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Editor decision: Reconsider after major revisions (further review by editor and referees)  

by Christa Kelleher 

Public justification (visible to the public if the article is accepted and published):  

Dear authors, 

The manuscript has now received three reviews, all containing helpful feedback. Please 
incorporate their feedback and submit a revised draft for further consideration.  

  

In particular, multiple reviewers mentioned confusion from the data and methods section, and I 
encourage the authors to pay careful attention to revisions in this section to improve readability.  

We agree and we have extensively reworked the method section to improve readability, see 
answers to RC1 and RC3 for more details.    

In addition, I do think there is some confusion about the  multi-fidelity modeling approach and 
why this was used for this particular study. While the authors list the computational benefits, I'd 
encourage them to cite some of the foundational work on multi -fidelity approaches and explain 
the benefits of such an approach in the methods section.  

The now reworked section 2 starts with this paragraph and includes several additional references: 

"In climate change studies of the hydrosphere, unknown biases present a fundamental challenge. 
These biases can arise from limitations in how well models capture future physical processes, as 
well as from assumptions embedded in climate scenarios. To limit the influence of unknown bias, 
a common method is the multi-fidelity modeling approach which combines multiple models with 
different processes of fidelity. Using multiple models (as well as climate scenarios), while 
accepting that process-specific model performance differs from model to model, minimizes the 
risk of large bias towards the real future through a widening of the range of projections being 
made. Advantages for hydrological studies include the improvement of robustness of low-flow 
forecasts and accountability of structural uncertainty (Nicolle et al., 2020). As such, the method 
has been used to limit the uncertainty caused by hydrological models on runoff and evaporation 
climate projections using large ensembles of global hydrological models while investigating 
regional and global water scarcity in the future (Schewe et al., 2014). Even though varying model 
fidelity with varying complexity and computational constraints is an advantage to hydrological 
modeling, care is needed when adding processes depending on the relevance of the process in 
the local area under investigation (Guse et al., 2021)." 

I would also encourage the authors to compare their findings in the discussion more explicitly 
with other published articles of past and future stream temperature change in Switzerland. While 
these previous articles are referenced in the discussion, it would be helpful to place the 
magnitudes of change in the context of other magnitudes reported by other studies (even if the 
metrics differ), to verify that the findings of this study are generally in line with those of other 
studies. 

The following has been added to the discussion (section 4.3) and also includes several additional 
references: 



"As expected, the climate scenario turned out to be the most important factor for river water 
temperature increase. RCP8.5 being the scenario with the largest warming rate resulted in an 
average river water temperature increase of +3.2 °C (+0.36 °C per decade from 1990 -2020 to 
2070-2099) compared to +0.49 °C per decade warmer air temperatures. This is in agreement with 
previous findings for Swiss rivers, which projected a water temperature increase of up to +3.5 °C 
from 1990-2000 to 2080-2090 or +0.38°C per decade (Michel et al., 2022) compared to a 
measured water temperature increase of +0.33 °C per decade from 1979 to 2018 (Michel et al., 
2020)  as well as for Swiss lake surface water temperatures, which were projected to increase by 
+3.3 °C from 1982–2010 to 2071-2099 (Råman Vinnå et al., 2021). In addition to the strong 
warming of water temperatures until the end of the century, the projections made herein also 
suggest that the seasonal patterns in the warming of near surface air temperatures in Switzerland 
are going to persist in  river water temperatures, with stronger warming in summer compared to 
winter."  

I look forward to receiving a copy of the revised manuscript.  

----------------- 

  



We thank the reviewer for constructive comments and provide our answers hereunder.  

RC1 

RC1: 'Comment on egusphere-2024-3957', Anonymous Referee #1, 18 Mar 2025  reply  

This is my review of "Multi-fidelity model assessment of climate change impacts on river 

water temperatures, thermal extremes and potential effects on cold water fish in Switzerland” 

by Love Raman Vinna et al., submitted to Hydrology and Earth System Sciences. In this 

paper, the authors combine an ensemble of climate models, hydrological models and two 

water temperature models with varying parameter settings per station to derive water 

temperature projections in Swiss rivers. In addition,  they determined future changes in 

projected extremes, hysteresis effects and impacts on brown trout. I found the study 

interesting, with sound methodology. However, the manuscript would benefit from a clearer 

presentation to fully convey its strengths. I therefore suggest minor revisions, and I provide 

comments below to help improve these aspects. 

Major comments: 

While comprehensive and detailed, the data and methods section is somewhat difficult to 

follow due to its length and repetition. I recommend a thorough revision to improve its 

structure and conciseness, eliminating redundant wording. This will enhance readability and 

streamline the section. Below, I provide specific examples and suggestions to support this 

refinement. 

Section 2 has been adjusted to make it clearer for the reader, see below for specific 

changes.  

The structure has been improved by separating the entire text into more thematically related 

paragraphs.  

The “Material & Methods”-section now is written more concise resulting in a text reduction of 

3725 to 1529 characters (with spacings), following the suggestion of the reviewer one 

paragraph has been moved to the "Introduction”-section. 

The “Data”-section now is written more concise by omitting redundant wording on used 

circulation and hydrological models.  

The presentation of results could be refined to enhance clarity and readability. Figures 4, 6, 

and 7, along with Table 3, contain a wealth of information, but an additional or alternative 

figure presenting the data in a more aggregated way—such as by thermal regime—could 

help highlight key differences more effectively while still accounting for uncertainty. While the 

station-based results provide valuable detail, incorporating more synthesized figures or 

tables could make the main findings more accessible. Additionally, summarizing key insights 

more narratively, rather than listing numbers extensively, may improve the flow of the results 

section. 

We prepared a figure that summarizes the entire range of individual evaluations for each 

regime. We do not consider this to be the right approach and would prefer to omit this type of 

presentation of the results. 

 



  

Specific comments: 

Title: the “cold water fish” might suggest a more elaborate analysis on general fish species 

when only brown trout is considered in the analysis. Suggestion to rephrase/remove.  

Title changed to: Multi-fidelity model assessment of climate change impacts on river water 

temperatures, thermal extremes and potential effects on brown trout in Switzerland  

L 16-18, abstract: Provide more detailed “Alpine thermal regime” and “Downstream lake 

regime”. 

Results have been added to the Abstract: Line 13 to 19 in revised manuscript now reads>  

Results show that, until the end of the 21st century, average river water temperatures in 

Switzerland will likely increase by 3.10.7 °C (or 0.360.1 °C per decade) under RCP8.5, while 

under RCP2.6 the temperature increase may remain at 0.90.3 °C (0.120.1 °C per decade). 

Under RCP8.5, temperatures of rivers classified as being in the Alpine thermal regime will 

increase the most, that is, by 3.50.5 °C, followed by rivers of the Downstream Lake regime, 

which will increase 3.40.5 °C. Under RCP2.6 temperatures in the Alpine and Downstream lake 

regimes change most with +1.15 and +0.990.5 °C. 

