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Abstract

River water temperature is a key factor for water quality, aquatic life, and human use. Under
climate change, inland water temperatures have increased and are expected to do so further,
increasing the pressure on aquatic life and reducing the potential for human use. Here, future
river water temperatures are projected for Switzerland based on a multi-fidelity
modetingmodeling approach. We use 2 different, semi-empirical surface water temperature
models, 22 coupled and downscaled general circulation- to regional climate models, future
projections of river discharge from 4 hydrological models and 3 climate change scenarios
(RCP2.6, 4.5, and 8.5). By grouping-stream-seetions; catchments-and-spring-fed-water courses
under representative thermal regimes, and by employing hierarchical cluster-based thermal
pattern recognition, an optimal model and model configuration was selected, thereby

improving model performance.-optimized-and-climate change impaetassessment onriverwater
temperatures improved.

Results show that, until the end of the 215t century, average river water temperatures in
Switzerland will likely increase by 3.240.7 °C (or 0.36+0.1 °C per decade) under RCPS8.5,
while under RCP2.6 the temperature increase may remain at 0.9+0.3 °C (0.1240.1 °C per

decade). Under RCP8.5, temperatures of rivers classified as being in the 4/pine thermal regime

will increase the most, that is, by 3.5+0.5 °C, followed by rivers of the Downstream Lake

regime, which will increase by 3.440.5 °C. Under RCP2.6 temperatures in the Alpine and

Downstream lake regimes change most with +1.15 and +0.9940.5 °C.

A general decrease of river discharge in summer (-10 to -40 %) and increase in winter (+10 to
+30%), combined with a further increase in average near-surface air temperatures (0.5 °C per
decade), bears the potential to not only result in overall warmer rivers, but also in prolonged
periods of extreme summer river water temperatures. This dramatically increases the thermal
stress potential for temperature sensitive aquatic species such as the brown trout in rivers where
such periods occur already, but also rivers in where this previously was not a problem. By
providing information of future water temperatures, the results of this study can guide
managements climate mitigation efforts.
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1 Introduction

River water temperature is a key factor in the regulation of physical and biogeochemical
processes in aquatic systems, affecting water quality, aquatic life and the potential for human
water use. Globally, climate change has already increased, and is expected to further increase,
river water temperatures (Van Vliet et al., 2011; 2013). Without climate protection, it is
estimated that, globally, 36% of fish species will see their future habitats exposed to climate
extremes, with changes in water temperatures being deemed more critical than the change in
water availability (Barbarossa et al., 2021). The amount of river warming, especially during
heat waves and droughts, is however not only a function of near-surface air temperatures, but
also of river discharge, river-groundwater interactions, and human activities such as
channelization, damming, water use for cooling purposes, or sewage and storm water runoff
all affecting water quality (Ficklin et al., 2023; Van Vliet et al., 2023).

In Switzerland, the water tower of Europe, the effects of a changing climate have already
influenced both river temperatures (Hari & Giittinger, 2004) and river discharge (Birsan et al.,
2005). According to the latest regional climate projections (CH2018, 2018) the change is likely
to continue to affect Swiss waterbodies in the future (FOEN, 2021). Past water temperature
trends in Switzerland from 1979 to 2018 amounted to an increase of 0.33 °C per decade on
average, alongside a near-surface air temperature increase of 0.46 °C per decade (Michel et al.,
2020). Using a limited subset of federally monitored Swiss catchments (~10%) and a high
emission climate scenario (RCP8.5), it was projected that water temperatures may continue to
increase by 3.5 °C until the end of the 21 century (Michel et al., 2022). Being a higher
elevation country (mean elevation +-350-1,350 m_aslASL), most rivers in Switzerland are
populated by the brown trout (sa/mo trutta fario), a cold-water fish (Brodersen et al., 2023).
All fish species have specific temperature limits within which optimal conditions for growth,
health, reproduction, or life, exist. For the brown trout, which is a particularly temperature
sensitive fish species, warmer water temperatures of around 13°C pose a threat for egg survival,
15°C strongly increases their receptivity for parasites related illnesses, and prolonged exposure
to 25°C can lead to death (Strepparava et al., 2018; Wehrly et al., 2007; Chilmonczyk et al.,
2002; Elliott, 1994). A prime example of a water temperature related threat is the elevation
(i.e., water temperature) dependent proliferative kidney disease (PKD), a parasite-caused
illness in brown trout which is increasingly wide-spread in Swiss catchments (Hari et al., 2006).

A common challenge for model-based studies is the question of the optimal model to use. In
surface hydrological applications, models can broadly be split into two major groups: process-

based and statistical/stochastic models (Benyahya et al., 2007). Process-based models are based

on physical equations and can resolve many hydrological processes in a physically robust

manner, from the local to the catchment scale. However, albeit physically more robust, process-
based models generally require a significant amount of input data and computational resources

for the simulation of hydrological processes on the catchment scale, therefore limiting their
applicability for climate change analyses on national scales. Statistical/stochastic models, as

opposed to process-based models, are data driven, that is, are based on empirical relationships
between input and output data. While they are physically less robust, their advantage lies in
their relative simplicity and limited data requirements, sacrificing detail for increased

repeatability and spatial coverage. However, in order to build on the efficiency of statistics
whilst preserving a clear physical basis, as a compromise between the two major model groups,
a sub-group of semi-empirical models, which employs physically meaningful equations but

simplifies the more complex processes into purely empirical parameters, was developed

(Piccolroaz et al., 2013). These semi-empirical models are ideally suited for hydrological
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climate change projections, as they provide much more robust projections compared to purely
statistical approaches but simultaneously allow for a more comprehensive analysis than
process-based models by enabling multi-model climate change ensemble analyses (La Fuente
et al., 2022; Meehl et al., 2007).

The study of climate change includes the investigation of physical processes on global, regional
and local scales. As scales change so too does the required level of detail needed to resolve the

different water cycle components that are relevant on the respective scale. An ideally suited

approach to address this challenge in hvydrological modeling is a multi-fidelity model
framework, which combines multiple computational models of varying complexity in an
automated selection framework that ensures robust predictions while limiting the computation

to only the necessary level of detail (Ferndndez-Godino, 2023). The use of process dependent
fidelity ensures proper representation of physical processes on regional to local scales while

keeping computational costs to a minimum. Multi-fidelity modeling is especially useful when
acquiring high-accuracy data is costly and/or computationally intensive, as is the case for
climate change impact assessment on the hydrological cycle.

Given the past and future changes to Swiss river water temperatures and considering both the
high sensitivity of aquatic species to river water temperatures and the increasing demand for
river water by agriculture, industry and society as a whole, it is critical that-weto obtain a robust
spatial and temporal understanding of the temperature increases that are expected for the many
different rivers and streams of Switzerland. Here, we developed an efficient multi-multi-fidelity
modelingmodeling method guided by statistical pattern recognition to estimate river water
temperatures under climate change and thereby close the aforementioned spatial gap by
determining, in an automated manner and on a eeuntry-widenational scale, how future river
water temperatures are likely going to change. Compared to previous projections of climate
warming in Swiss rivers (Michel et al., 2022), the simplified multi--fidelity medelingmodeling
approach not only enabled to cover the national scale-a-widerinvestieationarea (+90%) but
also further inelgdine Sthermal regimes (here 5, previously 2) and andbased on 22 GCM-RCM
chains (previously 7). By grouping catchments together via statistical pattern recognition, we

were able to classify rivers (including spring-fed rivers) into 5 different thermal regimes,
improving model results by allowing for optimal model selection at each station and enabling

regime-specific analyses. The effect on warming by changing river discharge was investigate
through a hysteresis analysis. Additionally, we introduce the thermal-extreme event severity
index as an analytic tool to evaluate the change in thermal extreme amplitude.

2 Materials & Methods

In climate change studies of the hydrosphere, unknown biases present a fundamental challenge.
These biases can arise from limitations in how well models capture future physical processes,

as well as from assumptions embedded in climate scenarios. To limit the influence of unknown
bias, a common method is the multi-fidelity modeling approach which combines multiple

models with different processes of fidelity. Using multiple models (as well as climate
scenarios), while accepting that process-specific model performance differs from model to
model, minimizes the risk of large bias towards the real future through a widening of the range

of projections being made. Advantages for hydrological studies include the improvement of
robustness of low-flow forecasts and accountability of structural uncertainty (Nicolle et al.,
2020). As such, the method has been used to limit the uncertainty caused by hydrological
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models on runoff and evaporation climate projections using large ensembles of global
hydrological models while investigating regional and global water scarcity in the future

(Schewe et al., 2014). Even though varying model fidelity with varying complexity and

computational constraints is an advantage to hydrological modeling, care is needed when

adding processes depending on the relevance of the process in the local area under investigation
(Guse et al., 2021).(N\Na

In this study a revel-multi-fidelity medellingmodeling approach able-to-choosefrom-multiple

different—fidelity tevels—efusing two semi-empirical surface water temperature models,
a1r2water and air2stream (Toffolon & Piccolroaz, 2015; Plccolroaz etal. 2013) was employed.

allowed limiting the computational requirements to the levels needed for climate change

ensemble simulations. The—multi-fidelity —approach,—in—which—aAll available model

configurations (i.e., 3, 4, 5, 6, 7 and 8 different parameter combinations and implementations)

of two—different semi-empirical-medels—were evaluated for their applicability to different

thermal river regimes (Appendix A) and; allowed for developing optimal site-specific models

for all the 82 thermal river monitoring stations of the Swiss Federal Office of the Environment
(FOEN).

