
significantly impacted by topography, i.e. SMOS data should not be used. We carefully checked our sites, and
none of the SMOS footprint associated with the 21 study sites is affected by strong topography and only Atigun
Pass is classified with few "moderate" topography. Precisions about topography checking were added in Section
2.2.

Old (1. 69 - 72): "The 21 reference in situ sites are located across Alaska (US), in the Arctic region (Figure 1
and Table 1). The topography is flat and the continuous permafrost landscape integrates numerous lakes. Some
sites are located close to the coast (Barrow, Lake 145, Fish Creek, Camden Bay) while others are disseminated
inland. All the selected sites are located above the tree line and are representative of the tundra environment
with vegetation characterized by low shrubs and mosses (Table 1)."

New (71 - 76): "The 21 reference in situ sites are located across Alaska (US), in the Arctic region (Figure
1 and Table 1). The continuous permafrost landscape integrates numerous lakes and some sites are located
close to the coast (Barrow, Lake 145, Fish Creek, Camden Bay) while others are disseminated inland. All the
selected sites are located above the tree line and are representative of the tundra environment with vegetation
characterized by low shrubs and mosses (Table 1). SMOS observations are flagged for topography (Mialon et al.|
2008), but none of the 21 in situ sites are impacted, except for the Atigun pass site which is labeled as moderate
topography, i.e. SMOS data quality may be impacted by topography."

R1-C3

Section 4.2.2: Do the sites with higher bias share similar features that may help account for the larger tem-
perature error? E.g., sites located along coastlines near open ocean or in complex foothills topography may be
expected to have larger apparent bias than relatively flat inland locations.

Reply : We indeed expected a dependency with surface characteristics. This motivated Table 1 and Table A2
of our manuscript. Unfortunately, it was difficult to conclude on the influence of surface on the performances of
the retrieval. Neither the land cover (Table 1), nor the soil organic and clay content (Table A2) gave a significant
result. For sites located by the coast, the Artic sea water/ice may have a different impact than inland waters.
But, mostly, |Gutierrez et al.| (2012) showed that the existence of land-sea contamination effects which can be
mitigated in the image reconstruction. We added some of these inputs in the discussion section:

New (359 - 364): "For sites with higher biases (namely Niguanak, Marsh Creek, Camden Bay and Fish
Creek), no correlation could be made with surface characteristics, such as land cover (Table 1) and soil content
(Table A2). However, we noticed that those sites correspond to coastal pixels, i.e. made of BT measured on
the continent and the ocean. |Kerr et al.| (2020)); |Gutierrez et al.|(2012) highlighted the retrieval difficulties for
coastal BT that result from mixed pixels of land and sea. In fact, the observation geometry variations that lead
to various water fractions are not taken into account in the MEM and difficult to model."



Retrieving frozen ground surface temperature under the snowpack in
Arctic permafrost area from SMOS observations

Comments from Reviewer 2 / Christian Matzler

Comments from the reviewer
Answers from the authors

Reviewer 2: General Comments

This work is an effort to estimate ground temperature (usually below a snowpack) in arctic tundra regions
from SMOS data, using for validation in-situ data in Alaska at fixed stations (latitude range from 68° to 71°N).
Comparison is also made with ERA 5 data.

The retrieval model is simple, using only two fitting parameters Hr , one for the snow-ground interface and the
other one for the ice-water interface. Unfortunately, the model test only relies on statistics, assuming constant
behaviour for the investigated 8-year period.

A problem is the strong and variable influence of water bodies on the SMOS data. Furthermore, the large
footprint of the satellite data limits the representativeness of local station data. Nevertheless, in areas with
small water fraction, the results show promising results. Further work is needed because wetlands, rivers and
lakes with variable snow and ice cover are abundant in this area. Their influence on microwave emission cannot
be accounted for with the present assumptions, such as constant H r values. Solutions may have to use further
information, e.g. from polarisation, see references below.

Reply : We acknowledge the reviewer for the comments, and for suggesting thoughtful literature on the topic.
The remarks are indeed justified, and this study is a first step to demonstrate the faisability of the approach.
We develop some points raised by the reviewer in our responses below.

Reviewer 2:

R2-C1

Fitting parameters: The model used is very simple. Although the Hr values are thought to be related to interface
roughness, other effects, such as impedance matching and local absorption/emission also play a role. Reduced
reflectivity (Equation (3)) means increased absorption/emission. Therefore, such effects can be simulated using
this model, too. An example is a sudden inflow of liquid water into the interface layers, e.g. by wind braking
ice. But this means that the parameters are variable in space and time.

Reply : The model proposed in this study is, in fact, simple. Various choices led us to assess this method
that is applicable at the global scale. First, very few auxiliary data are required in the inversion process. It is
only based on the SMOS observations (12 years of L3 BT), modeled temperatures from ECMWF and landcover
characterization from ESA CCI. Consequently, the retrievals can be made at global scale, i.e. in the whole
circumarctic permafrost area.

In addition, the inner heterogeneity of the SMOS field of view and its consequences are still difficult to assess
(Gibon et al., [2022} 2024). Adding some auxiliary data to the process would require a detailed study of the
additional information at the SMOS scale. Similarly, setting temporal varying parameters in the model would
lead to increasing the complexity.

