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Abstract 
River water temperature is a key factor for water quality, aquatic life, and human use. Under 

climate change, inland water temperatures have increased and are expected to do so further, 

increasing the pressure on aquatic life and reducing the potential for human use. Here, future 

river water temperatures are projected for Switzerland based on a multi-fidelity modeling 

approach. We use 2 different, semi-empirical surface water temperature models, 22 coupled 

and downscaled general circulation- to regional climate models, future projections of river 

discharge from 4 hydrological models and 3 climate change scenarios (RCP2.6, 4.5, and 8.5). 

By grouping catchments under representative thermal regimes, and by employing hierarchical 

cluster-based thermal pattern recognition, an optimal model and model configuration was 

selected, thereby improving model performance. 

Results show that, until the end of the 21st century, average river water temperatures in 

Switzerland will likely increase by 3.20.7 °C (or 0.360.1 °C per decade) under RCP8.5, 

while under RCP2.6 the temperature increase may remain at 0.90.3 °C (0.120.1 °C per 

decade). Under RCP8.5, temperatures of rivers classified as being in the Alpine thermal regime 

will increase the most, that is, by 3.50.5 °C, followed by rivers of the Downstream Lake 

regime, which will increase by 3.40.5 °C. Under RCP2.6 temperatures in the Alpine and 

Downstream lake regimes change most with +1.15 and +0.990.5 °C. 

A general decrease of river discharge in summer (-10 to -40 %) and increase in winter (+10 to 

+30%), combined with a further increase in average near-surface air temperatures (0.5 °C per 

decade), bears the potential to not only result in overall warmer rivers, but also in prolonged 

periods of extreme summer river water temperatures. This dramatically increases the thermal 

stress potential for temperature sensitive aquatic species such as the brown trout in rivers where 

such periods occur already, but also in rivers where this previously was not a problem. By 

providing information on future water temperatures, the results of this study can guide 

management’s climate mitigation efforts.  
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1 Introduction 
River water temperature is a key factor in the regulation of physical and biogeochemical 

processes in aquatic systems, affecting water quality, aquatic life and the potential for human 

water use. Globally, climate change has already increased, and is expected to further increase, 

river water temperatures (Van Vliet et al., 2011; 2013). Without climate protection, it is 

estimated that, globally, 36% of fish species will see their future habitats exposed to climate 

extremes, with changes in water temperatures being deemed more critical than the change in 

water availability (Barbarossa et al., 2021). The amount of river warming, especially during 

heat waves and droughts, is however not only a function of near-surface air temperatures, but 

also of river discharge, river-groundwater interactions, and human activities such as 

channelization, damming, water use for cooling purposes, or sewage and storm water runoff 

all affecting water quality (Ficklin et al., 2023; Van Vliet et al., 2023).  

In Switzerland, the water tower of Europe, the effects of a changing climate have already 

influenced both river temperatures (Hari & Güttinger, 2004) and river discharge (Birsan et al., 

2005). According to the latest regional climate projections (CH2018, 2018) the change is likely 

to continue to affect Swiss waterbodies in the future (FOEN, 2021). Past water temperature 

trends in Switzerland from 1979 to 2018 amounted to an increase of 0.33 °C per decade on 

average, alongside a near-surface air temperature increase of 0.46 °C per decade (Michel et al., 

2020). Using a limited subset of federally monitored Swiss catchments (~10%) and a high 

emission climate scenario (RCP8.5), it was projected that water temperatures may continue to 

increase by 3.5 °C until the end of the 21st century (Michel et al., 2022). Being a higher 

elevation country (mean elevation 1,350 m asl), most rivers in Switzerland are populated by 

the brown trout (salmo trutta fario), a cold-water fish (Brodersen et al., 2023). All fish species 

have specific temperature limits within which optimal conditions for growth, health, 

reproduction, or life, exist. For the brown trout, which is a particularly temperature sensitive 

fish species, warmer water temperatures of around 13°C pose a threat for egg survival, 15 °C 

strongly increases their receptivity for parasites related illnesses, and prolonged exposure to 

25°C can lead to death (Strepparava et al., 2018; Wehrly et al., 2007; Chilmonczyk et al., 2002; 

Elliott, 1994). A prime example of a water temperature related threat is the elevation (i.e., water 

temperature) dependent proliferative kidney disease (PKD), a parasite-caused illness in brown 

trout which is increasingly wide-spread in Swiss catchments (Hari et al., 2006).  

A common challenge for model-based studies is the question of the optimal model to use. In 

surface hydrological applications, models can broadly be split into two major groups: process-

based and statistical/stochastic models (Benyahya et al., 2007). Process-based models are based 

on physical equations and can resolve many hydrological processes in a physically robust 

manner, from the local to the catchment scale. However, albeit physically more robust, process-

based models generally require a significant amount of input data and computational resources 

for the simulation of hydrological processes on the catchment scale, therefore limiting their 

applicability for climate change analyses on national scales. Statistical/stochastic models, as 

opposed to process-based models, are data driven, that is, are based on empirical relationships 

between input and output data. While they are physically less robust, their advantage lies in 

their relative simplicity and limited data requirements, sacrificing detail for increased 

repeatability and spatial coverage. However, in order to build on the efficiency of statistics 

whilst preserving a clear physical basis, as a compromise between the two major model groups, 

a sub-group of semi-empirical models, which employs physically meaningful equations but 

simplifies the more complex processes into purely empirical parameters, was developed 

(Piccolroaz et al., 2013). These semi-empirical models are ideally suited for hydrological 
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climate change projections, as they provide much more robust projections compared to purely 

statistical approaches but simultaneously allow for a more comprehensive analysis than 

process-based models by enabling multi-model climate change ensemble analyses (La Fuente 

et al., 2022; Meehl et al., 2007). 

The study of climate change includes the investigation of physical processes on global, regional 

and local scales. As scales change so too does the required level of detail needed to resolve the 

different water cycle components that are relevant on the respective scale. An ideally suited 

approach to address this challenge in hydrological modeling is a multi-fidelity model 

framework, which combines multiple computational models of varying complexity in an 

automated selection framework that ensures robust predictions while limiting the computation 

to only the necessary level of detail (Fernández-Godino, 2023). The use of process dependent 

fidelity ensures proper representation of physical processes on regional to local scales while 

keeping computational costs to a minimum. Multi-fidelity modeling is especially useful when 

acquiring high-accuracy data is costly and/or computationally intensive, as is the case for 

climate change impact assessment on the hydrological cycle. 

Given the past and future changes to Swiss river water temperatures and considering both the 

high sensitivity of aquatic species to river water temperatures and the increasing demand for 

river water by agriculture, industry and society as a whole, it is critical to obtain a robust spatial 

and temporal understanding of the temperature increases that are expected for the many 

different rivers and streams of Switzerland. Here, we developed an efficient multi-fidelity 

modeling method guided by statistical pattern recognition to estimate river water temperatures 

under climate change and thereby close the aforementioned spatial gap by determining, in an 

automated manner and on a national scale, how future river water temperatures are likely going 

to change. Compared to previous projections of climate warming in Swiss rivers (Michel et al., 

2022), the simplified multi-fidelity modeling approach not only enabled to cover the national 

scale (+90%) but also further thermal regimes (here 5, previously 2) and based on 22 GCM-

RCM chains (previously 7). By grouping catchments together via statistical pattern 

recognition, we were able to classify rivers (including spring-fed rivers) into 5 different thermal 

regimes, improving model results by allowing for optimal model selection at each station and 

enabling regime-specific analyses. The effect on warming by changing river discharge was 

investigate through a hysteresis analysis. Additionally, we introduce the extreme event severity 

index as an analytic tool to evaluate the change in thermal extreme amplitude. 

2 Materials & Methods 
In climate change studies of the hydrosphere, unknown biases present a fundamental challenge. 

These biases can arise from limitations in how well models capture future physical processes, 

as well as from assumptions embedded in climate scenarios. To limit the influence of unknown 

bias, a common method is the multi-fidelity modeling approach which combines multiple 

models with different processes of fidelity. Using multiple models (as well as climate 

scenarios), while accepting that process-specific model performance differs from model to 

model, minimizes the risk of large bias towards the real future through a widening of the range 

of projections being made. Advantages for hydrological studies include the improvement of 

robustness of low-flow forecasts and accountability of structural uncertainty (Nicolle et al., 

2020). As such, the method has been used to limit the uncertainty caused by hydrological 

models on runoff and evaporation climate projections using large ensembles of global 

hydrological models while investigating regional and global water scarcity in the future 

(Schewe et al., 2014). Even though varying model fidelity with varying complexity and 
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computational constraints is an advantage to hydrological modeling, care is needed when 

adding processes depending on the relevance of the process in the local area under investigation 

(Guse et al., 2021). 

In this study a multi-fidelity modeling approach using two semi-empirical surface water 

temperature models, air2water and air2stream (Toffolon & Piccolroaz, 2015; Piccolroaz et al., 

2013), was employed. This allowed limiting the computational requirements to the levels 

needed for climate change ensemble simulations. All available model configurations (i.e., 3, 4, 

5, 6, 7 and 8 different parameter combinations and implementations) were evaluated for their 

applicability to different thermal river regimes (Appendix A) and allowed for developing 

optimal site-specific models for all the 82 thermal river monitoring stations of the Swiss 

Federal Office of the Environment (FOEN).  

