Editor decision: Reconsider after major revisions (further review by editor and referees)
by Christa Kelleher

Public justification (visible to the public if the article is accepted and published):
Dearauthors,

The manuscript has now received three reviews, all containing helpful feedback. Please
incorporate their feedback and submit a revised draft for further consideration.

In particular, multiple reviewers mentioned confusion from the data and methods section, and |
encourage the authors to pay careful attention to revisions in this section to improve readability.

We agree and we have extensively reworked the method section to improve readability, see
answers to RC1 and RC3 for more details.

In addition, | do think there is some confusion about the multi-fidelity modeling approach and
why this was used for this particular study. While the authors list the computational benefits, I'd
encourage them to cite some of the foundational work on multi-fidelity approaches and explain
the benefits of such an approach in the methods section.

The now reworked section 2 starts with this paragraph andincludes several additionalreferences:

“In climate change studies ofthe hydrosphere, unknown biases presenta fundamental challenge.
These biases can arise from limitations in how well models capture future physical processes, as
wellas from assumptions embedded in climate scenarios. To limitthe influence of unknown bias,
a common method is the multi-fidelity modeling approach which combines multiple models with
different processes of fidelity. Using multiple models (as well as climate scenarios), while
accepting that process-specific model performance differs from modelto model, minimizes the
risk of large bias towards the real future through a widening of the range of projections being
made. Advantages for hydrological studies include the improvement of robustness of low-flow
forecasts and accountability of structural uncertainty (Nicolle etal., 2020). As such, the method
has been used to limit the uncertainty caused by hydrological models on runoff and evaporation
climate projections using large ensembles of global hydrological models while investigating
regional and global water scarcity in the future (Schewe et al., 2014). Even though varying model
fidelity with varying complexity and computational constraints is an advantage to hydrological
modeling, care is needed when adding processes depending on the relevance of the process in
the local area under investigation (Guse et al., 2021)."

| would also encourage the authors to compare their findings in the discussion more explicitly
with other published articles of past and future stream temperature change in Switzerland. While
these previous articles are referenced in the discussion, it would be helpful to place the
magnitudes of change in the context of other magnitudes reported by other studies (even if the
metrics differ), to verify that the findings of this study are generally in line with those of other
studies.

The following has been added to the discussion (section4.3)and also includes several additional
references:



"As expected, the climate scenario turned out to be the most important factor for river water
temperature increase. RCP8.5 being the scenario with the largest warming rate resulted in an
average river water temperature increase of +3.2 °C (+0.36 °C per decade from 1990-2020 to
2070-2099)comparedto +0.49 °C per decade warmer air temperatures. This is in agreement with
previous findings for Swiss rivers, which projected a water temperature increase of up to +3.5 °C
from 1990-2000 to 2080-2090 or +0.38°C per decade (Michel et al., 2022) compared to a
measured water temperature increase of +0.33 °C per decade from 1979 to 2018 (Michel et al.,
2020) as well as for Swiss lake surface water temperatures, which were projected to increase by
+3.3 °C from 1982-2010 to 2071-2099 (Raman Vinna et al., 2021). In addition to the strong
warming of water temperatures until the end of the century, the projections made herein also
suggestthatthe seasonal patterns inthe warming of near surface air temperatures in Switzerland
are going to persistin river water temperatures, with stronger warming in summer compared to
winter."

I look forward to receiving a copy of the revised manuscript.



We thank the reviewer for constructive comments and provide our answers hereunder.

RC1
RC1: 'Comment on egusphere-2024-3957', Anonymous Referee #1, 18 Mar 2025 reply

This is my review of "Multi-fidelity model assessment of climate change impacts on river
water temperatures, thermal extremes and potential effects on cold water fish in Switzerland”
by Love Raman Vinna et al., submitted to Hydrology and Earth System Sciences. In this
paper, the authors combine an ensemble of climate models, hydrological models and two
water temperature models with varying parameter settings per station to derive water
temperature projections in Swiss rivers. In addition, they determined future changes in
projected extremes, hysteresis effects and impacts on brown trout. | found the study
interesting, with sound methodology. However, the manuscript would benefit from a clearer
presentation to fully convey its strengths. | therefore suggest minor revisions, and | provide
comments below to help improve these aspects.

