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Abstract 1 

River water temperature is a key factor for water quality, aquatic life, and human use. Under 2 

climate change, inland water temperatures have increased and are expected to do so further, 3 

increasing the pressure on aquatic life and reducing the potential for human use. Here, future 4 

river water temperatures are projected for Switzerland based on a multi-fidelity 5 

modellingmodeling approach. We use 2 different, semi-empirical surface water temperature 6 

models, 22 coupled and downscaled general circulation- to regional climate models, future 7 

projections of river discharge from 4 hydrological models and 3 climate change scenarios 8 

(RCP2.6, 4.5, and 8.5). By grouping stream sections, catchments and spring-fed water courses 9 

under representative thermal regimes, and by employing hierarchical cluster-based thermal 10 

pattern recognition, an optimal model and model configuration was selected, thereby 11 

improving model performance. optimized and climate change impact assessment on river water 12 

temperatures improved. 13 

Results show that, until the end of the 21st century, average river water temperatures in 14 

Switzerland will likely increase by 3.20.7 °C (or 0.360.1 °C per decade) under RCP8.5, 15 

while under RCP2.6 the temperature increase may remain at 0.90.3 °C (0.120.1 °C per 16 

decade). Under RCP8.5, temperatures of rivers classified as being in the Alpine thermal regime 17 

will increase the most, that is, by 3.50.5 °C, followed by rivers of the Downstream Lake 18 

regime, which will increase by 3.40.5 °C. Under RCP2.6 temperatures in the Alpine and 19 

Downstream lake regimes change most with +1.15 and +0.990.5 °C. 20 

Results show that, until the end of the 21st century, average river water temperatures in 21 

Switzerland will likely increase by 3.10.7 °C (or 0.360.1 °C per decade) under RCP8.5, 22 

while under RCP2.6 the temperature increase may remain at 0.90.3 °C (0.120.1 °C per 23 

decade). Under RCP8.5, temperatures of rivers classified as being in the Alpine thermal regime 24 

will increase the most, that is, by 3.50.5 °C, followed by rivers of the Downstream Lake 25 

regime, which will increase 3.40.5 °C.  26 

A general decrease of river discharge in summer (-10 to -40 %) and increase in winter (+10 to 27 

+30%), combined with a further increase in average near-surface air temperatures (0.5 °C per 28 

decade), bears the potential to not only result in overall warmer rivers, but also in prolonged 29 

periods of extreme summer river water temperatures. This dramatically increases the thermal 30 

stress potential for temperature sensitive aquatic species such as the brown trout in rivers where 31 

such periods occur already, but also rivers in where this previously was not a problem. By 32 

providing information of future water temperatures, the results of this study can guide 33 

managements climate mitigation efforts.  34 

  35 
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1 Introduction 36 

River water temperature is a key factor in the regulation of physical and biogeochemical 37 

processes in aquatic systems, affecting water quality, aquatic life and the potential for human 38 

water use. Globally, climate change has already increased, and is expected to further increase, 39 

river water temperatures (Van Vliet et al., 2011; 2013). Without climate protection, it is 40 

estimated that, globally, 36% of fish species will see their future habitats exposed to climate 41 

extremes, with changes in water temperatures being deemed more critical than the change in 42 

water availability (Barbarossa et al., 2021). The amount of river warming, especially during 43 

heat waves and droughts, is however not only a function of near-surface air temperatures, but 44 

also of river discharge, river-groundwater interactions, and human activities such as 45 

channelization, damming, water use for cooling purposes, or sewage and storm water runoff 46 

all affecting water quality (Ficklin et al., 2023; Van Vliet et al., 2023).  47 

In Switzerland, the water tower of Europe, the effects of a changing climate have already 48 

influenced both river temperatures (Hari & Güttinger, 2004) and river discharge (Birsan et al., 49 

2005). According to the latest regional climate projections (CH2018, 2018) the change is likely 50 

to continue to affect Swiss waterbodies in the future (FOEN, 2021). Past water temperature 51 

trends in Switzerland from 1979 to 2018 amounted to an increase of 0.33 °C per decade on 52 

average, alongside a near-surface air temperature increase of 0.46 °C per decade (Michel et al., 53 

2020). Using a limited subset of federally monitored Swiss catchments (~10%) and a high 54 

emission climate scenario (RCP8.5), it was projected that water temperatures may continue to 55 

increase by 3.5 °C until the end of the 21st century (Michel et al., 2022). Being a higher 56 

elevation country (mean elevation 1’350 1,350 m aslASL), most rivers in Switzerland are 57 

populated by the brown trout (salmo trutta fario), a cold-water fish (Brodersen et al., 2023). 58 

All fish species have specific temperature limits within which optimal conditions for growth, 59 

health, reproduction, or life, exist. For the brown trout, which is a particularly temperature 60 

sensitive fish species, warmer water temperatures of around 13°C pose a threat for egg survival, 61 

15°C strongly increases their receptivity for parasites related illnesses, and prolonged exposure 62 

to 25°C can lead to death (Strepparava et al., 2018; Wehrly et al., 2007; Chilmonczyk et al., 63 

2002; Elliott, 1994). A prime example of a water temperature related threat is the elevation 64 

(i.e., water temperature) dependent proliferative kidney disease (PKD), a parasite-caused 65 

illness in brown trout which is increasingly wide-spread in Swiss catchments (Hari et al., 2006).  66 

A common challenge for model-based studies is the question of the optimal model to use. In 67 

surface hydrological applications, models can broadly be split into two major groups: process-68 

based and statistical/stochastic models (Benyahya et al., 2007). Process-based models are based 69 

on physical equations and can resolve many hydrological processes in a physically robust 70 

manner, from the local to the catchment scale. However, albeit physically more robust, process-71 

based models generally require a significant amount of input data and computational resources 72 

for the simulation of hydrological processes on the catchment scale, therefore limiting their 73 

applicability for climate change analyses on national scales. Statistical/stochastic models, as 74 

opposed to process-based models, are data driven, that is, are based on empirical relationships 75 

between input and output data. While they are physically less robust, their advantage lies in 76 

their relative simplicity and limited data requirements, sacrificing detail for increased 77 

repeatability and spatial coverage. However, in order to build on the efficiency of statistics 78 

whilst preserving a clear physical basis, as a compromise between the two major model groups, 79 

a sub-group of semi-empirical models, which employs physically meaningful equations but 80 

simplifies the more complex processes into purely empirical parameters, was developed 81 

(Piccolroaz et al., 2013). These semi-empirical models are ideally suited for hydrological 82 
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climate change projections, as they provide much more robust projections compared to purely 83 

statistical approaches but simultaneously allow for a more comprehensive analysis than 84 

process-based models by enabling multi-model climate change ensemble analyses (La Fuente 85 

et al., 2022; Meehl et al., 2007). 86 

The study of climate change includes the investigation of physical processes on global, regional 87 

and local scales. As scales change so too does the required level of detail needed to resolve the 88 

different water cycle components that are relevant on the respective scale. An ideally suited 89 

approach to address this challenge in hydrological modeling is a multi-fidelity model 90 

framework, which combines multiple computational models of varying complexity in an 91 

automated selection framework that ensures robust predictions while limiting the computation 92 

to only the necessary level of detail (Fernández-Godino, 2023). The use of process dependent 93 

fidelity ensures proper representation of physical processes on regional to local scales while 94 

keeping computational costs to a minimum. Multi-fidelity modeling is especially useful when 95 

acquiring high-accuracy data is costly and/or computationally intensive, as is the case for 96 

climate change impact assessment on the hydrological cycle. 97 

 98 

Given the past and future changes to Swiss river water temperatures and considering both the 99 

high sensitivity of aquatic species to river water temperatures and the increasing demand for 100 

river water by agriculture, industry and society as a whole, it is critical that weto obtain a robust 101 

spatial and temporal understanding of the temperature increases that are expected for the many 102 

different rivers and streams of Switzerland. Here, we developed an efficient multi multi-fidelity 103 

modellingmodeling method guided by statistical pattern recognition to estimate river water 104 

temperatures under climate change and thereby close the aforementioned spatial gap by 105 

determining, in an automated manner and on a country-widenational scale, how future river 106 

water temperatures are likely going to change. Compared to previous projections of climate 107 

warming in Swiss rivers (Michel et al., 2022), the simplified multi -fidelity modellingmodeling 108 

approach not only enabled to cover the national scale a wider investigation area (+90%) but 109 

also further including 5 thermal regimes (here 5, previously 2) and andbased on 22 GCM-RCM 110 

chains (previously 7). By grouping catchments together via statistical pattern recognition, we 111 

were able to classify rivers (including spring-fed rivers) into 5 different thermal regimes, 112 

improving model results by allowing for optimal model selection at each station and enabling 113 

regime-specific analyses. The effect on warming by changing river discharge was investigate 114 

through a hysteresis analysis. Additionally, we introduce the thermal extreme event severity 115 

index as an analytic tool to evaluate the change in thermal extreme amplitude. 116 

2 Materials & Methods 117 

In climate change studies of the hydrosphere, unknown biases present a fundamental challenge. 118 

These biases can arise from limitations in how well models capture future physical processes, 119 

as well as from assumptions embedded in climate scenarios. To limit the influence of unknown 120 

bias, a common method is the multi-fidelity modeling approach which combines multiple 121 

models with different processes of fidelity. Using multiple models (as well as climate 122 

scenarios), while accepting that process-specific model performance differs from model to 123 

model, minimizes the risk of large bias towards the real future through a widening of the range 124 

of projections being made. Advantages for hydrological studies include the improvement of 125 

robustness of low-flow forecasts and accountability of structural uncertainty (Nicolle et al., 126 

2020). As such, the method has been used to limit the uncertainty caused by hydrological 127 
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models on runoff and evaporation climate projections using large ensembles of global 128 

hydrological models while investigating regional and global water scarcity in the future 129 

(Schewe et al., 2014). Even though varying model fidelity with varying complexity and 130 

computational constraints is an advantage to hydrological modeling, care is needed when 131 

adding processes depending on the relevance of the process in the local area under investigation 132 

(Guse et al., 2021).(Nicolle et al., 2020)(Schewe et al., 2014)(Guse et al., 2021)A common 133 

challenge for model-based studies is the question of the optimal model to use. In surface 134 

hydrological applications, models can broadly be split into two major groups: process-based 135 

and statistical/stochastic models . Process-based models are based on physical equations and 136 

can resolve many hydrological processes in a physically robust manner, from the local to the 137 

catchment scale. However, albeit physically more robust, process-based models generally 138 

require a significant amount of input data and computational resources for the simulation of 139 

hydrological processes on the catchment scale, therefore limiting their applicability for climate 140 

change analyses on national scales. Statistical/stochastic models, as opposed to process-based 141 

models, are data driven, that is, are based on empirical relationships between input and output 142 

data. While they are physically less robust, their advantage lies in their relative simplicity and 143 

limited data requirements, sacrificing detail for increased repeatability and spatial cover. 144 

However, in order to build on the efficiency of statistics whilst preserving a clear physical 145 

basis, as a compromise between the two major groups, a sub-group of semi-empirical models, 146 

which employs physically meaningful equations but simplifies the more complex processes 147 

into purely empirical parameters, was developed . These semi-empirical models are ideally 148 

suited for hydrological climate change projections, as they provide much more robust 149 

projections compared to purely statistical approaches but simultaneously allow for a more 150 

comprehensive analysis than process-based models by enabling multi-model climate change 151 

ensemble analyses . 152 

 153 

In this study a novel multi-fidelity modellingmodeling approach able to choose from multiple 154 

different fidelity levels ofusing two semi-empirical surface water temperature models, 155 

air2water and air2stream (Toffolon & Piccolroaz, 2015; Piccolroaz et al., 2013), was employed. 156 