The introduction could benefit from a better gap description, and background building up to 

this gap description, for example highlighting the gaps of current water temperature 

projections for Switzerland available in literature. Also, since part of the novelty of the study 

lies in the modelling approach employed, this gap can also be made more apparent.  

Added to introduction line 99: Compared to previous projections of climate warming in Swiss 

rivers (Michel et al., 2022), the simplified multi-fidelity modelling approach enables a wider 

investigation area (+90%) including 5 thermal regimes (previous 2) and 22 GCM-RCM 

chains (previously 7). 

Figure 1: Good overview figure, although it would benefit from a distinction between data 

and data sources and operations on that data in the flow chart. This is an open suggestion  

Additional detail has been added to the figure in the revised manuscript.  

L73-92: this is a very general explanation about the choice of models to use, I would suggest 

to move it to the intro 

We agree and have moved this to section 1 lines 60 to 79. 

L126-138: can you give a little more extensive description of the CH2018 climate data? E.g. 

introduce that they are derived from the EURO-CORDEX regional climate modelling 

ensemble, with the number of RCMs driven by GCMs and future scenarios, as well as the 

horizontal resolution. These names return then in Table 1, allowing the reader to understand 

where they come from. 

Added to line 145: Here we use CH2018 climate simulations based on the EURO-CORDEX 

regional climate modelling ensemble, for which near-surface air temperatures have been 

downscaled to local conditions with quantile mapping (CH2018, 2018). CH2018 comprises 



simulations of 9 GCM coupled to 8 RCM runs for a total of 22 GCM-RCM model chains with 

0.11° and 0.44° resolution under 3 climate change scenarios (RCP2.6, 4.5, and 8.5).  

L130- ...It would help to also introduce the Hydro-CH2018 in a little bit more detail 

afterwards, with a subclause per hydrological model on its characteristics (semi-distributed, 

empirical etc). A suggestion is to structure the description of the different data sources with 

different subtitles 

Section 2.1 has been updated to give more information of CH2018 and Hydro-CH2018 in 

line with additional reviewer comments hereunder. Line 145 to 164 now reads. 

Here we use CH2018 climate simulations based on the EURO-CORDEX regional climate 

modeling ensemble. In CH2018 near-surface air temperatures was downscaled by applying a 

statistical bias-correction and downscaling method (Quantile Mapping, a purely statistical and 

data-driven method) to the original output of all EURO-CORDEX climate model simulations, 

as observational reference station observations and observation-based gridded analyses 

were used (CH2018, 2018, Chapter 5). These data are available as both gridded and local 

station products (CH2018 Project Team, 2018). Following CH2018, the Hydro-CH2018 project 

analyzed the effects of climate change on Swiss water bodies (FOEN, 2021). The gridded 

climate product from CH2018 was used to construct projections of future river discharge for 4 

hydrological models used in Hydro-CH2018. The location where output from these 4 models 

was used in this study is shown in Figure 2a including: (M1) PREVAH-WSL a conceptual 

process-based model (Brunner, et al., 2019a; Brunner, et al., 2019b) and (M2) PREVAH-UniBE 

(Muelchi et al., 2021), (M3) HBV Light-UniZH a bucket-type hydrological model (Freudiger et 

al., 2021), and (M4) AlpineFlow-EPFL the snowmelt and runoff model Alpine3D coupled to the 

semi-distributed hydrological model StreamFlow (Michel et al., 2022). The Hydro-CH2018 

project produced projections for 61 out of the 82 FOEN river monitoring stations under 22 

GCM-RCM model chains (9 GCM coupled to 8 RCM runs) with 0.11° and 0.44° resolution and 

3 climate change scenarios (RCP2.6, 4.5, and 8.5). The available projections, the employed 

circulation and hydrological models, and the considered climate change scenarios for all the 

different stations that were considered in this study are summarized in Table 1.  

 

L151: I might have missed it, but how many monitoring stations are eventually used in the 

study? If these are the stations on Fig. 1 panel a, provide a reference to that fig (also for its 

other panels). 

We used in total 82 stations (Figure 2 a and b). This is described in section 2, which has 

been revised for clarity. Line 113 to 116 now reads. 

All available model configurations (i.e., 3,4,5,6,7 and 8 different parameter combinations and 

implementations) were evaluated for their applicability to different thermal river regimes 

(Appendix A) and allowed for developing optimal site-specific models for all the 82 thermal 

river monitoring stations of the Swiss Federal Office of the Environment (FOEN).  

L167: DIS criterion: what is the threshold used to assume horizontal distance is “minimal”? & 

L168: how is the representativeness of the meteorological stations to upstream drainage 

area assessed? 

Line 191 to 201 in Section 2.2 now reads: 



Meteorological stations were subsequently paired with hydrological stations such that (a) the 

horizontal distance between river and meteorological stations was as small as possible i.e. 

nearest to nearest (criterion DIS), (b) the meteorological station was representative for the 

conditions in the upstream drainage area composing a meteorological station being located in 

the same valley and upstream (criterion DRA), and (c) the elevation difference did not exceed 

a reasonable threshold of 200 m (criterion ELE). Where possible, all three criteria were met, 

that is the closest station passed both ELE and DRA and are noted as DIS in Table 2. If the 

closest station were deemed not to be representative (e.g. in a neighboring valley or 

downstream) the DIS criteria where failed, such a station are noted as DRA in Table 2. If a 

station failed both DIS and DRA but passed ELE it is noted as ELE in Table 2. Station details 

and pairings are summarized in Table 2. 

 

Table 2: I would suggest to move this table to the appendix, as it is very extensive and does 

not add much to the results. 

Table 2 has been moved to appendix 

L179: “were already statistically downscaled”, please add details on how this is done. This 

could be part of the paragraph where the CH2018 scenarios are explained in more detail. 

Also, how big is the bias, and how much would it impact the results?  

See adjusted text above regarding the paragraph where the CH2018 scenarios are explained. 

The bias for air temperature was small from station to station and while for the projections of 

future flow it was substantial compared to measurements in the reference period. So large in 

fact that we needed to the bias correction in section 2.3 in order to apply air2stram and 

air2water.  

L222-228, suggestion to move this paragraph to after the model description.  

Paragraph moved to end of section 2.5.Line 295 to 301. 

L248-250: The fact that for each river monitoring station, the best water temperature model 

is employed is a key strength of the study, and should, to my opinion, be more pronounced 

throughout the study (eg intro describing the gap on this, abstract and earlier in the methods 

where the multi-fidelity is mentioned first). 

Added to section 1 line 102 to 107 

By grouping catchments together via statistical pattern recognition, we were able to classify 

rivers (including spring-fed rivers) into 5 different thermal regimes, improving model results by 

allowing for optimal model selection at each station and enabling regime-specific analyses. 