As the driving model forcing (i.e., hydrological boundary conditions), we used downscaled 

near-surface air temperature projections from 22 coupled general circulation to regional climate 

models (GCM-RCM) from 9 GCM and 8 RCM, and combined them with projections of future 

stream discharge from 4 hydrological models for 3 climate change scenarios (i.e., 

representative concentration pathways) representing all climate protection measures with 

RCP2.6, moderate measures by RCP4.5, and business as usual by RCP8.5. Following 

recommendations from the Word Meteorological Organization (WMO, 2017) to use 30 years 

of continuous data while evaluating climate change, we selected 3 periods of interest including 

a reference period (1990 to 2019) and both a near- (2030 to 2059) and far-future period (2070 

to 2099). The method pathway is visualized in Figure 1. 
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Figure 1. Workflow summarizing the data treatment and the multi-fidelity model selection and optimization.  

2.1 Data 
River water temperatures are directly influenced by both global and, to an even greater extent, 

local conditions in and above the drainage area, especially in regions divided by geographic 

barriers such as mountains (Ficklin et al., 2023). To analyze site-specific controls and project 

future river water temperatures, measured historic and simulated future climate data should 

thus be representative of the conditions and hydrologic processes upstream of the locations to 

be studied. The air2stream and air2water models require both measured historic and simulated 

future climate data to extend to at least a year (ideally more than one) and be daily resolved. 

However, to be sure that the effect of climate is included in calibration and analysis of future 

conditions, data should preferably cover 30 years (WMO, 2017; Piccolroaz et al., 2013).  

Temporally overlapping, daily averaged near-surface air temperature and river discharge 

measurements spanning the 30-year reference period of 1990 to 2020 were used as calibration 

data, while for validation the data from 1980 to 1990 were used (Table B2 in Appendix). By 

choosing to use the most recent data for calibration rather than validation ensures that recent 
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local climate conditions are carried into future projections (Shen et al., 2022). For the few cases 

where no forcing data for calibration did exist between 1990 to 2020 (Table B2), validation 

was deprioritized and calibration performed for the 1980-1990 data.  

Here we use CH2018 climate simulations based on the EURO-CORDEX regional climate 

modeling ensemble. In CH2018 near-surface air temperatures was downscaled by applying a 

statistical bias-correction and downscaling method (Quantile Mapping, a purely statistical and 

data-driven method) to the original output of all EURO-CORDEX climate model simulations, 

as observational reference station observations and observation-based gridded analyses were 

used (CH2018, 2018, Chapter 5). These data are available as both gridded and local station 

products (CH2018 Project Team, 2018). Following CH2018, the Hydro-CH2018 project 

analyzed the effects of climate change on Swiss water bodies (FOEN, 2021). The gridded 

climate product from CH2018 was used to construct projections of future river discharge for 4 

hydrological models used in Hydro-CH2018. The location where output from these 4 models 

was used in this study is shown in Figure 2a including: (M1) PREVAH-WSL a conceptual 

process-based model (Brunner, et al., 2019a; Brunner, et al., 2019b) and (M2) PREVAH-

UniBE (Muelchi et al., 2021), (M3) HBV Light-UniZH a bucket-type hydrological model 

(Freudiger et al., 2021), and (M4) AlpineFlow-EPFL the snowmelt and runoff model Alpine3D 

coupled to the semi-distributed hydrological model StreamFlow (Michel et al., 2022). The 

Hydro-CH2018 project produced projections for 61 out of the 82 FOEN river monitoring 

stations under 22 GCM-RCM model chains (9 GCM coupled to 8 RCM runs) with 0.11° and 

0.44° resolution and 3 climate change scenarios (RCP2.6, 4.5, and 8.5). The available 

projections, the employed circulation and hydrological models, and the considered climate 

change scenarios for all the different stations that were considered in this study are summarized 

in Table 1. 
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Figure 2. a) Investigated FOEN stations with available and used hydrological models providing future 

projections of river flow, b) station thermal regimes, c) downstream lake clusters, d) best performing surface 

water temperature model at downstream lake stations. Red arrows show river flow directions. Coordinate 

reference system is the Swiss LV95. Background map is the DHM25, 

swisstopo.admin.ch/de/geodata/height/dhm25.html).  

From models M1-M3, continuous projections of river discharge at daily resolution for the entire 

period covering 1990-2099 were available, projections from the M4 model were discontinuous 

and only covered the periods 1990-2000, 2005-2015, 2030-2040, 2055-2065, and 2080-2090, 

respectively. River temperature simulations of river monitoring stations for which forcing data 

from models M1-M3 were available covered the entire period of 1990-2099, while for stations 

for which only data from model M4 were available, simulations were only run for the periods 

for which data was available.  

Measurements of historic meteorologic and hydraulic parameters which were used for model 

calibration, validation and for bias correction were obtained at daily resolution from the 

MeteoSwiss IDAweb platform (meteoschweiz.admin.ch) and from the Hydrology Division of 

the Federal Office for the Environment FOEN (hydrodaten.admin.ch). For monitoring stations 

at which historic river discharge data or future river discharge projections were not available, 

only future near-surface air temperature projections were used to simulate water temperature. 

Where climate projections were available at multiple different spatial resolutions (i.e. 0.11° 

and 0.44°), only one model, as indicated in Table 1, was included in the analysis, following the 

approach of Muelchi et al., 2021. 

  



9 

 

Table 1. Climate projections and hydrological models used for temperature simulation. For a complete climate 

model designation, see the CH2018 project report (CH2018, 2018). Models analyzed are indicated by an "X" 

mark, and models not analyzed but with simulation data provided by a "(X)" mark. 

GCM RCM PREVAH-WSL (M1) PREVAH-UniBE (M2)  

  RCP8.5 RCP4.5 RCP2.6 RCP8.5 RCP4.5 RCP2.6 

 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 

ICHEC-EC-EARTH 

KNMI-RACMO22E   X   X       X   X     

DMI-HIRHAM5 X (X) X (X) X (X) X (X) X (X) X  

CLMcom-CCLM4-8-17         X  X    

CLMcom-CCLM5-0-6   X       X     

SMHI-RCA4 X (X) X (X) X (X) X (X) X (X) X (X) 

MOHC-HadGEM2-ES 

CLMcom-CCLM4-8-17   X         X (X) X       

CLMcom-CCLM5-0-6   X       X     

ICTP-RegCM4-3               

KNMI-RACMO22E   X  X  X  X  X  X 

SMHI-RCA4 X (X) X (X)  X X (X) X (X)  X 

MPI-M-MPI-ESM-LR 

CLMcom-CCLM4-8-17             X (X) X (X)     

CLMcom-CCLM5-0-6   X       X     

MPI-CSC-REMO2009-1         X (X) X (X) X (X) 

SMHI-RCA4 X (X) X (X)  X X (X) X (X)  X 

MPI-CSC-REMO2009-2         X (X) X (X) X (X) 

MIROC-MIROC5 
CLMcom-CCLM5-0-6   X           X         

SMHI-RCA4   X   X   X   X   X   X 

CCCma-CanESM2 SMHI-RCA4   X   X       X   X     

CSIRO-QCCCE-CSIRO-Mk3-6-0 SMHI-RCA4               X   X     

IPSL-IPSL-CM5A-MR SMHI-RCA4             X (X) X (X)     

NCC-NorESM1-M SMHI-RCA4   X   X   X   X   X   X 

NOAA-GFDL-GFDL-ESM2M SMHI-RCA4               X   X     
              

GCM RCM HBV Light-UniZH (M3)  AlpineFlow-EPFL (M4)  

  RCP8.5 RCP4.5 RCP2.6 RCP8.5  RCP4.5 RCP2.6 

 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 

ICHEC-EC-EARTH 

KNMI-RACMO22E   X   X                 

DMI-HIRHAM5 X  X  X  X  X  X  

CLMcom-CCLM4-8-17 X  X           

CLMcom-CCLM5-0-6   X            

SMHI-RCA4 X  X  X  X  X  X  

MOHC-HadGEM2-ES 

CLMcom-CCLM4-8-17 X   X                   

CLMcom-CCLM5-0-6   X            

ICTP-RegCM4-3   X            

KNMI-RACMO22E   X  X  X   X  X  X 

SMHI-RCA4 X  X   X   X  X  X 

MPI-M-MPI-ESM-LR 

CLMcom-CCLM4-8-17 X   X                   

CLMcom-CCLM5-0-6   X            

MPI-CSC-REMO2009-1               

SMHI-RCA4 X  X   X   X  X  X 

MPI-CSC-REMO2009-2 X  X  X         

MIROC-MIROC5 
CLMcom-CCLM5-0-6   X                     

SMHI-RCA4   X  X  X   X  X  X 

CCCma-CanESM2 SMHI-RCA4   X   X                 

CSIRO-QCCCE-CSIRO-Mk3-6-0 SMHI-RCA4   X   X                 

IPSL-IPSL-CM5A-MR SMHI-RCA4 X   X                   

NCC-NorESM1-M SMHI-RCA4   X   X   X   X   X   X 

NOAA-GFDL-GFDL-ESM2M SMHI-RCA4   X   X                 
              

GCM RCM No Flow Projection       

  RCP8.5 RCP4.5 RCP2.6       

  0.11° 0.44° 0.11° 0.44° 0.11° 0.44°       

ICHEC-EC-EARTH 

KNMI-RACMO22E  X  X         

DMI-HIRHAM5 X (X) X (X) X        

CLMcom-CCLM4-8-17 X  X          

CLMcom-CCLM5-0-6  X           

SMHI-RCA4 X (X) X (X) X (X)       