Using multiple configurations on different levels of fidelity of two semi-empirical modelsThis 157 

allowed limiting the computational requirements to the levels needed for climate change 158 

ensemble simulations. The multi-fidelity approach, in which aAll available model 159 

configurations (i.e., 3, 4, 5, 6, 7 and 8 different parameter combinations and implementations) 160 

of two different semi-empirical models were evaluated for their applicability to different 161 

thermal river regimes (Appendix A) and, allowed for developing optimal site-specific models 162 

for all the 82 thermal river monitoring stations of the Swiss Federal Office of the Environment 163 

(FOEN).  164 

As the driving model forcingsforcing (i.e., hydrological boundary conditions), we used 165 

downscaled near-surface air temperature projections from 22 coupled general circulation to 166 

regional climate models (GCM-RCM) from 9 GCM and 8 RCM, and combined them with 167 

projections of future stream discharge from 4 hydrological models for 3 climate change 168 

scenarios (i.e., representative concentration pathways) representing all climate protection 169 

measures with RCP2.6, moderate measures by RCP4.5, and business as usual by RCP8.5. 170 

Following recommendations from the Word Meteorological Organization (WMO, 2017) to use 171 

30 years of continuous data while evaluating climate change, we selected 3 periods of interest 172 

including a reference period (1990 to 2019) and, a both a near- (2030 to 2059) and a far -future 173 
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period (2070 to 2099). Employing this multi-fidelity semi-empirical ensemble modelling 174 

approach enabled the production of nation-wide river temperature projections of unprecedented 175 

spatial coverage and uncertainty quantification. The method pathway is visualized in Figure 1. 176 

  177 
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Figure 1. Workflow summarizing the data treatment and the multi-fidelity model selection and optimization.  

2.1 Data 178 

River water temperatures are directly influenced by both global and, to an even greater extent, 179 

local conditions in and above the drainage area, especially in regions divided by geographic 180 

barriers such as mountains (Ficklin et al., 2023). To analyze site-specific controls and project 181 

future river water temperatures, measured historic and simulated future climate data should 182 

thus be representative of the conditions and hydrologic processes upstream of the locations to 183 

be studied. The air2stream and air2water models require both measured historic and simulated 184 

future climate data to extend to at least a year (ideally more than one) and be daily resolved. 185 

However, to be sure that the effect of climate is included in calibration and analysis of future 186 

conditions, data should preferably cover 30 years (WMO, 2017; Piccolroaz et al., 2013).  187 

Temporally overlapping, daily averaged near-surface air temperature and river discharge 188 

measurements spanning the 30-year reference period of 1990 to 2020 were used as calibration 189 

data, while for validation the data from 1980 to 1990 were used (Table B2 in Appendix). By 190 

choosing to use the most recent data for calibration rather than validation ensures that recent 191 
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local climate conditions are carried into future projections (Shen et al., 2022). For the few cases 192 

where no forcing data for calibration did exist between 1990 to 2020 (Table B2), validation 193 

was deprioritized and calibration performed for the 1980-1990 data.  194 

Here, we use CH2018 climate simulations based on the EURO-CORDEX regional climate 195 

modellingmodeling ensemble. In CH2018 for which near-surface air temperatures have 196 

beenwas downscaled to local conditions by applying a statistical bias-correction and 197 

downscaling method (Quantile Mapping, a purely statistical and data-driven method) to the 198 

original output of all EURO-CORDEX climate model simulations, as observational reference 199 

station observations and observation-based gridded analyses were used (CH2018, 2018, 200 

Chapter 5). with quantile mapping were used (CH2018, 2018).  CH2018 compose simulations 201 

with 9 GCM coupled to 8 RCM runs for a total of 22 GCM-RCM model chains with 0.11° and 202 

0.44° resolution under 3 climate change scenarios (RCP2.6, 4.5, and 8.5). These data are 203 

available as both gridded and local station products (CH2018 Project Team, 2018). Following 204 

CH2018, the Hydro-CH2018 project analyzed the effects of climate change on Swiss water 205 

bodies (FOEN, 2021).  The gridded climate product from CH2018 version has beenwas used  206 

used to construct projections of future river discharge for 4 hydrological models used in the 207 

Hydro-CH2018 project. The location where output from these 4 models was used in this study 208 

is shown in  (FOEN, 2021). (FOEN, 2021), including (Figure 2a) including: (M1) The 4 models 209 

that were applied to generate river discharge projections in the Hydro-CH2018 project are 210 

PREVAH-WSL a conceptual process-based modelL (M1; Brunner, et al., 2019a; Brunner, et 211 

al., 2019b) and, (M2) PREVAH-UniBE (M2; Muelchi et al., 2021), (M3) HBV Light-UniZH a 212 

bucket-type hydrological model (M3; Freudiger et al., 2021), and (M4) Alpine3D-Flow-EPFL 213 

the  snowmelt and runoff model Alpine3D coupled to the semi-distributed hydrological model 214 

StreamFlow (M4; Michel et al., 2022) (Figure 2a). The Hydro-CH2018 project produced 215 

projections for 61 out of the 82 FOEN river monitoring stations under multiple different22 216 

GCM-RCM model chainss (9 GCM coupled to 8 RCM runs) with 0.11° and 0.44° resolution 217 

and 3 climate change scenarios (RCP2.6, 4.5, and 8.5). The available projections, the employed 218 

circulation and hydrological models, and the considered climate change scenarios for all the 219 

different stations that were considered in this study are summarized in Table 1. 220 
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 221 

 222 

Figure 2. a) Investigated FOEN stations with available and used hydrological models providing future 

projections of river flow, b) station thermal regimes, c) downstream lake clusters, d) best performing surface 
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water temperature model at downstream lake stations. Red arrows show river flow directions. Coordinate 

reference system is the Swiss LV95. Background map is the DHM25, 

swisstopo.admin.ch/de/geodata/height/dhm25.html).  

From models M1-M3, continuous projections of river discharge at daily resolution for the entire 223 

period covering 1990-2099 were available, projections from the M4 model were discontinuous 224 

and only covered the periods 1990-2000, 2005-2015, 2030-2040, 2055-2065, and 2080-2090, 225 

respectively. River temperature simulations of river monitoring stations for which forcing data 226 

from models M1-M3 were available covered the entire period of 1990-2099, while for stations 227 

for which only data from model M4 were available, simulations were only run for the periods 228 

for which data was available.  229 

Measurements of historic meteorologic and hydraulic parameters which were used for model 230 

calibration, validation and for bias correction were obtained at daily resolution from the 231 

MeteoSwiss IDAweb platform (meteoschweiz.admin.ch) and from the Hydrology Division of 232 

the Federal Office for the Environment FOEN (hydrodaten.admin.ch). For monitoring stations 233 

at which historic river discharge data or future river discharge projections were not available, 234 

only future near-surface air temperature projections were used to simulate water temperature. 235 

Where climate projections were available at multiple different spatial resolutions (i.e. 0.11° 236 

and 0.44°), only one model, as indicated in Table 1, was included in the analysis, following the 237 

approach of Muelchi et al., 2021. 238 

  239 
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Table 1. Climate projections and hydrological hydraulic models used for temperature simulation. For a 

complete climate model designation, see the CH2018 project report (CH2018, 2018). Models analyzed are 

indicated by an "X" mark, and models not analyzed but with simulation data provided by a "(X)" mark. 

GCM RCM PREVAH-WSL (M1) PREVAH-UniBE (M2)  

  RCP8.5 RCP4.5 RCP2.6 RCP8.5 RCP4.5 RCP2.6 

 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 

ICHEC-EC-EARTH 

KNMI-RACMO22E   X   X       X   X     

DMI-HIRHAM5 X (X) X (X) X (X) X (X) X (X) X  

CLMcom-CCLM4-8-17         X  X    

CLMcom-CCLM5-0-6   X       X     

SMHI-RCA4 X (X) X (X) X (X) X (X) X (X) X (X) 

MOHC-HadGEM2-ES 

CLMcom-CCLM4-8-17   X         X (X) X       

CLMcom-CCLM5-0-6   X       X     

ICTP-RegCM4-3               

KNMI-RACMO22E   X  X  X  X  X  X 

SMHI-RCA4 X (X) X (X)  X X (X) X (X)  X 

MPI-M-MPI-ESM-LR 

CLMcom-CCLM4-8-17             X (X) X (X)     

CLMcom-CCLM5-0-6   X       X     

MPI-CSC-REMO2009-1         X (X) X (X) X (X) 

SMHI-RCA4 X (X) X (X)  X X (X) X (X)  X 

MPI-CSC-REMO2009-2         X (X) X (X) X (X) 

MIROC-MIROC5 
CLMcom-CCLM5-0-6   X           X         

SMHI-RCA4   X   X   X   X   X   X 

CCCma-CanESM2 SMHI-RCA4   X   X       X   X     

CSIRO-QCCCE-CSIRO-Mk3-6-0 SMHI-RCA4               X   X     

IPSL-IPSL-CM5A-MR SMHI-RCA4             X (X) X (X)     

NCC-NorESM1-M SMHI-RCA4   X   X   X   X   X   X 

NOAA-GFDL-GFDL-ESM2M SMHI-RCA4               X   X     
              

GCM RCM HBV Light-UniZH (M3)  AlpineFlowAlpine3D-EPFL  (M4)  

  RCP8.5 RCP4.5 RCP2.6 RCP8.5  RCP4.5 RCP2.6 

 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 0.11° 0.44° 

ICHEC-EC-EARTH 

KNMI-RACMO22E   X   X                 

DMI-HIRHAM5 X  X  X  X  X  X  

CLMcom-CCLM4-8-17 X  X           

CLMcom-CCLM5-0-6   X            

SMHI-RCA4 X  X  X  X  X  X  

MOHC-HadGEM2-ES 

CLMcom-CCLM4-8-17 X   X                   

CLMcom-CCLM5-0-6   X            

ICTP-RegCM4-3   X            

KNMI-RACMO22E   X  X  X   X  X  X 

SMHI-RCA4 X  X   X   X  X  X 

MPI-M-MPI-ESM-LR 

CLMcom-CCLM4-8-17 X   X                   

CLMcom-CCLM5-0-6   X            

MPI-CSC-REMO2009-1               

SMHI-RCA4 X  X   X   X  X  X 

MPI-CSC-REMO2009-2 X  X  X         

MIROC-MIROC5 
CLMcom-CCLM5-0-6   X                     

SMHI-RCA4   X  X  X   X  X  X 

CCCma-CanESM2 SMHI-RCA4   X   X                 

CSIRO-QCCCE-CSIRO-Mk3-6-0 SMHI-RCA4   X   X                 

IPSL-IPSL-CM5A-MR SMHI-RCA4 X   X                   

NCC-NorESM1-M SMHI-RCA4   X   X   X   X   X   X 

NOAA-GFDL-GFDL-ESM2M SMHI-RCA4   X   X                 
              

GCM RCM No Flow Projection       

  RCP8.5 RCP4.5 RCP2.6       

  0.11° 0.44° 0.11° 0.44° 0.11° 0.44°       

ICHEC-EC-EARTH 

KNMI-RACMO22E  X  X         

DMI-HIRHAM5 X (X) X (X) X        

CLMcom-CCLM4-8-17 X  X          

CLMcom-CCLM5-0-6  X           

SMHI-RCA4 X (X) X (X) X (X)       