The effect on warming by changing river discharge was investigate through a hysteresis 

analysis. Additionally, we introduce the extreme event severity index as an analytic tool to 

evaluate the change in thermal extreme amplitude. 

L287-320: there is some repetition in this section, and parts are more difficult to follow, 

please consider condensing it retaining the same information 

We have rewritten this part. Line 313 to 352 now reads 



Both air2stream and air2water underestimate the annual temperature trend during the 

reference period on average by 0.14 and 0.11 °C per decade, respectively. For air2stream, 

the annual trend bias is smallest for the Swiss Plateau thermal regime (0.09 °C per decade) 

and largest in the Alpine thermal regime (0.17 °C per decade). Seasonally, the trend bias is 

largest from June to August and September to November, whereas, especially for air2water, 

the bias is small from December to February and March to May.  

The divergence of both air2stream and air2water models from observed trends warrant a post 

simulation bias correction of simulated trends. The bias is river station dependent, making an 

individual correction at each station preferable (Tables B3 to B6 in Appendix B). However, only 

about 30% of the river stations investigated have long enough data sets (30 years) for 

individual correction. Therefore, we tied the seasonal trend bias correction to the thermal 

regime, thereby keeping the correction linked to local conditions. Note that no river station of 

the Spring thermal regime had enough data to allow for the trend bias correction. Spring river 

stations were therefore not trend bias corrected. As the trend bias correction is acting on 

climate simulations of river temperature stretching from 1990 to 2099, the bias correction had 

to be scaled towards how air temperature trends shift in the climate models. The scaling was 

designed such that it did not affect the bias correction during the reference period (1990 to 

2019), while adjusting the correction towards how the air temperature trend (TTair) changes 

in the near- (2030 to 2059) and far-future (2070 to 2099). For this purpose, an adjustment 

factor Fs (-) was constructed from the mean climate models air temperature trends for each 

climate scenario. Fs is thus specific for each climate scenario, river station and season.  

𝐹𝑠𝑖 ,𝑠 =
𝑇𝑇𝑎𝑖𝑟𝑖 ,𝑠

𝑇𝑇𝑎𝑖𝑟𝑟𝑒𝑓,𝑠
                                                                                                    (2) 

Here TTairi,s is the mean of the air temperature trends from the climate models, which is 

changing for each season and with the reference, near- and far-future periods, TTairref,s is the 

mean of the seasonal air temperature trend during the reference period, i is the number of 

days, and s denotes the season. The temporal gaps between 1990 to 2019, 2030 to 2059 and 

2070 to 2099, during which the air temperature trends were calculated, were linearly filled with 

shape-preserving piecewise cubic interpolation resulting in a continuous factor Fsi,s from 1990 

to 2099. Fsi,s varied from -2 to +3 depending on the season and climate scenario and was 

applied for simulations using discharge input from models M1 to M3, while for simulations using 

M4, Fsi,s was set to 1 from 1990 to 2099 due to too short simulation time frames in M4 (only 

one decade). With Fsi,s, the seasonal and thermal regime dependent water temperature bias 

Tbi,s (regime dependent mean from Table C3 to C6 in Appendix C) is turned into the thermal 

regime and climate scenario dependent seasonal bias correction Bcs (°C day-1) 

𝐵𝑐𝑠 = ∑ 𝐹𝑠𝑖,𝑠 ∗

𝑖=𝑛

𝑖=1

𝑇𝑏𝑖 ,𝑠                                                                        (3)  

where n is the number of days since 1st of January 1990. Before adjusting the water 

temperature model output from 1990 to 2099, the seasonal Bcs was combined into a 

continuous dataset Bc. To avoid a sharp shift in Bc between each season, a 3- to 5-day gap 

in between each season was smoothed with shape-preserving interpolation (Piecewise cubic 

Hermite interpolation, PCHIP; Matlab R2022a).  



 

  

L332: could you give a more explicit explanation of a hysteresis example here, relevant for 

Swiss rivers? 

Yes, paragraph has been updated on line 357 to 365 

Hysteresis, wherein a dependent variable (water temperature or suspended sediments) can 

exhibit multiple values in response to a single value from the independent variable (discharge), 

is a common phenomenon in hydrology (Gharari & Razavi, 2018). Sediment transport 

hysteresis can be caused in rivers by emptying and refilling of sediment layers on the river 

bed (Tananaev, 2012) and through erosion on land as shown in the Alps with the contributing 

location (river bed or eroded area) determining the hysteresis loop shape and rotation direction 

(Misset et al., 2019). Stream temperature can also show hysteresis effects, example being a 

lag in the response to air temperature caused by ice-melt or reservoir release (Van Vliet et al., 

2011; Webb & Nobilis, 1994).  

 

L357-361: this is a good example of lines that could be shortened.  

Now on line 390 to 393 

Extreme conditions depend on what is considered to be extreme in relation to normal 

conditions (Stephenson, 2008). Here, water temperatures are considered to be extremely high 

if they exceed the 90th percentile during the 30-year reference, near- and far-future periods 

(IPCC, 2014).  

L368-372: if an extreme is defined by the deviation of the 90th percentile compared to the 

median of a certain 30 year period, why does this period need to be detrended? i.e., there is 

no certain time (beginning or end of period) where the analysis is carried out? Or am I 

missing something? 

Within a 30-year period (1990 to 2019, 2030 to 2059, 2070 to 2099) small trends from the 

underlying climate may exist. If such a trend is observable and positive, it means that at the 

end of the 30-year period it will be easier for a temperature event to be above the 90th 

percentile of the 30-year period compared to during the beginning of the period. These high 

temperature events could potentially incorrectly be classified as an extreme. By detrending 

within these 30 years, each extreme candidate will be considered irrespectively of whether it 

is in the beginning or at the end of the 30 years period.  

L396-400: If this info would be presented in a small table, it would be easier to grasp Section 

3.2 on hysteresis analysis. For a non-expert in hysteresis, I found the results difficult to 

interpret. To my opinion, it would be beneficial to provide some guiding sentences on how 

these results could be interpreted.   

Sections 3.2 have been reworked to make it easier for the reader. Line 454 to 486 

The hysteresis class could be determined for each station with future and present river 

discharge (47 out of 82 stations). For all stations, climate scenarios, and climate models, the 

index found solutions in hysteresis intervals ranging from 164 to 328 days.  



During the reference period the dominant hysteresis class was IV (45.6%) followed by III 

(25.0%), -I (14.7%), -II (11.8%) and I (2.9%) while no stations belonged to class II. For the 

reference period the classes remained independent in relation to the climate scenario 

(RCP8.5, 4.5, 2.6) or hydrological model (M1, M2, M3) used, while in the near- and far-future 

differences start to show. For RCP8.5 in the far-future period the dominant class was -I (48.5%) 

followed by class IV (33.8%), III (13.2%) and -II (4.4%). 