MOHC-HadGEM2-ES 

CLMcom-CCLM4-8-17 X (X) X          

CLMcom-CCLM5-0-6  X           

ICTP-RegCM4-3  X           

KNMI-RACMO22E  X  X  X       

SMHI-RCA4 X (X) X (X)  X       

MPI-M-MPI-ESM-LR 

CLMcom-CCLM4-8-17 X (X) X (X)         

CLMcom-CCLM5-0-6  X           

MPI-CSC-REMO2009-1 X (X) X (X) X (X)       

SMHI-RCA4 X (X) X (X)  X       

MPI-CSC-REMO2009-2 X (X) X (X) X (X)       

MIROC-MIROC5 
CLMcom-CCLM5-0-6  X           

SMHI-RCA4  X  X  X       

CCCma-CanESM2 SMHI-RCA4  X  X         

CSIRO-QCCCE-CSIRO-Mk3-6-0 SMHI-RCA4  X  X         

IPSL-IPSL-CM5A-MR SMHI-RCA4 X (X) X (X)         

NCC-NorESM1-M SMHI-RCA4  X  X  X       

NOAA-GFDL-GFDL-ESM2M SMHI-RCA4  X  X         
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2.2 Hydrologic and meteorologic station coupling 
Switzerland is characterized by a pronounced topography. Therefore, the closest 

meteorological station to a hydraulic station might not necessarily be the ideal coupling partner. 

Hydrological and meteorological stations therefore were paired according to the following 

procedure: Only stations were considered for which (a) future climate projections of near-

surface air temperatures (required) and river discharge (optional, but desirable for improved 

water temperature predictions) were available for the entire period covering 1980 to 2099, and 

(b) historic measurements of near-surface air temperatures and river discharge were available 

from 1980 to 2020. Meteorological stations were subsequently paired with hydrological 

stations such that (a) the horizontal distance between river and meteorological stations was as 

small as possible i.e. nearest to nearest (criterion DIS), (b) the meteorological station was 

representative for the conditions in the upstream drainage area composing a meteorological 

station being located in the same valley and upstream (criterion DRA), and (c) the elevation 

difference did not exceed a reasonable threshold of 200 m (criterion ELE). Where possible, all 

three criteria were met, that is the closest station passed both ELE and DRA and are noted as 

DIS in Table 2. If the closest station were deemed not to be representative (e.g. in a neighboring 

valley or downstream) the DIS criteria where failed, such a station are noted as DRA in Table 

2. If a station failed both DIS and DRA but passed ELE it is noted as ELE in Table 2. Station 

details and pairings are summarized in Table 2.  

  



11 

 

Table 2. Combined river and meteorological stations and available models for climate projections of 

discharge. Abbreviations: DIS: Distance; ELE: Elevation; DRA: Drainage area. 
FOEN Hydrological stations Meteorological stations Hydrological models 

Name ID Height Area Acronym Height Distance Criteria 

2 

Hydro-CH2018 
  (m asl) (km2

) 

 (m asl) (km)  M1 M2 M3 M4 

Rhône - Porte du Scex 2009 377 5238 AIG 381 3.8 DIS X    

Aare - Brugg 2016 332 1168

1 

BUS 387 14.0 DIS X    

Reuss - Mellingen 2018 345 3386 BUS 387 15.0 DIS X    

Aare - Brienzwiler 2019 570 555 MER 588 6.1 DIS     

Aare - Brügg, Aegerten 2029 428 8249 BER 553 20.0 ELE X    

Aare - Thun 2030 548 2459 INT 577 22.3 DIS X    

Vorderrhein - Ilanz 2033 693 774 CHU 556 26.9 DRA X X   

Broye - Payerne, Caserne d 'aviation 2034 441 416 PAY 490 2.7 DIS X X  X 
Thur - Andelfingen 2044 356 1702 SHA 438 11.4 DIS X X X  

Reuss - Seedorf 2056 438 833 ALT 438 0.4 DIS X X   

Ticino - Riazzino 2068 200 1613 MAG 203 1.8 DIS     

Emme - Emmenmatt, nur Hauptstation 2070 638 443 LAG 744 4.7 DIS X X   

Muota - Ingenbohl 2084 438 317 ALT 438 12.8 DIS  X   

Aare - Hagneck 2085 437 5112 BER 553 22.5 DRA X    

Rhein - Rheinfelden, Messstation 2091 262 3452

4 

BAS 316 16.4 DIS X    

Linth - Weesen, Biäsche 2104 419 1062 GLA 517 10.9 DIS X X   

Birs - Münchenstein, Hofmatt 2106 268 887 BAS 316 3.7 DIS X X  X 
Lütschine - Gsteig 2109 585 381 INT 577 0.9 DIS X  X X 
Sitter - Appenzell 2112 769 74.4 STG 776 10.4 DIS  X   

Aare - Felsenau, K.W. Klingnau (U.W.) 2113 312 1768

7 

BUS 386 25.8 DRA     

Murg - Wängi 2126 466 80.2 TAE 539 4.1 DIS  X   

Rhein (Oberwasser) - Laufenburg 2130 299 3405

0 

RUE 611 18.6 DIS     

Aare - Bern, Schönau 2135 502 2941 BER 553 6.5 DIS X    

Rheintaler Binnenkanal - St. Margrethen 2139 404 175 VAD 457 37.3 DRA     

Rhein - Rekingen 2143 323 1476

7 

KLO 426 18.5 DRA X    

Landquart - Felsenbach 2150 571 614 RAG 497 9.5 DIS X    

Reuss - Luzern, Geissmattbrücke 2152 432 2254 LUZ 454 2.0 DIS X    

Gürbe - Belp, Mülimatt 2159 522 116.0

1 

BER 553 12.1 DIS  X   

Massa - Blatten bei Naters 2161 1446 196 GRC 1605 24.9 ELE X  X  

Tresa - Ponte Tresa, Rocchetta 2167 268 609 LUG 273 9.1 DIS X X   

Arve - Genève, Bout du Monde 2170 380 1973 GVE 410 7.9 DIS     

Rhône - Chancy, Aux Ripes 2174 336 1030

8 

GVE 411 16.0 DIS     

Sihl - Zürich, Sihlhölzli 2176 412 343 SMA 556 3.2 DIS X X   

Sense - Thörishaus, Sensematt 2179 553 351 BER 553 14.3 DIS X X   

Thur - Halden 2181 456 1085 GUT 440 11.8 DIS X X   

Doubs - Ocourt 2210 417 1275 FAH 596 13.0 DIS  X   

Allenbach - Adelboden 2232 1297 28.8 ABO 1321 0.9 DIS  X   

Limmat - Baden, Limmatpromenade 2243 351 2384 REH 444 16.6 DIS X    

Rosegbach - Pontresina 2256 1766 66.5 SAM 1709 4.3 DIS  X   

Inn - Tarasp 2265 1183 1581 SCU 1304 0.6 DIS X    

Lonza - Blatten 2269 1520 77.4 GRC 1605 24.9 ELE   X X 
Grosstalbach - Isenthal 2276 767 43.9 ALT 438 5.3 DIS  X X  

Sperbelgraben - Wasen, Kurzeneialp 2282 911 0.56 NAP 1403 7.5 DIS     

Rhein - Neuhausen, Flurlingerbrücke 2288 383 1193

0 

SHA 438 0.9 DIS X    

Areuse - St-Sulpice 2290 755 104 BRL 1050 9.0 DRA     

Suze - Sonceboz 2307 642 127 CHA 1594 11.5 DIS X X  X 
Goldach - Goldach, Bleiche, nur Hauptstation 2308 399 50.4 GUT 440 19.3 ELE  X   

Dischmabach - Davos, Kriegsmatte 2327 1668 42.9 DAV 1594 4.9 DIS   X X 
Langeten - Huttwil, Häberenbad 2343 597 59.9 WYN 422 15.0 DIS  X   

Riale di Roggiasca - Roveredo, Bacino di 

compenso 

2347 980 8.12 GRO 323 6.0 DIS     

Vispa - Visp 2351 659 786 VIS 639 3.6 DIS X    

Poschiavino - La Rösa 2366 1860 14.1 BEH 2260 3.8 DIS  X X  

Mentue - Yvonand, La Mauguettaz 2369 449 105.0

1 

PAY 490 17.1 ELE  X   

Linth - Mollis, Linthbrücke 2372 436 600 GLA 517 7.4 DIS X X   

Necker - Mogelsberg, Aachsäge 2374 606 88.1 EBK 623 10.1 DIS  X   

Murg - Frauenfeld 2386 390 213 TAE 539 9.9 DIS  X   

Rhein (Oberwasser) - Rheinau 2392 353 1195

0 

SHA 438 5.8 DIS     

Liechtensteiner Binnenkanal - Ruggell 2410 435 116 VAD 457 12.9 DIS     

Rietholzbach - Mosnang, Rietholz 2414 682 3.19 EBK 623 13.5 DIS    X 
Glatt - Rheinsfelden 2415 336 417 KLO 426 11.4 DIS X X   