MOHC-HadGEM2-ES 

CLMcom-CCLM4-8-17 X (X) X          

CLMcom-CCLM5-0-6  X           

ICTP-RegCM4-3  X           

KNMI-RACMO22E  X  X  X       

SMHI-RCA4 X (X) X (X)  X       

MPI-M-MPI-ESM-LR 

CLMcom-CCLM4-8-17 X (X) X (X)         

CLMcom-CCLM5-0-6  X           

MPI-CSC-REMO2009-1 X (X) X (X) X (X)       

SMHI-RCA4 X (X) X (X)  X       

MPI-CSC-REMO2009-2 X (X) X (X) X (X)       

MIROC-MIROC5 
CLMcom-CCLM5-0-6  X           

SMHI-RCA4  X  X  X       

CCCma-CanESM2 SMHI-RCA4  X  X         

CSIRO-QCCCE-CSIRO-Mk3-6-0 SMHI-RCA4  X  X         

IPSL-IPSL-CM5A-MR SMHI-RCA4 X (X) X (X)         

NCC-NorESM1-M SMHI-RCA4  X  X  X       

NOAA-GFDL-GFDL-ESM2M SMHI-RCA4  X  X         

 240 
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Measurements of historic meteorologic and hydraulic parameters which were used for model 241 

calibration, validation and for bias correction were obtained at daily resolution from the 242 

MeteoSwiss IDAweb platform (meteoschweiz.admin.ch) and from the Hydrology Division of 243 

the Federal Office for the Environment FOEN (hydrodaten.admin.ch). For monitoring stations 244 

at which historic river discharge data or future river discharge projections were n't not available, 245 

only future near-surface air temperature projections were used to simulate water temperature. 246 

Where climate projections were available at multiple different spatial resolutions (i.e. 0.11° 247 

and 0.44°), only one model, as indicated in Table 1, was included in the analysis, following the 248 

approach of Muelchi et al., 2021. 249 

2.2 Hydrologic and meteorologic station coupling 250 

Switzerland is characterized by a pronounced topography. Therefore, the closest 251 

meteorological station to a hydraulic station might not necessarily be the ideal coupling partner. 252 

Hydrological Hydraulic and meteorological stations therefore were instead paired according to 253 

the following procedure: Only stations were considered for which (a) future climate projections 254 

of near-surface air temperatures (required) and river discharge (optional, but desirable for 255 

improved water temperature predictions) were available for the entire period covering 1980 to 256 

2099, and (b) historic measurements of near-surface air temperatures and river discharge were 257 

available from 1980 to 2020, were considered. Meteorological stations were subsequently 258 

paired with hydrological stations such that (a) the horizontal distance between river and 259 

meteorological stations was minimal as small as possible i.e. nearest to nearest (criterion 260 

"DIS"), (b) the meteorological station was representative of for the conditions in the upstream 261 

drainage area composing a meteorological station being located in the same valley and 262 

upstream (criterion "DRA"), and (c) the elevation difference did n't not exceed a reasonable 263 

threshold of 200 m (criterion "ELE"). Where possible, all three criteria were adhered tomet, 264 

that is the closest station passed both ELE and DRA and are noted as DIS in Table 2t. If the 265 

closest station were deemed not to be representative (e.g. in a neighboring valley or 266 

downstream) the DIS criteria where failed, such a station are noted as DRA in Table 2. If a 267 

station failed both DIS and DRA but passed ELE it is noted as ELE in Table 2.  For situations 268 

where the closest meteorological station was either not fulfilling DRA or ELE, the DIS criterion 269 

was evaluated only for stations which fulfilled both DRA and ELE. Station details and pairings 270 

are summarized in Table 2.  271 

  272 
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Table 2. Combined river and meteorological stations and available models for climate projections of 

discharge. Abbreviations: DIS: Distance; ELE: Elevation; DRA: Drainage area. 
FOEN Hydrological stations Meteorological stations Hydrological models 

Name ID Height Area Acronymn

ymmm 

Height Distance Criteria 

2 

Hydro-CH2018 
  (m a.s.l.) (km2

) 

 (m 

a.s.l.) 

(km)  M1 M2 M3 M4 

Rhône - Porte du Scex 2009 377 5238 AIG 381 3.8 DIS X    

Aare - Brugg 2016 332 1168

1 

BUS 387 14.0 DIS X    

Reuss - Mellingen 2018 345 3386 BUS 387 15.0 DIS X    

Aare - Brienzwiler 2019 570 555 MER 588 6.1 DIS     

Aare - Brügg, Aegerten 2029 428 8249 BER 553 20.0 ELE X    

Aare - Thun 2030 548 2459 INT 577 22.3 DIS X    

Vorderrhein - Ilanz 2033 693 774 CHU 556 26.9 DRA X X   

Broye - Payerne, Caserne d 'aviation 2034 441 416 PAY 490 2.7 DIS X X  X 
Thur - Andelfingen 2044 356 1702 SHA 438 11.4 DIS X X X  

Reuss - Seedorf 2056 438 833 ALT 438 0.4 DIS X X   

Ticino - Riazzino 2068 200 1613 MAG 203 1.8 DIS     

Emme - Emmenmatt, nur Hauptstation 2070 638 443 LAG 744 4.7 DIS X X   

Muota - Ingenbohl 2084 438 317 ALT 438 12.8 DIS  X   

Aare - Hagneck 2085 437 5112 BER 553 22.5 DRA X    

Rhein - Rheinfelden, Messstation 2091 262 3452

4 

BAS 316 16.4 DIS X    

Linth - Weesen, Biäsche 2104 419 1062 GLA 517 10.9 DIS X X   

Birs - Münchenstein, Hofmatt 2106 268 887 BAS 316 3.7 DIS X X  X 
Lütschine - Gsteig 2109 585 381 INT 577 0.9 DIS X  X X 
Sitter - Appenzell 2112 769 74.4 STG 776 10.4 DIS  X   

Aare - Felsenau, K.W. Klingnau (U.W.) 2113 312 1768

7 

BUS 386 25.8 DRA     

Murg - Wängi 2126 466 80.2 TAE 539 4.1 DIS  X   

Rhein (Oberwasser) - Laufenburg 2130 299 3405

0 

RUE 611 18.6 DIS     

Aare - Bern, Schönau 2135 502 2941 BER 553 6.5 DIS X    

Rheintaler Binnenkanal - St. Margrethen 2139 404 175 VAD 457 37.3 DRA     

Rhein - Rekingen 2143 323 1476

7 

KLO 426 18.5 DRA X    

Landquart - Felsenbach 2150 571 614 RAG 497 9.5 DIS X    

Reuss - Luzern, Geissmattbrücke 2152 432 2254 LUZ 454 2.0 DIS X    

Gürbe - Belp, Mülimatt 2159 522 116.0

1 

BER 553 12.1 DIS  X   

Massa - Blatten bei Naters 2161 1446 196 GRC 1605 24.9 ELE X  X  

Tresa - Ponte Tresa, Rocchetta 2167 268 609 LUG 273 9.1 DIS X X   

Arve - Genève, Bout du Monde 2170 380 1973 GVE 410 7.9 DIS     

Rhône - Chancy, Aux Ripes 2174 336 1030

8 

GVE 411 16.0 DIS     

Sihl - Zürich, Sihlhölzli 2176 412 343 SMA 556 3.2 DIS X X   

Sense - Thörishaus, Sensematt 2179 553 351 BER 553 14.3 DIS X X   

Thur - Halden 2181 456 1085 GUT 440 11.8 DIS X X   

Doubs - Ocourt 2210 417 1275 FAH 596 13.0 DIS  X   

Allenbach - Adelboden 2232 1297 28.8 ABO 1321 0.9 DIS  X   

Limmat - Baden, Limmatpromenade 2243 351 2384 REH 444 16.6 DIS X    

Rosegbach - Pontresina 2256 1766 66.5 SAM 1709 4.3 DIS  X   

Inn - Tarasp 2265 1183 1581 SCU 1304 0.6 DIS X    

Lonza - Blatten 2269 1520 77.4 GRC 1605 24.9 ELE   X X 
Grosstalbach - Isenthal 2276 767 43.9 ALT 438 5.3 DIS  X X  

Sperbelgraben - Wasen, Kurzeneialp 2282 911 0.56 NAP 1403 7.5 DIS     

Rhein - Neuhausen, Flurlingerbrücke 2288 383 1193

0 

SHA 438 0.9 DIS X    

Areuse - St-Sulpice 2290 755 104 BRL 1050 9.0 DRA     

Suze - Sonceboz 2307 642 127 CHA 1594 11.5 DIS X X  X 
Goldach - Goldach, Bleiche, nur Hauptstation 2308 399 50.4 GUT 440 19.3 ELE  X   

Dischmabach - Davos, Kriegsmatte 2327 1668 42.9 DAV 1594 4.9 DIS   X X 
Langeten - Huttwil, Häberenbad 2343 597 59.9 WYN 422 15.0 DIS  X   

Riale di Roggiasca - Roveredo, Bacino di 

compenso 

2347 980 8.12 GRO 323 6.0 DIS     

Vispa - Visp 2351 659 786 VIS 639 3.6 DIS X    

Poschiavino - La Rösa 2366 1860 14.1 BEH 2260 3.8 DIS  X X  

Mentue - Yvonand, La Mauguettaz 2369 449 105.0

1 

PAY 490 17.1 ELE  X   

Linth - Mollis, Linthbrücke 2372 436 600 GLA 517 7.4 DIS X X   

Necker - Mogelsberg, Aachsäge 2374 606 88.1 EBK 623 10.1 DIS  X   

Murg - Frauenfeld 2386 390 213 TAE 539 9.9 DIS  X   

Rhein (Oberwasser) - Rheinau 2392 353 1195

0 

SHA 438 5.8 DIS     

Liechtensteiner Binnenkanal - Ruggell 2410 435 116 VAD 457 12.9 DIS     

Rietholzbach - Mosnang, Rietholz 2414 682 3.19 EBK 623 13.5 DIS    X 
Glatt - Rheinsfelden 2415 336 417 KLO 426 11.4 DIS X X   

Venoge - Ecublens, Les Bois 2432 383 228.0

1 

PUY 456 9.2 DIS X X   

Aubonne - Allaman, Le Coulet  2433 390 105 CGI 458 15.9 DIS     

Dünnern - Olten, Hammermühle 2434 400 234 WYN 422 13.3 DRA  X   

Aare - Ringgenberg, Goldswil 2457 564 1138 INT 577 2.5 DIS     

Inn - S-Chanf 2462 1645 616 SAM 1708 13.3 DIS    X 
Saane - Gümmenen 2467 473 1881 BER 552 17.6 DIS     