For the RCP8.5 scenario classes are shown for the reference, near- and far-future periods in 

Table 3 (hysteresis classes for RCP4.5 are shown in Table B9, and for RCP2.6 in Table B10, 

both in Appendix B). Under RCP8.5, the number of stations which changed hysteresis classes 

between the reference and the near-future was 23%, increasing to 51% until the far-future. 

Correspondingly, under RCP4.5, 23% had changed hysteresis classes when reaching the 

near-future, while 38% of the stations changed classes until the far-future. Under RCP2.6, 

28% of stations had changed classes until the near-future, but once reaching the far-future, 

some stations changed back again and the fraction of stations that were in a different 

hysteresis class compared to the reference period was reduced to 21%.  

Considering only the far-future period (2070 to 2099) , stations belonging to the Swiss Plateau 

thermal regime showed the largest change in hysteresis loop classes, with 58% changing 

under RCP8.5, 42% under RCP4.5 and 12% under RCP2.6. Considering again only the far-

future, stations belonging to the Regulated thermal regime exhibited hysteresis loop class 

changes of 50% under RCP8.5, 33% under RCP4.5 and 50% under RCP2.6. Least prone to 

hysteresis class changes in the far-future were stations of the Alpine thermal regime (38% 

under RCP8.5 and RCP4.5, 23% under RCP2.6). Out of the 20 Downstream Lake thermal 

regime stations only 2 stations were investigated with discharge (i.e. model with air2stream 

instead of air2water). From these 2 stations, 1 changed hysteresis class with RCP8.5 by the 

far-future, 1 with RCP2.6 but none with RCP4.5. As can be seen from 4 representative stations 

for the Swiss Plateau, Regulated, Alpine, and Downstream Lake illustrated in Figure 5, a 

change in hysteresis class is usually associated with a counterclockwise rotation and 

stretching of the loop from, for example from a lower to a higher class (III to IV). Such a rotation 

and stretching appears as a result of increased warming in summer combined with a decrease 

in summer discharge, while warming in winter is smaller than in summer and discharge is 

increasing. 

Section 3.3 and figure 6. It should be more clear from the start of the paragraph that the 

“extreme event severity index” is used, so the values do not represent absolute extremes, 

but deviations from the “normal” in the respective period. L477-479 indicate this, but it should 

be more up front in the paragraph and figure to avoid confusion for the reader.  

Section 3.3 has been updated following the reviewer's comment.   Line 495 to 523 

The analysis is focused on temperature extremes in the summer months (June to August), 

during which the severity of extremes varies in between climate scenarios and is different on 

individual station basis and on a thermal regime basis (Figure 6). Note that the use of extreme 

event severity as an index should be viewed as the minimum temperature increase of extreme 

events in the future while it denotes the increase of the 90th percentile. From the reference 

(1990 to 2019) to the far-future (2070 to 2099) period the extreme event severity for scenario 

RCP2.6 increased on average by +0.20 °C (Figure 6a), by +0.38 °C for RCP4.5 (Figure 6 b) 

and by +0.61 °C for RCP8.5 (Figure 6 c).  



Looking at extreme events at the level of thermal regimes, during the reference period (1990 

to 2019), the most sever extreme temperatures occurred at stations in the Swiss Plateau and 

Downstream Lake thermal regimes. Swiss Plateau thermal regime (mean extreme event 

severity +2.8 °C) Downstream Lake (+2.2 °C), Regulated (+1.3 °C), Alpine (+1.1 °C) and 

Spring thermal regimes (+0.12 °C).  

For all climate scenarios and all thermal regimes, the severity of extreme events increased 

throughout the 21st century. For the far-future (2070 to 2099), under all climate scenarios the 

Swiss Plateau and the Downstream Lake thermal regime stations remain as the stations with 

the severest extreme events, while the increase in extreme event severity increases the most 

for the Regulated and the Swiss Plateau thermal regimes. As the Swiss Plateau and Regulated 

thermal regime stations are mostly located in the Swiss low land in the Northwestern part of 

Switzerland (see Figure 2b), they are the ones that are expected to experience the most 

severe low flow conditions, especially in summer months under the RCP8.5 scenario, with a 

discharge reduction ranging from 5 to 60 % (FOEN, 2021; Brunner, et al., 2019; Brunner, et 

al., 2019; CH2018, 2018). The largest increase from the reference to the far-future period was 

found at stations for the Regulated thermal regime (mean extreme event severity increase 

RCP2.6: +0.28 °C, RCP4.5: +0.54 °C, RCP8.5: +0.93 °C) followed by the Swiss Plateau 

(RCP2.6: +0.26 °C, RCP4.5: +0.48 °C, RCP8.5: +0.78 °C), Alpine (RCP2.6: +0.23 °C, 

RCP4.5: +0.45 °C, RCP8.5: +0.68 °C), Downstream Lake (RCP2.6: +0.23 °C, RCP4.5: +0.40 

°C, RCP8.5: +0.61 °C) and Spring thermal regimes (RCP2.6: +0.01 °C, RCP4.5: +0.01 °C, 

RCP8.5: +0.03 °C).  

 

L515-525: these are very general sentences which fit better in an introduction section than in 

a conclusion 

Sentences has been moved to the introduction.  Line 80 to 90 

The study of climate change includes the investigation of physical processes on global, 

regional and local scales. As scales change so too does the required level of detail needed to 

resolve the different water cycle components that are relevant on the respective scale. An 

ideally suited approach to address this challenge in hydrological modeling is a multi-fidelity 

model framework, which combines multiple computational models of varying complexity in an 

automated selection framework that ensures robust predictions while limiting the computation 

to only the necessary level of detail (Fernández-Godino, 2023). The use of process dependent 

fidelity ensures proper representation of physical processes on regional to local scales while 

keeping computational costs to a minimum. Multi-fidelity modeling is especially useful when 

acquiring high-accuracy data is costly and/or computationally intensive, as is the case for 

climate change impact assessment on the hydrological cycle.  

L525: why are the water temperature models of “lower fidelity”?  

Due to the simplified level of detail. The water temperature models used here are semi -

empirical, meaning detailed physical representation has been simplified thus the low fidelity. 

The inclusion of empirical climate models brings a high-fidelity element to our study. 

Importantly, the use of low fidelity water temperature models enables us to use the full set of 

climate models, and not a selection of representative models required while using high fidelity 

water temperature models (e.g. Michel et al. 2022), in our nationwide study.   



 L587-593: why is it important to study these hysteresis effects? 

A change in hysteresis as described here with elongated loops points to an added warming 

effect caused by a decrease in the amount of water being heated, i.e. a change in physical 

function as less water is more easily heated.    

L605-614: I would move these lines to the results section, and provide more explanations on 

the differences between thermal regimes here in the discussion.  