Few studies explored the complex relations that link transmissivity, reflectivity, absorption, and emission
theoretically (Métzler, 2006; Schwank et all, 2015; [Naderpour et al), [2017b) or at the local scale
11994; [Naderpour et al., 2017a). We agree that the H, parameter is not only a matter of interface geometrical
roughness, but also accounts for local heterogeneity and has various impacts on parameter retrievals
let al. 2017a} Holmberg et al., |2024). Yet, it still appears to be useful for simple modeling optimization and is
considered as an empirical fitting parameter as in Lemmetyinen et al.| (2011).

We recognized that the parameterization of lake ice is over simplified. Indeed, as Figure 8 and 9 show,
it seems that ice conditions change in time. This was observed by many studies (Adams and Lasenby, (1985}
Duguay and Lafleur, [2003; Murfitt et al., 2023). However, very few studies have tried to simulate the various
processes affecting lake ice L-Band signal. Our study underlines the importance to improve that understanding
in order to improve our algorithm in the future. We added few sentences in the discussion to clarify that point:




New (409 - 410): "Such observations may also help the development of a more complex model to better
describe the L-band emissions of the circumarctic lakes and their variations through the seasons."

R2-C2

A more general model may have to consider additional effets such as:

e The reflection at the boundary between frozen and unfrozen soil may have a contribution to the observed
signal.
Reply : Our first tests were to considered a soil with a water content and perform a joint SM and T,
retrieval. With the SMOS observations, it led to very low SM content. Based on the in situ temperatures
(see Figure , that show frozen conditions down to 120 cm, and considering the estimated emission depth
( de ~ 15 cm as suggested by [Ulaby and Long| (2014) or §. ~ 50 cm, as suggested by Rautiainen et al.|
(2012))), we concluded that as a first order hypothesis, the deeper unfrozen soil did not impact much our
retrieval. Note that the hypothesis is valid in the context of our modeling approach.
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Figure 1: Boxplots of the in situ ground temperatures (in °C) at various depths for all sites. Temperatures are
selected from 2012 to 2020 when inversion is performed, i.e. Ty insitu < —5°C at the shallower depth available
(5 cm or 15 ecm). The boxes represent the site median and interquartile range (Q3 — Q1), the whiskers represent
the 5 and 95 percentiles and the points are outliers.

New (299 - 300): "As observed by |Schwank et al.| (2004), the observed signal can encompass a contribution
of the boundary between frozen and unfrozen soil, which was not taken into account in our modeling."

e In permafrost areas, the soil layer may freeze completely.
Reply: Indeed, and this was confirmed by in situ measurements down to 1 m depth for our sites, as shown
in Figure [} It shows the box plot of the temperatures per site, and per depth during the studied period
(i.e. winter). The deepest measurements (120 cm) show average temperatures around -10°C and, in our
selected period, 99% of the measurements at all depths are below -1.6°C.

e Shallow lakes may freeze down to the bottom.
Reply : This is an interesting point. We checked in the literature about the state of lakes in winter. No
reliable database exists on the topic. We found information on the surface extent from MODIS/Landsat
and on the yearly extend from :

— [Pekel et al| (2016): however this only considers the unfrozen period,
— Klein et al|(2024) (Global WaterPack): but areas above 70°N are missing.

Importantly, we tried to evaluate the impact of lakes (as frozen and unfrozen) with our model. Considering
frozen water, we were not able to fit SMOS observations, and we had to consider open water in our model
to significantly decrease the modeled BT to fit the SMOS BT (see R2-C1).

New (377 - 378): "Yet, different models should be applied depending on water bodies characteristics (e.g.
depth) as shallower lakes could freeze down to bottom or sea ice may be formed on the coastal areas."



e Bare rock areas with dielectric constant different from soil.

Reply: Indeed. We checked the presence of barren soil in the land cover classification, and found that only
2 of our study sites were concerned with barren rock, i.e. Atigun Pass (24%) and Ikalukrockcreek (11%)
above 10%.

Barren soil is mostly composed with carbonate (Martha Raynolds| 2022), and the corresponding dielectric
constant is estimated to €carbonate =~ 8 + 0.2 1 (Table 5.8. of [Matzler ) We performed a sensitivity
analysis to evaluate the impact of using a e, = 5 + 0.5 i instead of €carbonate ™~ 8 + 0.2 i. It resulted in a
A Ty iny — Ty obs =~ —8.1°C (see R3-C4). The impact of using another dielectric constant is not deniable
but it would require a precise BDD of all soil types and the use of dielectric mixing formula (see R2-C3).

e Influence of vegetation may be noticeable.

Reply: This is actually a study we are performing as this topic seems of interest. We first wanted to
evaluate the possibility of deriving soil temperature during winter conditions (this manuscript). Our
current work evaluates the impact of vegetation within the snowpack on the derived 7,. We aim to assess
the difficulties and impacts of a snowpack with vegetation with various sensitivity analysis. In fact, the
effects of vegetation can be observed in the snow density and variations in snow density affect the T},
retrieval (see R3-C5). We added some precision about vegetation effects and modeling in the discussion :
New (344 - 349): "As for the vegetation, multiple effects may mitigate the T,. The presence of shrubs
leads to a snow accumulation with a lower density than on herbaceous areas, which means more thermal
insulation from the snowpack (Griinberg et al. [2020; [Liston et al., 2002). However, Domine et al.| (2022)
also observed thermal exchanges between air and soil through the branches. As these effects are observed
at local scale, it is difficult to model it at the SMOS scale (~ 40 km)."