Rhein - Diepoldsau, Rietbrücke 2473 410 6299 VAD 457 29.9 DRA X    

Engelberger Aa - Buochs, Flugplatz 2481 443 228 LUZ 454 10.6 DIS  X X  

Allaine - Boncourt, Frontière 2485 366 212 FAH 596 10.1 DIS     

Promenthouse - Gland, Route Suisse 2493 394 120 CGI 458 3.2 DIS  X   

Schlichenden Brünnen - Muotathal 2499 638 31 ALT 437 15.6 DIS     

Worble - Ittigen 2500 522 67.1 BER 553 2.2 DIS  X   

Biber - Biberbrugg 2604 825 31.9 EIN 911 3.5 DIS  X   

Rhône - Genève, Halle de l 'île 2606 367 8000 GVE 411 4.9 DIS X    

Sellenbodenbach - Neuenkirch 2608 515 10.4 LUZ 454 11.0 DIS     

Alp - Einsiedeln 2609 840 46.7 EIN 911 2.4 DIS  X   

Riale di Pincascia - Lavertezzo 2612 536 44.5 OTL 367 10.4 ELE  X   

Rhein - Weil, Palmrainbrücke 2613 244 3645

2 

BAS 316 6.7 DIS     

Rom - Müstair 2617 1236 128 SMM 1386 0.4 DIS  X X  

Rhône - Oberwald 2623 1368 93.3 ULR 1345 4.6 DRA     

Kleine Emme - Emmen 2634 430 478 LUZ 454 4.2 DIS  X X X 
Grossbach - Einsiedeln, Gross 2635 942 8.95 EIN 910 3.0 DIS     
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2.3 Forcing data bias correction 273 

Differences between near-surface air temperature measurements used for calibration and 274 

climate model projections, even when slight, may artificially alter the quantification of 275 

projected future river water temperatures by introducing a systematic bias at the start of the 276 

simulations. Despite the fact that the highly resolved GCM-RCMs model output data products 277 

that were considered here were already statistically downscaled, small differences between 278 

modelled and observed air temperatures during the reference period could still be detected.  279 

For the river discharge projections, no bias correction has so far been performed. To mitigate 280 

this bias, the time series of air temperatures and river discharge used as climate forcing data 281 

were statistically adjusted using the change factor method (Diaz-Nieto & Wilby, 2005; 282 

Minville et al., 2008). This method adjusts climate projections towards measurements by 283 

removing the climatological year (consisting of daily averages) from first the modeled data and 284 

then adding the corresponding climatological year from measurements according to Eq. 1, 285 

thereby correcting long-term and seasonal biases while maintaining individual climate model 286 

trends and stochastic variabilities. 287 

Fn𝑖  = (Fo𝑖 - Co𝑗) + Cm𝑗          (1) 288 

where Fni is the adjusted variable at time i, Foi is the future climate simulated time series of 289 

either air temperatures or river discharge at daily resolution, and Coj and Cmj are the 290 

climatological years of the climate simulated time-series and the historic measurements, 291 

respectively, at the day of year j corresponding to time i. The climatological years were 292 

smoothed using a 60-day window to remove the effect of possible pulse events, especially for 293 

discharge. Due to low flow conditions in some rivers, discharge in these rivers waswere never 294 

adjusted below the minimum observed flow.  295 

2.4 Thermal regime classification 296 

For the multi-fidelity modellingmodeling approach, the different river monitoring stations were 297 

re-classified into the 4 different thermal regimes that have previously been identified for 298 

Switzerland (Michel et al., 2020; Piccolroaz et al., 2016) as well as 1 additional thermal regime 299 

defined for the purpose of this study.  300 

The existing thermal regimes are "Downstream Lake", "Swiss Plateau", "Alpine", "Regulated", 301 

while the "Spring" discharge regime was added to address the special thermal case of stations 302 

situated at the mouth of spring fed streams. "Downstream Lake" stations show a clear de-303 

coupling between river temperature and river discharge, "Swiss Plateau" stations exhibit an 304 

annual flow cycle with minimal discharge in summer and strong interannual variability, 305 

"Alpine" stations show that both discharge and temperature are strongly influenced by snow 306 

and glacier melt, "Regulated" stations are fed by intermittent releases of large volumes of water 307 

from upstream reservoirs, and "Spring" stations located immediately downstream of springs 308 

and characterized by a nearly constant temperature signal decoupled from air temperature.  309 

The already existing classifications from (Michel et al., 2020; Piccolroaz et al., 2016) and the 310 

suitability of the yet unclassified stations to be grouped under the different thermal regimes 311 

were first explored by evaluating the historic data and the locations visually (Figure 2b). 312 

Following this first visual classification, an automated thermal pattern recognition using 313 

hierarchical clusters via the multi-cluster tool DTWARP_PER_33 (Bögli, 2020) was used 314 

(Figure 2c). Application of the thermal pattern recognition matched the visual pre-classification 315 

in most instancescases, but revealed that, for certain stations located far downstream of lakes, 316 
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upstream lake processes are still the dominant control for river water temperatures. Stations 317 

that were previously classified as not being part of the Downstream Lake regime were thus here 318 

reclassified as Downstream Lake according to the results of the thermal pattern recognition 319 

procedure.  320 

At Downstream Lake stations, multiple configurations of both water temperature models 321 

(air2stream and air2water) were tested through calibration, and only the best performing 322 

temperature model and parameter setup was kept (station thermal regimes as well as cluster 323 

results are shown in Figure 2 and provided in Table B1 in Appendix B). For the remaining 324 

stations not belonging to the Downstream Lake regime, river processes such as local flow 325 

variations and water depth dominate the water temperature development. For these stations, 326 

different model configurations of only the air2stream model were explored. 327 

2.5 Surface water temperature model setup  328 

Two semi-empirical surface water temperature models were employed, the river water model 329 

air2stream (Toffolon & Piccolroaz, 2015)*1 and the lake water model air2water (Piccolroaz et 330 

al., 2013)*2, with the former being an extended version of the latter. Both, the air2stream and 331 

the air2water models combine the simplicity of stochastic models with accurate empirical 332 

representation of the relevant physical processes affecting water temperature. Both The models 333 

require near-surface air temperature as input to predict future river temperature, while 334 

discharge may optionally be incorporated in air2stream to further improve river temperature 335 

predictions but isn't required.   336 

Both models include up to eight parameters (a1 to a8) which are fitted towards measured data. 337 

Apart from the effect of air temperature on water temperature, the models additionally resolve 338 

the effect of river depth, discharge, thermal signals from  different tributaries, inverse 339 

stratification in lakes during winter, and seasonal cycles. Model complexity, i.e. how many 340 

processes are directly being resolved by the models or indirectly included through parameter 341 

estimation, can be varied by removal of one or more of the additional processes listed above, 342 

resulting in the use of 8, 7, 6, 5, 4 or 3 parameters. Depending on local conditions, model 343 

performance can be improved by the removal of processes which plays a minor or insignificant 344 

role for water temperature, thereby the need to correctly chose model complexity. Where this 345 

simplification with removal of parameters was done (Table B2), removed processes plays a 346 

minor role for the simulation of water temperature as evident from decreased model 347 

performance while being Foincluded. For additional information about air2stream and 348 

air2water see Appendix A and Piccolroaz et al. (2013) and Toffolon & Piccolroaz (2015). 349 

For the simulation of future river temperatures, a multi-fidelity modellingmodeling approach 350 

that identified the best water temperature model for each single river monitoring station that 351 

was considered in this study was employed. The optimal model parameter configuration for 352 

each station was identified via a Monte-Carlo calibration process performed with the Crank 353 

Nicolson scheme (Crank & Nicolson, 1947), consisting of over 2’000 2,000 runs using Particle 354 

Swarm Optimization (Kennedy & Eberhart, 1995) with 500 particles. The Root Mean Square 355 

Error (RMSE) function was used as the objective function and combined with the dotty-plots 356 

quality check (S. Piccolroaz et al., 2013; Piccolroaz, 2016; Toffolon et al., 2014).  357 

Temporally overlapping, daily averaged near-surface air temperature and river discharge 358 

measurements spanning the 30-year reference period of 1990 to 2020 were used as calibration 359 

 
*1 github.com/marcotoffolon/air2stream 
*2 github.com/marcotoffolon/air2water 

 

https://github.com/marcotoffolon/air2stream
https://github.com/marcotoffolon/air2water
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data, while for validation the data from 1980 to 1990 were used. By choosing to use the most 360 

recent data for calibration rather than validation ensures that recent local climate conditions are 361 

carried into future projections . For the few cases where no forcing data for calibration did exist 362 

between 1990 to 2020 (Table C2 in Appendix B), validation was deprioritized and calibration 363 

done performed foron the 1980-1990 data. For stations missing either historical data or future 364 

projections of river discharge (brown markers, Figure 2a), discharge was not considered as 365 

forcing data and the air2stream model was reduced to a 3 or 5 parameter model, while no 366 

adaptation was required for air2water model as it does no't simulate discharge. Datasets used 367 

for calibration and validation with data gaps shorter than 30 days were filled via by linear 368 

interpolation, while for datasets with gaps exceeding 30 days only the longest continuous 369 

dataset was used.  370 

All simulations (calibration, validation and climate runs)  used a one yearone-year period as a 371 

spin-up with the first year of forcing data repeated. Only the best performing river temperature 372 

model was considered for the follow onfollow-on climate runs. The final calibration and 373 

validation periods and the best performing parameter setups for each station are provided in 374 

Table B2 (Appendix B). As initial conditions for the stepwise climate simulations with model 375 

M4, we used simulated temperatures from the latest prior simulated date, that is, climate for 376 

simulations between 2030 to 2040 we used temperature from end of 2015 as initial condition.  377 

At Downstream Lake stations, multiple configurations of both water temperature models 378 

(air2stream and air2water) were tested through calibration, and only the best performing 379 

temperature model and parameter setup was kept (station thermal regimes as well as cluster 380 

results are shown in Figure 2 and provided in Table B1 in Appendix B). For the remaining 381 

stations not belonging to the Downstream Lake regime, river processes such as local flow 382 

variations and water depth dominate the water temperature development. For these stations, 383 

different model configurations of only the air2stream model were explored. 384 

 385 

2.6 Trend correction 386 

Empirical models generally predict less warming in the future compared to physically based 387 

models, the primary reason being underrepresentation of the thermal catchment memory, 388 

including snow and ice (Leach & Moore, 2019). To quantify how good the models air2stream 389 

and air2water, which both lack deterministic considerations of snow and ice melt, are able to 390 

recreate past trends, we compared trends from river water temperature measurements and 391 

corresponding modeled temperature trends between 1990 and 2019. On an annual basis, this 392 

comparison was possible for 25 out of 82 river stations, consisting of 9 Downstream Lake, 7 393 

Regulated, 7 Swiss Plateau, 2 Alpine, and 0 Spring thermal regime river stations. Stations were 394 

selected with a 30 years of continuous data requirement in air and water temperature and river 395 

discharge. Only statistically significant trends (p < 0.05) were considered.  396 

Both air2stream and air2water underestimate the annual temperature trend during the 397 

reference period on average by 0.14 and 0.11 °C per decade, respectively. For air2stream, the 398 

annual trend bias is smallest for the Swiss Plateau thermal regime (0.09 °C per decade) and 399 

largest in the Alpine thermal regime (0.17 °C per decade). Seasonally, the trend bias is largest 400 

from June to August and September to November, whereas, especially for air2water, the bias 401 

is small from December to February and March to May.  402 

The divergence of both air2stream and air2water models from observed trends warrant a post 403 

simulation bias correction of simulated trends. The bias is river station dependent, making an 404 
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individual correction at each station preferable (Tables B3 to B6 in Appendix B). However, 405 

only about 30% of the river stations investigated have long enough data sets (30 years) for 406 

individual correction. Therefore, we tied the seasonal trend bias correction to the thermal 407 

regime, thereby keeping the correction linked to local conditions. Note that no river station of 408 

the Spring thermal regime had enough data to allow for the trend bias correction. Spring river 409 

stations were therefore not trend bias corrected. As the trend bias correction is acting on climate 410 

simulations of river temperature stretching from 1990 to 2099, the bias correction had to be 411 

scaled towards how air temperature trends shift in the climate models. The scaling was 412 

designed such that it did no't affect the bias correction during the reference period (1990 to 413 