Text worked into section 3.3. see above. Section 4.4 on line 657 to 670now reads  

The here proposed extreme event severity index together with a removal of the climatic trend 

during each period, allowed us to investigate the change in the baseline of extreme 

temperature under each thermal regime considered here. The index is independent of past 

extreme conditions and relate extremes to the time period being investigated. Like for the 

water temperature warming rates and trends, the severity of temperature extremes was 

impacted the most by the choice of the climate scenario, similarly so for thermal regimes as a 

whole and for individual stations. The largest increase of river temperature extremes occurred 

under the RCP8.5 scenario, followed by the RCP4.5 scenario. Noteworthy is that under the 

RCP2.6 scenario, extreme event frequency and severity stayed more or less constant 

throughout the 21st century. As the discharge projections have been directly considered in the 

employed multi-fidelity modeling approach, the strong increase in extreme event severity for 

these stations is thus a direct result of the expected increased occurrence of low flow events, 

while the seasonal near-surface air temperature changes are mostly responsible for an 

increasing median of river water temperatures. 

L634-652: same comment as above, these lines are more for the results section, which 

would make that section more digestible. 

Text moved to section 3.4 line 530 to 548 

 

  

Textual comments 

L93-94: “multi-fidelity modelling” and “from multiple different fidelity levels”, I would avoid 

such repetitions in the same sentence 

Now reads on line 109 to 111 

In this study a multi-fidelity modeling approach using two semi-empirical surface water 

temperature models, air2water and air2stream (Toffolon & Piccolroaz, 2015; Piccolroaz et 

al., 2013), was employed. 

L111-114: this is repetition of what is said above 

Removed 

Caption Table 1: “hydraulic models” or “hydrological models”?  

Corrected 

L161: “Only stations...”, hydrological measuring stations are meant here, I suppose?  



Corrected 

L170-172: “For situations ...”, You lost me in this sentence. Would it be possible to 

reformulate more clearly? 

Section re-written, see above section 2.2 

L374: section title: indicate that the thermal thresholds are for fish.  

2.9 Thermal thresholds for fish 

L421-422: reformulate “at for each station for with ...” 

Now on line 454 to 456 reads 

The hysteresis class could be determined for each station with future and present river 

discharge (47 out of 82 stations). For all stations, climate scenarios, and climate models, the 

index found solutions in hysteresis intervals ranging from 164 to 328 days.  

L667: suggestion to just name this section “5. Conclusions” 

5. Conclusions  

  



We thank the reviewer for constructive comments and provide our answers hereunder.  

RC2 

Råman Vinna and colleagues have used a coupled climate-hydrological-temperature model 

setup with different levels of representation of reality (fidelity) to simulate river temperatures 

in Swiss rivers, including future climate projections. They include extreme temperatures and 

ecological thresholds in their analysis. The topic and scope are rather similar to the Michel et 

al. (2022, cited in text) paper, also published in HESS, but they expand on it by their multi-

model approach and additional analysis of thresholds, extremes, and hysteresis. The paper 

is well-written, clear, and comprehensive, and I did not have major comments, only some 

minor and mostly technical ones that I outline below. 

Minor and technical comments: 

• 24 -> “but also in rivers where…” 

Corrected. 

• 239: -> “inverse stratification” 

Corrected. 

• 261: I cannot find Table C2. I assume you meant B2? 

Yes, it is B2. Corrected. 

• 332: “refiling” or “refilling”? 

Refilling, corrected. 

• Figure 3: Change y-axis to “Water temperature” 

Corrected. 

• 357: -> “straightforward” 

Corrected. 

• 362-373: I like this definition of a severity index 

Thank you, yes, it is neat to be able to compare across temporal scales and between 

scenarios.  

• 421: “at” or “for” 

Corrected. 

• 450: -> “from, for example, …” 



Corrected. 

• The caption of Table 3 mentions yellow marking which does not occur in the table.  

It should be italic. Table 3, B9 and B10 caption has been updated.  

• 525-528: It is unclear from this sentence what vital principle is referred to.. 

Section reworked, on line 581 to 596 it now reads  

4.1 Multi-fidelity modeling approach 

The use of semi-empirical models by definition means that some of the physical processes 

affecting heating is simplified under parameterization and some are directly resolved. The 

models air2stream and air2water resolve the effect of river depth, discharge, thermal signals 

from tributaries, inverse stratification in lakes during winter, and seasonal cycles. Parts of 

the heat balance (e.g. short and longwave radiation) is thus not allowed to change as 

climate change in our study. However indirectly we consider heat budget changes by using 

high quality air temperature and discharge projections as input. Glacier retreat is included 

in the hydrological models providing discharge projections to this study (eg. Muelchi et al., 

2021), however for temperature this effect is only indirectly considered in air2stream and 

air2water through reduced water availability in summer. The effect of high altitude warming 

as snow and ice recede is not included. Therefore as the cooling caused by melt water 

recedes, it is expected that warming in high altitude rivers is larger than projected in this 

study. Yet the lower fidelity water temperature model approach using high-fidelity 

climate/hydrological model outputs as input enable the important principle of multi -model 

ensemble, comparison and analysis that is required for robust climate change impact 

assessments (Duan et al., 2019). 

• 552-556: Are there 15 or 16 Alpine stations? 

This study includes 16 Alpine stations. Note that station 2462 is not shown in Figures 6 and 

7 since Model M4 lacked 30 years of data.   

• 585: -> “Rhône” 

Corrected. 

• 584-586: Could you rewrite this sentence? It is not clear whether lakes or rivers warmed 

faster in the cited reference. 

Paragraph on line 637 to 648 rewritten to: 

In terms of overall warming, the strongest warming on an annual basis emerged for stations 

in the Alpine thermal regime, followed, in order, by stations in the Downstream Lake, 

Regulated, Swiss Plateau, and Spring thermal regimes (Figure 4). The strong warming of 

Alpine regime stations has its origins in the strongest near-surface air temperature warming 

trend in summer that is occurring in southern parts of Switzerland (CH2018, 2018). The strong 



warming in the Downstream Lake thermal regime can be explained by the extended residence 

time of water in lakes compared to rivers in general (allowing longer time for waters to heat 

up) and to a difference in seasonal patterns, aspects that the employed air2water model 

explicitly considers. A previous coupled modeling study by the author showed that future lake 

surface waters (epilimnion) heat faster compared to river waters, with a difference in warming 

trends between Lake Biel and the Aare River of +0.03 °C per decade and between Lake 

Geneva and the Rhône River of +0.11 °C per decade (Råman Vinnå et al., 2018).  

• 625: “brown trout’s” -> “brown trout” 

Corrected. 

• 675-676: 0.37 °C/decade over 11 decades would be a 4 °C increase. Could you double 

check the numbers? Moreover, the Results mention a 3.18 °C increase total and 0.36 

°C/decade, so please standardise these values. 