e Rain-on-snow events followed by refreezing.
Reply: Such events impact significantly the emissivity of microwave, and is currently studied at 19 and
37 GHz (Grenfell and Putkonen) 2008). Moreover, Dolant et al.| (2018)) makes an inventory of ROS events.
Experiments are also conducted in Cambridge Bay with an L-band radiometer (as part of a Sherbrooke
University PhD), but no analysis were made available. This may be to considered in future analysis, and
possible improvements of our methods. We would need to first detect such events at SMOS scale (~ 40
km).
A sentence was added to the discussion :
New (343 - 344): "In fact, Roy et al. observed a decrease in horizontal polarization as the impact
of ice crust formation, but Roy et al| (2018)) underlined the difficulty of modeling and quantifying such
event at L-band."

Some of these effects may be identified by temporal variations, giving valuable information, as can be seen in
Figure 8.

R2-C3

The value, 5.0, for the real part, needs a clarification, that may explain the discrepancy to the smaller values
in Table A2: When soil freezes in late fall, the soil is often water saturated at and near the surface due to dew
formation and water-vapour migration from warmer soil below. The value of 5 represents the dielectric constant
of the frozen version of this kind of soil. This is also the reason for the large contrast of microwave signatures
between frozen and unfrozen soil reported by many observers. In arctic regions, especially in high-porosity
organic soil, the situation may be different. The imaginary part is sensitive to soil type, but values decrease
with decreasing temperature.

Reply : Thank you for theses valuable precisions about the frozen soil dielectric constant. The choice of the
frozen ground dielectric constant has been discussed in :

New (325 - 333): "In addition, a permittivity equal t0 €fozen = 5.0 + 0.5 1 may result from a soil surface
which was saturated with water at freezing time. But, as the Arctic soil shows high SOC and high bulk density
(Table Al), it may not satisfy this water saturation condition. For the imaginary part of the permittivity,
Mironov et al.|(2015) showed a decrease with decreasing temperatures. In situ measurements of frozen ground
permittivity could be valuable, simultaneously to tower-based radiometer observations in the Arctic tundra
environment. Some probes seem efficient for this task, such as the one described in [Gélinas et al.| (2025).Using
a constant permittivity, calculated under the assumption of a homogeneous ground, is a practical solution for
our model, as it reduces the number of free parameters and auxiliary data. However, dielectric mixing models
enable to characterize heterogeneous materials (Ulaby and Long| [2014)) and could better fit the local behavior
of Arctic soils."




R2-C4

I do not fully understand the data in yellow, grey and blue. All three of them essentially show the same. The
figures should be simplified. Some extra points are unexplained. Furthermore, in Figure 5, and in its caption,
there appear to be errors with regard to Hr. The remark about the x axis is unclear and confusing. I have the
same problem with Figure B1.

Reply : Indeed, Figures 5/6/7 displayed a lot of information. We simplified these figures as recommended
(Figures . However, we consider that the confidence intervals are useful for data analysis and interpreta-
tion, so we kept this information as an appendix (see Appendix B: Results: Figures with confidence intervals).
We also corrected the caption of Figure 5 such as:

New: "Summary statistics of R, bias and ubRMSD for sites with vy; < 0.04. The boxes show the median
and interquartile range and whiskers show the 5 and 95 percentiles obtained from all the considered sites. The
boxes correspond to the skill estimate (R, bias, or ubRMSD). The associated 5% and 95% CI are provided in
Figure B1. The x-axis corresponds to the H, ; used in the inversion. The boxes are respectively obtained from:
MEMg with H, g5 = 0.8 (left), MEMg4wr with H, i = I (center) and ERA5 (right)."
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Figure 2: Summary statistics of R, bias and ubRMSD for sites with vy; < 0.04. The boxes show the median
and interquartile range and whiskers show the 5 and 95 percentiles obtained from all the considered sites. The
boxes correspond to the skill estimate (R, bias, or ubRMSD). The associated 5% and 95% CI are provided in
Figure B1. The x-axis corresponds to the H, ; used in the inversion. The boxes are respectively obtained from:
MEMg with H, g = 0.8 (left), MEMq4wr with H, wi = 1 (center) and ERA5 (right).
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Figure 3: Summary statistics of R, bias and ubRMSD for sites with 0.20 < vy; < 0.41. The associated 5%
and 95% CI are provided in Figure B2. Boxes represent the site median and interquartile range (Qs - Q1) and
whiskers represent the 5 and 95 percentiles. The x-axis corresponds to the H. ;i used in the inversion. The
rightmost boxes are obtained with ERAS5.
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Figure 4: Summary statistics of R, bias and ubRMSD for sites with v; < 0.04. The associated 5% and 95%
CI are provided in Figure B3. Boxes represent the site median and interquartile range (Qs - Q1) and whiskers
represent the 5 and 95 percentiles. The x-axis corresponds to the in situ probing depths used for the validation.
The extreme right boxes are obtained with ERAS5 and Ty ineitu at 5 cm depth.

R2-C5

For me this ist the most interesting figure of the study. It shows temporal variations that support support the
applied retrieval model, e.g. in 2012 and 2013, but with significant differences in other years. To understand
the behaviour, the data should be compared with additional in-situ information and with meteorological data.
This may be helpful for the understanding, and consequently for the refinement of the retrieval model.