As the driving model fereingsforcing (i.e., hydrological boundary conditions), we used
downscaled near-surface air temperature projections from 22 coupled general circulation to
regional climate models (GCM-RCM) from 9 GCM and 8 RCM, and combined them with
projections of future stream discharge from 4 hydrological models for 3 climate change
scenarios (i.e., representative concentration pathways) representing all climate protection
measures with RCP2.6, moderate measures by RCP4.5, and business as usual by RCP8.5.
Following recommendations from the Word Meteorological Organization (WMO, 2017) to use
30 years of continuous data while evaluating climate change, we selected 3 periods of interest
including a reference period (1990 to 2019) and;-a both a near- (2030 to 2059) and a-far--future
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1
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Future to past

Figure 1. Workflow summarizing the data treatment and the multi-fidelity model selection and optimization.

2.1 Data

River water temperatures are directly influenced by both global and, to an even greater extent,
local conditions in and above the drainage area, especially in regions divided by geographic
barriers such as mountains (Ficklin et al., 2023). To analyze site-specific controls and project
future river water temperatures, measured historic and simulated future climate data should
thus be representative of the conditions and hydrologic processes upstream of the locations to
be studied. The air2stream and air2water models require both measured historic and simulated
future climate data to extend to at least a year (ideally more than one) and be daily resolved.
However, to be sure that the effect of climate is included in calibration and analysis of future
conditions, data should preferably cover 30 years (WMO, 2017; Piccolroaz et al., 2013).

Temporally overlapping, daily averaged near-surface air temperature and river discharge

measurements spanning the 30-year reference period of 1990 to 2020 were used as calibration
data, while for validation the data from 1980 to 1990 were used (Table B2 in Appendix). By
choosing to use the most recent data for calibration rather than validation ensures that recent
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local climate conditions are carried into future projections (Shen et al., 2022). For the few cases
where no forcing data for calibration did exist between 1990 to 2020 (Table B2), validation
was deprioritized and calibration performed for the 1980-1990 data.

Here; we use CH2018 climate simulations based on the EURO-CORDEX regional climate
medelingmodeling ensemble. In CH2018 for—which—near-surface air temperatures have
beenwas downscaled to—lecal—conditions—by applying a statistical bias-correction and
downscaling method (Quantile Mapping, a purely statistical and data-driven method) to the

original output of all EURO-CORDEX climate model simulations, as observational reference

station observatlons and observatlon based gridded analyses were used (CH2018 2018
Chagter 5).

available as both gridded and local station products (CH2018 Project Team, 2018). Following
CH2018, the Hydro-CH2018 project analyzed the effects of climate change on Swiss water
bodies (FOEN, 2021).- The gridded climate product from CH2018 version-has-beenwas used
used-to construct projections of future river discharge for 4 hydrological models used in the
Hydro-CH2018-prejeet. The location where output from these 4 models was used in this study

is shown in {—FQEN%@Q—H—GF@EN—ZOQ—I—)—}H&L&&&&%F 1gure Za} 1nclud1ng ( M)_T—he4—medels

PREVAH WSL a conceptual process- based modelk (M;,—Brunner et al., 2019a; Brunner, et

al., 2019b) and; (M>) PREVAH-UniBE (M2:-Muelchi et al., 2021), (M3) HBV Light-UniZH a
bucket-type hydrological model (Ma:-Freudiger et al., 2021), and (M4) Alpine3B-Flow-EPFL
the- snowmelt and runoff model Alpine3D coupled to the semi-distributed hydrological model
StreamFlow (Mu:—Michel et al., 2022)(Figure2a). The Hydro-CH2018 project produced
projections for 61 out of the 82 FOEN river monitoring stations under multiple-different22
GCM-RCM model chainss (9 GCM coupled to 8 RCM runs) with 0.11° and 0.44° resolution
and 3 climate change scenarios (RCP2.6, 4.5, and 8.5). The available projections, the employed
circulation and hydrological models, and the considered climate change scenarios for all the
different stations that were considered in this study are summarized in Table 1.
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Figure 2. a) Investigated FOEN stations with available and used hydrological models providing future
projections of river flow, b) station thermal regimes, ¢) downstream lake clusters, d) best performing surface
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water temperature model at downstream lake stations. Red arrows show river flow directions. Coordinate
reference system is the Swiss LV9s. Background  map is the DHM25,
swisstopo.admin.ch/de/geodata/height/dhm25.html).

From models M-M3, continuous projections of river discharge at daily resolution for the entire
period covering 1990-2099 were available, projections from the M4 model were discontinuous
and only covered the periods 1990-2000, 2005-2015, 2030-2040, 2055-2065, and 2080-2090,
respectively. River temperature simulations of river monitoring stations for which forcing data
from models Mi-M3 were available covered the entire period of 1990-2099, while for stations
for which only data from model M4 were available, simulations were only run for the periods
for which data was available.

Measurements of historic meteorologic and hydraulic parameters which were used for model

calibration, validation and for bias correction were obtained at daily resolution from the
MeteoSwiss IDAweb platform (meteoschweiz.admin.ch) and from the Hydrology Division of
the Federal Office for the Environment FOEN (hydrodaten.admin.ch). For monitoring stations

at which historic river discharge data or future river discharge projections were not available,

only future near-surface air temperature projections were used to simulate water temperature.
Where climate projections were available at multiple different spatial resolutions (i.e. 0.11°
and 0.44°), only one model, as indicated in Table 1, was included in the analysis, following the
approach of Muelchi et al., 2021.
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Ta‘ble 1. Climate projections and hydrological hydraulie-models used for temperature simulation. For a
complete climate model designation, see the CH2018 project report (CH2018, 2018). Models analyzed are
indicated by an "X" mark, and models not analyzed but with simulation data provided by a "(X)" mark.

GCM RCM PREVAH-WSL (M) PREVAH-UniBE (M>)
RCP8.5 RCP4.5 RCP2.6 RCP8.5 RCP4.5 RCP2.6
0.11°  0.44°  0.11° 0.44° 0.11° 0.44° 0.11° 0.44°  0.11° 0.44° 0.11° 0.44°
KNMI-RACMO22E X X X X
DMI-HIRHAMS X (X) X (X) X (X) X (X) X (X) X
ICHEC-EC-EARTH CLMcom-CCLM4-8-17 X X
CLMcom-CCLM5-0-6 X X
SMHI-RCA4 X X) X X) X X) X X) X X) X X)
CLMcom-CCLM4-8-17 X X (X) X
CLMcom-CCLMS5-0-6 X X
MOHC-HadGEM2-ES ICTP-RegCM4-3
KNMI-RACMO22E X X X X X X
SMHI-RCA4 X X) X X) X X X) X X) X
CLMcom-CCLM4-8-17 X (X) X (X)
CLMcom-CCLMS5-0-6 X X
MPI-M-MPI-ESM-LR MPI-CSC-REMO2009-1 X (X) X (X) X (X)
SMHI-RCA4 X (X) X (X) X X (X) X (X) X
MPI-CSC-REMO2009-2 X X) X X) X X)
MIROC-MIROCS CLMcom-CCLM5-0-6 X X
SMHI-RCA4 X X X X X X
CCCma-CanESM2 SMHI-RCA4 X X X X
CSIRO-QCCCE-CSIRO-Mk3-6-0  SMHI-RCA4 X X
IPSL-IPSL-CMSA-MR SMHI-RCA4 X (X) X (X)
NCC-NorESM1-M SMHI-RCA4 X X X X X X
NOAA-GFDL-GFDL-ESM2M SMHI-RCA4 X X
GCM RCM HBV Light-UniZH (M3) AlpineFlowAlpine3D-EPFL (My)
RCP8.5 RCP4.5 RCP2.6 RCP8.5 RCP4.5 RCP2.6
0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 0.11° 0.44°  0.11° 0.44° 0.11° 0.44°
KNMI-RACMO22E X X
DMI-HIRHAMS X X X X X X
ICHEC-EC-EARTH CLMcom-CCLM4-8-17 X X
CLMcom-CCLM5-0-6 X
SMHI-RCA4 X X X X X X
CLMcom-CCLM4-8-17 X X
CLMcom-CCLMS5-0-6 X
MOHC-HadGEM2-ES ICTP-RegCM4-3 X
KNMI-RACMO22E X X X X X X
SMHI-RCA4 X X X X X X
CLMcom-CCLM4-8-17 X X
CLMcom-CCLMS5-0-6 X
MPI-M-MPI-ESM-LR MPI-CSC-REMO02009-1
SMHI-RCA4 X X X X X X
MPI-CSC-REMO2009-2 X X X
MIROC-MIROC5 CLMcom-CCLMS5-0-6 X
SMHI-RCA4 X X X X X X
CCCma-CanESM2 SMHI-RCA4 X X
CSIRO-QCCCE-CSIRO-Mk3-6-0  SMHI-RCA4 X X
IPSL-IPSL-CM5A-MR SMHI-RCA4 X X
NCC-NorESM1-M SMHI-RCA4 X X X X X X
NOAA-GFDL-GFDL-ESM2M SMHI-RCA4 X X
GCM RCM No Flow Projection
RCP8.5 RCP4.5 RCP2.6
0.11°  0.44°  0.11° 0.44° 0.11° 0.44°
KNMI-RACMO22E X X
DMI-HIRHAMS X (X) X (X) X
ICHEC-EC-EARTH CLMcom-CCLM4-8-17 X X
CLMcom-CCLMS5-0-6 X
SMHI-RCA4 X X) X X) X X)
CLMcom-CCLM4-8-17 X (X) X
CLMcom-CCLMS5-0-6 X
MOHC-HadGEM2-ES ICTP-RegCM4-3 X
KNMI-RACMO22E X X X
SMHI-RCA4 X (X) X (X) X
CLMcom-CCLM4-8-17 X (X) X (X)
CLMcom-CCLMS5-0-6 X
MPI-M-MPI-ESM-LR MPI-CSC-REMO2009-1 X (X) X (X) X (X)
SMHI-RCA4 X (X) X (X) X
MPI-CSC-REMO2009-2 X (X) X X) X X)
MIROC-MIROC5 CLMcom-CCLMS5-0-6 X
SMHI-RCA4 X X X
CCCma-CanESM2 SMHI-RCA4 X X
CSIRO-QCCCE-CSIRO-Mk3-6-0  SMHI-RCA4 X X
IPSL-IPSL-CMSA-MR SMHI-RCA4 X X) X X)
NCC-NorESMI-M SMHI-RCA4 X X X
NOAA-GFDL-GFDL-ESM2M SMHI-RCA4 X X