2019), while adjusting the correction towards how the air temperature trend (TTair) changes in 414 

the near- (2030 to 2059) and far far-future (2070 to 2099). For this purposepurpose, an 415 

adjustment factor Fs (-) was constructed from the mean climate models air temperature trends 416 

for each climate scenario. Fs is thus specific for each climate scenario, river station and season. 417 

𝐹𝑠𝑖,𝑠 =
𝑇𝑇𝑎𝑖𝑟𝑖,𝑠

𝑇𝑇𝑎𝑖𝑟𝑟𝑒𝑓,𝑠
                                                                                                    (2) 418 

Here TTairi,s is the mean of the air temperature trends from the climate models, which is 419 

changing for each season and with the reference, near-, and far far-future periods, TTairref,s is 420 

the mean of the seasonal air temperature trend during the reference period, i is the number of 421 

days, and s denotes the season. The temporal gaps between 1990 to 2019, to 2030 to 2059 and 422 

2070 to 2099, during which the air temperature trends were calculated, were linearly filled with 423 

shape-preserving piecewise cubic interpolation resulting in a continuous factor Fsi,s from 1990 424 

to 2099. Fsi,s varied from -2 to +3 depending on the season and climate scenario and was 425 

applied for simulations using discharge input from models M1 to M3, while for simulations 426 

using M4, Fsi,s was set to 1 from 1990 to 2099 due to too short simulation time frames in M4 427 

(only one decade). With Fsi,s, the seasonal and thermal regime dependent water temperature 428 

bias Tbi,s (regime dependent mean from Table C3 to C6 in Appendix C) is turned into the 429 

thermal regime and climate scenario dependent seasonal bias correction Bcs (°C day-1) 430 

𝐵𝑐𝑠 = ∑ 𝐹𝑠𝑖,𝑠 ∗

𝑖=𝑛

𝑖=1

𝑇𝑏𝑖,𝑠                                                                        (3)  431 

where n is the number of days since 1st of January 1990. Before adjusting the water temperature 432 

model output from 1990 to 2099, the seasonal Bcs was combined into a continuous dataset Bc. 433 

ByTo avoid a sharp shift in Bc between each season, a filling in the 3- to 5-day gap in between 434 

each season was smoothed with shape-preserving interpolation (Piecewise cubic Hermite 435 

interpolation, PCHIP; Matlab R2022a).  436 

The trend adjustment applied here with Fs, Bc, and pre- and post-adjustment data is shown 437 

from one example station in Figure B1 (Appendix B). Pre- and post post-trend correction for 438 

the difference in modeled and measured trends is summarized in Table B7 (Appendix B). 439 

2.7 Thermal hysteresis  440 

Hysteresis, wherein a dependent variable (water temperature or suspended sediments) can 441 

exhibit multiple values in response to a single value from the independent variable (discharge), 442 

is a common phenomenon in hydrology (Gharari & Razavi, 2018). Sediment transport 443 

Hhysteresis can be caused in rivers by emptying and refilling of sediment layers on the river 444 

bed (Tananaev, 2012) and through erosion on land as shown in the Alps with the contributing 445 

location (river bed or eroded area) determining the hysteresis loop shape and rotation direction 446 

(Misset et al., 2019). , or as a lag in Ststream temperature can also show hysteresis effects, 447 



18 

 

example being a lag in the response to air temperature caused by ice-melt or reservoir release 448 

(Van Vliet et al., 2011; Webb & Nobilis, 1994).  449 

We investigated past and future hysteresis loops between water temperatures (the dependent 450 

variable) and river discharge (the independent variable) using a versatile index (Zuecco index, 451 

Zuecco et al., 2016). The Zuecco index works through the computation of definite integrals on 452 

data in chosen intervals and was developed for hysteretic loops where the independent variable 453 

increases from its initial value, reaches a peak and then decreases. The index divides loops into 454 

8 classes (I to VIII) depending on rotation direction (counter clockwise or clockwise), number 455 

of loops and loop sizes.  456 

Here we use Zuecco Class I to IV (Figure 3, left column) which represent the interaction 457 

between flow and water temperature for the cases of dataset starting with low temperature and 458 

low flow. However, mainly in the Swiss lowland at the beginning of a year, rivers can display 459 

a situation where temperature is cold (low) and flow is high followed by a higher temperature 460 

in spring combined with less water. This process has been showed to be enhanced by the 461 

ongoing climate warming through shortening or elimination of snow cover and glacial melt 462 

(FOEN (ed.), 2021; Michel et al., 2020; Van Vliet et al., 2013).  463 

The Zuecco index works through the computation of definite integrals on data in chosen 464 

intervals and was developed for hysteretic loops where the independent variable increases from 465 

its initial value, reaches a peak and then decreases.  466 
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Figure 3. Hysteresis classes with corresponding hysteresis loops. Expanded with classes -I to -IV from Zuecco et 

al., (2016) to incorporate water temperature as the dependent variable. 

Here, only classes I to IV is are fitted to the data. Moreover, in lowland rivers in Switzerland, 467 

discharge in winter can be larger than in spring or summer, an effect enhanced by ongoing 468 

climate warming through shortening or elimination of snow cover and glacial melt (FOEN 469 

(ed.), 2021; Michel et al., 2020; Van Vliet et al., 2013). To incorporate this reversed hysteretic 470 

loop, we added 4 “mirrored” hysteresis classes, -I to -IV, to the classes8 introduced by Zuecco 471 

et al., (2016) (Figure 3, right column). This was done by inverting the normalized flow prior to 472 

the computation of definite integrals, thus creating an increasing and decreasing independent 473 

variable. Post inversion, the index thus gives class I to IV, but since the independent variable 474 

had been inverted, it is shown here as -I to -IV. Note that the index works on set intervals. If 475 

the loops do not come back to their initial values, it works with open loops. The length of the 476 

data sets being investigated should depend on the quality and resolution of the data and the rate 477 

at which the dependent variable changes with respect to the independent variable (Zuecco et 478 

al., 2016). Here we used daily resolved datasets, averaged from 30 years of modeled data, thus 479 

always providing full annual loops.  480 

2.8 Temperature extremes  481 

Extreme conditions are not straight forward to define. In general, they depend on what is 482 

considered to be extreme in relation to normal conditions (Stephenson, 2008). A widely used 483 

concept defines events as extreme if they are below or above the 10th or 90th percentile in a 484 

distribution (IPCC, 2014). Here, water temperatures are considered to be extremely high if they 485 

exceed the 90th percentile during the 30-year reference, near- and far-future periods (IPCC, 486 

2014).  487 

We define a new “extreme event severity index”, as the temperature difference between the 488 

90th percentile to the median for each climate simulation and period. If this temperature gap 489 

increases, it indicates that extreme temperatures become more severe as thermal peaks are 490 

elevated compared to the median temperature. extreme event severity index The severity of 491 

thermal extremes for each simulation and period is thus X °C from 0 °C, where X denotes the 492 
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difference between the 90th percentile and the median temperature while 0 °C represent a match 493 

to the median temperature. Our analysis was made independent of whenre (beginning or end) 494 

in the 30-year periods it was conducted by removing the climatic trend for each simulation and 495 

period before calculating the index. Note that by defining extreme events with the 90th 496 

percentile during each analyzed period, we take into accountconsider temporal in-situ extreme 497 

events as they are experienced during the considered periods. We do not inflate our results by 498 

using past extreme event definitions to evaluate future extreme events. 499 

2.9 Thermal tThresholds for fish 500 

By counting the number of days per year during which thermal thresholds are exceeded, effects 501 

of climate change on fish can be evaluated both locally and regionally (Michel et al., 2020). 502 

The occurrence of exceedance of specific river water temperature thresholds on a daily scale 503 

was used to investigate the historic past (1990 to 2019) and projected future (2070 to 2099) 504 

stress on the brown trout (Salmo trutta). Three thermal thresholds were chosen in order to 505 

incorporate important aspects in the life of the brown trout. including: (1) adult mortality as 506 

represented by a daily mean temperature above 25 °C (Elliott, 1981; Wehrly et al., 2007), also 507 

set as a hard upper limit for the thermal use of waters in Switzerland (Water Protection 508 

Ordinance 814.201); (2) an increased risk for proliferative kidney disease (PKD) as parasite 509 

activity as represented by a daily mean temperature above 15 °C (Chilmonczyk et al., 2002; 510 

Strepparava et al., 2018) and; (3) fish egg (roe) mortality from September to January as 511 

represented by a daily mean temperature above 13 °C (Elliott, 1981).  512 

3 Results  513 

3.1 Warming  514 

The most influential factor for future river water temperatures was are the climate change 515 

scenarios. Individual river water warming for the different stations warming, from the reference 516 

(1990-2019) to the near- (2030-2059) and far far-future (2070-2099) periods, is are shown in 517 

Figure 4. Under the RCP8.5 scenario, the warming of river temperatures increases throughout 518 

the 21st century, and even accelerates. The smallest change in river temperatures was observed 519 

under the RCP2.6 scenario, with warming reaching a plateau in the middle of the 21st century. 520 

The mean change in river temperatures from the reference period to the near- and far far-future 521 

amounts to +0.77 and +0.91 °C for RCP2.6, to +0.95 and +1.51 °C for RCP4.5, and to +1.22 522 

and +3.18 °C for RCP8.5, respectively. This amounts to an averaged water warming rate from 523 

1990 to 2099 for RCP8.5 of 0.36 °C per decade, 0.19 °C per decade for RCP4.5, and 0.12 °C 524 

per decade for RCP2.6. At the same time as near-surface air temperature changed by 0.50 °C 525 

per decade for RCP8.5, 0.26 °C per decade for RCP4.5 and 0.13 °C per decade for RCP2.6.  526 

Climate change impact was heterogeneous between stations, yet common patterns were found 527 

within thermal regimes (Figure 4, Table B8 in Appendix B). The strongest river water warming, 528 

regardless of climate scenario or time period, was observed for stations in the Alpine thermal 529 

regime, followed in order by Downstream Lake, Regulated, Swiss Plateau, and Spring 530 

stationsthermal regimes. Under RCP8.5, river temperatures of Alpine stations, on average, 531 

warm by 1.44 °C until the near-future and by 3.54 °C until the far far-future, compared to the 532 

reference period. The river water of Downstream Lake stations also strongly warmed, by 1.36 533 

°C until the near-future and by 3.43 °C until the far far-future. Compared to the Alpine and 534 

Downstream Lake thermal regimes, river temperatures of stations in the Regulated (near near-535 

future +1.19 °C, far far-future +3.00 °C) and Swiss Plateau (near near-future +1.06 °C, far far-536 

future +2.75 °C) thermal regimes warmed less. Least affected, by a wide margin, were the river 537 
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temperatures of the 2 stations that classify as the Spring thermal regime (near near-future +0.04 538 