Reply : We agree that additional in situ data would be helpful to better understand the signal. However,
all the available in situ data are already displayed in the Figure 8, as: ground temperature, air temperature
and snow depth. It has to be mentioned that data are very sparse in these remote and harsh environments.
However, we modified the Figure 8 to make it clearer, especially the legend to better emphasize the use of in
situ data. The whole legend is now below the figure, and the caption was modified to indicate the axis meaning.
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Figure 5: Time series of the ground temperatures (in °C, left axis) at Inigok from 2012 to 2020: Ty insitu (in
black), Ty mEM (in orange), Ty MEMe,w,; (in blue) and Tygras (in red). The snow depth (in cm, right axis)
is displayed as dark grey bar plots. In the background, stripes from blue to red account for the in situ air
temperature (in °C).

R2-C6

e Line 9: Please define: median correlation R
Reply : We removed the term correlation to clarify the expression as "median R".
New (9): "For sites with water fraction < 0.04, our methods (median R = 0.60) outperformed the European
Centre for Medium-Range Weather Forecasts reanalysis (ERA5) product (median R = 0.51) with respect
to the reference sites."

e Line 353: Need for clarification: snowpack conductivity: thermal or electrical?
Same line: T g transparency, what do you mean? Please define or explain.
Reply : We refered here to the snowpack thermal conductivity. The use of "transparency" was a typo.
We precised the sentences :
New (386 - 389): "This was not observed for T, gras, while it appeared in the retrieved Ty meMm, and
Ty MEM.wi- This could be linked to wet snow events, that increase the snowpack thermal conductivity and
consequently the link between air temperatures and 7. They also challenge the snowpack transparency
hypothesis (Kumawat et all [2022)), that could be not valid anymore, and could lead to an increase in the
retrieved T, values."

e Lines 364 to 366: What do the temperature values in brackets () mean?
Reply : We defined the meaning of the values in brackets as :
New (399): "The difference between the monthly averaged T, and the monthly averaged
Ty-insitu 15 noted AT. December (AT = -0.3°C), January (AT = -0.4°C) and February (AT = 0.3°C) T,
are in good agreement with Ty insitu for Hy wi = 0.7. However, in March, H, i = 0.8 provide better results
(AT = -0.1°C). The best H, y; is 0.9 for April (AT = 0.1°C) and May (AT = 0.3°C). "

e Figure 9: Based on the variable behaviour from year to year, the figure should focus on single years, first.
Reply : The figure 9 now only focuses on year 2017.
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Figure 6: Scatter plots of the retrieved monthly average T, (in °C) against in situ averaged Ty insitu (in °C) at
the Inigok site from December 2016 to May 2017. The error bars show the standard deviation of the retrieved
and measured temperatures. H, y; values used in the inversion are 0.7 (left), 0.8 (middle), and 0.9 (right). The
grey dashed line corresponds to the 1:1 identity line.

e Table A2: Clarify SM in the caption. Frozen or unfrozen water content? Please give information on both.
Reply : Soil moisture definition for frozen soil is complex. Here we consider the unfrozen water SM =
0 m3® m~3. The soil permittivity is considered to be calculated from a homogenous soil, i.e. pure soil
without frozen water (see R2-C3).
This was clarified in:

New: No unfrozen water is considered, i.e. SM = 0 m® m—3.
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Comments from Reviewer 3
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Reviewer 3: General Comments

This paper presents a novel method for retrieving ground surface temperatures under snowpack in Arctic per-
mafrost regions using Soil Moisture and Ocean Salinity L-band brightness temperature observations. The study
is well-motivated and addresses a critical gap in monitoring Arctic permafrost dynamics. The authors develop
and evaluate two microwave emission models to retrieve ground surface temperatures and validate their results
against in situ measurements and ERA5 reanalysis data.

The use of two models shows a thoughtful approach to handling complex Arctic environments. Additionally,
the optimisation of surface roughness parameters is a key strength in their methodology as it improves the
accuracy of retrievals, especially in areas with significant water fractions. The decision to validate against 21
sites provides an effective evaluation of the method’s performance. The paper is well-organized, and generally,
figures and tables are well-designed and effectively support the text.

Overall, the methodology is sound, and the results are promising, particularly for regions with low water frac-
tions. However, the paper would benefit from a more detailed discussion of its limitations, broader implications,
and uncertainties. With some revisions, this paper will significantly contribute to the field of remote sensing
and cryosphere studies. I will recommend this paper be accepted for publication after addressing the major and
minor revisions outlined below.

We are thankful for the positive review of our article. We appreciate the valuable remarks and references to
enrich the manuscript.

Reviewer 3

R3-C1

The discussion section could be expanded to address the broader implications of the study for Arctic climate
research and operational monitoring. This would enhance the paper’s impact and relevance to a broader com-
munity.

Reply : We added materials about follow-on objectives and implications for the Arctic climate and carbon
cycle research.

New (260 - 266): "In addition, this satellite-based approach is a first attempt to monitor the soil temperatures
under the snowpack in the whole circumarctic permafrost area. Based on L-band observations of SMOS since
2010, continuing efforts in long-term and operational permafrost state monitoring would be made possible by
the upcoming satellite missions CIMR and CryoRad (Donlon et al., 2023; Macelloni et al., |2018)). Such soil
temperature measurements would be highly beneficial for climate monitoring and carbon cycle modeling. Future
work will look at integrating our approach to assimilation approaches such as the SMAP L4 (Jones et al., [2017)
to improve soil temperature in winter and winter soil CO5 emission."