240
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2.2 Hydrologic and meteorologic station coupling
Switzerland is characterized by a pronounced topography. Therefore, the closest

meteorological station to a hydraulic station might not necessarily be the ideal coupling partner.
Hydrological Hydraulie-and meteorological stations therefore were instead-paired according to
the following procedure: Only stations were considered for which (a) future climate projections
of near-surface air temperatures (required) and river discharge (optional, but desirable for
improved water temperature predictions) were available for the entire period covering 1980 to

2099, and (b) historic measurements of near-surface air temperatures and river discharge were
available from 1980 to 2020,—were-considered. Meteorological stations were subsequently
paired with hydrological stations such that (a) the horizontal distance between river and
meteorological stations was mintmal-as small as possible i.e. nearest to nearest (criterion
“DIS™), (b) the meteorological station was representative effor the conditions in the upstream
drainage area composing a meteorological station being located in the same valley and

upstream (criterion “DRA"), and (c) the elevation difference did s't-not exceed a reasonable
threshold of 200 m (criterion “ELE™). Where possible, all three criteria were adhered-temet,
that is the closest station passed both ELE and DRA and are noted as DIS in Table 2t. If the
closest station were deemed not to be representative (e.g. in a neighboring valley or
downstream) the DIS criteria where failed, such a station are noted as DRA in Table 2. If a
station failed both DIS and DRA but passed ELE it is noted as ELE in Table 2. -Forsituations

DR A or FT L he 1) erion

are summarized in Table 2.
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Table 2. Combined river and meteorological stations and available models for climate projections of
discharge. Abbreviations: DIS: Distance; ELE: Elevation; DRA: Drainage area.

FOEN Hydrological stations Meteorological stations Hydrological models
‘ Name 1D Height Area | Acronymn  Height Distance Criteria Hydro-CH2018
(massk)  (km? (m (km) M, M, M; M,