Venoge - Ecublens, Les Bois 2432 383 228.0

1 

PUY 456 9.2 DIS X X   

Aubonne - Allaman, Le Coulet 2433 390 105 CGI 458 15.9 DIS     

Dünnern - Olten, Hammermühle 2434 400 234 WYN 422 13.3 DRA  X   

Aare - Ringgenberg, Goldswil 2457 564 1138 INT 577 2.5 DIS     

Inn - S-Chanf 2462 1645 616 SAM 1708 13.3 DIS    X 
Saane - Gümmenen 2467 473 1881 BER 552 17.6 DIS     

Rhein - Diepoldsau, Rietbrücke 2473 410 6299 VAD 457 29.9 DRA X    

Engelberger Aa - Buochs, Flugplatz 2481 443 228 LUZ 454 10.6 DIS  X X  

Allaine - Boncourt, Frontière 2485 366 212 FAH 596 10.1 DIS     

Promenthouse - Gland, Route Suisse 2493 394 120 CGI 458 3.2 DIS  X   

Schlichenden Brünnen - Muotathal 2499 638 31 ALT 437 15.6 DIS     

Worble - Ittigen 2500 522 67.1 BER 553 2.2 DIS  X   

Biber - Biberbrugg 2604 825 31.9 EIN 911 3.5 DIS  X   

Rhône - Genève, Halle de l 'île 2606 367 8000 GVE 411 4.9 DIS X    

Sellenbodenbach - Neuenkirch 2608 515 10.4 LUZ 454 11.0 DIS     

Alp - Einsiedeln 2609 840 46.7 EIN 911 2.4 DIS  X   

Riale di Pincascia - Lavertezzo 2612 536 44.5 OTL 367 10.4 ELE  X   

Rhein - Weil, Palmrainbrücke 2613 244 3645

2 

BAS 316 6.7 DIS     

Rom - Müstair 2617 1236 128 SMM 1386 0.4 DIS  X X  

Rhône - Oberwald 2623 1368 93.3 ULR 1345 4.6 DRA     

Kleine Emme - Emmen 2634 430 478 LUZ 454 4.2 DIS  X X X 
Grossbach - Einsiedeln, Gross 2635 942 8.95 EIN 910 3.0 DIS     
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2.3 Forcing data bias correction 
Differences between near-surface air temperature measurements used for calibration and 

climate model projections, even when slight, may artificially alter the quantification of 

projected future river water temperatures by introducing a systematic bias at the start of the 

simulations. Despite the fact that the highly resolved GCM-RCMs model output data that were 

considered were already statistically downscaled, small differences between modeled and 

observed air temperatures during the reference period could still be detected.  

For the river discharge projections, no bias correction has so far been performed. To mitigate 

this bias, the time series of air temperatures and river discharge used as climate forcing data 

were statistically adjusted using the change factor method (Diaz-Nieto & Wilby, 2005; 

Minville et al., 2008). This method adjusts climate projections towards measurements by 

removing the climatological year (consisting of daily averages) from first the modeled data and 

then adding the corresponding climatological year from measurements according to Eq. 1, 

thereby correcting long-term and seasonal biases while maintaining individual climate model 

trends and stochastic variabilities. 

Fn𝑖 = (Fo𝑖 - Co𝑗) + Cm𝑗          (1) 

where Fni is the adjusted variable at time i, Foi is the future climate simulated time series of 

either air temperatures or river discharge at daily resolution, and Coj and Cmj are the 

climatological years of the climate simulated time-series and the historic measurements, 

respectively, at the day of year j corresponding to time i. The climatological years were 

smoothed using a 60-day window to remove the effect of possible pulse events, especially for 

discharge. Due to low flow conditions in some rivers, discharge in the rivers were never 

adjusted below the minimum observed flow.  

2.4 Thermal regime classification 
For the multi-fidelity modeling approach, the different river monitoring stations were re-

classified into the 4 different thermal regimes that have previously been identified for 

Switzerland (Michel et al., 2020; Piccolroaz et al., 2016) as well as 1 additional thermal regime 

defined for the purpose of this study.  

The existing thermal regimes are Downstream Lake, Swiss Plateau, Alpine, Regulated, while 

the Spring discharge regime was added to address the special thermal case of stations situated 

at the mouth of spring fed streams. Downstream Lake stations show a clear de-coupling 

between river temperature and river discharge, Swiss Plateau stations exhibit an annual flow 

cycle with minimal discharge in summer and strong interannual variability, Alpine stations 

show that both discharge and temperature are strongly influenced by snow and glacier melt, 

Regulated stations are fed by intermittent releases of large volumes of water from upstream 

reservoirs, and Spring stations located immediately downstream of springs and characterized 

by a nearly constant temperature signal decoupled from air temperature.  

The already existing classifications from (Michel et al., 2020; Piccolroaz et al., 2016) and the 

suitability of the yet unclassified stations to be grouped under the different thermal regimes 

were first explored by evaluating the historic data and the locations visually (Figure 2b). 

Following this first visual classification, an automated thermal pattern recognition using 

hierarchical clusters via the cluster tool DTWARP_PER_33 (Bögli, 2020) was used (Figure 

2c). Application of the thermal pattern recognition matched the visual pre-classification in most 

cases, but revealed that, for certain stations located far downstream of lakes, upstream lake 
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processes are still the dominant control for river water temperatures. Stations that were 

previously classified as not being part of the Downstream Lake regime were thus here 

reclassified as Downstream Lake according to the results of the thermal pattern recognition 

procedure.  

2.5 Surface water temperature model setup  
Two semi-empirical surface water temperature models were employed, the river water model 

air2stream (Toffolon & Piccolroaz, 2015)*1 and the lake water model air2water (Piccolroaz et 

al., 2013)*2, with the former being an extended version of the latter. Both, the air2stream and 

the air2water models combine the simplicity of stochastic models with accurate empirical 

representation of the relevant physical processes affecting water temperature. The models 

require near-surface air temperature as input to predict future river temperature, while 

discharge may optionally be incorporated in air2stream to further improve river temperature 

predictions.  

Both models include up to eight parameters (a1 to a8) which are fitted towards measured data. 

Apart from the effect of air temperature on water temperature, the models additionally resolve 

the effect of river depth, discharge, thermal signals from tributaries, inverse stratification in 

lakes during winter, and seasonal cycles. Model complexity, i.e. how many processes are 

directly being resolved by the models or indirectly included through parameter estimation, can 

be varied by removal of one or more of the additional processes listed above, resulting in the 

use of 8, 7, 6, 5, 4 or 3 parameters. Depending on local conditions, model performance can be 

improved by the removal of processes which play a minor or insignificant role for water 

temperature. Where this simplification with removal of parameters was done (Table B2), 

removed processes plays a minor role for the simulation of water temperature as evident from 

decreased model performance while being included. For additional information about 

air2stream and air2water see Appendix A and Piccolroaz et al. (2013) and Toffolon & 

Piccolroaz (2015). 

For the simulation of future river temperatures, a multi-fidelity modeling approach that 

identified the best water temperature model for each single river monitoring station was 

employed. The optimal model parameter configuration for each station was identified via a 

Monte-Carlo calibration process performed with the Crank Nicolson scheme (Crank & 

Nicolson, 1947), consisting of over 2,000 runs using Particle Swarm Optimization (Kennedy 

& Eberhart, 1995) with 500 particles. The Root Mean Square Error (RMSE) function was used 

as the objective function and combined with the dotty-plots quality check (S. Piccolroaz et al., 

2013; Piccolroaz, 2016; Toffolon et al., 2014).  

For stations missing either historical data or future projections of river discharge (brown 

markers, Figure 2a), discharge was not considered as forcing data and the air2stream model 

was reduced to a 3 or 5 parameter model, while no adaptation was required for air2water model 

as it does not simulate discharge. Datasets used for calibration and validation with data gaps 

shorter than 30 days were filled by linear interpolation, while for datasets with gaps exceeding 

30 days only the longest continuous dataset was used.  

All simulations (calibration, validation and climate runs) used a one-year period as a spin-up 

with the first year of forcing data repeated. Only the best performing river temperature model 

was considered for the follow-on climate runs. The final calibration and validation periods and 

 
*1 github.com/marcotoffolon/air2stream 
*2 github.com/marcotoffolon/air2water 

 

https://github.com/marcotoffolon/air2stream
https://github.com/marcotoffolon/air2water
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the best performing parameter setups for each station are provided in Table B2 (Appendix B). 

As initial conditions for the stepwise climate simulations with model M4, we used simulated 

temperatures from the latest prior simulated date, that is, for simulations between 2030 to 2040 

we used temperature from end of 2015 as initial condition.  

At Downstream Lake stations, multiple configurations of both water temperature models 

(air2stream and air2water) were tested through calibration, and only the best performing 

temperature model and parameter setup was kept (station thermal regimes as well as cluster 

results are shown in Figure 2 and provided in Table B1 in Appendix B). For the remaining 

stations not belonging to the Downstream Lake regime, river processes such as local flow 

variations and water depth dominate the water temperature development. For these stations, 

different model configurations of only the air2stream model were explored. 

2.6 Trend correction 
Empirical models generally predict less warming in the future compared to physically based 

models, the primary reason being underrepresentation of the thermal catchment memory, 

including snow and ice (Leach & Moore, 2019). To quantify how good the models air2stream 

and air2water, which both lack deterministic considerations of snow and ice melt, are able to 

recreate past trends, we compared trends from river water temperature measurements and 

corresponding modeled temperature trends between 1990 and 2019. On an annual basis, this 

comparison was possible for 25 out of 82 river stations, consisting of 9 Downstream Lake, 7 

Regulated, 7 Swiss Plateau, 2 Alpine, and 0 Spring thermal regime river stations. Stations were 

selected with a 30 years of continuous data requirement in air and water temperature and river 

discharge. Only statistically significant trends (p < 0.05) were considered.  