R3-C2

The limitations of the method, particularly for sites with high water fractions, should be addressed more thor-
oughly. The authors could propose specific strategies for improving the model in these regions.

Reply : Many persisting difficulties remain about frozen open water area modeling in passive microwaves.
Based on [Pekel et al/ (2016); [Klein et al.| (2024)), we made sure that the water bodies do not change in terms
of yearly extent. Yet we are missing a precise map of the extent during winter time and of the state of open
water during this period (completely frozen or unfrozen with a ice layer on top). One possibility would be
to consider high-resolution data from the SWOT mission (Biancamaria et al. 2016). In addition, the SMOS
derived data could be disaggregated to obtain better resolution products (Molero et al., [2016). Yet, modeling

10



the emissions of lakes throughout winter remains a heavy task (see R2-C1, R2-C2). The development of high
resolution missions following SMOS/SMAP is crucial but current best strategy is to get rid of open water on
the field of view (Rodriguez-Fernandez et al.l 2022} 2024]).

R3-C3

Would it be possible to introduce site-specific roughness optimization or incorporate additional auxiliary datasets?
This will allow for a broader understanding of site-specific limitations.

Reply : Numerous studies have been aiming to define a soil roughness optimization based on various auxiliary
datasets. For both SMAP and SMOS, H,, depends on the International Geosphere-Biosphere Programme
(IGBP) land cover map (Kerr et all [2020; |Chaubell et al., 2020). In the present study, we observed that
decrease in H, , leads to decreasing biases. A summary table of the biases was added in Appendix D with the
smallest bias per site/line in bold (Table . However, at first glance, no clear relation appears between this
and the site land cover (Table 1) or soil type (Table A1) (see R1-C3). Moreover, this work aimed to assess the
faisability of T'g retrievals from SMOS observations, and with limited additional data. That is why we focused
on defining only one H, , value to suit all sites.

R3-C4

Could a sensitivity analysis be added to assess how variations in permittivity affect retrieval accuracy?

Reply : In this manuscript, we aim to prove the faisability of retrieving T under the snowpack from SMOS
observations. As a sensitivity analysis would be a key element to improve the model and assess the uncertainties,
we are currently conducting another study on this topic.

The Figure[7] below shows the sensitivity of derived ground temperature as a function of ground permittivity
(real and imaginary parts as x/y axis). Each cell shows the value of ATy = Ty iny — Ty obs in °C. The derived
temperature highly depends on the permittivity €5, as Re(eg) varying from 1 to 10 leads to AT, from 8.3°C
to -12.6° and Im(ez) varying from 0 to 4.5 leads to AT, from 8.3°C to -13.2°. The difference AT, increases
in the negative values with increasing real or imaginary part. A variation of 1 in permittivity in the real part
(resp. imaginary part) leads to a delta of 3 K (resp. 0.4 K) in the derived temperature around our hypothesis
of a ground permittivity of 5 + 0.5 i. A wise choice of the soil permittivity value appears to be crucial to a
successful retrieval. We provided some elements of discussion in R2-C3.

Eg,mod = 5 + 0.5 I

o

|
(6]
Tg,inv - Tg,obs in °C

|
)
o

-15

Re(fg,obs)

Figure 7: Sensitivity analysis of the model for ground permittivity .. The difference between “observed” Ty obs
and inverted T} inv are shown depending of the “observed” ground permittivity g obs. The ground permittivity
used in the model is €5 moa = 5+ 0.5 1.
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R3-C5

A more detailed uncertainty analysis, including the impact of RFI, atmospheric contributions, and snow prop-
erty variability, would provide more information on the model’s capabilities.

Reply : Indeed, RFI highly impact the SMOS observations. However, it is difficult to relate the RFI in-
tensity, which varies a lot in space and time, to retrieval uncertainties. A strategy detection was developed by
[Richaume et al.| (2014) to discard TB that may be impacted by RFI. Consequently, we use a RFI ratio of 0.1 as
defined in [Kerr et al.| (2020). Previous studies (Pellarin et al.,[2003} Kerr et al.l 2020) have shown that temporal
and spatial variations in atmospheric contributions are limited.

Figure [§] shows a sensitivity test of the impact of an error in snow density. The “observed” Ty in both
polarizations (H in full line and V in dashed line) are obtained using various psons in our emission model
(left graph). From these BT, a T} in, is inverted, considering our model with a snow density equal to psiny =
300 kg m~3. The right graph shows the difference AT, between inverted Ty iny and “observed” Ty ops depending
of the “observed” snow density psobs- If psobs < Ps.mod; ATy > 0, up to 2 K. Otherwise, if the snow density is
underestimated, ATy is slightly negative, down to -2 K. Derksen et al.| (2014) showed that snow density across
the Arctic area was between 200 and 400 kg m~3. The corresponding absolute ATy is lower than 0.5 K. We
aim to detail similar sensitivity analysis in an ongoing study (see R2-C2).