| Rhone - Porte du Scex 2009 377 5238 AIG 381 3.8 DIS X

Aare - Brugg 2016 332 1168 BUS 387 14.0 DIS X

Reuss - Mellingen 2018 345 3386 BUS 387 15.0 DIS X

Aare - Brienzwiler 2019 570 555 MER 588 6.1 DIS

Aare - Briigg, Aegerten 2029 428 8249 BER 553 20.0 ELE X

Aare - Thun 2030 548 2459 INT 577 22.3 DIS X

Vorderrhein - Ilanz 2033 693 774 CHU 556 26.9 DRA X X

Broye - Payerne, Caserne d 'aviation 2034 441 416 PAY 490 2.7 DIS X X X

Thur - Andelfingen 2044 356 1702 SHA 438 11.4 DIS X X X

Reuss - Seedorf 2056 438 833 ALT 438 0.4 DIS X X

Ticino - Riazzino 2068 200 1613 MAG 203 1.8 DIS

Emme - Emmenmatt, nur Hauptstation 2070 638 443 LAG 744 4.7 DIS X X

Muota - Ingenbohl 2084 438 317 ALT 438 12.8 DIS X

Aare - Hagneck 2085 437 5112 BER 553 22.5 DRA X

Rhein - Rheinfelden, Messstation 2091 262 3452 BAS 316 16.4 DIS X

Linth - Weesen, Bidsche 2104 419 1062 GLA 517 10.9 DIS X X

Birs - Miinchenstein, Hofmatt 2106 268 887 BAS 316 3.7 DIS X X X

Liitschine - Gsteig 2109 585 381 INT 577 0.9 DIS X X X

Sitter - Appenzell 2112 769 74.4 STG 776 10.4 DIS X

Aare - Felsenau, K.W. Klingnau (U.W.) 2113 312 1768 BUS 386 25.8 DRA

Murg - Wingi 2126 466 80.2 TAE 539 4.1 DIS X

Rhein (Oberwasser) - Laufenburg 2130 299 3405 RUE 611 18.6 DIS

Aare - Bern, Schonau 2135 502 2941 BER 553 6.5 DIS X

Rheintaler Binnenkanal - St. Margrethen 2139 404 175 VAD 457 37.3 DRA

Rhein - Rekingen 2143 323 1476 KLO 426 18.5 DRA X

Landquart - Felsenbach 2150 571 614 RAG 497 9.5 DIS X

Reuss - Luzern, Geissmattbriicke 2152 432 2254 LUZ 454 2.0 DIS X

Giirbe - Belp, Miilimatt 2159 522 116.0 BER 553 12.1 DIS

Massa - Blatten bei Naters 2161 1446 196 GRC 1605 24.9 ELE X X

Tresa - Ponte Tresa, Rocchetta 2167 268 609 LUG 273 9.1 DIS X X

Arve - Genéve, Bout du Monde 2170 380 1973 GVE 410 7.9 DIS

Rhone - Chancy, Aux Ripes 2174 336 1030 GVE 411 16.0 DIS

Sihl - Ziirich, Sihlholzli 2176 412 343 SMA 556 3.2 DIS X X

Sense - Thorishaus, Sensematt 2179 553 351 BER 553 14.3 DIS X X

Thur - Halden 2181 456 1085 GUT 440 11.8 DIS X X

Doubs - Ocourt 2210 417 1275 FAH 596 13.0 DIS X

Allenbach - Adelboden 2232 1297 28.8 ABO 1321 0.9 DIS X

Limmat - Baden, Limmatpromenade 2243 351 2384 REH 444 16.6 DIS X

Rosegbach - Pontresina 2256 1766 66.5 SAM 1709 4.3 DIS X

Inn - Tarasp 2265 1183 1581 SCU 1304 0.6 DIS

Lonza - Blatten 2269 1520 77.4 GRC 1605 24.9 ELE X X

Grosstalbach - Isenthal 2276 767 439 ALT 438 53 DIS X X

Sperbelgraben - Wasen, Kurzeneialp 2282 911 0.56 NAP 1403 7.5 DIS

Rhein - Neuhausen, Flurlingerbriicke 2288 383 1193 SHA 438 0.9 DIS

Areuse - St-Sulpice 2290 755 104 BRL 1050 9.0 DRA

Suze - Sonceboz 2307 642 127 CHA 1594 11.5 DIS X

Goldach - Goldach, Bleiche, nur Hauptstation 2308 399 50.4 GUT 440 19.3 ELE X

Dischmabach - Davos, Kriegsmatte 2327 1668 429 DAV 1594 4.9 DIS X

Langeten - Huttwil, Haberenbad 2343 597 59.9 WYN 422 15.0 DIS X

Riale di Roggiasca - Roveredo, Bacino di 2347 980 8.12 GRO 323 6.0 DIS

Vispa - Visp 2351 659 786 VIS 639 3.6 DIS X

Poschiavino - La Rosa 2366 1860 14.1 BEH 2260 3.8 DIS X X

Mentue - Yvonand, La Mauguettaz 2369 449 105.0 PAY 490 17.1 ELE X

Linth - Mollis, Linthbriicke 2372 436 600 GLA 517 7.4 DIS X X

Necker - Mogelsberg, Aachséige 2374 606 88.1 EBK 623 10.1 DIS X

Murg - Frauenfeld 2386 390 213 TAE 539 9.9 DIS X

Rhein (Oberwasser) - Rheinau 2392 353 1195 SHA 438 5.8 DIS

Liechtensteiner Binnenkanal - Ruggell 2410 435 116 VAD 457 12.9 DIS

Rietholzbach - Mosnang, Rietholz 2414 682 3.19 EBK 623 13.5 DIS X

Glatt - Rheinsfelden 2415 336 417 KLO 426 11.4 DIS X X

Venoge - Ecublens, Les Bois 2432 383 228.0 PUY 456 9.2 DIS X X

Aubonne - Allaman, Le Coulet 2433 390 105 CGI 458 15.9 DIS

Diinnern - Olten, Hammermiihle 2434 400 234 WYN 422 13.3 DRA X

Aare - Ringgenberg, Goldswil 2457 564 1138 INT 577 2.5 DIS

Inn - S-Chanf 2462 1645 616 SAM 1708 13.3 DIS X

Saane - Glimmenen 2467 473 1881 BER 552 17.6 DIS

Rhein - Diepoldsau, Rietbriicke 2473 410 6299 VAD 457 29.9 DRA X

Engelberger Aa - Buochs, Flugplatz 2481 443 228 LUz 454 10.6 DIS X X

Allaine - Boncourt, Frontiére 2485 366 212 FAH 596 10.1 DIS

Promenthouse - Gland, Route Suisse 2493 394 120 CGI 458 3.2 DIS X

Schlichenden Briinnen - Muotathal 2499 638 31 ALT 437 15.6 DIS

Worble - Ittigen 2500 522 67.1 BER 553 2.2 DIS X

Biber - Biberbrugg 2604 825 31.9 EIN 911 3.5 DIS X

Rhone - Genéve, Halle de 1 'ille 2606 367 8000 GVE 411 49 DIS X

Sellenbodenbach - Neuenkirch 2608 515 10.4 LUZ 454 11.0 DIS

Alp - Einsiedeln 2609 840 46.7 EIN 911 2.4 DIS X

Riale di Pincascia - Lavertezzo 2612 536 445 OTL 367 10.4 ELE X

Rhein - Weil, Palmrainbriicke 2613 244 3645 BAS 316 6.7 DIS

Rom - Miistair 2617 1236 128 SMM 1386 0.4 DIS X X

Rhone - Oberwald 2623 1368 93.3 ULR 1345 4.6 DRA

Kleine Emme - Emmen 2634 430 478 LUz 454 4.2 DIS X X X

Grossbach - Einsiedeln, Gross 2635 942 8.95 EIN 910 3.0 DIS
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2.3 Forcing data bias correction

Differences between near-surface air temperature measurements used for calibration and
climate model projections, even when slight, may artificially alter the quantification of
projected future river water temperatures by introducing a systematic bias at the start of the
simulations. Despite the fact that the highly resolved GCM-RCMs model output data preduets
that were considered here-were already statistically downscaled, small differences between
modetled and observed air temperatures during the reference period could still be detected.

For the river discharge projections, no bias correction has so far been performed. To mitigate
this bias, the time series of air temperatures and river discharge used as climate forcing data
were statistically adjusted using the change factor method (Diaz-Nieto & Wilby, 2005;
Minville et al., 2008). This method adjusts climate projections towards measurements by
removing the climatological year (consisting of daily averages) from first the modeled data and
then adding the corresponding climatological year from measurements according to Eq. 1,
thereby correcting long-term and seasonal biases while maintaining individual climate model
trends and stochastic variabilities.

Fn; = (Fo; - Co; ) + Cm; (1)

where Fn; is the adjusted variable at time i, Fo; is the future climate simulated time series of
either air temperatures or river discharge at daily resolution, and Co; and Cm; are the
climatological years of the climate simulated time-series and the historic measurements,
respectively, at the day of year j corresponding to time i. The climatological years were
smoothed using a 60-day window to remove the effect of possible pulse events, especially for
discharge. Due to low flow conditions in some rivers, discharge in these rivers waswere never
adjusted below the minimum observed flow.

2.4 Thermal regime classification

For the multi-fidelity sredelingmodeling approach, the different river monitoring stations were
re-classified into the 4 different thermal regimes that have previously been identified for
Switzerland (Michel et al., 2020; Piccolroaz et al., 2016) as well as 1 additional thermal regime
defined for the purpose of this study.

The existing thermal regimes are “Downstream Lake", “Swiss Plateau™, “Alpine", “Regulated",
while the “Spring” discharge regime was added to address the special thermal case of stations
situated at the mouth of spring fed streams. “Downstream Lake" stations show a clear de-
coupling between river temperature and river discharge, “Swiss Plateau” stations exhibit an
annual flow cycle with minimal discharge in summer and strong interannual variability,
“Alpine” stations show that both discharge and temperature are strongly influenced by snow
and glacier melt, “Regulated” stations are fed by intermittent releases of large volumes of water

from upstream reservoirs, and “Spring” stations located immediately downstream of springs
and characterized by a nearly constant temperature signal decoupled from air temperature.

The already existing classifications from (Michel et al., 2020; Piccolroaz et al., 2016) and the
suitability of the yet unclassified stations to be grouped under the different thermal regimes
were first explored by evaluating the historic data and the locations visually (Figure 2b).
Following this first visual classification, an automated thermal pattern recognition using
hierarchical clusters via the multi-cluster tool DTWARP PER 33 (Bogli, 2020) was used
(Figure 2c). Application of the thermal pattern recognition matched the visual pre-classification
in most instaneescases, but revealed that, for certain stations located far downstream of lakes,
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upstream lake processes are still the dominant control for river water temperatures. Stations
that were previously classified as not being part of the Downstream Lake regime were thus here

reclassified as Downstream Lake according to the results of the thermal pattern recognition
procedure.

2.5 Surface water temperature model setup

Two semi-empirical surface water temperature models were employed, the river water model
air2stream (Toffolon & Piccolroaz, 2015)* and the lake water model air2water (Piccolroaz et
al., 2013)™, with the former being an extended version of the latter. Both, the air2stream and

the air2water models combine the simplicity of stochastic models with accurate empirical
representation of the relevant physical processes affecting water temperature. Both-The models
require near-surface air temperature as input to predict future river temperature, while
discharge may optionally be incorporated in air2stream to further improve river temperature

predictions-but-isn't required.

Both models include up to eight parameters (a; to as) which are fitted towards measured data.
Apart from the effect of air temperature on water temperature, the models additionally resolve
the effect of river depth, discharge, thermal signals from —different—tributaries, inverse

stratification in lakes during winter, and seasonal cycles. Model complexity, i.e. how many
processes are directly being resolved by the models or indirectly included through parameter
estimation, can be varied by removal of one or more of the additional processes listed above,
resulting in the use of 8, 7, 6, 5, 4 or 3 parameters. Depending on local conditions, model
performance can be improved by the removal of processes which plays a minor or insignificant

role for water temperature;-thereby-the-need-to-correctlychose-model-complexity. Where this

simplification with removal of parameters was done (Table B2), removed processes plays a

minor role for the simulation of water temperature as evident from decreased model

performance while being Feincluded. For additional information about air2stream and
air2water see Appendix A and Piccolroaz et al. (2013) and Toffolon & Piccolroaz (2015).

For the simulation of future river temperatures, a multi-fidelity modellingmodeling approach
that identified the best water temperature model for each single river monitoring station that

was-considered-in-thisstudy-was employed. The optimal model parameter configuration for
each station was identified via a Monte-Carlo calibration process performed with the Crank

Nicolson scheme (Crank & Nicolson, 1947), consisting of over 22000-2,000 runs using Particle
Swarm Optimization (Kennedy & Eberhart, 1995) with 500 particles. The Root Mean Square
Error (RMSE) function was used as the objective function and combined with the dotty-plots
quality check (S. Piccolroaz et al., 2013; Piccolroaz, 2016; Toffolon et al., 2014).

*1 github.com/marcotoffolon/air2stream
*2 github.com/marcotoffolon/air2water
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—For stations missing either historical data or future
projections of river discharge (brown markers, Figure 2a), discharge was not considered as

forcing data and the airZstream model was reduced to a 3 or 5 parameter model, while no
adaptation was required for air2water model as it does no't simulate discharge. Datasets used
for calibration and validation with data gaps shorter than 30 days were filled wia-by linear
interpolation, while for datasets with gaps exceeding 30 days only the longest continuous
dataset was used.

All simulations (calibration, validation and climate runs) -used a ene-yearone-year period as a
spin-up with the first year of forcing data repeated. Only the best performing river temperature
model was considered for the follew—enfollow-on climate runs. The final calibration and
validation periods and the best performing parameter setups for each station are provided in
Table B2 (Appendix B). As initial conditions for the stepwise climate simulations with model
M., we used simulated temperatures from the latest prior simulated date, that is, elimate-for
simulations between 2030 to 2040 we used temperature from end of 2015 as initial condition.

At Downstream Lake stations, multiple configurations of both water temperature models

(air2stream and air2water) were tested through calibration, and only the best performing

temperature model and parameter setup was kept (station thermal regimes as well as cluster

results are shown in Figure 2 and provided in Table Bl in Appendix B). For the remaining

stations not belonging to the Downstream Lake regime, river processes such as local flow

variations and water depth dominate the water temperature development. For these stations,
different model configurations of only the air2stream model were explored.