Both air2stream and air2water underestimate the annual temperature trend during the 

reference period on average by 0.14 and 0.11 °C per decade, respectively. For air2stream, the 

annual trend bias is smallest for the Swiss Plateau thermal regime (0.09 °C per decade) and 

largest in the Alpine thermal regime (0.17 °C per decade). Seasonally, the trend bias is largest 

from June to August and September to November, whereas, especially for air2water, the bias 

is small from December to February and March to May.  

The divergence of both air2stream and air2water models from observed trends warrant a post 

simulation bias correction of simulated trends. The bias is river station dependent, making an 

individual correction at each station preferable (Tables B3 to B6 in Appendix B). However, 

only about 30% of the river stations investigated have long enough data sets (30 years) for 

individual correction. Therefore, we tied the seasonal trend bias correction to the thermal 

regime, thereby keeping the correction linked to local conditions. Note that no river station of 

the Spring thermal regime had enough data to allow for the trend bias correction. Spring river 

stations were therefore not trend bias corrected. As the trend bias correction is acting on climate 

simulations of river temperature stretching from 1990 to 2099, the bias correction had to be 

scaled towards how air temperature trends shift in the climate models. The scaling was 

designed such that it did not affect the bias correction during the reference period (1990 to 

2019), while adjusting the correction towards how the air temperature trend (TTair) changes in 

the near- (2030 to 2059) and far-future (2070 to 2099). For this purpose, an adjustment factor 

Fs (-) was constructed from the mean climate models air temperature trends for each climate 

scenario. Fs is thus specific for each climate scenario, river station and season. 

𝐹𝑠𝑖,𝑠 =
𝑇𝑇𝑎𝑖𝑟𝑖,𝑠

𝑇𝑇𝑎𝑖𝑟𝑟𝑒𝑓,𝑠
                                                                                                    (2) 
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Here TTairi,s is the mean of the air temperature trends from the climate models, which is 

changing for each season and with the reference, near- and far-future periods, TTairref,s is the 

mean of the seasonal air temperature trend during the reference period, i is the number of days, 

and s denotes the season. The temporal gaps between 1990 to 2019, 2030 to 2059 and 2070 to 

2099, during which the air temperature trends were calculated, were linearly filled with shape-

preserving piecewise cubic interpolation resulting in a continuous factor Fsi,s from 1990 to 

2099. Fsi,s varied from -2 to +3 depending on the season and climate scenario and was applied 

for simulations using discharge input from models M1 to M3, while for simulations using M4, 

Fsi,s was set to 1 from 1990 to 2099 due to too short simulation time frames in M4 (only one 

decade). With Fsi,s, the seasonal and thermal regime dependent water temperature bias Tbi,s 

(regime dependent mean from Table C3 to C6 in Appendix C) is turned into the thermal regime 

and climate scenario dependent seasonal bias correction Bcs (°C day-1) 

𝐵𝑐𝑠 = ∑ 𝐹𝑠𝑖,𝑠 ∗

𝑖=𝑛

𝑖=1

𝑇𝑏𝑖,𝑠                                                                        (3)  

where n is the number of days since 1st of January 1990. Before adjusting the water temperature 

model output from 1990 to 2099, the seasonal Bcs was combined into a continuous dataset Bc. 

To avoid a sharp shift in Bc between each season, a 3- to 5-day gap in between each season 

was smoothed with shape-preserving interpolation (Piecewise cubic Hermite interpolation, 

PCHIP; Matlab R2022a).  

The trend adjustment applied here with Fs, Bc, and pre- and post-adjustment data is shown 

from one example station in Figure B1 (Appendix B). Pre- and post-trend correction for the 

difference in modeled and measured trends is summarized in Table B7 (Appendix B). 

2.7 Thermal hysteresis  
Hysteresis, wherein a dependent variable (water temperature or suspended sediments) can 

exhibit multiple values in response to a single value from the independent variable (discharge), 

is a common phenomenon in hydrology (Gharari & Razavi, 2018). Sediment transport 

hysteresis can be caused in rivers by emptying and refilling of sediment layers on the river bed 

(Tananaev, 2012) and through erosion on land as shown in the Alps with the contributing 

location (river bed or eroded area) determining the hysteresis loop shape and rotation direction 

(Misset et al., 2019). Stream temperature can also show hysteresis effects, example being a lag 

in the response to air temperature caused by ice-melt or reservoir release (Van Vliet et al., 2011; 

Webb & Nobilis, 1994).  

We investigated past and future hysteresis loops between water temperatures (the dependent 

variable) and river discharge (the independent variable) using a versatile index (Zuecco index, 

Zuecco et al., 2016). The Zuecco index works through the computation of definite integrals on 

data in chosen intervals and was developed for hysteretic loops where the independent variable 

increases from its initial value, reaches a peak and then decreases. The index divides loops into 

classes depending on rotation direction (counter clockwise or clockwise), number of loops and 

loop sizes.  

Here we use Zuecco Class I to IV (Figure 3, left column) which represent the interaction 

between flow and water temperature for the cases of dataset starting with low temperature and 

low flow. However, mainly in the Swiss lowland at the beginning of a year, rivers can display 

a situation where temperature is cold (low) and flow is high followed by a higher temperature 

in spring combined with less water. This process has been showed to be enhanced by the 
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ongoing climate warming through shortening or elimination of snow cover and glacial melt 

(FOEN (ed.), 2021; Michel et al., 2020; Van Vliet et al., 2013).  

 

 

Figure 3. Hysteresis classes with corresponding hysteresis loops. Expanded with classes -I to -IV from Zuecco et 

al., (2016) to incorporate water temperature as the dependent variable. 

To incorporate this reversed hysteretic loop, we added 4 mirrored hysteresis classes, -I to -IV, 

to the classes introduced by Zuecco et al., (2016) (Figure 3, right column). This was done by 

inverting the normalized flow prior to the computation of definite integrals, thus creating an 

increasing and decreasing independent variable. Note that the index works on set intervals. If 

the loops do not come back to their initial values, it works with open loops. The length of the 

data sets being investigated should depend on the quality and resolution of the data and the rate 

at which the dependent variable changes with respect to the independent variable (Zuecco et 

al., 2016). Here we used daily resolved datasets, averaged from 30 years of modeled data, thus 

always providing full annual loops.  

2.8 Temperature extremes  
Extreme conditions depend on what is considered to be extreme in relation to normal conditions 

(Stephenson, 2008). Here, water temperatures are considered to be extremely high if they 

exceed the 90th percentile during the 30-year reference, near- and far-future periods (IPCC, 

2014).  

We define a new extreme event severity index, as the temperature difference between the 90th 

percentile to the median for each climate simulation and period. If this temperature gap 

increases, it indicates that extreme temperatures become more severe as thermal peaks are 

elevated compared to the median temperature. extreme event severity index for each simulation 

and period is thus X °C from 0 °C, where X denotes the difference between the 90th percentile 

and the median temperature while 0 °C represent a match to the median temperature. Our 

analysis was made independent of when (beginning or end) in the 30-year periods it was 

conducted by removing the climatic trend for each simulation and period before calculating the 
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index. Note that by defining extreme events with the 90th percentile during each analyzed 

period, we consider temporal in-situ extreme events as they are experienced during the 

considered periods. We do not inflate our results by using past extreme event definitions to 

evaluate future extreme events. 

2.9 Thermal thresholds for fish 
By counting the number of days per year during which thermal thresholds are exceeded, effects 

of climate change on fish can be evaluated both locally and regionally (Michel et al., 2020). 

The occurrence of exceedance of specific river water temperature thresholds on a daily scale 

was used to investigate the historic past (1990 to 2019) and projected future (2070 to 2099) 

stress on the brown trout (Salmo trutta). Three thermal thresholds were chosen in order to 

incorporate important aspects in the life of the brown trout. including: (1) adult mortality as 

represented by a daily mean temperature above 25 °C (Elliott, 1981; Wehrly et al., 2007), also 

set as a hard upper limit for the thermal use of waters in Switzerland (Water Protection 

Ordinance 814.201); (2) an increased risk for proliferative kidney disease (PKD) as parasite 

activity as represented by a daily mean temperature above 15 °C (Chilmonczyk et al., 2002; 

Strepparava et al., 2018) and; (3) fish egg (roe) mortality from September to January as 

represented by a daily mean temperature above 13 °C (Elliott, 1981).  

3 Results  

3.1 Warming  
The most influential factor for future river water temperatures are the climate change scenarios. 

Individual river water warming for the different stations, from the reference (1990-2019) to the 

near- (2030-2059) and far-future (2070-2099) periods, are shown in Figure 4. Under the 

RCP8.5 scenario, the warming of river temperatures increases throughout the 21st century, and 

even accelerates. The smallest change in river temperatures was observed under the RCP2.6 

scenario, with warming reaching a plateau in the middle of the 21st century. The mean change 

in river temperatures from the reference period to the near- and far-future amounts to +0.77 

and +0.91 °C for RCP2.6, to +0.95 and +1.51 °C for RCP4.5, and to +1.22 and +3.18 °C for 

RCP8.5, respectively. This amounts to an averaged water warming rate from 1990 to 2099 for 

RCP8.5 of 0.36 °C per decade, 0.19 °C per decade for RCP4.5, and 0.12 °C per decade for 

RCP2.6. At the same time as near-surface air temperature changed by 0.50 °C per decade for 

RCP8.5, 0.26 °C per decade for RCP4.5 and 0.13 °C per decade for RCP2.6.  