Corrected. The change is from 2020 to 2099 (8 decades)  corrected in manuscript. Line 707 

to 710 

According to the simulations, for the high emission climate scenario (RCP8.5), average river 

water temperatures across Switzerland will increase by 3.2 °C (0.36 °C per decade from 

2020 to 2099), while under the low emission scenario (RCP2.6) temperatures increase by 

only 0.9 °C. 

• Discussion: One major process for river temperature in the studied systems seems to be 

the role of disappearing glaciers and snow cover. This is also likely an important factor for 

changing hysteresis patterns. The discharge models used in the paper may take this into 

account, but air2water/air2stream do not (e.g. L. 280). It may be valid to assume a 

nonlinear response of river temperature to disappearing snow/ice that may not be 

reflected well in the training data (especially for Alpine streams and their low number of 

stations with long measurement time series). It would be good to add a short paragraph to 

the Discussion on how this may affect the projections in this paper.  

Section 4.1 line 581 to 607 now reads:  

The use of semi-empirical models by definition means that some of the physical processes 

affecting heating is simplified under parameterization and some are directly resolved. The 

models air2stream and air2water resolve the effect of river depth, discharge, thermal signals 

from tributaries, inverse stratification in lakes during winter, and seasonal cycles. Parts of the 

heat balance (e.g. short and longwave radiation) is thus not allowed to change as climate 

change in our study. However indirectly we consider heat budget changes by using high quality 

air temperature and discharge projections as input. Glacier retreat is included in the 

hydrological models providing discharge projections to this study (eg. Muelchi et al., 2021), 

however for temperature this effect is only indirectly considered in air2stream and air2water 

through reduced water availability in summer. The effect of high altitude warming as snow and 

ice recede is not included. Therefore as the cooling caused by melt water recedes, it is 

expected that warming in high altitude rivers is larger than projected in this study. Yet the lower 

fidelity water temperature model approach using high-fidelity climate/hydrological model 



outputs as input enable the important principle of multi-model ensemble, comparison and 

analysis that is required for robust climate change impact assessments (Duan et al., 2019).  

To expand on previous results of river water temperature projections for Switzerland (Michel 

et al., 2022), we employed a multi-fidelity modeling approach able to automate the generation 

of water temperature simulators for the different national river temperature monitoring stations 

of Switzerland, as summarized in Figure 1. Models of varying complexity were built from 

integrating high-fidelity climate and hydrological modeling outputs (i.e., downscaled climate 

(Table 1) and hydrological model outputs (Figure 2a), CH2018 and Hydro-CH2018) with low-

fidelity river temperature models of varying degrees of parametrization i.e., air2water and 

air2stream (Toffolon & Piccolroaz, 2015; Piccolroaz et al., 2013). Statistical learning-based 

coupling of atmospheric and hydrological stations (Table 2) and classification of river stations 

into thermal regimes (Figure 2b & 2c) enabled optimal low-fidelity model selection (Figure 2d) 

and parametrization. 

 

  



We thank the reviewer for constructive comments and provide our answers hereunder.  

RC3 

This paper introduces modelling climate change impacts to river temperatures in Switzerland. 

To do this, the authors conducted a multi fidelity modelling method which uses statistical 

pattern recognition to estimate river water temperatures under climate change and thereby 

close the aforementioned spatial gap by determining, in an automated manner and on a 

country-wide scale, how future river water temperatures are likely going to change.  

 

The authors frequently refer to their method as novel. I suggest to remove all occurrences of 

this claim of novelty. Simply describe the model used. Some would argue that the discipline of 

stream temperature modelling has advanced beyond the use of air temperature and discharge 

alone for predicting river temperature, regardless of whether it is focused on current versus 

future climate. While it may be practical for a nationwide attempt, and in that case also 

‘efficient’, it is not necessarily “novel”. 

The word novel occurred once on line 93, it has been removed from the manuscript. 

 

The reason physically-based models require a lot of data is because they attempt to represent 

mechanisms and therefore attribute causality of rising river temperatures. River temperatures 

are a function of many processes beyond simply river discharge and air temperature, as has 

been discussed in recent literature. The limitation of the “efficient” model approach is that 

many, many physical drivers of river warming are completely ignored. In predictions of stream 

temperature, simplifying the “more complex processes into purely empirical parameters” often 

involves using lumped parameters and lumped heat exchange coefficients which ignore 

aspects of climate change, especially with respect to the shortwave and longwave radiation 

balance, and increases in atmospheric emissivity which is driving the air temperature 

warming. There is not a single mention of any of this. The authors simplify the controls to the 

energy balance as being based on discharge and air temperature, which is not complete, nor 

does it use best-available-science. If the authors make simplifications in processes, and vary 

the number of parameters used across their different simulations in order to get a nation-wide 

dataset for Switzerland, they need to be very clear about this approach and also be upfront 

about the many, many limitations of their results. 

 

Physical drivers are not ignored in this kind of study, they are included indirectly through 

parameterization. One can correctly argue that being included under a parameter constitute 

being frozen in time. Since we use air temperature as input from Ch2018, we capture part of 

the changes over time in the surface heat budget relevant for water temperature. A more 

complete heat budget was included for snow and glacier melt in Hydro-CH2018, which 

provides the discharge to this study. 

Apart from the effect of air temperature on water temperature, the models additionally resolve 

the effect of river discharge, depth, thermal signals from tributaries, inverse stratification in 

lakes during winter, and seasonal cycles. 

The manuscript has been updated in both the introduction, method and discussion sections to 

make it clearer for the reader the limitations and advantages of our approach.  

 

 

 



Line 60 to 107 in section 1 

A common challenge for model-based studies is the question of the optimal model to use. In 

surface hydrological applications, models can broadly be split into two major groups: process-

based and statistical/stochastic models (Benyahya et al., 2007). Process-based models are 

based on physical equations and can resolve many hydrological processes in a physically 

robust manner, from the local to the catchment scale. However, albeit physically more robust, 

process-based models generally require a significant amount of input data and computational 

resources for the simulation of hydrological processes on the catchment scale, therefore 

limiting their applicability for climate change analyses on national scales. Statistical/stochastic 

models, as opposed to process-based models, are data driven, that is, are based on empirical 

relationships between input and output data. While they are physically less robust, their 

advantage lies in their relative simplicity and limited data requirements, sacrificing detail for 

increased repeatability and spatial coverage. However, in order to build on the efficiency of 

statistics whilst preserving a clear physical basis, as a compromise between the two major 

model groups, a sub-group of semi-empirical models, which employs physically meaningful 

equations but simplifies the more complex processes into purely empirical parameters, was 

developed (Piccolroaz et al., 2013). These semi-empirical models are ideally suited for 

hydrological climate change projections, as they provide much more robust projections 

compared to purely statistical approaches but simultaneously allow for a more comprehensive 

analysis than process-based models by enabling multi-model climate change ensemble 

analyses (La Fuente et al., 2022; Meehl et al., 2007). 