2.6 Trend correction

Empirical models generally predict less warming in the future compared to physically based
models, the primary reason being underrepresentation of the thermal catchment memory,
including snow and ice (Leach & Moore, 2019). To quantify how good the models air2stream
and air2water, which both lack deterministic considerations of snow and ice melt, are able to
recreate past trends, we compared trends from river water temperature measurements and
corresponding modeled temperature trends between 1990 and 2019. On an annual basis, this
comparison was possible for 25 out of 82 river stations, consisting of 9 Downstream Lake, 7
Regulated, 7 Swiss Plateau, 2 Alpine, and 0 Spring thermal regime river stations. Stations were

selected with a 30 years of continuous data requirement in air and water temperature and river
discharge. Only statistically significant trends (p < 0.05) were considered.

Both air2stream and air2water underestimate the annual temperature trend during the
reference period on average by 0.14 and 0.11 °C per decade, respectively. For air2stream, the
annual trend bias is smallest for the Swiss Plateau thermal regime (0.09 °C per decade) and
largest in the Alpine thermal regime (0.17 °C per decade). Seasonally, the trend bias is largest
from June to August and September to November, whereas, especially for air2water, the bias
is small from December to February and March to May.

The divergence of both air2stream and air2water models from observed trends warrant a post
simulation bias correction of simulated trends. The bias is river station dependent, making an
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individual correction at each station preferable (Tables B3 to B6 in Appendix B). However,
only about 30% of the river stations investigated have long enough data sets (30 years) for

individual correction. Therefore, we tied the seasonal trend bias correction to the thermal
regime, thereby keeping the correction linked to local conditions. Note that no river station of
the Spring thermal regime had enough data to allow for the trend bias correction. Spring river
stations were therefore not trend bias corrected. As the trend bias correction is acting on climate
simulations of river temperature stretching from 1990 to 2099, the bias correction had to be
scaled towards how air temperature trends shift in the climate models. The scaling was
designed such that it did no't affect the bias correction during the reference period (1990 to
2019), while adjusting the correction towards how the air temperature trend (77air) changes in
the near- (2030 to 2059) and farfar-future (2070 to 2099). For this purpesepurpose, an
adjustment factor F's (-) was constructed from the mean climate models air temperature trends
for each climate scenario. Fs is thus specific for each climate scenario, river station and season.

TTairi,S
FSi,S =

(2)

Here TTair;s is the mean of the air temperature trends from the climate models, which is

TTCliTref s

changing for each season and with the reference, near-; and farfar-future periods, TTair s is
the mean of the seasonal air temperature trend during the reference period, i is the number of
days, and s denotes the season. The temporal gaps between 1990 to 2019,te 2030 to 2059 and
2070 to 2099, during which the air temperature trends were calculated, were linearly filled with
shape-preserving piecewise cubic interpolation resulting in a continuous factor Fs;s from 1990
to 2099. Fs;s varied from -2 to +3 depending on the season and climate scenario and was
applied for simulations using discharge input from models M; to M3, while for simulations
using My, Fis;s was set to 1 from 1990 to 2099 due to too short simulation time frames in My
(only one decade). With Fis;;, the seasonal and thermal regime dependent water temperature
bias 7b;, (regime dependent mean from Table C3 to C6 in Appendix C) is turned into the

thermal regime and climate scenario dependent seasonal bias correction Bcg (°C day!)

=n
Bcg = z Fs;s*Th; 3)
i=1

where 7 is the number of days since 1% of January 1990. Before adjusting the water temperature
model output from 1990 to 2099, the seasonal Bcy was combined into a continuous dataset Bc.
ByTo avoid a sharp shift in Bc between each season, a-fillingin-the 3-to 5-day gap in between
each season was smoothed with shape-preserving interpolation_(Piecewise cubic Hermite
interpolation, PCHIP; Matlab R2022a).

The trend adjustment applied here with Fs, Bc, and pre- and post-adjustment data is shown
from one example station in Figure B1 (Appendix B). Pre- and pest-post-trend correction for
the difference in modeled and measured trends is summarized in Table B7 (Appendix B).

2.7 Thermal hysteresis

Hysteresis, wherein a dependent variable (water temperature or suspended sediments) can
exhibit multiple values in response to a single value from the independent variable (discharge),
is a common phenomenon in hydrology (Gharari & Razavi, 2018). Sediment transport
Hhysteresis can be caused in rivers by emptying and refilling of sediment layers on the river

bed (Tananaev, 2012) and through erosion on land as shown in the Alps with the contributing

location (river bed or eroded area) determining the hysteresis loop shape and rotation direction
(Misset et al., 2019). ;or-as-atagin-Ststream temperature can also show hysteresis effects,
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example being a lag in the response to air temperature caused by ice-melt or reservoir release
(Van Vliet et al., 2011; Webb & Nobilis, 1994).

We investigated past and future hysteresis loops between water temperatures (the dependent
variable) and river discharge (the independent variable) using a versatile index (Zuecco index,
Zuecco et al., 2016). The Zuecco index works through the computation of definite integrals on
data in chosen intervals and was developed for hysteretic loops where the independent variable

increases from its initial value, reaches a peak and then decreases. The index divides loops into
&-classes(}-to-VVH1) depending on rotation direction (counter clockwise or clockwise), number
of loops and loop sizes.

Here we use Zuecco Class I to IV (Figure 3. left column) which represent the interaction
between flow and water temperature for the cases of dataset starting with low temperature and

low flow. However, mainly in the Swiss lowland at the beginning of a year, rivers can display

a situation where temperature is cold (low) and flow is high followed by a higher temperature
in spring combined with less water. This process has been showed to be enhanced by the

ongoing climate warming through shortening or elimination of snow cover and glacial melt
(FOEN (ed.), 2021; Michel et al., 2020; Van Vliet et al., 2013).

Hysteresis class Loop Hysteresis class  Loop

I -1

I -IT

Water tgmperatur
4
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Figure 3. Hysteresis classes with corresponding hysteresis loops. Expanded with classes -1to -IV from Zuecco et
al., (2016) to incorporate water temperature as the dependent variable.

(ed—)—ZOQ—I—%eheLet—al—Z@%@#aﬂ—\Lhet_et—aJ—ZQB—}To 1ncorp0rate th1s reversed hysteretlc
loop, we added 4 “mirrored- hysteresis classes, -I to -1V, to the classes® introduced by Zuecco
etal., (2016) (Figure 3, right column). This was done by inverting the normalized flow prior to
the computatlon of deﬁnlte 1ntegra1s thus creating an 1ncreasmg and decreasrng 1ndependent
variable.
had—been—ﬁwerted—rt—rs—she%a—her%&s——l—te—HLNote that the index works on set 1r1terva1s If
the loops do not come back to their initial values, it works with open loops. The length of the
data sets being investigated should depend on the quality and resolution of the data and the rate
at which the dependent variable changes with respect to the independent variable (Zuecco et
al., 2016). Here we used daily resolved datasets, averaged from 30 years of modeled data, thus
always providing full annual loops.

2.8 Temperature extremes

Extreme conditions are-net-straichtforward-to-define—In—general,they-depend on what is
considered to be extreme in relatron to normal conditions (Stephenson 2008). A-widelyused

: (0% or 90% percentile in a
drstrrb&tre&é}P—G&’A)M%Here water temperatures are consrdered to be extremely high if they
exceed the 90 percentile during the 30-year reference, near- and far-future periods (IPCC,

2014).

We define a new “extreme event severity index™, as the temperature difference between the
90t percentile to the median for each climate simulation and period. If this temperature gap
increases, it indicates that extreme temperatures become more severe as thermal peaks are
elevated compared to the median temperature. extreme event severity index The-severity-of
thermal-extremes-for each simulation and period is thus X °C from 0 °C, where X denotes the
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difference between the 90t percentile and the median temperature while 0 °C represent a match
to the median temperature. Our analysis was made independent of whenre (beginning or end)
in the 30-year periods it was conducted by removing the climatic trend for each simulation and
period before calculating the index. Note that by defining extreme events with the 90t
percentile during each analyzed period, we take-inte-aecountconsider temporal in-situ extreme
events as they are experienced during the considered periods. We do not inflate our results by
using past extreme event definitions to evaluate future extreme events.

2.9 Thermal tThresholds for fish

By counting the number of days per year during which thermal thresholds are exceeded, effects
of climate change on fish can be evaluated both locally and regionally (Michel et al., 2020).
The occurrence of exceedance of specific river water temperature thresholds on a daily scale
was used to investigate the historic past (1990 to 2019) and projected future (2070 to 2099)
stress on the brown trout (Salmo trutta). Three thermal thresholds were chosen in order to
incorporate important aspects in the life of the brown trout. including: (1) adult mortality as
represented by a daily mean temperature above 25 °C (Elliott, 1981; Wehrly et al., 2007), also
set as a hard upper limit for the thermal use of waters in Switzerland (Water Protection
Ordinance 814.201); (2) an increased risk for proliferative kidney disease (PKD) as parasite
activity as represented by a daily mean temperature above 15 °C (Chilmonczyk et al., 2002;
Strepparava et al., 2018) and; (3) fish egg (roe) mortality from September to January as
represented by a daily mean temperature above 13 °C (Elliott, 1981).