Climate change impact was heterogeneous between stations, yet common patterns were found 

within thermal regimes (Figure 4, Table B8 in Appendix B). The strongest river water warming, 

regardless of climate scenario or time period, was observed for stations in the Alpine thermal 

regime, followed in order by Downstream Lake, Regulated, Swiss Plateau, and Spring thermal 

regimes. Under RCP8.5, river temperatures of Alpine stations, on average, warm by 1.44 °C 

until the near-future and by 3.54 °C until the far-future, compared to the reference period. The 

river water of Downstream Lake stations also strongly warmed, by 1.36 °C until the near-future 

and by 3.43 °C until the far-future. Compared to the Alpine and Downstream Lake thermal 

regimes, river temperatures of stations in the Regulated (near-future +1.19 °C, far-future +3.00 

°C) and Swiss Plateau (near-future +1.06 °C, far-future +2.75 °C) thermal regimes warmed 

less. Least affected, by a wide margin, were the river temperatures of the 2 stations that classify 

as the Spring thermal regime (near-future +0.04 °C, far-future +0.10 °C). 
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Figure 4. Modeled mean river temperature increase from the reference (1990 to 2019), to near-future (2030 to 

2059, blue bars) and far-future (2070 to 2099, red bars) under climate scenarios RCP 2.6, RCP4.5 and RCP8.5. 

Shown is the median (bar center line) and the lower and upper quartiles (left and right bar extent) of the difference 

between periodic mean temperatures (over 30 years) for each available climate simulation additionally averaged 

where multiple hydrological models exist (M1, M2, M3), i.e., the bar extents show climate model variability in the 

mean temperature change between the three periods. Stations 2414 and 2462 are not shown since the flow model 

M4 lacked 30 years of continuous data. 
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3.2 Hysteresis analysis 
The hysteresis class could be determined for each station with future and present river 

discharge (47 out of 82 stations). For all stations, climate scenarios, and climate models, the 

index found solutions in hysteresis intervals ranging from 164 to 328 days. During the reference 

period the dominant hysteresis class was IV (45.6%) followed by III (25.0%), -I (14.7%), -II 

(11.8%) and I (2.9%) while no stations belonged to class II. For the reference period the classes 

remained independent in relation to the climate scenario (RCP8.5, 4.5, 2.6) or hydrological 

model (M1, M2, M3) used, while in the near- and far-future differences start to show. For 

RCP8.5 in the far-future period the dominant class was -I (48.5%) followed by class IV 

(33.8%), III (13.2%) and -II (4.4%). 

For the RCP8.5 scenario classes are shown for the reference, near- and far-future periods in 

Table 3 (hysteresis classes for RCP4.5 are shown in Table B9, and for RCP2.6 in Table B10, 

both in Appendix B). Under RCP8.5, the number of stations which changed hysteresis classes 

between the reference and the near-future was 23%, increasing to 51% until the far-future. 

Correspondingly, under RCP4.5, 23% had changed hysteresis classes when reaching the near-

future, while 38% of the stations changed classes until the far-future. Under RCP2.6, 28% of 

stations had changed classes until the near-future, but once reaching the far-future, some 

stations changed back again and the fraction of stations that were in a different hysteresis class 

compared to the reference period was reduced to 21%.  

Considering only the far-future period (2070 to 2099) , stations belonging to the Swiss Plateau 

thermal regime showed the largest change in hysteresis loop classes, with 58% changing under 

RCP8.5, 42% under RCP4.5 and 12% under RCP2.6. Considering again only the far-future, 

stations belonging to the Regulated thermal regime exhibited hysteresis loop class changes of 

50% under RCP8.5, 33% under RCP4.5 and 50% under RCP2.6. Least prone to hysteresis class 

changes in the far-future were stations of the Alpine thermal regime (38% under RCP8.5 and 

RCP4.5, 23% under RCP2.6). Out of the 20 Downstream Lake thermal regime stations only 2 

stations were investigated with discharge (i.e. model with air2stream instead of air2water). 

From these 2 stations, 1 changed hysteresis class with RCP8.5 by the far-future, 1 with RCP2.6 

but none with RCP4.5. As can be seen from 4 representative stations for the Swiss Plateau, 

Regulated, Alpine, and Downstream Lake illustrated in Figure 5, a change in hysteresis class is 

usually associated with a counterclockwise rotation and stretching of the loop from, for 

example a lower to a higher class (III to IV). Such rotation and stretching appears as a result of 

increased warming in summer combined with a decrease in summer discharge, while warming 

in winter is smaller than in summer and discharge is increasing.  
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Table 3. Modeled hysteresis classes during the reference (1990 to 2019), the near-future (2030 

to 2059) and the far-future (2070 to 2099) periods for climate scenario RCP8.5. Flow data from 

models M1, M2 and M3. Stations with no flow measurements for calibration, missing flow 

model output as forcing or where the use of the air2water model did not require flow as input 

have been excluded. A change in class from the reference period to the near- or far-future period 

is highlighted in italic. Classes are shown as natural numbers in stead of Roman numerals for 

ease of reading.  

RCP8.5 

Station Reference Near Far 
 M1 M2 M3 M1 M2 M3 M1 M2 M3 

Downstream Lake 

2016 4    4   -1   

2085 4    4   4   

Regulated 

2009 3    4   4   

2056 3 3   4 4  4 4  

2084   4    4    4  

2372 4 4   4 4  4 4  

2473 3    4   4   

2481   4 4  4 4   4 4 

Swiss Plateau 

2034 -2 -2   -2 -2  -2 -1  

2044 4 4 4 -2 -1 -2 -1 -1 -1 
2070 4 4   4 4  -1 -1  

2106 -2 -2   -2 -2  -2 -1  

2112   4    4    4  

2126   -1    -1    -1  

2159   4    4    -1  

2176 4 4   4 4  -1 -1  

2179 4 4   4 4  -1 -1  

2181 4 4   4 4  -1 -1  

2210   -2    -2    -1  

2307 -1 -1   -1 -1  -1 -1  

2308   4    -1    -1  

2343   -1    -1    -1  

2369   -1    -1    -1  

2374   4    -1    -1  

2386   -2    -1    -1  

2415 -2 -2   -2 -2  -2 -1  

2432 -1 -1   -1 -1  -1 -1  

2434   -1    -1    -1  

2493   -1    -1    -1  

2500   -1    -1    -1  

2604   4    4    -1  

2609   4    4    4  

2612   3    3    3  

2634   4 4  4 4   -1 -1 

Alpine 

2033 3 3   4 4  4 4  

2109 3  3 4  4 4  4 
2150 4    4   4   

2161 1  1 1  1 3  3 
2232   4    4    4  

2256   3    3    3  

2265 3    3   3   

2269    4   4    4 
2276   4 4  4 4   4 4 
2327    3   3    3 
2351 3    4   4   

2366   3 3  4 4   4 3 
2617   3 3   3 3   3 3 
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Figure 5. Daily averaged river discharge and water temperature for the reference (1990 to 2019, solid line) and 

the far-future period (2070 to 2099, dashed line) at 4 stations showing the current and the future thermal hysteresis 

loops. Flow data used is from model M1, stations belong to the Alpine, Swiss Plateau, Regulated and Downstream 

Lake thermal regimes. Daily averaged datasets have been smoothed twice with a running average of 30 days. 

Hysteresis class change in roman numericals (cf. Fig. 4), station location in Fig. 2b. 
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3.3 Temperature extremes  
The analysis is focused on temperature extremes in the summer months (June to August), 

during which the severity of extremes varies in between climate scenarios and is different on 

individual station basis and on a thermal regime basis (Figure 6). Note that the use of extreme 

event severity as an index should be viewed as the minimum temperature increase of extreme 

events in the future while it denotes the increase of the 90th percentile. From the reference (1990 

to 2019) to the far-future (2070 to 2099) period the extreme event severity for scenario RCP2.6 

increased on average by +0.20 °C (Figure 6a), by +0.38 °C for RCP4.5 (Figure 6 b) and by 

+0.61 °C for RCP8.5 (Figure 6 c).  

Looking at extreme events at the level of thermal regimes, during the reference period (1990 

to 2019), the most sever extreme temperatures occurred at stations in the Swiss Plateau and 

Downstream Lake thermal regimes. Swiss Plateau thermal regime (mean extreme event 

severity +2.8 °C) Downstream Lake (+2.2 °C), Regulated (+1.3 °C), Alpine (+1.1 °C) and 

Spring thermal regimes (+0.12 °C).  