The study of climate change includes the investigation of physical processes on global, 

regional and local scales. As scales change so too does the required level of detail needed to 

resolve the different water cycle components that are relevant on the respective scale. An 

ideally suited approach to address this challenge in hydrological modeling is a multi-fidelity 

model framework, which combines multiple computational models of varying complexity in an 

automated selection framework that ensures robust predictions while limiting the computation 

to only the necessary level of detail (Fernández-Godino, 2023). The use of process dependent 

fidelity ensures proper representation of physical processes on regional to local scales while 

keeping computational costs to a minimum. Multi-fidelity modeling is especially useful when 

acquiring high-accuracy data is costly and/or computationally intensive, as is the case for 

climate change impact assessment on the hydrological cycle.  

Given the past and future changes to Swiss river water temperatures and considering both 

the high sensitivity of aquatic species to river water temperatures and the increasing demand 

for river water by agriculture, industry and society as a whole, it is critical to obtain a robust 

spatial and temporal understanding of the temperature increases that are expected for the 

many different rivers and streams of Switzerland. Here, we developed an efficient multi-fidelity 

modeling method guided by statistical pattern recognition to estimate river water temperatures 

under climate change and thereby close the aforementioned spatial gap by determining, in an 

automated manner and on a national scale, how future river water temperatures are likely 

going to change. Compared to previous projections of climate warming in Swiss rivers (Michel 

et al., 2022), the simplified multi-fidelity modeling approach not only enabled to cover the 

national scale (+90%) but also further thermal regimes (here 5, previously 2) and based on 22 

GCM-RCM chains (previously 7). By grouping catchments together via statistical pattern 

recognition, we were able to classify rivers (including spring-fed rivers) into 5 different thermal 

regimes, improving model results by allowing for optimal model selection at each station and 

enabling regime-specific analyses. The effect on warming by changing river discharge was 



investigate through a hysteresis analysis. Additionally, we introduce the extreme event severity 

index as an analytic tool to evaluate the change in thermal extreme amplitude. 

 

Line 261 to 273 in section 2,5 Surface water temperature model setup  

Both models include up to eight parameters (a1 to a8) which are fitted towards measured data. 

Apart from the effect of air temperature on water temperature, the models additionally resolve 

the effect of river depth, discharge, thermal signals from tributaries, inverse stratification in 

lakes during winter, and seasonal cycles. Model complexity, i.e. how many processes are 

directly being resolved by the models or indirectly included through parameter estimation, can 

be varied by removal of one or more of the additional processes listed above, resulting in the 

use of 8, 7, 6, 5, 4 or 3 parameters. Depending on local conditions, model performance can 

be improved by the removal of processes which play a minor or insignificant role for water 

temperature. Where this simplification with removal of parameters was done (Table B2), 

removed processes plays a minor role for the simulation of water temperature as evident from 

decreased model performance while being included. For additional information about 

air2stream and air2water see Appendix A and Piccolroaz et al. (2013) and Toffolon & 

Piccolroaz (2015). 

 

Lines 302 to 318, Section 2.6 Trend correction 

Empirical models generally predict less warming in the future compared to physically based 

models, the primary reason being underrepresentation of the thermal catchment memory, 

including snow and ice (Leach & Moore, 2019). To quantify how good the models air2stream 

and air2water, which both lack deterministic considerations of snow and ice melt, are able to 

recreate past trends, we compared trends from river water temperature measurements and 

corresponding modeled temperature trends between 1990 and 2019. On an annual basis, this 

comparison was possible for 25 out of 82 river stations, consisting of 9 Downstream Lake, 7 

Regulated, 7 Swiss Plateau, 2 Alpine, and 0 Spring thermal regime river stations. Stations 

were selected with a 30 years of continuous data requirement in air and water temperature 

and river discharge. Only statistically significant trends (p < 0.05) were considered.  

Both air2stream and air2water underestimate the annual temperature trend during the 

reference period on average by 0.14 and 0.11 °C per decade, respectively. For air2stream, 

the annual trend bias is smallest for the Swiss Plateau thermal regime (0.09 °C per decade) 

and largest in the Alpine thermal regime (0.17 °C per decade). Seasonally, the trend bias is 

largest from June to August and September to November, whereas, especially for air2water, 

the bias is small from December to February and March to May.  

 

Line 580 to 596 

4 Discussion 

4.1 Multi-fidelity modeling approach 

The use of semi-empirical models by definition means that some of the physical processes 

affecting heating is simplified under parameterization and some are directly resolved. The 

models air2stream and air2water resolve the effect of river depth, discharge, thermal signals 

from tributaries, inverse stratification in lakes during winter, and seasonal cycles. Parts of the 

heat balance (e.g. short and longwave radiation) is thus not allowed to change as climate 



change in our study. However indirectly we consider heat budget changes by using high quality 

air temperature and discharge projections as input. Glacier retreat is included in the 

hydrological models providing discharge projections to this study (eg. Muelchi et al., 2021), 

however for temperature this effect is only indirectly considered in air2stream and air2water 

through reduced water availability in summer. The effect of high altitude warming as snow and 

ice recede is not included. Therefore as the cooling caused by melt water recedes, it is 

expected that warming in high altitude rivers is larger than projected in this study. Yet the lower 

fidelity water temperature model approach using high-fidelity climate/hydrological model 

outputs as input enable the important principle of multi-model ensemble, comparison and 

analysis that is required for robust climate change impact assessments (Duan et al., 2019).  

 

 

 

Lines 122-125: It is unclear how many years of actual data were used. This must be clarified. 

In one sentence, they say at least 1 year, in another sentence they say “data should preferably 

cover 30 years”. Authors need to specify which simulations used which timespan of datasets, 

as this is a fundamental influence on the accuracy of the predictions you are reporting in your 

Results section. 

 

The duration of datasets used for calibration and validation are given in Table B2 and are 

described in section 2.5. The following section has been moved from section 2.5. to 2.1.  

“Temporally overlapping, daily averaged near-surface air temperature and river discharge 

measurements spanning the 30-year reference period of 1990 to 2020 were used as 

calibration data, while for validation the data from 1980 to 1990 were used (Table B2 in  

Appendix). By choosing to use the most recent data for calibration rather than validation 

ensures that recent local climate conditions are carried into future projections (Shen et al., 

2022). For the few cases where no forcing data for calibration did exist between 1990 to 2020 

(Table B2), validation was deprioritized and calibration performed for the 1980-1990 data.” 

 

 

Lines 151-153: The authors state, “For monitoring stations at which historic river discharge 

data or future river discharge projections weren't available, only future near-surface air 

temperature projections were used to simulate water temperature.” This is a major limitation. 

For how many stations did the authors predict river temperature only from air temperature 

alone? And how do you correct for the fact that come used discharge and some didn’t use 

discharge, but you are presenting the results of those two different simulation approaches as 

being equal in your Results section? 