201 e
Ps, mod = 300 kg m~3 ¢
Ps, obs iN kg m~3 1.5 A
— 50
—— 100 %) 1.0 A .
— 150 S o5
o *
— 200 g .
—— 250 S 0.0 -
— 300 |
351 z 05
5 .
— 400 -1.04
450
—— 500 -15-
2.0 .
0 10 20 30 40 50 60 100 200 300 400 500
Oin° ps,obs in kg m_3

Figure 8: Sensitivity analysis of the model for snow density ps. Left graph shows the “observed” Tx in both
polarizations (H in full line and V in dashed line), using various ps ops. Right graph shows the difference between
“observed” Ty obs and inverted Ty in, depending of the “observed” snow density psobs. The snow density of the
model is psmoa = 300 kg m 3.

R3-C6

A table summarizing performance across all sites such as median bias, R, etc. would be helpful.

Reply : A summary table per metric (R, bias and ubRMSD) was added in the Appendices and introduced
in the results section :

New (207 - 209): "The metrics (bias, R and ubRMSD) for all sites and obtained with both MEM¢ and

MEMg+wr are summarized in Appendix D. This results section first focuses on the H; o4 and H, ;i optimization
based on the biases (Section 4.1.) and then evaluates the T, retrievals (Section 4.2.)."
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Table 1: Biases in °C for all sites (lines) and all H, (columns). The last column gathers scores from ERA5. The
sub-table on top corresponds to the model MEM¢ and the one bellow to the model MEM¢. The smallest bias
obtained with MEM¢g or MEMg w1 per site (i.e. line) is in bold.

Bias in °C
MEMc¢ ERA5
H, g 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Awuna?2 18.0 15.6 13.5 11.7 10.0 8.5 7.2 5.9 4.9 3.9 3.0 1.8
Camden Bay 11.5 9.2 7.2 5.4 3.7 2.3 1.0 -0.2 -1.3 -2.2 -3.0 0.8
East Teshekpuk -9.8 -11.9 -13.8 -15.5 -17.0 -18.3 -19.5 -20.6 -21.6 -22.5 -23.3 3.5
Fish Creek 6.1 3.9 1.8 0.1 -1.5 -3.0 -4.3 -5.4 -6.5 -7.4 -8.3 0.6
Ikpikpuk -6.4 -8.6 -10.5 -12.2  -13.7 -15.1 -16.3 -17.4 -184 -19.3 -20.1 2.3
Inigok 3.1 0.9 -1.1 -2.8 -4.4 -5.8 -7.1 -8.3 -9.3 -10.2  -11.1 3.0
Koluktak 3.5 1.2 -0.7 -2.5 -4.1 -5.5 -6.8 -8.0 -9.0 -9.9 -10.8 0.8
Lake 145 -2.1 -4.3 -6.2 -8.0 -9.5 -10.9 -12.2 -13.3 -14.3 -15.2 -16.0 3.2
Marsh Creek 9.1 6.9 4.8 3.0 1.4 -0.1 -1.4 -2.5 -3.6 -4.5 -5.4 -0.8
Niguanak 12.6 10.3 8.2 6.4 4.8 3.3 2.0 0.8 -0.3 -1.2 -2.1 -1.1
Piksiksak 13.6 11.3 9.3 7.5 5.8 4.3 3.0 1.8 0.8 -0.2 -1.0 3.2
South Meade 3.3 1.1 -0.9 -2.6 -4.2 -5.6 -6.9 -8.0 -9.0 -9.9 -10.8 3.6
Tunalik 12.6 10.3 8.3 6.5 4.8 3.4 2.1 0.9 -0.2 -1.1 -2.0 4.8
Umiat 16.6 14.3 12.2 10.3 8.6 7.2 5.8 4.6 3.5 2.6 1.7 2.2
Atqasuk -0.7 -2.9 -4.9 -6.6 -8.2 -9.6 -10.9 -12.0 -13.0 -13.9 -14.8 1.1
Barrow -1.9 -4.1 -6.0 -7.8 -9.3 -10.7  -12.0 -13.1 -14.1 -15.0 -15.8 -2.4
Ivotuk 11.4 9.0 7.0 5.1 3.5 2.0 0.6 -0.5 -1.6 -2.6 -3.4 -0.1
Atigun Pass 10.3 8.0 6.0 4.1 2.5 1.0 -0.3 -1.5 -2.5 -3.5 -4.4 -1.7
Ikalukrok Creek 11.8 9.5 7.4 5.6 4.0 2.5 1.2 0.0 -1.1 -2.1 -2.9 -0.2
Imnaviat Creek 13.9 11.6 9.5 7.7 6.0 4.5 3.1 1.9 0.8 -0.1 -1.0 -4.3
Kelly Station 10.1 7.7 5.7 3.8 2.2 0.7 -0.6 -1.8 -2.9 -3.8 -4.8 -13.1
Bias in °C
MEMca4+wi ERAS5
H, wi 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Awuna?2 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 1.8
Camden Bay 79.7 70.5 62.1 54.6 47.8 41.7 36.2 31.3 26.8 22.7 19.1 0.8
East Teshekpuk 37.0 28.8 21.4 14.8 8.8 3.4 -1.5 -5.9 -9.8 -13.4  -16.7 3.5
Fish Creek 137.4 120.4 105.1 91.4 79.0 67.7 57.6 48.5 40.3 32.9 26.2 0.6
Tkpikpuk 22.7 17.1 12.1 7.6 3.6 -0.1 -3.4 -6.4 -9.1 -11.5 -13.7 2.3
Inigok 19.9 16.4 13.2 10.3 7.8 5.4 3.4 1.5 -0.2 -1.8 -3.2 3.0
Koluktak 15.6 12.7 10.0 7.7 5.5 3.6 1.8 0.2 -1.2 -2.5 -3.7 0.8
Lake 145 44.4 36.8 30.0 23.9 18.4 13.4 9.0 4.9 1.3 -2.0 -5.0 3.2
Marsh Creek 77.4 68.2 59.8 52.3 45.5 39.4 33.9 29.0 24.5 20.4 16.8 -0.8
Niguanak 29.6 26.3 23.3 20.6 18.1 16.0 14.0 12.2 10.6 9.1 7.8 -1.1
Piksiksak 5.2 4.7 4.3 3.9 3.5 3.2 2.9 2.6 2.4 2.2 2.0 3.2
South Meade 25.6 21.2 17.3 13.8 10.6 7.7 5.1 2.8 0.7 -1.2 -3.0 3.6
Tunalik 2.0 1.7 1.5 1.3 1.1 1.0 0.8 0.7 0.6 0.5 0.4 4.8
Umiat 5.8 5.6 5.3 5.2 5.0 4.8 4.7 4.5 4.4 4.3 4.2 2.2
Atqasuk 16.5 12.8 9.5 6.5 3.7 1.3 -0.9 -2.9 -4.7 -6.3 -7.8 1.1
Barrow 29.3 23.7 18.7 14.2 10.2 6.5 3.2 0.2 -2.5 -4.9 -7.1 -2.4
Ivotuk -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -0.1
Atigun Pass -1.5 -1.6 -1.7 -1.8 -1.9 -1.9 -2.0 -2.1 -2.1 -2.2 -2.2 -1.7
Tkalukrok Creek -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -0.2
Imnaviat Creek 2.0 1.9 1.7 1.7 1.6 1.5 1.4 1.4 1.3 1.2 1.2 -4.3
Kelly Station 0.5 0.1 -0.2 -0.5 -0.7 -1.0 -1.2 -1.4 -1.6 -1.8 -1.9 -13.1
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Table 2: R for all sites(lines) and all H, (columns). The last column gathers scores from ERA5. The sub-table
on top corresponds to the model MEM¢ and the one bellow to the model MEMg.