°C, far far-future +0.10 °C). 539 

  540 
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Figure 4. Modeled mean river temperature increase from the reference (1990 to 2019), to near-future (2030 to 541 

2059, blue bars) and far far-future (2070 to 2099, red bars) under climate scenarios RCP 2.6, RCP4.5 and RCP8.5. 542 

Shown is the median (bar center line) and the lower and upper quartiles (left and right bar extent) of the difference 543 

between periodic mean temperatures (over 30 years) for each available climate simulation (additionally averaged 544 

where multiple hydrological models exist), i.e., the bar extents show climate model variability in the mean 545 

temperature change between the three periods. Stations 2414 and 2462 are not shown since the flow model M4 546 

lacked 30 years of continuous data. 547 
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3.2 Hysteresis analysis 548 

The hysteresis class could be determined at for each station for with future and present river 549 

discharge (47 out of 82 stations). For all stations, climate scenarios, and climate models, the 550 

index found solutions in hysteresis intervals ranging from 164 to 328  to 164 days.  551 

During the reference period the dominant hysteresis class was IV (45.6%) followed by III 552 

(25.0%), -I (14.7%), -II (11.8%) and I (2.9%) while no stations belonged to class II. For the 553 

reference period the classes remained independent of in relation to the climate scenario 554 

(RCP8.5, 4.5, 2.6) or hydrological model (M1, M2, M3) used, while in the near- and far far-555 

future differences start to show. For RCP8.5 in the far far-future period the dominant class was 556 

-I (48.5%) followed by class IV (33.8%), III (13.2%) and -II (4.4%). 557 

For the RCP8.5 scenario classes isare shown for the reference, near- and far far-future periods 558 

in Table 3 (hysteresis classes for RCP4.5 are shown in Table B9, and for RCP2.6 in Table B10, 559 

both in Appendix B). Under RCP8.5, the number of stations which changed hysteresis classes 560 

between the reference and the near near-future was 23%, increasing to 51% until the far far-561 

future. Correspondingly, under RCP4.5, 23% had changed hysteresis classes when reaching 562 

the near near-future, while 38% of the stations changed classes until the far far-future. Under 563 

RCP2.6, 28% of stations had changed classes until the near near-future, but once reaching the 564 

far far-future, some stations changed back again and the fraction of stations that were in a 565 

different hysteresis class compared to the reference period was reduced to 21%.  566 

Considering only the far far-future period (2070 to 2099) , stations belonging to the Swiss 567 

Plateau thermal regime showed the largest change in hysteresis loop classes, with 58% 568 

changing under RCP8.5, 42% under RCP4.5 and 12% under RCP2.6. Considering again only 569 

the far far-future, stations belonging to the Regulated thermal regime exhibited hysteresis loop 570 

class changes of 50% under RCP8.5, 33% under RCP4.5 and 50% under RCP2.6. Least prone 571 

to hysteresis class changes in the far far-future were stations of the Alpine thermal regime (38% 572 

under RCP8.5 and RCP4.5, 23% under RCP2.6). Out of the 20 Downstream Lake thermal 573 

regime stations only 2 stations were investigated with discharge (i.e. model with air2stream 574 

instead of air2water). From these 2 stations, 1 changed hysteresis class with RCP8.5 by the far 575 

far-future, 1 with RCP2.6 but none with RCP4.5. As can be seen from 4 representative stations 576 

for the Swiss Plateau, Regulated, Alpine, and Downstream Lake illustrated in Figure 5, a 577 

change in hysteresis class is usually associated with a counterclockwise rotation and stretching 578 

of the loop from, for example from a lower class to a higher class (III to IV). Such a rotation 579 

and stretching appears as a result of increased warming in summer combined with a decrease 580 

in summer discharge, while warming in winter is smaller than in summer and discharge is 581 

increasing.  582 

  583 
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Table 3.. Change in  Modelled hhysteresis classes during  marked by yellow from the reference  

period (1990 to 2019),  to the near-future (2030 to 2059) and the far far-future (2070 to 2099) 

periods for climate scenario RCP8.5. Flow data from models M12, M23 and M34. Stations with 

no flow measurements for calibration, missing flow model output as forcing or where the use 

of the air2water model did not require flow as input have been excluded. A change in class 

from the reference period to the near- or far far-future period is highlighted in italic. Classes 

are shown as natural numbers in stead of Roman numerals for ease of reading.  

RCP8.5 

Station Reference Near Far 
 M1 M2 M3 M1 M2 M3 M1 M2 M3 

Downstream Lake 

2016 4    4   -1   

2085 4    4   4   

Regulated 

2009 3    4   4   

2056 3 3   4 4  4 4  

2084   4    4    4  

2372 4 4   4 4  4 4  

2473 3    4   4   

2481   4 4  4 4   4 4 

Swiss Plateau  

2034 -2 -2   -2 -2  -2 -1  

2044 4 4 4 -2 -1 -2 -1 -1 -1 
2070 4 4   4 4  -1 -1  

2106 -2 -2   -2 -2  -2 -1  

2112   4    4    4  

2126   -1    -1    -1  

2159   4    4    -1  

2176 4 4   4 4  -1 -1  

2179 4 4   4 4  -1 -1  

2181 4 4   4 4  -1 -1  

2210   -2    -2    -1  

2307 -1 -1   -1 -1  -1 -1  

2308   4    -1    -1  

2343   -1    -1    -1  

2369   -1    -1    -1  

2374   4    -1    -1  

2386   -2    -1    -1  

2415 -2 -2   -2 -2  -2 -1  

2432 -1 -1   -1 -1  -1 -1  

2434   -1    -1    -1  

2493   -1    -1    -1  

2500   -1    -1    -1  

2604   4    4    -1  

2609   4    4    4  

2612   3    3    3  

2634   4 4  4 4   -1 -1 

Alpine 

2033 3 3   4 4  4 4  

2109 3  3 4  4 4  4 
2150 4    4   4   

2161 1  1 1  1 3  3 
2232   4    4    4  

2256   3    3    3  

2265 3    3   3   

2269    4   4    4 
2276   4 4  4 4   4 4 
2327    3   3    3 
2351 3    4   4   

2366   3 3  4 4   4 3 
2617   3 3   3 3   3 3 

 

  584 



25 

 

 

Figure 5. Daily averaged river discharge and water temperature for the reference (1990 to 2019, solid line) and 585 

the far far-future period (2070 to 2099, dashed line) at 4 stations showing the current and the future thermal 586 

hysteresis loops. Flow data used is from model M1, stations belong to the Alpine, Swiss Plateau, Regulated and 587 

Downstream Lake thermal regimes. Daily averaged datasets have been smoothed twice with a running average of 588 

30 days. Hysteresis class change in roman numericals (cf. Fig. 4), station location in Fig. 2b. 589 
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3.3 Temperature extremes  590 

The analysis is focused on temperature extremes in the summer months (June to August), 591 

during which the severity of extremes varies in between climate scenarios and is different on 592 

individual station basis and on a thermal regime basis (Figure 6). Note that the use of extreme 593 

event severity as an index should be viewed as the minimum temperature increase of extreme 594 

events in the future while it denotes the increase of the 90th percentile.  From the reference 595 

(1990 to 2019) to the far far-future (2070 to 2099) period the extreme event severity for 596 

scenario RCP2.6 increased on average by with +0.20 °C (Figure 6a), by by +0.38 °C for 597 

RCP4.5 (Figure 6 b) and by +0.61 °C for RCP8.5 (Figure 6 c).  598 

During the reference period extreme conditions were worst in for the Swiss Plateau thermal 599 

regime (mean extreme event severity +2.8 °C) followed by the Downstream Lake (+2.2 °C), 600 

Regulated (+1.3 °C), Alpine (+1.1 °C) and Spring thermal regimes (+0.12 °C). For all climate 601 

scenarios and all thermal regimes, the severity of extreme events increased throughout the 21st 602 

century. The largest increase from the reference to the far far-future period was found at stations 603 

in for the Regulated thermal regime (mean extreme event severity increase RCP2.6: +0.28 °C, 604 

RCP4.5: +0.54 °C, RCP8.5: +0.93 °C) followed by stations in the Swiss Plateau (RCP2.6: 605 

+0.26 °C, RCP4.5: +0.48 °C, RCP8.5: +0.78 °C), Alpine (RCP2.6: +0.23 °C, RCP4.5: +0.45 606 

°C, RCP8.5: +0.68 °C), Downstream Lake (RCP2.6: +0.23 °C, RCP4.5: +0.40 °C, RCP8.5: 607 

+0.61 °C) and Spring thermal regimes (RCP2.6: +0.01 °C, RCP4.5: +0.01 °C, RCP8.5: +0.03 608 

°C). Note that the use of extreme event severity as an index should be viewed as the minimum 609 

temperature increase of extreme events in the future while it denotes the increase of the 90th 610 

percentile. Looking at extreme events at the level of thermal regimes, during the reference 611 

period (1990 to 2019), the most sever extreme temperatures occurred at stations in the Swiss 612 

Plateau and Downstream Lake thermal regimes. Swiss Plateau thermal regime (mean extreme 613 

event severity +2.8 °C) Downstream Lake (+2.2 °C), Regulated (+1.3 °C), Alpine (+1.1 °C) 614 

and Spring thermal regimes (+0.12 °C).  615 

For all climate scenarios and all thermal regimes, the severity of extreme events increased 616 

throughout the 21st century. For the far-future (2070 to 2099), under all climate scenarios the 617 

Swiss Plateau and the Downstream Lake thermal regime stations remain as the stations with 618 

the severest extreme events, while the increase in extreme event severity increases the most for 619 

the Regulated and the Swiss Plateau thermal regimes. As the Swiss Plateau and Regulated 620 

thermal regime stations are mostly located in the Swiss low land in the Northwestern part of 621 

Switzerland (see Figure 2b), they are the ones that are expected to experience the most severe 622 

low flow conditions, especially in summer months under the RCP8.5 scenario, with a discharge 623 

reduction ranging from 5 to 60 % (FOEN, 2021; Brunner, et al., 2019; Brunner, et al., 2019; 624 

CH2018, 2018). The largest increase from the reference to the far-future period was found at 625 

stations for the Regulated thermal regime (mean extreme event severity increase RCP2.6: 626 

+0.28 °C, RCP4.5: +0.54 °C, RCP8.5: +0.93 °C) followed by the Swiss Plateau (RCP2.6: 627 

+0.26 °C, RCP4.5: +0.48 °C, RCP8.5: +0.78 °C), Alpine (RCP2.6: +0.23 °C, RCP4.5: +0.45 628 

°C, RCP8.5: +0.68 °C), Downstream Lake (RCP2.6: +0.23 °C, RCP4.5: +0.40 °C, RCP8.5: 629 

+0.61 °C) and Spring thermal regimes (RCP2.6: +0.01 °C, RCP4.5: +0.01 °C, RCP8.5: +0.03 630 

°C).  631 

 632 

 633 
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Figure 6. Severity of water temperature extremes from June to August for 30 years of climate simulations (blue 

bars 1990 to 2019, red bars 2070 to 2099) ordered according to thermal regime. Shown are the lower and upper 

quartiles (extent of bar) and the median (bar center line) of the difference between the 90th percentile to the 

seasonal median temperature (30 years of data) from all available climate models (additionally averaged where 

multiple hydrological models exist) at each station and time period, i.e., the bar extents show climate model 

induced variability in each period. Stations 2414 and 2462 are not shown since the flow model M4 lacked 30 years 

of continuous data. 
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3.4 Thermal thresholds 638 