3 Results
3.1 Warming

The most influential factor for future river water temperatures was-are the climate change

scenarios. Individual river water warming for the different stations-warming, from the reference
(1990-2019) to the near- (2030-2059) and farfar-future (2070-2099) periods, is-are shown in
Figure 4. Under the RCP8.5 scenario, the warming of river temperatures increases throughout
the 215t century, and even accelerates. The smallest change in river temperatures was observed
under the RCP2.6 scenario, with warming reaching a plateau in the middle of the 215 century.
The mean change in river temperatures from the reference period to the near- and farfar-future
amounts to +0.77 and +0.91 °C for RCP2.6, to +0.95 and +1.51 °C for RCP4.5, and to +1.22
and +3.18 °C for RCP8.5, respectively. This amounts to an averaged water warming rate from
1990 to 2099 for RCP8.5 of 0.36 °C per decade, 0.19 °C per decade for RCP4.5, and 0.12 °C
per decade for RCP2.6. At the same time as near-surface air temperature changed by 0.50 °C
per decade for RCP8.5, 0.26 °C per decade for RCP4.5 and 0.13 °C per decade for RCP2.6.

Climate change impact was heterogeneous between stations, yet common patterns were found
within thermal regimes (Figure 4, Table B8 in Appendix B). The strongest river water warming,
regardless of climate scenario or time period, was observed for stations in the A/pine thermal

regime, followed in order by Downstream Lake, Regulated, Swiss Plateau, and Spring
stationsthermal regimes. Under RCPS.5, river temperatures of Alpine stations, on average,
warm by 1.44 °C until the near-future and by 3.54 °C until the farfar-future, compared to the
reference period. The river water of Downstream Lake stations also strongly warmed, by 1.36
°C until the near-future and by 3.43 °C until the farfar-future. Compared to the Alpine and
Downstream Lake thermal regimes, river temperatures of stations in the Regulated (nearnear-
future +1.19 °C, farfar-future +3.00 °C) and Swiss Plateau (rearnear-future +1.06 °C, farfar-
future +2.75 °C) thermal regimes warmed less. Least affected, by a wide margin, were the river
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Figure 4. Modeled mean river temperature increase from the reference (1990 to 2019), to near-future (2030 to
2059, blue bars) and farfar-future (2070 to 2099, red bars) under climate scenarios RCP 2.6, RCP4.5 and RCPS.5.
Shown is the median (bar center line) and the lower and upper quartiles (left and right bar extent) of the difference

between periodic mean temperatures (over 30 years) for each available climate simulation (additionally averaged
where multiple hydrological models exist), i.e., the bar extents show climate model variability in the mean
temperature change between the three periods. Stations 2414 and 2462 are not shown since the flow model My
lacked 30 years of continuous data.
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3.2 Hysteresis analysis

The hysteresis class could be determined at-for each station fer-with future and present river
discharge (47 out of 82 stations). For all stations, climate scenarios, and climate models, the
index found solutions in hysteresis intervals ranging from 164 to 328 -te-164-days.

During the reference period the dominant hysteresis class was IV (45.6%) followed by III
(25.0%), -1 (14.7%), -11 (11.8%) and I (2.9%) while no stations belonged to class II. For the
reference period the classes remained independent ef-in relation to the climate scenario
(RCP8.5, 4.5, 2.6) or hydrological model (M1, M2, M3) used, while in the near- and farfar-
future differences start to show. For RCP8.5 in the farfar-future period the dominant class was
-1 (48.5%) followed by class IV (33.8%), I1I (13.2%) and -II (4.4%).

For the RCP8.5 scenario classes isare shown for the reference, near- and farfar-future periods
in Table 3 (hysteresis classes for RCP4.5 are shown in Table B9, and for RCP2.6 in Table B10,
both in Appendix B). Under RCP8.5, the number of stations which changed hysteresis classes
between the reference and the nearnear-future was 23%, increasing to 51% until the farfar-

future. Correspondingly, under RCP4.5, 23% had changed hysteresis classes when reaching
the near-near-future, while 38% of the stations changed classes until the far-far-future. Under

RCP2.6, 28% of stations had changed classes until the nearnear-future, but once reaching the
far-far-future, some stations changed back again and the fraction of stations that were in a
different hysteresis class compared to the reference period was reduced to 21%.

Considering only the far-far-future period (2070 to 2099) , stations belonging to the Swiss
Plateau thermal regime showed the largest change in hysteresis loop classes, with 58%
changing under RCP8.5, 42% under RCP4.5 and 12% under RCP2.6. Considering again only
the far-far-future, stations belonging to the Regulated thermal regime exhibited hysteresis loop
class changes of 50% under RCP8.5, 33% under RCP4.5 and 50% under RCP2.6. Least prone
to hysteresis class changes in the farfar-future were stations of the Alpine thermal regime (38%
under RCP8.5 and RCP4.5, 23% under RCP2.6). Out of the 20 Downstream Lake thermal
regime stations only 2 stations were investigated with discharge (i.e. model with air2stream
instead of air2water). From these 2 stations, 1 changed hysteresis class with RCP8.5 by the far
far-future, 1 with RCP2.6 but none with RCP4.5. As can be seen from 4 representative stations
for the Swiss Plateau, Regulated, Alpine, and Downstream Lake illustrated in Figure 5, a

change in hysteresis class is usually associated with a counterclockwise rotation and stretching
of the loop from, for example from a lower elass-to a higher class (III to IV). Such a rotation
and stretching appears as a result of increased warming in summer combined with a decrease
in summer discharge, while warming in winter is smaller than in summer and discharge is
increasing.
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Table 3.-Changein- Modelled hhysteresis classes during- marked-by-yelow from-the reference
pertod-(1990 to 2019), -te-the near-future (2030 to 2059) and the farfar-future (2070 to 2099)

periods for climate scenario RCPS8.5. Flow data from models M2, Mz and M3a. Stations with
no flow measurements for calibration, missing flow model output as forcing or where the use
of the air2water model did not require flow as input have been excluded. A change in class
from the reference period to the near- or farfar-future period is highlighted in italic. Classes
are shown as natural numbers in stead of Roman numerals for ease of reading.
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585 Figure S. Daily averaged river discharge and water temperature for the reference (1990 to 2019, solid line) and
‘586 the far-far-future period (2070 to 2099, dashed line) at 4 stations showing the current and the future thermal
587 hysteresis loops. Flow data used is from model M, stations belong to the Alpine, Swiss Plateau, Regulated and
588  Downstream Lake thermal regimes. Daily averaged datasets have been smoothed twice with a running average of
589 30 days. Hysteresis class change in roman numericals (cf. Fig. 4), station location in Fig. 2b.
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3.3 Temperature extremes

The analysis is focused on temperature extremes in the summer months (June to August),
during which the severity of extremes varies in between climate scenarios and is different on
individual station basis and on a thermal regime basis (Figure 6). Note that the use of extreme
event severity as an index should be viewed as the minimum temperature increase of extreme
events in the future while it denotes the increase of the 90 percentile.- From the reference

(1990 to 2019) to the far-far-future (2070 to 2099) period the extreme event severity for
scenario RCP2.6 increased on average by with-+0.20 °C (Figure 6a), by by+0.38 °C for
RCP4.5 (Figure 6 b) and by +0.61 °C for RCP8.5 (Figure 6 c).

pereentide—Looking at extreme events at the level of thermal regimes, during the reference

period (1990 to 2019), the most sever extreme temperatures occurred at stations in the Swiss

Plateau and Downstream Lake thermal regimes. Swiss Plateau thermal regime (mean extreme
event severity +2.8 °C) Downstream Lake (+2.2 °C), Regulated (+1.3 °C), Alpine (+1.1 °C)
and Spring thermal regimes (+0.12 °C).