For all climate scenarios and all thermal regimes, the severity of extreme events increased 

throughout the 21st century. For the far-future (2070 to 2099), under all climate scenarios the 

Swiss Plateau and the Downstream Lake thermal regime stations remain as the stations with 

the severest extreme events, while the increase in extreme event severity increases the most for 

the Regulated and the Swiss Plateau thermal regimes. As the Swiss Plateau and Regulated 

thermal regime stations are mostly located in the Swiss low land in the Northwestern part of 

Switzerland (see Figure 2b), they are the ones that are expected to experience the most severe 

low flow conditions, especially in summer months under the RCP8.5 scenario, with a discharge 

reduction ranging from 5 to 60 % (FOEN, 2021; Brunner, et al., 2019; Brunner, et al., 2019; 

CH2018, 2018). The largest increase from the reference to the far-future period was found at 

stations for the Regulated thermal regime (mean extreme event severity increase RCP2.6: 

+0.28 °C, RCP4.5: +0.54 °C, RCP8.5: +0.93 °C) followed by the Swiss Plateau (RCP2.6: 

+0.26 °C, RCP4.5: +0.48 °C, RCP8.5: +0.78 °C), Alpine (RCP2.6: +0.23 °C, RCP4.5: +0.45 

°C, RCP8.5: +0.68 °C), Downstream Lake (RCP2.6: +0.23 °C, RCP4.5: +0.40 °C, RCP8.5: 

+0.61 °C) and Spring thermal regimes (RCP2.6: +0.01 °C, RCP4.5: +0.01 °C, RCP8.5: +0.03 

°C).  
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Figure 6. Severity of water temperature extremes from June to August for 30 years of climate simulations (blue 

bars 1990 to 2019, red bars 2070 to 2099) ordered according to thermal regime. Shown are the lower and upper 

quartiles (extent of bar) and the median (bar center line) of the difference between the 90th percentile to the 

seasonal median temperature (30 years of data) from all available climate models additionally averaged where 

multiple hydrological models exist (M1, M2, M3) at each station and time period, i.e., the bar extents show climate 

model induced variability in each period. Stations 2414 and 2462 are not shown since the flow model M4 lacked 

30 years of continuous data. 
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3.4 Thermal thresholds 
Our results show clear thermal regime dependent differences for the present and future thermal 

related stress on the brown trout (Figure 7). The lethal threshold (25 °C) was seldomly 

exceeded in the past (Figure 7a). However, towards the end of the 21st century, for a majority 

of stations in the Downstream Lake and Swiss Plateau thermal regimes the lethal threshold was 

exceeded on at least one day during the year, making areas which could previously be 

considered safe for the brown trout potentially lethal at least on certain days of the year. In 

addition, the 25 °C limit is also critical for anthropogenic water use in Switzerland, as the Swiss 

law (Water Protection Ordinance 814.201) prohibits a thermal use of waters for cooling 

purposes beyond this threshold. Unfortunately, our results not only show an increased 

occurrence of lethal temperatures, but also the less imminently lethal but nevertheless 

detrimental lower temperature threshold of the increased occurrence of the PKD disease (15 

°C) will be exceeded much more frequently (see Figure 7b), as will the threshold for fish egg 

mortality (Figure 7c). Alpine, and to a lesser extend Regulated thermal regime stations, where 

previously the thermal conditions for an increased likelihood of PKD were not met, are likely 

also going to exhibit these conditions in the warmer summer months. Given the 153 days from 

September to January, egg development (approx. 30 to 90 days Alp et al., 2010) should still 

have enough time to take place safely throughout the 21st century in Regulated, Swiss Plateau, 

Alpine and Spring thermal regime rivers. Rivers in the Downstream Lake thermal regime are 

likely too large to facilitate spawning and were therefore not further considered in this analysis.  

The results presented below represent the number of stations where the daily temperature was 

above a given thermal threshold (bar center line Figure 7 above 0). Under the RCP8.5 scenario 

from the reference to the far-future, the number of stations exceeding the mortality threshold 

(25 °C) increased from 4 to 37 stations from a total of 54 stations in the Downstream Lake and 

Swiss Plateau thermal regimes (Figure 7a). For the Regulated, Alpine and Spring thermal 

regime stations, none passed the lethal threshold during the reference period, but for the far-

future 1 out of 26 stations exceeded it. For Downstream Lake and Swiss Plateau thermal regime 

stations, the PKD threshold (15 °C) was largely exceeded already during the reference period 

(52 of 54 stations), increasing to all stations in the far-future (Figure 7b). For the Regulated, 

Alpine and Spring thermal regime stations, 2 out of 26 stations exceeded the PKD threshold 

already during the reference period. While in the far-future, 20 out of 26 Regulated, Alpine and 

Spring thermal regime stations broke through the 15 °C threshold. With respect to fish egg 

mortality (13 °C) from September to January, all Downstream Lake thermal regime stations 

exceeded this threshold both in the reference period as well as in the far-future (Figure 7c). 

During the reference period, 4 out of 9 Regulated and 31 out of 34 Swiss Plateau thermal 

regime stations exceeded the 13 °C threshold. Correspondingly, for the Regulated and Swiss 

Plateau thermal regimes, 8 out of 9 and all 34 stations, respectively, exceeded the 13 °C 

threshold during the far-future period. Although Alpine thermal regime stations never exceeded 

the 13 °C threshold during the reference period, 8 out of 16 stations exceeded this limit during 

the far-future period. From the two groundwater fed Spring stations, neither the mortality nor 

the PKD or fish egg mortality thresholds were exceeded.  
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Figure 7. Number of days superseding thermal threshold for the brown trout for the RCP8.5 climate scenario. a) 

Mortality threshold at daily mean temperatures >25 °C, b) increased risk for proliferative kidney disease (PKD) 

at daily mean temperatures >15 °C, egg mortality during September to January at temperatures > 13 °C. Data 

consist of 30 years of climate simulations (blue bars 1990 to 2019, red bars 2070 to 2099) ordered according to 

thermal regime. Shown are the median (bar center line) and the lower and upper quartiles (left and right bar extent) 

of the climate simulation from all available climate models additionally averaged where multiple hydrological 

models exist (M1, M2, M3), i.e., the bar extents show climate model induced variability for each period with annual 

resolution. Stations 2414 and 2462 are not shown since the flow model M4 lacked 30 years of continuous data. 
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4 Discussion 

4.1 Multi-fidelity modeling approach 
The use of semi-empirical models by definition means that some of the physical processes 

affecting heating are simplified under parameterization and some are directly resolved. The 

models air2stream and air2water resolve the effect of river depth, discharge, thermal signals 

from tributaries, inverse stratification in lakes during winter, and seasonal cycles. The heat flux 

between the atmosphere and surface waters (latent and sensible heat, short and longwave 

radiation) is not directly resolved by air2stram and air2water. However, indirectly we consider 

climate related heat budget changes in our method, through the use of high-quality projections 

of air temperature and discharge as model input. Glacier retreat is included in the hydrological 

models providing discharge projections to this study (eg. Muelchi et al., 2021), however for 

temperature this effect is only indirectly considered in air2stream through reduced water 

availability in summer. The cooling effect on river water caused by meltwater from snow and 

ice does not change in our method, as snow and ice recede in a future climate it is expected that 

warming in high altitude rivers is larger than projected in this study. Therefore, if the 

relationships between discharge and air temperature towards water temperature remain similar 

in the future, our method can be used to reliably project future river temperatures. Importantly, 

the lower fidelity water temperature model approach used here combined with high-fidelity 

climate/hydrological model outputs as input enable the principle of multi-model ensemble, 

comparison and analysis that is required for robust climate change impact assessments (Duan 

et al., 2019).  

To expand on previous results of river water temperature projections for Switzerland (Michel 

et al., 2022), we employed a multi-fidelity modeling approach able to automate the generation 

of water temperature simulators for the different national river temperature monitoring stations 

of Switzerland, as summarized in Figure 1. Models of varying complexity were built from 

integrating high-fidelity climate and hydrological modeling outputs (i.e., downscaled climate 

(Table 1) and hydrological model outputs (Figure 2a), CH2018 and Hydro-CH2018) with low-

fidelity river temperature models of varying degrees of parametrization i.e., air2water and 

air2stream (Toffolon & Piccolroaz, 2015; Piccolroaz et al., 2013). Statistical learning-based 

coupling of atmospheric and hydrological stations (Table 2) and classification of river stations 

into thermal regimes (Figure 2b & 2c) enabled optimal low-fidelity model selection (Figure 

2d) and parametrization.  

4.2 Adjustment of trends 
A trend bias correction was applied to the temperature model outputs due to the difference 

observed between modeled and measured trends (Table B3 to B6 in Appendix B). The 

correction decreased the difference between modeled and measured annual trends by 

approximately 0.1 °C per decade. After the bias correction, modeled annual trends with climate 

simulations as inputs followed closely the observed trends (Table B7 in Appendix B). Pre-

adjustment climate scenarios have a different bias compared to measurements, with RCP8.5 

simulations most closely following observed trends while RCP2.6 simulations exhibiting the 

largest bias. This discrepancy in bias is caused by the averaging of trends from either up to 22 

(RCP8.5), 17 (RCP4.5) or 9 (RCP2.6) climate simulations. The trend bias adjustment was 

applied seasonally, resulting in an adjustment of 0.12 °C per decade on average. The largest 

adjustment was required for the June to August period (0.22 °C per decade) while the smallest 

adjustment was made for the December to February period (0.05 °C per decade). Note that only 

2 out of 16 Alpine stations had long enough measured datasets (i.e., 30 years) to derive a 

historical trend, and that trend was used to adjust all 16 stations. The trend adjustment upscaled 



27 

 

from 2 to 16 Alpine stations, as well as the calibration at these stations, could thus benefit from 

longer time series; we therefore recommend care while using these bias corrected data. 

Additionally, for the groundwater fed station 2499 in the Spring thermal regime, measured 

water temperature is inversely correlated to air temperature. The result is a near zero or negative 

trend for the future (below 0 in Figure 4). Although the modeled trend at station 2499 is 

statistically significant, the result indicates a limitation in the air2stream model to resolve 

effectively groundwater dominated processes under climate change.  