R
MEMG ERAB
Hy oo 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Awuna?2 064 063 063 063 063 063 063 063 063 063 063 | 055
Camden Bay 030 030 029 029 030 030 029 029 029 029 029 | 0.78
East Teshekpuk | 0.13  0.13 0.3 0.3 013 013 012 013 012 013 013 | 058
Fish Creek 0.24 024 023 023 024 023 023 024 024 023 023 | 074
Tkpikpuk 035 035 035 035 035 035 035 035 035 035 035 | 070
Inigok 0.42 042 042 042 042 042 042 042 042 042 042 | 0.54
Koluktak 0.45 045 045 045 045 045 045 045 0.44 045 044 | 063
Lake 145 0.16 0.5 015 015 015 015 015 015 0.15 0.5 0.15 | 0.61
Marsh Creek 023 023 023 023 023 022 022 022 022 023 022 | 063
Niguanak 0.42 042 042 042 041 041 041 041 041 041 041 | 0.79
Piksiksak 0.74 074 074 074 073 074 074 074 074 074 074 | 0.51
South Meade 022 021 021 021 021 021 021 021 021 021 021 | 053
Tunalik 075 075 075 075 075 075 075 075 075 075 0.75 | 0.55
Umiat 0.60 0.60 0.60 060 0.60 0.60 060 059 0.60 060 059 | 0.62
Atqasuk -0.24 -0.24 -0.24 -0.23 -0.23 -0.23 -0.23 -0.23 -0.24 -0.24 -0.24 | 0.40
Barrow 0.05 0.05 0.05 005 0.06 006 006 0.06 006 006 0.06 | 0.36
Ivotuk 050 049 050 049 050 049 049 049 049 049 050 | -0.05
Atigun Pass 0.68 0.68 0.68 068 0.68 0.68 068 0.68 0.68 068 0.68 | 0.72
Tkalukrok Creek | 0.51  0.51 051 051 051 051 051 051 051 051 051 | -0.09

Imnaviat Creek 0.55 0.55 0.54 0.55 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.50
Kelly Station 0.41 0.40 0.40 0.39 0.41 0.41 0.41 0.40 0.38 0.41 0.39 0.33