Our results show clear thermal regime dependent differences for the present and future thermal 639 

related stress on the brown trout (Figure 7). The lethal threshold (25 °C) was seldomly 640 

exceeded in the past (Figure 7a). However, towards the end of the 21st century, for a majority 641 

of stations in the Downstream Lake and Swiss Plateau thermal regimes the lethal threshold was 642 

exceeded on at least one day during the year, making areas which could previously be 643 

considered safe for the brown trout potentially lethal at least on certain days of the year. In 644 

addition, the 25 °C limit is also critical for anthropogenic water use in Switzerland, as the Swiss 645 

law (Water Protection Ordinance 814.201) prohibits a thermal use of waters for cooling 646 

purposes beyond this threshold. Unfortunately, our results not only show an increased 647 

occurrence of lethal temperatures, but also the less imminently lethal but nevertheless 648 

detrimental lower temperature threshold of the increased occurrence of the PKD disease (15 649 

°C) will be exceeded much more frequently (see Figure 7b), as will the threshold for fish egg 650 

mortality (Figure 7c). Alpine, and to a lesser extend Regulated thermal regime stations, where 651 

previously the thermal conditions for an increased likelihood of PKD were not met, are likely 652 

also going to exhibit these conditions in the warmer summer months. Given the 153 days from 653 

September to January, egg development (approx. 30 to 90 days Alp et al., 2010) should still 654 

have enough time to take place safely throughout the 21st century in Regulated, Swiss Plateau, 655 

Alpine and Spring thermal regime rivers. Rivers in the Downstream Lake thermal regime are 656 

likely too large to facilitate spawning and were therefore not further considered in this analysis.  657 

The results presented below represent the number of stations where the daily temperature was 658 

above a given thermal threshold (bar center line Figure 7 above 0). Under the RCP8.5 scenario 659 

from the reference to the far far-future, the number of stations exceeding the mortality threshold 660 

(25 °C) increased from 4 to 37 stations from a total of 54 stations in the Downstream Lake and 661 

Swiss Plateau thermal regimes (Figure 7a). For the Regulated, Alpine and Spring thermal 662 

regime stations, none passed the lethal threshold during the reference period, but for the far far-663 

future 1 out of 26 stations exceeded it. For Downstream Lake and Swiss Plateau thermal regime 664 

stations, the PKD threshold (15 °C) was largely exceeded already during the reference period 665 

(52 of 54 stations), increasing to all stations in the far far-future (Figure 7b). For the Regulated, 666 

Alpine and Spring thermal regime stations, 2 out of 26 stations exceeded the PKD threshold 667 

already during the reference period. While in the far far-future, 20 out of 26 Regulated, Alpine 668 

and Spring thermal regime stations broke through the 15 °C threshold. With respect to fish egg 669 

mortality (13 °C)  from September to January, all Downstream Lake thermal regime stations 670 

exceeded this threshold both in the reference period as well as in the far far-future (Figure 7c). 671 

During the reference period, 4 out of 9 Regulated and 31 out of 34 Swiss Plateau thermal 672 

regime stations exceeded the 13 °C threshold. Correspondingly, for the Regulated and Swiss 673 

Plateau thermal regimes, 8 out of 9 and all34 out of 34 stations, respectively, exceeded the 13 674 

°C threshold during the far far-future period. Although Alpine thermal regime stations never 675 

exceeded the 13 °C threshold during the reference period, 8 out of 15 stations exceeded this 676 

limit during the far far-future period. From the two groundwater fed Spring stations, neither 677 

the mortality nor the PKD or fish egg mortality thresholds were exceeded.  678 

  679 
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680 
Figure 7. Number of days superseding thermal threshold for the brown trout for the RCP8.5 climate scenario. a) 681 

Mortality threshold at daily mean temperatures >25 °C, b) increased risk for proliferative kidney disease (PKD) 682 

at daily mean temperatures >15 °C, egg mortality during September to January at temperatures > 13 °C. Data 683 

consist of 30 years of climate simulations (blue bars 1990 to 2019, red bars 2070 to 2099) ordered according to 684 

thermal regime. Shown are the median (bar center line) and the lower and upper quartiles (left and right bar extent) 685 

of the climate simulation from all available climate models (additionally averaged where multiple hydrological 686 

models exist), i.e., the bar extents show climate model induced variability for each period with annual resolution. 687 

Stations 2414 and 2462 are not shown since the flow model M4 lacked 30 years of continuous data. 688 
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4 Discussion 689 

4.1 Multi-fidelity modellingmodeling approach 690 

The use of semi-empirical models by definition means that some of the physical processes 691 

affecting heating are simplified under parameterization and some are directly resolved. The 692 

models air2stream and air2water resolve the effect of river depth, discharge, thermal signals 693 

from tributaries, inverse stratification in lakes during winter, and seasonal cycles. Parts of the 694 

heat balance (e.g. short and longwave radiation) are thus not allowed to change as climate 695 

change in our study. However, indirectly we consider heat budget changes by using high 696 

quality air temperature and discharge projections as input. Glacier retreat is included in the 697 

hydrological models providing discharge projections to this study (eg. Muelchi et al., 2021), 698 

however for temperature this effect is only indirectly considered in air2stream and air2water 699 

through reduced water availability in summer. The effect of high altitude warming as snow and 700 

ice recede is not included. Therefore as the cooling caused by melt water recedes, it is expected 701 

that warming in high altitude rivers is larger than projected in this study. The study of climate 702 

change includes the investigation of physical processes on global, regional and local scales. As 703 

scales change so too does the required level of detail needed to resolve the different water cycle 704 

components that are relevant on the respective scale. An ideally suited approach to address this 705 

challenge in hydrological modellingmodeling is a multi-fidelity model framework, which 706 

combines multiple computational models of varying complexity in an automated selection 707 

framework that ensures robust predictions while limiting the computation to only the necessary 708 

level of detail (Fernández-Godino, 2023). The use of process dependent fidelity ensures proper 709 

representation of physical processes on regional to local scales while keeping computational 710 

costs to a minimum. Multi-fidelity modellingmodeling is especially useful when acquiring 711 

high-accuracy data is costly and/or computationally intensive, as is the case for climate change 712 

impact assessment on the hydrological cycle. By Yet thecombining lower  fidelity water 713 

temperature model approach usings with high-fidelity climate/hydrological model outputs as 714 

input enable , in this study we the important principle of satisfied the vital principle of mmulti-715 

model ensemble, comparison and  analysis that is required for robust climate change impact 716 

assessments (Duan et al., 2019).  717 

(Muelchi et al., 2021) 718 

To expand on previous results of river water temperature projections for Switzerland (Michel 719 

et al., 2022), we employed a multi-fidelity modeling approach able to automate the generation 720 

of water temperature simulators for the different national river temperature monitoring stations 721 

of Switzerland, as summarized in Figure 1. Models of varying complexity were built from 722 

integrating high-fidelity climate and hydrological modellingmodeling outputs (i.e., downscaled 723 

climate (Table 1) and hydrological model outputs (Figure 2a), CH2018 and Hydro-CH2018) 724 

with low-fidelity river temperature models of varying degrees of parametrization i.e., air2water 725 

and air2stream (Toffolon & Piccolroaz, 2015; Piccolroaz et al., 2013). Statistical learning-726 

based coupling of atmospheric and hydrological stations (Table 2) and classification of river 727 

stations into thermal regimes (Figure 2b & 2c) enabled optimal low-fidelity model selection 728 

(Figure 2d) and parametrization.  729 

4.2 Adjustment of trends 730 

A trend bias correction was applied to the temperature model outputs due to the difference 731 

observed between modeled and measured trends (Table B3 to B6 in Appendix B). The 732 

correction decreased the difference between modeled and measured annual trends by 733 

approximately 0.1 °C per decade. After the bias correction, modeled annual trends with climate 734 
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simulations as inputs followed closely the observed trends (Table B7 in Appendix B). Pre-735 

adjustment climate scenarios have a different bias compared to measurements, with RCP8.5 736 

simulations most closely following observed trends while RCP2.6 simulations exhibiting the 737 

largest bias. This discrepancy in bias is caused by the averaging of trends from either up to 22 738 

(RCP8.5), 17 (RCP4.5) or 9 (RCP2.6) climate simulations. The trend bias adjustment was 739 

applied seasonally, resulting in an adjustment of 0.12 °C per decade on average. The largest 740 

adjustment was required for the June to August period (0.22 °C per decade) while the smallest 741 

adjustment was made for the December to February period (0.05 °C per decade). Note that only 742 

2 out of 16 Alpine stations had long enough measured datasets (i.e., 30 years) to derive a 743 

historical trend, and that trend was used to adjust all 15 stations. The trend adjustment upscaled 744 

from 2 to 15 Alpine stations, as well as the calibration at these stations, could thus benefit from 745 

longer time series ; wat Alpine stations. We therefore recommend care while using these bias 746 

corrected data from the Alpine stations. Additionally, for the groundwater fed station 2499 in 747 

the Spring thermal regime, measured water temperature is inversely correlated to air 748 

temperature. The result is a near zero or negative trend for the future (below 0 in Figure 4). 749 

Although the modeled trend at station 2499 is statistically significant, the result indicates a 750 

limitation in the air2stream model to resolve effectively groundwater dominated processes 751 

under climate change.  752 

4.3 Warming rates, trends, and hysteresis analysis 753 

As expected, the climate scenario turned out to be the most important factor for river water 754 

temperature increase. RCP8.5 being the scenario with the largest warming rate resulted in an 755 

average river water temperature increase of +3.2 °C (+0.36 °C per decade from 1990-2020 to 756 

2070-2099) compared to +0.49 °C per decade warmer air temperatures. This is in agreement 757 

with previous findings for Swiss rivers, which projected a water temperature increase of up to 758 

+3.5 °C from 1990-2000 to 2080-2090 or +0.38°C per decade (Michel et al., 2022) compared 759 

to a measured water temperature increase of +0.33 °C per decade from 1979 to 2018 (Michel 760 

et al., 2020)  as well as for Swiss lake surface water temperatures, which were projected to 761 

increase by +3.3 °C from 1982–2010 to 2071-2099 (Råman Vinnå et al., 2021). In addition to 762 

the strong warming of water temperatures until the end of the century, the projections made 763 

herein also suggest that the seasonal patterns in the warming of near surface air temperatures 764 

in Switzerland are going to persist in river water temperatures, with stronger warming in 765 

summer compared to winter. 766 

As expected and supported by Michel et al., (2020, 2022), the considered climate scenario 767 

turned out to be the most important factor for river water temperature increase, with RCP8.5 at 768 

an average of +0.36 °C per decade warmer river water and +0.49 °C per decade warmer air 769 

temperatures being the scenario that results in the largest warming. (Michel et al., 2022)(Michel 770 

et al., 2020)(Love Råman Vinnå et al., 2021)The seasonal difference in the warming of near 771 

surface air temperatures observed in Switzerland, with stronger warming in summer compared 772 

to winter (CH2018, 2018), could also be identified in the river water temperature projections. 773 

Among the different stations, common patterns and trends in river temperature warming could 774 

be identified by classifying the stations into the 4 different river thermal regimes occurring in 775 