For all climate scenarios and all thermal regimes, the severity of extreme events increased

throughout the 215 century. For the far-future (2070 to 2099). under all climate scenarios the
Swiss Plateau and the Downstream Lake thermal regime stations remain as the stations with

the severest extreme events, while the increase in extreme event severity increases the most for

the Regulated and the Swiss Plateau thermal regimes. As the Swiss Plateau and Regulated
thermal regime stations are mostly located in the Swiss low land in the Northwestern part of
Switzerland (see Figure 2b), they are the ones that are expected to experience the most severe

low flow conditions, especially in summer months under the RCP8.5 scenario, with a discharge
reduction ranging from 5 to 60 % (FOEN, 2021: Brunner, et al., 2019; Brunner, et al., 2019;
CH2018, 2018). The largest increase from the reference to the far-future period was found at
stations for the Regulated thermal regime (mean extreme event severity increase RCP2.6:
+0.28 °C, RCP4.5: +0.54 °C, RCP8.5: +0.93 °C) followed by the Swiss Plateau (RCP2.6:
+0.26 °C, RCP4.5: +0.48 °C, RCP8.5: +0.78 °C), Alpine (RCP2.6: +0.23 °C, RCP4.5: +0.45
°C, RCP8.5: +0.68 °C), Downstream Lake (RCP2.6: +0.23 °C, RCP4.5: +0.40 °C, RCPS8.5:
+0.61 °C) and Spring thermal regimes (RCP2.6: +0.01 °C, RCP4.5: +0.01 °C, RCP8.5: +0.03

°C).
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Figure 6. Severity of water temperature extremes from June to August for 30 years of climate simulations (blue
bars 1990 to 2019, red bars 2070 to 2099) ordered according to thermal regime. Shown are the lower and upper
quartiles (extent of bar) and the median (bar center line) of the difference between the 90th percentile to the
seasonal median temperature (30 years of data) from all available climate models (additionally averaged where
multiple hydrological models exist) at each station and time period, i.e., the bar extents show climate model
induced variability in each period. Stations 2414 and 2462 are not shown since the flow model M4 lacked 30 years

of continuous

data.
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3.4 Thermal thresholds

Our results show clear thermal regime dependent differences for the present and future thermal
related stress on the brown trout (Figure 7). The lethal threshold (25 °C) was seldomly
exceeded in the past (Figure 7a). However, towards the end of the 215 century, for a majority

of stations in the Downstream Lake and Swiss Plateau thermal regimes the lethal threshold was
exceeded on at least one day during the vear, making areas which could previously be

considered safe for the brown trout potentially lethal at least on certain days of the year. In

addition, the 25 °C limit is also critical for anthropogenic water use in Switzerland, as the Swiss

law (Water Protection Ordinance 814.201) prohibits a thermal use of waters for cooling
purposes beyond this threshold. Unfortunately, our results not only show an increased

occurrence of lethal temperatures, but also the less imminently lethal but nevertheless

detrimental lower temperature threshold of the increased occurrence of the PKD disease (15

°C) will be exceeded much more frequently (see Figure 7b), as will the threshold for fish egge
mortality (Figure 7¢). Alpine, and to a lesser extend Regulated thermal regime stations, where

previously the thermal conditions for an increased likelihood of PKD were not met, are likely

also going to exhibit these conditions in the warmer summer months. Given the 153 days from

September to January, egg development (approx. 30 to 90 days Alp et al.., 2010) should still
have enough time to take place safely throughout the 215 century in Regulated, Swiss Plateau,
Alpine and Spring thermal regime rivers. Rivers in the Downstream Lake thermal regime are

likely too large to facilitate spawning and were therefore not further considered in this analysis.

The results presented below represent the number of stations where the daily temperature was
above a given thermal threshold (bar center line Figure 7 above 0). Under the RCP8.5 scenario
from the reference to the farfar-future, the number of stations exceeding the mortality threshold
(25 °C) increased from 4 to 37 stations from a total of 54 stations in the Downstream Lake and
Swiss Plateau thermal regimes (Figure 7a). For the Regulated, Alpine and Spring thermal
regime stations, none passed the lethal threshold during the reference period, but for the farfar-
future 1 out of 26 stations exceeded it. For Downstream Lake and Swiss Plateau thermal regime
stations, the PKD threshold (15 °C) was largely exceeded already during the reference period
(52 of 54 stations), increasing to all stations in the farfar-future (Figure 7b). For the Regulated,
Alpine and Spring thermal regime stations, 2 out of 26 stations exceeded the PKD threshold
already during the reference period. While in the farfar-future, 20 out of 26 Regulated, Alpine
and Spring thermal regime stations broke through the 15 °C threshold. With respect to fish egg
mortality (13 °C) -from September to January, all Downstream Lake thermal regime stations
exceeded this threshold both in the reference period as well as in the farfar-future (Figure 7c).
During the reference period, 4 out of 9 Regulated and 31 out of 34 Swiss Plateau thermal
regime stations exceeded the 13 °C threshold. Correspondingly, for the Regulated and Swiss
Plateau thermal regimes, 8 out of 9 and all34-eut-of 34 stations, respectively, exceeded the 13
°C threshold during the far-far-future period. Although Alpine thermal regime stations never
exceeded the 13 °C threshold during the reference period, 8 out of 15 stations exceeded this
limit during the far-far-future period. From the two groundwater fed Spring stations, neither
the mortality nor the PKD or fish egg mortality thresholds were exceeded.
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Figure 7. Number of days superseding thermal threshold for the brown trout for the RCP8.5 climate scenario. a)
Mortality threshold at daily mean temperatures >25 °C, b) increased risk for proliferative kidney disease (PKD)
at daily mean temperatures >15 °C, egg mortality during September to January at temperatures > 13 °C. Data
consist of 30 years of climate simulations (blue bars 1990 to 2019, red bars 2070 to 2099) ordered according to
thermal regime. Shown are the median (bar center line) and the lower and upper quartiles (left and right bar extent)
of the climate simulation from all available climate models (additionally averaged where multiple hydrological
models exist), i.e., the bar extents show climate model induced variability for each period with annual resolution.
Stations 2414 and 2462 are not shown since the flow model M4 lacked 30 years of continuous data.
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4 Discussion
4.1 Multi-fidelity medelinemodeling approach

The use of semi-empirical models by definition means that some of the physical processes

affecting heating are simplified under parameterization and some are directly resolved. The

models air2stream and air2water resolve the effect of river depth, discharge, thermal signals
from tributaries, inverse stratification in lakes during winter, and seasonal cycles. Parts of the

heat balance (e.g. short and longwave radiation) are thus not allowed to change as climate

change in our study. However, indirectly we consider heat budget changes by using high
quality air temperature and discharge projections as input. Glacier retreat is included in the
hydrological models providing discharge projections to this study (eg. Muelchi et al., 2021),

however for temperature this effect is only indirectly considered in air2stream and air2water

through reduced water availability in summer. The effect of high altitude warming as snow and

ice recede is not included. Therefore as the cooling caused by melt water recedes, it is expected
that warming in high altitude rivers is larger than projected in this study. Fhestudy-ofelimate

O
als 5

impaet—assessment—on—the—hydrological-eyele— By Yet thceombining lower —fidelity water
temperature model approach usings with-high-fidelity climate/hydrological model outputs as
input enable ;in-thisstady-we-the important principle of satistied-the—~ital prineiple-efmmulti-

model ensemble, comparison and -analysis that is required for robust climate change impact
assessments (Duan et al., 2019).

To expand on previous results of river water temperature projections for Switzerland (Michel
et al., 2022), we employed a multi-fidelity modeling approach able to automate the generation
of water temperature simulators for the different national river temperature monitoring stations
of Switzerland, as summarized in Figure 1. Models of varying complexity were built from
integrating high-fidelity climate and hydrological sredelingmodeling outputs (i.e., downscaled
climate (Table 1) and hydrological model outputs (Figure 2a), CH2018 and Hydro-CH2018)
with low-fidelity river temperature models of varying degrees of parametrization i.e., air2water
and air2stream (Toffolon & Piccolroaz, 2015; Piccolroaz et al., 2013). Statistical learning-
based coupling of atmospheric and hydrological stations (Table 2) and classification of river
stations into thermal regimes (Figure 2b & 2c) enabled optimal low-fidelity model selection
(Figure 2d) and parametrization.

4.2 Adjustment of trends
A trend bias correction was applied to the temperature model outputs due to the difference
observed between modeled and measured trends (Table B3 to B6 in Appendix B). The

correction decreased the difference between modeled and measured annual trends by
approximately 0.1 °C per decade. After the bias correction, modeled annual trends with climate
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simulations as inputs followed closely the observed trends (Table B7 in Appendix B). Pre-
adjustment climate scenarios have a different bias compared to measurements, with RCP8.5

simulations most closely following observed trends while RCP2.6 simulations exhibiting the
largest bias. This discrepancy in bias is caused by the averaging of trends from either up to 22
(RCP8.5), 17 (RCP4.5) or 9 (RCP2.6) climate simulations. The trend bias adjustment was
applied seasonally, resulting in an adjustment of 0.12 °C per decade on average. The largest
adjustment was required for the June to August period (0.22 °C per decade) while the smallest
adjustment was made for the December to February period (0.05 °C per decade). Note that only
2 out of 16 Alpine stations had long enough measured datasets (i.e., 30 years) to derive a
historical trend, and that trend was used to adjust all 15 stations. The trend adjustment upscaled
from 2 to 15 Alpine stations, as well as the calibration at these stations, could thus benefit from
longer time series-; wat-Alpine-stations—We therefore recommend care while using these bias
corrected data-frem-the-Alpine stations. Additionally, for the groundwater fed station 2499 in
the Spring thermal regime, measured water temperature is inversely correlated to air
temperature. The result is a near zero or negative trend for the future (below 0 in Figure 4).
Although the modeled trend at station 2499 is statistically significant, the result indicates a
limitation in the airZstream model to resolve effectively groundwater dominated processes
under climate change.