R
MEMG 1 w1 ERAB
Hyowi 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Awuna2 0.63 063 063 063 063 063 063 063 063 063 063 | 055
Camden Bay 029 029 029 029 029 029 029 020 029 029 029 | 0.78
East Teshekpuk | 0.13  0.13 0.3 013 0.3 013 013 013 0.13 013 013 | 0.58
Fish Creek 024 024 024 024 024 024 024 024 024 024 024 | 0.74
Tkpikpuk 035 035 035 035 035 036 035 035 035 035 035 | 0.70
Inigok 041 041 041 041 042 042 042 042 042 042 041 | 0.54
Koluktak 044 045 044 044 045 044 045 045 044 045 044 | 0.63
Lake 145 0.16 015 0.6 015 015 0.15 015 015 0.5 0.5 0.15 | 0.61
Marsh Creek 023 0.23 023 024 023 023 022 022 022 023 022 | 0.63
Niguanak 0.41 041 041 041 041 041 041 041 041 041 041 | 0.79
Piksiksak 074 074 074 074 074 074 074 074 074 074 074 | 051
South Meade 021 021 021 021 021 021 021 021 021 021 021 | 053
Tunalik 075 075 0.75 075 075 0.75 075 075 0.75 0.75 0.75 | 0.55
Umiat 0.60 0.60 0.60 060 0.60 0.59 060 0.60 0.60 0.60 0.60 | 0.62
Atqasuk -0.24 -0.24 -0.24 -024 -0.24 -0.24 -0.24 -0.24 -0.24 -0.24 -0.24 | 0.40
Barrow 0.06 0.06 0.06 006 0.06 0.06 006 006 0.06 006 0.06 | 0.36
Ivotuk 049 049 049 049 049 049 049 049 049 049 049 | -0.05
Atigun Pass 068 0.68 0.68 068 068 068 068 068 0.68 068 0.68 | 0.72
Ikalukrok Creck | 0.51  0.51 0.51 051 051 051 051 051 051 051 051 | -0.09

Imnaviat Creek 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.50
Kelly Station 0.42 0.41 0.41 0.41 0.43 0.40 0.40 0.41 0.40 0.40 0.40 0.33
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Table 3: ubRMSD in °C for all sites (lines) and all H, (columns). The last column gathers scores from ERAS5.
The sub-table on top corresponds to the model MEM¢ and the one bellow to the model MEM.

ubRMSD in °C
MEMc¢ ERA5
H, oo 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Awuna?2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 3.2
Camden Bay 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.5 4.5 4.5 4.5 2.7
East Teshekpuk 4.4 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.2 4.2 4.2 3.5
Fish Creek 3.8 3.8 3.8 3.8 3.8 3.8 3.7 3.7 3.7 3.7 3.7 2.3
Ikpikpuk 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.2
Inigok 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 3.4
Koluktak 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 3.1
Lake 145 4.3 4.3 4.3 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 3.3
Marsh Creek 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.3 4.3 4.3 2.9
Niguanak 3.8 3.8 3.8 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 2.6
Piksiksak 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 4.1
South Meade 5.4 5.4 5.4 5.4 5.4 5.3 5.3 5.3 5.3 5 5.3 4.0
Tunalik 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 4.4
Unmiat 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 3.2
Atqasuk 5.8 5.8 5.7 5.7 5.7 5.7 5.7 5.6 5.6 5.6 5.6 4.1
Barrow 8.3 8.2 8.2 8.2 8.1 8.1 8.1 8.0 8.0 8.0 8.0 3.5
Ivotuk 2.1 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2 2.0 3.9
Atigun Pass 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.4 1.5 1.4 1.4 2.0
Ikalukrok Creek 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 7.2
Imnaviat Creek 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 2.2
Kelly Station 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.4 1.4 6.0

ubRMSD in °C

MEMca4+wi ERA5
H: wi 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Awuna2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 3.2
Camden Bay 6.8 6.8 6.8 6.7 6.8 6.8 6.8 6.8 6.7 6.7 6.7 2.7
East Teshekpuk 6.1 6.1 6.1 6.2 6.1 6.1 6.1 6.1 6.1 6.1 6.1 3.5
Fish Creek 7.8 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 2.3
Tkpikpuk 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 3.2
Inigok 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.4
Koluktak 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.1
Lake 145 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 3.3
Marsh Creek 7.1 7.1 7.1 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 2.9
Niguanak 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 2.6
Piksiksak 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 4.1
South Meade 6.5 6.5 6.6 6.5 6.6 6.6 6.6 6.6 6.6 6.6 6.6 4.0
Tunalik 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 4.4
Umiat 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 3.2
Atqasuk 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 4.1
Barrow 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 3.5
Ivotuk 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.9
Atigun Pass 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.0
Ikalukrok Creek 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 7.2
Imnaviat Creek 1.3 1.3 1.3 1.4 1.4 1.3 1.3 1.4 1.3 1.3 1.3 2.2
Kelly Station 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6.0

R3-C7

The assumptions underlying the models such as constant ground permittivity, snow transparency etc. should
be clearly stated and justified in the Methods section.

Reply : Details about constant ground permittivity and other hypothesis can be find in R2-C2 and R2-C3.
We also precised the assumption behind the term "snow transparency" as:

New (158 -160) : "According to [Schwank et al.| (2015) and Rautiainen et al.| (2016, dry snow is considered
transparent at L-band, i.e. its internal transmissivity and reflectivity are ts = 1 (no absorption) and rs = 0 (no
volume scattering)".

Some figures like 5 — 7 are generally a bit overly complicated, as is the colour scheme. Try to simplify.

Reply : Indeed, Figures 5/6/7 displayed a lot of information. As it was probably too complicated, we simpli-
fied these figures as recommended (Figures see R2-C4). However, we consider the confidence intervals to
be useful for data analysis and interpretation, so we kept it in appendix figures (Appendix B: Results: Figures
with confidence intervals).

Figure 8 is a really interesting figure for this paper. It could be improved by adding a legend or annotations

to clarify the different lines. I understand shading the text to represent it, but this might not to be intuitive to
readers.
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Reply : We modified the Figure 8 to make it clearer. The whole legend is now bellow the figure, and the
caption was modified to indicate the axis meaning (see R2-C5).
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