Lines 154-156: Many studies have demonstrated that the resolution of the climate model data 

will influence your results. Here the authors state, “Where climate projections were available 

at multiple different spatial resolutions (i.e. 0.11° and 0.44°), only one model, as indicated in 

Table 1, was included in the analysis, following the approach of Muelchi et al., 2021.” 

These two items above both will affect the model results, potentially significantly. Sometimes 

the authors use air temperature and discharge to predict river temperature. Sometimes the 

authors use only air temperature to predict river temperature (many authors have shown this 

is not sufficient). Sometimes the authors used 0.11° spatial resolution and sometimes they 

used 0.44° resolution. How are the results defensible and comparable?  



We agree with the reviewer that discharge is an important parameter for modeling water 

temperature and should be used wherever applicable. Here at 47 out of 82 stations we could 

use river discharge. 35 stations were modeled without discharge (Table B1).  

Our study combines a wide variety of datasets (measured and modelled) with varying degree 

of data availability and accuracy. In the multi -fidelity modeling approach, we do not rank the 

inputs from climate models or measurements. Nor do we select “representative” model runs 

or climate scenarios. 

Instead, the simplicity of this method enables us to use a wide range of climate models, flow 

models and water temperature models. Through the use of ensembles and combined analysis 

inconsistencies and biases included in all data and models are smooth out. This follows 

recommendations from recent climate model downscaling in Switzerland: “To account for the 

inherent climate model and greenhouse gas scenario uncertainty, we also advise users to 

employ a maximum number of CH2018 simulations (CH2018 project team).” 

A trend correction was preformed to correct for seen discrepancies between our models and 

measurements during the reference period. The correction needed was smallest for the 

air2water model (18 stations) compared to air2stream (17 stations). The air2water model 

which works completely without discharge outperformed air2stream downstream of lakes, this 

indicates that despite lacking the input of discharge we could model the impact of climate 

change satisfactionally without river discharge see section 2.6 above.   

 

 

Lines 165-172: Again, the deviation across methods raise concerns for presenting comparable 

results. This study employs large datasets which require some level of computational 

proficiency, but it appears they did not employ spatial interpolation methods of weather data 

across elevation or across distance. It is very common (and not difficult) to employ spatial 

interpolation methods of time-series weather data to a particular river location, in order to 

produce more accurate results at a specific distance along a river. The authors state: 

“Meteorological stations were subsequently paired with hydrological stations such that (a) the 

horizontal distance between river and meteorological stations was minimal (criterion "DIS"), 

(b) the meteorological station was representative of the conditions in the upstream drainage 

area (criterion "DRA"), and (c) the elevation difference didn't exceed a reasonable threshold 

of 200 m (criterion "ELE"). Where possible, all three criteria were adhered to. For situations 

where the closest meteorological station was either not fulfilling DRA or ELE, the DIS criterion 

was evaluated only for stations which fulfilled both DRA and ELE.” While this explanation is, 

in theory, reproducible, I am not sure that adjusting the criteria on a station-by-station basis is 

defensible. Authors need to address this. 

 

Both the air2stream and air2water models use representative atmospheric forcing for a 

drainage area above a certain point to model water temperature. Simulations are thus 

conducted towards all relevant heat transfers taking place upstream of this point as captured 

by water temperature measurements obtained at the point. Thus, for these models the exact 

location of atmospheric forcing in the drainage area is of minor importance. It is far more 

important to have representative meteorological conditions, hence the selection criteria’s 

above. Anny remaining inconsistency between the actual dataset used as input and how local 

atmospheric conditions affect water temperature in the drainage area, are compensated for in 

the calibration of the two models with up to 8 parameters. By preforming spatial interpolation 

of meteorological data and climate model results unknown biases are created, especially in 



settings with pronounced relief (the Alps), bias which increase with the distance from each 

station. 

In Ch2018, regional climate models were downscaled with quantile mapping towards 

measurements at local stations. Naturally, the quality of this downscaling improved towards 

the meteorological stations with minimal climate model bias right next to each station. Thus, 

by selecting to use the downscaled climate model data delivered at the location of the 

meteorological stations, climate model bias was minimized.  

For processes such as stream discharge, spatial and temporal distribution of precipitation and 

snow/glacier melt is more important compared to heat budget processes for water temperature 

modeling. Spatial dependency was considered in Hydro-Ch2018, those discharge projections 

we use here.  

 

 

Lines 322-324: What do the authors mean by “shape-preserving interpolation” across multiple 

days without data, and where is this interpolation method presented in this paper? Authors 

state: “Before adjusting the water temperature model output from 1990 to 2099, Bcs was 

combined into a continuous dataset by filling in the 3- to 5-day gap in between each season 

with shape-preserving interpolation.” 

Now reads on lines 348to 352: 

„Before adjusting the water temperature model output from 1990 to 2099, the seasonal Bcs 

was combined into a continuous dataset Bc. To avoid a sharp shift in Bc between each season, 

a 3- to 5-day gap in between each season was smoothed with shape-preserving interpolation 

(Piecewise cubic Hermite interpolation, PCHIP; MATLAB© R2022a).“ 

  

Line 439: “Considering only the far future”  what do the authors mean by “far future”. Please 

clarify. 

Far-future period (2070 to 2099), is defined in the manuscript. 

  

The authors’ most significant result is summarized by “Climate change impact was 

heterogeneous between stations, yet common patterns were found within thermal regimes”. It 

is concerning to present results when each result was achieved through a subtle deviation 

from the methods, the spatial resolution of inputs, the handling of missing days of data, and 

even using different model inputs. In some simulations the only model input is air temperature. 

How can results and hysteresis loops be viewed as comparable across simulations by the 

reader, when the methods employed to get there were modified, changed, required deviation 

of some methods, used a different number of parameters in ‘air2water’/’air2stream’ (i.e. Line 

695 “adapting their parametrization complexity to the required level”), or were slightly different 

methods across simulations? 

 

The reviewer is correct that the methods differed for each station. However, this was an 

intended and needed but not a random process. The process, which is known as multi-fidelity 

modelling, selects for each station the best possible model according to the available data (in 

this context meaning the model with optimal model complexity as warranted by the data). It 

would of course be desirable to have an identical data basis for all stations, but this is the real -

world, and in the real-world, this is absolutely never the case. Hence, in order to project river 

water temperatures for real-world measurement stations, one is left with the choice to either 

use the lowest complexity model for all stations, as warranted by the station with the poorest 

data basis for projection, which would lead to comparable but underwhelming projections, or 



one can choose the optimal model complexity as warranted by the data availability of each 

individual station, producing, for all stations, projections with the highest fidelity. We chose, in 

agreement with the multi-fidelity modelling approach and philosophy, to compare the 

projections of all stations based on their highest fidelity model and data basis. This is the most 

appropriate approach to compare and judge projections for real -world stations. For more 

precise viewpoints we referee to our previous answers in this review.  

 

 

 