4.3 Warming rates, trends, and hysteresis analysis

As expected, the climate scenario turned out to be the most important factor for river water
temperature increase. RCP8.5 being the scenario with the largest warming rate resulted in an
average river water temperature increase of +3.2 °C (+0.36 °C per decade from 1990-2020 to
2070-2099) compared to +0.49 °C per decade warmer air temperatures. This is in agreement
with previous findings for Swiss rivers, which projected a water temperature increase of up to
+3.5 °C from 1990-2000 to 2080-2090 or +0.38°C per decade (Michel et al., 2022) compared
to a measured water temperature increase of +0.33 °C per decade from 1979 to 2018 (Michel

et al., 2020) as well as for Swiss lake surface water temperatures, which were projected to
increase by +3.3 °C from 1982-2010 to 2071-2099 (Rdman Vinni et al., 2021). In addition to
the strong warming of water temperatures until the end of the century, the projections made

herein also suggest that the seasonal patterns in the warming of near surface air temperatures

in Switzerland are going to persist in river water temperatures, with stronger warming in

summer compared to winter.

Among the different stations, common patterns and trends in river temperature warming could

be identified by classifying the stations into the 4 different river thermal regimes occurring in
Switzerland (Piccolroaz et al., 2016). The classification was further improved in this study by
adding a groundwater spring class and using thermal pattern recognition to regroup river
temperature monitoring stations by automatically identifying key thermal influences from
upstream of a given monitoring station (e.g., the thermal influence of a lake, of tributaries or
of a spring.
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In terms of overall warming, the strongest warming on an annual basis emerged for stations in
the Alpine thermal regime, followed, in order, by stations in the Downstream Lake, Regulated,
Swiss Plateau, and Spring thermal regimes (Figure 4). The strong warming of A/pine regime
stations has its origins in the strongest near-surface air temperature warming trend in summer
that is occurring in southern parts of Switzerland (CH2018, 2018). The strong warming in the
Downstream Lake thermal regime can be explained by the extended residence time of water in
lakes compared to rivers in general (allowing longer time for waters to heat up) and to a
difference in seasonal patterns, aspects that the employed air2water model explicitly considers.

A previous coupled -A-—eeupled-river-lake-meodellingmodeling study by in—Switzerlandthe
author showed that future lake surface waters (epilimnion) heat faster compared to river waters,

with a difference in warming trends between Lake Biel and the Aare River of +0.03 °C per
decade and between Lake Geneva and the Rhone Rlver of +0 1 1 °C per decade- %&r&te%ake

A
..---

9@3—%9#9—1—1—@19%&%6&%(L—Raman Vlnna etal., 201 8)

Finally, by using and extending an index developed for classifying hysteretic loops (Zuecco et
al., 2016), it became apparent that climate warming adjust river temperature hysteresis towards
a state with higher temperature and a river discharge welume-decrease. This is seen as a

stretching of most thermal loops diagonally towards the upper left (Figure 5). The trend
stretching results from the general decrease in discharge as well as the increased seasonal near-
surface air temperature water warming occurring during the summer months. Together, these
two processes predominantly increase water temperature in summer as well.

4.4 Thermal extremes

The here proposed “extreme event severity index- together with a removal of the climatic trend
during each period, allowed us to investigate the change in the baseline of extreme temperature
under each thermal regime considered here. The index is independent of past extreme
conditions and relate extremes to the time period being investigated. Like for the water
temperature warming rates and trends, the severity of temperature extremes was impacted the
most by the choice of the climate scenario, similarly so for thermal regimes as a whole and for

individual stations. The largest increase of river temperature extremes occurred under the
RCP8.5 scenario, followed by the RCP4.5 scenario. Noteworthy is that under the RCP2.6
scenario, extreme event frequency and severity stayed more or less constant throughout the 215
century.

a4—294—9—GH%9+8—29+8)—As the dlscharge pI’O_]CCthIlS have been d1rect1y con31dered n the
employed multi-fidelity modelingmodeling approach, the strong increase in extreme event

severity for these stations is thus a direct result of the expected increased occurrence of low
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flow events, while the seasonal near-surface air temperature changes are mostly responsible
for an increasing median of river water temperatures.

4.5 Thermal Thresholds

The likely impact of climate change under the RCP8.5 scenario was investigated with known
thermal thresholds for the brown trout (i.e., risk of death at 25 °C and above; increased
occurrence of PKD above 15 °C; increased fish egg mortality at 13 °C between September and
January), a cold water fish species that is found in rivers and streams throughout all of
Switzerland (Brodersen et al., 2023). While the brown trout’s can already inprineiple-die
already-after about 10 min at temperatures of 30 °C (Elliott, 1981), due to the daily temporal
resolution of the employed models, thermal thresholds were-could only evaluated on a daily
time scale. Even when looking only at the daily time scale, the results of this study are cause
for concern, as both the number of stations as well as the duration during which thermal
thresholds are exceeded increase. Viewed alongside the fact that the number of catches of
brown trout in Switzerland have already severely decreased in the past decades, for example
from 73,500 in 1989 to 12,750 in 2019 in the rivers of the Swiss canton of Bern, which
represents rivers of all types of thermal regimes that are found in Switzerland (FOEN, 2024),

the outlook for the brown trout's future in Swiss rivers is grim.

The thermal analyses preformed here do not resolve all the processes affecting fishes’
sensitivities to thermal extremes or spawning success. The ability to migrate, find local cold
water refugia, or the availability for bottom gravel substrate required for spawning was not
explicitly simulated. However, as severe temperature extremes which exceed the fish mortality
threshold of 25 °C can in general occur in tandem with low flow conditions (see Figure 5), the
possibilities for the brown trout to temporally migrate to a cold water refugia during such
extremes can be expected to be strongly limited. And while we did not investigate the
temperature to initiate spawning, it is likely that longer occurrence of high-waterhigh-water
temperature periods during Autumn will have the potential to delay brown trout spawning.
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Moreover, due to increased river discharge and erosion in winter, sufficient bottom gravel
substrate for spawning can be expected to decrease in future (Junker et al., 2015). Hence, to
conclude, a changing climate will significantly increase the stress on brown trout, and given
the widespread distribution of this fish species, future changes in temperature related death of
adults cause us most concern.

5. Summary-and-Conclusions

An automated multi-fidelity sedelingmodeling approach consisting of downscaled regional
climate models, hydrological catchment models, and two semi-empirical water temperature
models at variable degrees of parametrization complexity was used to investigate future river
water temperatures across Switzerland under three climate scenarios. Model selection and
performance was optimized by grouping river stations eatehments-under thermal regimes using
a process consisting of thermal pattern recognition with hierarchical clusters.

According to the simulations, for the high emission climate scenario (RCPS8.5), average river
water temperatures across Switzerland will increase by +3.26 °C (0.367 °C per decade from
1996-2020 to 2099), while under the low emission scenario (RCP2.6) temperatures increase by
only 0.9 °C. The strongest river water warming under the high emission scenario can be
expected to occur in the Alpine thermal regime (+3.5 °C) followed by stations in—of the
Downstream Lake thermal regime (+3.4 °C). A general shift in river discharge with less water
in summer and more water in winter together with increased warming in summer produced
increased seasonal warming which stretched hysteresis loops of water temperature versus
discharge. The severity of thermal extremes in summer increased by, on average, 0.6 °C under
the high emission scenario, while under the low emission scenario the increase was limited to
0.2 °C. Caused by future low flows, rivers stations in the Swiss Plateau thermal regime showed
the most severe absolute river temperature extremes during the reference period, while the
absolute extreme temperature change was largest in-of Regulated thermal regime stations
(RCP2.6: +0.28 °C, RCP4.5: +0.54 °C, RCP8.5: +0.93 °C). Our results show increased future
thermal stress on cold-water fishes such as the brown trout, with substantial increases in the
duration of threshold exceeding temperatures. These exceedances will lead to the increased
likelihood of reproduction difficulties, occurrence of sickness and high temperature related
mortality for brown trout in rivers where this previously was not a problem.

A multi-fidelity medelingmodeling approach was deemed necessary to work around
computational limitations while investigating regional climate change across Switzerland. We
show how surface water temperature models can be employed for various different thermal
regimes by automatically adapting their parametrization complexity to the required level,
including for stations downstream of lakes that are influenced strongly by the lake thermal
regimes. Yet, future studies would benefit from connecting lakes and rivers in one
moedelingmodeling framework. The climate models used here were part of to the global
CMIPS5 and regional EUROCORDEX coordinated modeling efforts (CH2018, 2018). Future
studies should however consider using the more recent CMIP6 or later collaborations for their
projections.

Swiss water protection management leans on the sensitivity of species for enforcing thermal
utility rules prohibiting thermal use past certain thresholds (Waters Protection Ordinance
814.201). Our results show a change in the duration and the location of threshold exceeding
water temperatures, which threatens not only the brown trout but have implications for future
anthropogenic use of Swiss surface waters. Local and regional climate protection measures to
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limit negative effects of climate change includes but are not limited to the creation of river
bank shading (Trimmel et al., 2018), dam management (Payne et al., 2004), river restoration,
stormwater and site-specific management (Palmer et al., 2008) as well as managed ground
water recharge (Epting et al., 2023). Ultimately ia-the-work-to mitigate negative climate impact,
management needs to weightweigh the need for protection and preservation with its associated
cost and benefit towards the outcome of a non-interactive, partial or full climate protection
approach.
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Data availability
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