4.3 Warming rates, trends, and hysteresis analysis 
As expected, the climate scenario turned out to be the most important factor for river water 

temperature increase. RCP8.5 being the scenario with the largest warming rate resulted in an 

average river water temperature increase of +3.2 °C (+0.36 °C per decade from 1990-2020 to 

2070-2099) compared to +0.49 °C per decade warmer air temperatures. This is in agreement 

with previous findings for Swiss rivers, which projected a water temperature increase of up to 

+3.5 °C from 1990-2000 to 2080-2090 or +0.38°C per decade (Michel et al., 2022) compared 

to a measured water temperature increase of +0.33 °C per decade from 1979 to 2018 (Michel 

et al., 2020)  as well as for Swiss lake surface water temperatures, which were projected to 

increase by +3.3 °C from 1982–2010 to 2071-2099 (Råman Vinnå et al., 2021). In addition to 

the strong warming of water temperatures until the end of the century, the projections made 

herein also suggest that the seasonal patterns in the warming of near surface air temperatures 

in Switzerland are going to persist in river water temperatures, with stronger warming in 

summer compared to winter. 

Among the different stations, common patterns and trends in river temperature warming could 

be identified by classifying the stations into the 4 different river thermal regimes occurring in 

Switzerland (Piccolroaz et al., 2016). The classification was further improved in this study by 

adding a groundwater spring class and using thermal pattern recognition to regroup river 

temperature monitoring stations by automatically identifying key thermal influences from 

upstream of a given monitoring station (e.g., the thermal influence of a lake, of tributaries or 

of a spring.  

In terms of overall warming, the strongest warming on an annual basis emerged for stations in 

the Alpine thermal regime, followed, in order, by stations in the Downstream Lake, Regulated, 

Swiss Plateau, and Spring thermal regimes (Figure 4). The strong warming of Alpine regime 

stations has its origins in the strongest near-surface air temperature warming trend in summer 

that is occurring in southern parts of Switzerland (CH2018, 2018). The strong warming in the 

Downstream Lake thermal regime can be explained by the extended residence time of water in 

lakes compared to rivers in general (allowing longer time for waters to heat up) and to a 

difference in seasonal patterns, aspects that the employed air2water model explicitly considers. 

A previous coupled modeling study by the author showed that future lake surface waters 

(epilimnion) heat faster compared to river waters, with a difference in warming trends between 

Lake Biel and the Aare River of +0.03 °C per decade and between Lake Geneva and the Rhône 

River of +0.11 °C per decade (Råman Vinnå et al., 2018).  

Finally, by using and extending an index developed for classifying hysteretic loops (Zuecco et 

al., 2016), it became apparent that climate warming adjust river temperature hysteresis towards 

a state with higher temperature and a river discharge decrease. This is seen as a stretching of 

most thermal loops diagonally towards the upper left (Figure 5). The trend stretching results 

from the general decrease in discharge as well as the increased seasonal near-surface air 
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temperature water warming occurring during the summer months. Together, these two 

processes predominantly increase water temperature in summer as well. 

4.4 Thermal extremes  
The here proposed extreme event severity index together with a removal of the climatic trend 

during each period, allowed us to investigate the change in the baseline of extreme temperature 

under each thermal regime considered here. The index is independent of past extreme 

conditions and relate extremes to the time period being investigated. Like for the water 

temperature warming rates and trends, the severity of temperature extremes was impacted the 

most by the choice of the climate scenario, similarly so for thermal regimes as a whole and for 

individual stations. The largest increase of river temperature extremes occurred under the 

RCP8.5 scenario, followed by the RCP4.5 scenario. Noteworthy is that under the RCP2.6 

scenario, extreme event frequency and severity stayed more or less constant throughout the 21st 

century. As the discharge projections have been directly considered in the employed multi-

fidelity modeling approach, the strong increase in extreme event severity for these stations is 

thus a direct result of the expected increased occurrence of low flow events, while the seasonal 

near-surface air temperature changes are mostly responsible for an increasing median of river 

water temperatures. 

4.5 Thermal Thresholds 
The likely impact of climate change under the RCP8.5 scenario was investigated with known 

thermal thresholds for the brown trout (i.e., risk of death at 25 °C and above; increased 

occurrence of PKD above 15 °C; increased fish egg mortality at 13 °C between September and 

January), a cold water fish species that is found in rivers and streams throughout all of 

Switzerland (Brodersen et al., 2023). While the brown trout can already die after about 10 min 

at temperatures of 30 °C (Elliott, 1981), due to the daily temporal resolution of the employed 

models, thermal thresholds could only evaluated on a daily time scale. Even when looking only 

at the daily time scale, the results of this study are cause for concern, as both the number of 

stations as well as the duration during which thermal thresholds are exceeded increase. Viewed 

alongside the fact that the number of catches of brown trout in Switzerland have already 

severely decreased in the past decades, for example from 73,500 in 1989 to 12,750 in 2019 in 

the rivers of the Swiss canton of Bern, which represents rivers of all types of thermal regimes 

that are found in Switzerland (FOEN, 2024), the outlook for the brown trout's future in Swiss 

rivers is grim.  

The thermal analyses preformed here do not resolve all the processes affecting fishes’ 

sensitivities to thermal extremes or spawning success. The ability to migrate, find local cold 

water refugia, or the availability for bottom gravel substrate required for spawning was not 

explicitly simulated. However, as severe temperature extremes which exceed the fish mortality 

threshold of 25 °C can in general occur in tandem with low flow conditions (see Figure 5), the 

possibilities for the brown trout to temporally migrate to a cold water refugia during such 

extremes can be expected to be strongly limited. And while we did not investigate the 

temperature to initiate spawning, it is likely that longer occurrence of high-water temperature 

periods during Autumn will have the potential to delay brown trout spawning. Moreover, due 

to increased river discharge and erosion in winter, sufficient bottom gravel substrate for 

spawning can be expected to decrease in future (Junker et al., 2015). Hence, to conclude, a 

changing climate will significantly increase the stress on brown trout, and given the widespread 

distribution of this fish species, future changes in temperature related death of adults cause us 

most concern. 
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5. Conclusions 
An automated multi-fidelity modeling approach consisting of downscaled regional climate 

models, hydrological catchment models, and two semi-empirical water temperature models at 

variable degrees of parametrization complexity was used to investigate future river water 

temperatures across Switzerland under three climate scenarios. Model selection and 

performance was optimized by grouping river stations under thermal regimes using a process 

consisting of thermal pattern recognition with hierarchical clusters.  

According to the simulations, for the high emission climate scenario (RCP8.5), average river 

water temperatures across Switzerland will increase by +3.2 °C (0.36 °C per decade from 2020 

to 2099), while under the low emission scenario (RCP2.6) temperatures increase by only 0.9 

°C. The strongest river water warming under the high emission scenario can be expected to 

occur in the Alpine thermal regime (+3.5 °C) followed by stations of the Downstream Lake 

thermal regime (+3.4 °C). A general shift in river discharge with less water in summer and 

more water in winter together with increased warming in summer produced increased seasonal 

warming which stretched hysteresis loops of water temperature versus discharge. The severity 

of thermal extremes in summer increased by, on average, 0.6 °C under the high emission 

scenario, while under the low emission scenario the increase was limited to 0.2 °C. Caused by 

future low flows, river stations in the Swiss Plateau thermal regime showed the most severe 

absolute river temperature extremes during the reference period, while the absolute extreme 

temperature change was largest of Regulated thermal regime stations (RCP2.6: +0.28 °C, 

RCP4.5: +0.54 °C, RCP8.5: +0.93 °C). Our results show increased future thermal stress on 

cold-water fish such as the brown trout, with substantial increases in the duration of threshold 

exceeding temperatures. These exceedances will lead to the increased likelihood of 

reproduction difficulties, occurrence of sickness and high temperature related mortality for 

brown trout in rivers where this previously was not a problem.  

A multi-fidelity modeling approach was deemed necessary to work around computational 

limitations while investigating regional climate change across Switzerland. We show how 

surface water temperature models can be employed for various different thermal regimes by 

automatically adapting their parametrization complexity to the required level, including for 

stations downstream of lakes that are influenced strongly by the lake thermal regimes. Yet, 

future studies would benefit from connecting lakes and rivers in one modeling framework. The 

climate models used here were part of to the global CMIP5 and regional EUROCORDEX 

coordinated modeling efforts (CH2018, 2018). Future studies should however consider using 

the more recent CMIP6 or later collaborations for their projections.  

Swiss water protection management leans on the sensitivity of species for enforcing thermal 

utility rules prohibiting thermal use past certain thresholds (Waters Protection Ordinance 

814.201). Our results show a change in the duration and the location of threshold exceeding 

water temperatures, which threatens not only the brown trout but have implications for future 

anthropogenic use of Swiss surface waters. Local and regional climate protection measures to 

limit negative effects of climate change includes but are not limited to the creation of river 

bank shading (Trimmel et al., 2018), dam management (Payne et al., 2004), river restoration, 

stormwater and site-specific management (Palmer et al., 2008) as well as managed ground 

water recharge (Epting et al., 2023). Ultimately to mitigate negative climate impact, 

management needs to weigh the need for protection and preservation with its associated cost 

and benefit towards the outcome of a non-interactive, partial or full climate protection 

approach.   
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