Switzerland (Piccolroaz et al., 2016). The classification was further improved in this study by 776 

adding a groundwater spring class and using thermal pattern recognition to regroup river 777 

temperature monitoring stations by automatically identifying key thermal influences from 778 

upstream of a given monitoring station (e.g., the thermal influence of a lake, of tributaries or 779 

of a spring.  780 



33 

 

In terms of overall warming, the strongest warming on an annual basis emerged for stations in 781 

the Alpine thermal regime, followed, in order, by stations in the Downstream Lake, Regulated, 782 

Swiss Plateau, and Spring thermal regimes (Figure 4). The strong warming of Alpine regime 783 

stations has its origins in the strongest near-surface air temperature warming trend in summer 784 

that is occurring in southern parts of Switzerland (CH2018, 2018). The strong warming in the 785 

Downstream Lake thermal regime can be explained by the extended residence time of water in 786 

lakes compared to rivers in general (allowing longer time for waters to heat up) and to a 787 

difference in seasonal patterns, aspects that the employed air2water model explicitly considers. 788 

A previous coupled  A coupled river-lake modellingmodeling study by in Switzerlandthe 789 

author showed that future lake surface waters (epilimnion) heat faster compared to river waters, 790 

with a difference in warming trends between Lake Biel and the Aare River of +0.03 °C per 791 

decade and between Lake Geneva and the Rhône River of +0.11 °C per decade  (Aare to Lake 792 

Biel, Rôhne to Lake Geneva) showed a difference in epilimnion to river warming rates of + 793 

0.03 to +0.11 °C per decade (L. Råman Vinnå et al., 2018).  794 

 795 

Finally, by using and extending an index developed for classifying hysteretic loops (Zuecco et 796 

al., 2016), it became apparent that climate warming adjust river temperature hysteresis towards 797 

a state with higher temperature and a river discharge volume decrease. This is seen as a 798 

stretching of most thermal loops diagonally towards the upper left (Figure 5). The trend 799 

stretching results from the general decrease in discharge as well as the increased seasonal near-800 

surface air temperature water warming occurring during the summer months. Together, these 801 

two processes predominantly increase water temperature in summer as well. 802 

4.4 Thermal extremes  803 

The here proposed “extreme event severity index” together with a removal of the climatic trend 804 

during each period, allowed us to investigate the change in the baseline of extreme temperature 805 

under each thermal regime considered here. The index is independent of past extreme 806 

conditions and relate extremes to the time period being investigated. Like for the water 807 

temperature warming rates and trends, the severity of temperature extremes was impacted the 808 

most by the choice of the climate scenario, similarly so for thermal regimes as a whole and for 809 

individual stations. The largest increase of river temperature extremes occurred under the 810 

RCP8.5 scenario, followed by the RCP4.5 scenario. Noteworthy is that under the RCP2.6 811 

scenario, extreme event frequency and severity stayed more or less constant throughout the 21st 812 

century.  813 

Looking at extreme events at the level of thermal regimes, during the reference period (1990 814 

to 2019), the most sever extreme temperatures occurred at stations in the Swiss Plateau and 815 

Downstream Lake thermal regimes. For the far far-future (2070 to 2099), under all climate 816 

scenarios the Swiss Plateau and the Downstream Lake thermal regime stations remain as the 817 

stations with the severest extreme events, while the increase in extreme event severity increases 818 

the most for the Regulated and the Swiss Plateau thermal regimes. As the Swiss Plateau and 819 

Regulated thermal regime stations are mostly located in the Swiss low land in the Northwestern 820 

part of Switzerland (see Figure 2b), they are the ones that are expected to experience the most 821 

severe low flow conditions, especially in summer months under the RCP8.5 scenario, with a 822 

discharge reduction ranging from 5 to 60 % (FOEN, 2021; Brunner, et al., 2019; Brunner, et 823 

al., 2019; CH2018, 2018). As the discharge projections have been directly considered in the 824 

employed multi-fidelity modellingmodeling approach, the strong increase in extreme event 825 

severity for these stations is thus a direct result of the expected increased occurrence of low 826 
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flow events, while the seasonal near-surface air temperature changes are mostly responsible 827 

for an increasing median of river water temperatures. 828 

4.5 Thermal Thresholds 829 

The likely impact of climate change under the RCP8.5 scenario was investigated with known 830 

thermal thresholds for the brown trout (i.e., risk of death at 25 °C and above; increased 831 

occurrence of PKD above 15 °C; increased fish egg mortality at 13 °C between September and 832 

January), a cold water fish species that is found in rivers and streams throughout all of 833 

Switzerland (Brodersen et al., 2023). While the brown trout’s can already in principle die 834 

already after about 10 min at temperatures of 30 °C (Elliott, 1981), due to the daily temporal 835 

resolution of the employed models, thermal thresholds were could only evaluated on a daily 836 

time scale. Even when looking only at the daily time scale, the results of this study are cause 837 

for concern, as both the number of stations as well as the duration during which thermal 838 

thresholds are exceeded increase. Viewed alongside the fact that the number of catches of 839 

brown trout in Switzerland have already severely decreased in the past decades, for example 840 

from 73,500 in 1989 to 12,750 in 2019 in the rivers of the Swiss canton of Bern, which 841 

represents rivers of all types of thermal regimes that are found in Switzerland (FOEN, 2024), 842 

the outlook for the brown trout's future in Swiss rivers is grim.  843 

Our results show clear thermal regime dependent differences for the present and future thermal 844 

related stress on the brown trout (Figure 7). The lethal threshold (25 °C) was seldomly 845 

exceeded in the past (Figure 7a). However, towards the end of the 21st century, for a majority 846 

of stations in the Downstream Lake and Swiss Plateau thermal regimes the lethal threshold was 847 

exceeded on at least one day during the year, making areas which could previously be 848 

considered safe for the brown trout potentially lethal at least on certain days of the year. In 849 

addition, the 25 °C limit is also critical for anthropogenic water use in Switzerland, as the Swiss 850 

law (Water Protection Ordinance 814.201) prohibits a thermal use of waters for cooling 851 

purposes beyond this threshold. Unfortunately, our results not only show an increased 852 

occurrence of lethal temperatures, but also the less imminently lethal but nevertheless 853 

detrimental lower temperature threshold of the increased occurrence of the PKD disease (15 854 

°C) will be exceeded much more frequently (see Figure 7b), as will the threshold for fish egg 855 

mortality (Figure 7c). Alpine stations, and to a lesser extend Regulated  thermal regime stations, 856 

where previously the thermal conditions for an increased likelihood of PKD were not met, are 857 

likely also going to exhibit these conditions in the warmer summer months. Given the 153 days 858 

from September to January, egg development (approx. 30 to 90 days Alp et al., 2010) should 859 

still have enough time to take place safely throughout the 21st century in Regulated, Swiss 860 

Plateau, Alpine and Spring thermal regime rivers. Rivers in the Downstream Lake thermal 861 

regime are likely too large to facilitate spawning and were therefore not further considered in 862 

this analysis.  863 

The thermal analyses preformed here do not resolve all the processes affecting fishes’ 864 

sensitivities to thermal extremes or spawning success. The ability to migrate, find local cold 865 

water refugia, or the availability for bottom gravel substrate required for spawning was not 866 

explicitly simulated. However, as severe temperature extremes which exceed the fish mortality 867 

threshold of 25 °C can in general occur in tandem with low flow conditions (see Figure 5), the 868 

possibilities for the brown trout to temporally migrate to a cold water refugia during such 869 

extremes can be expected to be strongly limited. And while we did not investigate the 870 

temperature to initiate spawning, it is likely that longer occurrence of high waterhigh-water 871 

temperature periods during Autumn will have the potential to delay brown trout spawning. 872 
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Moreover, due to increased river discharge and erosion in winter, sufficient bottom gravel 873 

substrate for spawning can be expected to decrease in future (Junker et al., 2015). Hence, to 874 

conclude, a changing climate will significantly increase the stress on brown trout, and given 875 

the widespread distribution of this fish species, future changes in temperature related death of 876 

adults cause us most concern. 877 

5. Summary and Conclusions 878 

An automated multi-fidelity modellingmodeling approach consisting of downscaled regional 879 

climate models, hydrological catchment models, and two semi-empirical water temperature 880 

models at variable degrees of parametrization complexity was used to investigate future river 881 

water temperatures across Switzerland under three climate scenarios. Model selection and 882 

performance was optimized by grouping river stations catchments under thermal regimes using 883 

a process consisting of thermal pattern recognition with hierarchical clusters.  884 

According to the simulations, for the high emission climate scenario (RCP8.5), average river 885 

water temperatures across Switzerland will increase by +3.20 °C (0.367 °C per decade from 886 

1990 2020 to 2099), while under the low emission scenario (RCP2.6) temperatures increase by 887 

only 0.9 °C. The strongest river water warming under the high emission scenario can be 888 

expected to occur in the Alpine thermal regime (+3.5 °C) followed by stations in of the 889 

Downstream Lake thermal regime (+3.4 °C). A general shift in river discharge with less water 890 

in summer and more water in winter together with increased warming in summer produced 891 

increased seasonal warming which stretched hysteresis loops of water temperature versus 892 

discharge. The severity of thermal extremes in summer increased by, on average, 0.6 °C under 893 

the high emission scenario, while under the low emission scenario the increase was limited to 894 

0.2 °C. Caused by future low flows, rivers stations in the Swiss Plateau thermal regime showed 895 

the most severe absolute river temperature extremes during the reference period, while the 896 

absolute extreme temperature change was largest in of Regulated thermal regime stations 897 

(RCP2.6: +0.28 °C, RCP4.5: +0.54 °C, RCP8.5: +0.93 °C). Our results show increased future 898 

thermal stress on cold-water fishes such as the brown trout, with substantial increases in the 899 

duration of threshold exceeding temperatures. These exceedances will lead to the increased 900 

likelihood of reproduction difficulties, occurrence of sickness and high temperature related 901 

mortality for brown trout in rivers where this previously was not a problem.  902 

A multi-fidelity modellingmodeling approach was deemed necessary to work around 903 

computational limitations while investigating regional climate change across Switzerland. We 904 

show how surface water temperature models can be employed for various different thermal 905 

regimes by automatically adapting their parametrization complexity to the required level, 906 

including for stations downstream of lakes that are influenced strongly by the lake thermal 907 

regimes. Yet, future studies would benefit from connecting lakes and rivers in one 908 

modellingmodeling framework. The climate models used here were part of to the global 909 

CMIP5 and regional EUROCORDEX coordinated modeling efforts (CH2018, 2018). Future 910 

studies should however consider using the more recent CMIP6 or later collaborations for their 911 

projections.  912 

Swiss water protection management leans on the sensitivity of species for enforcing thermal 913 

utility rules prohibiting thermal use past certain thresholds (Waters Protection Ordinance 914 

814.201). Our results show a change in the duration and the location of threshold exceeding 915 

water temperatures, which threatens not only the brown trout but have implications for future 916 

anthropogenic use of Swiss surface waters. Local and regional climate protection measures to 917 
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limit negative effects of climate change includes but are not limited to the creation of river 918 

bank shading (Trimmel et al., 2018), dam management (Payne et al., 2004), river restoration, 919 

stormwater and site-specific management (Palmer et al., 2008) as well as managed ground 920 

water recharge (Epting et al., 2023). Ultimately in the work to mitigate negative climate impact, 921 

management needs to weightweigh the need for protection and preservation with its associated 922 

cost and benefit towards the outcome of a non-interactive, partial or full climate protection 923 

approach.   924 
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