Major comments:

While comprehensive and detailed, the data and methods section is somewhat difficult to
follow due to its length and repetition. | recommend a thorough revision to improve its
structure and conciseness, eliminating redundant wording. This will enhance readability and
streamline the section. Below, | provide specific examples and suggestions to support this
refinement.

Section 2 has been adjusted to make it clearer for the reader, see below for specific
changes.

The structure has been improved by separating the entire text into more thematically related
paragraphs.

The “Material & Methods”-section now is written more concise resulting in a text reduction of
3725 to 1529 characters (with spacings), following the suggestion of the reviewer one
paragraph has been moved to the "Introduction”-section.

The “Data”-section now is written more concise by omitting redundant wording on used
circulation and hydrological models.

The presentation of results could be refined to enhance clarity and readability. Figures 4, 6,
and 7, along with Table 3, contain a wealth of information, but an additional or alternative
figure presenting the data in a more aggregated way—such as by thermal regime—could
help highlight key differences more effectively while still accounting for uncertainty. While the
station-based results provide valuable detail, incorporating more synthesized figures or
tables could make the main findings more accessible. Additionally, summarizing key insights
more narratively, rather than listing numbers extensively, may improve the flow of the results
section.

We prepared a figure that summarizes the entire range of individual evaluations for each
regime. We do not consider this to be the right approach and would prefer to omit this type of
presentation of the results.



Specific comments:

Title: the “cold water fish” might suggest a more elaborate analysis on general fish species
when only brown trout is considered in the analysis. Suggestion to rephrase/remove.

Title changed to: Multi-fidelity model assessment of climate change impacts on river water
temperatures, thermal extremes and potential effects on brown trout in Switzerland

L 16-18, abstract: Provide more detailed “Alpine thermal regime” and “Downstream lake
regime”.

Results have been added to the Abstract: Line 13 to 19 in revised manuscript now reads>

Results show that, until the end of the 215t century, average river water temperatures in
Switzerland will likely increase by 3.1+0.7 °C (or 0.36+0.1 °C per decade) under RCP8.5, while
under RCP2.6 the temperature increase may remain at 0.9+0.3 °C (0.12+0.1 °C per decade).
Under RCP8.5, temperatures of rivers classified as being in the Alpine thermal regime will
increase the most, that is, by 3.5£0.5 °C, followed by rivers of the Downstream Lake regime,
which will increase 3.4+£0.5 °C. Under RCP2.6 temperatures in the Alpine and Downstream lake
regimes change most with +1.15 and +0.99+0.5 °C.

The introduction could benefit from a better gap description, and background building up to
this gap description, for example highlighting the gaps of current water temperature
projections for Switzerland available in literature. Also, since part of the novelty of the study
lies in the modelling approach employed, this gap can also be made more apparent.

Added to introduction line 99: Compared to previous projections of climate warming in Swiss
rivers (Michel et al., 2022), the simplified multi-fidelity modelling approach enables a wider
investigation area (+90%) including 5 thermal regimes (previous 2) and 22 GCM-RCM
chains (previously 7).

Figure 1: Good overview figure, although it would benefit from a distinction between data
and data sources and operations on that data in the flow chart. This is an open suggestion

Additional detail has been added to the figure in the revised manuscript.

L73-92: this is a very general explanation about the choice of models to use, | would suggest
to move it to the intro

We agree and have moved this to section 1 lines 60 to 79.

L126-138: can you give a little more extensive description of the CH2018 climate data? E.g.
introduce that they are derived from the EURO-CORDEX regional climate modelling
ensemble, with the number of RCMs driven by GCMs and future scenarios, as well as the
horizontal resolution. These names return then in Table 1, allowing the reader to understand
where they come from.

Added to line 145: Here we use CH2018 climate simulations based on the EURO-CORDEX
regional climate modelling ensemble, for which near-surface air temperatures have been
downscaled to local conditions with quantile mapping (CH2018, 2018). CH2018 comprises



simulations of 9 GCM coupled to 8 RCM runs for a total of 22 GCM-RCM model chains with
0.11° and 0.44° resolution under 3 climate change scenarios (RCP2.6, 4.5, and 8.5).

L130- ...It would help to also introduce the Hydro-CH2018 in a little bit more detail
afterwards, with a subclause per hydrological model on its characteristics (semi-distributed,
empirical etc). A suggestion is to structure the description of the different data sources with
different subtitles

Section 2.1 has been updated to give more information of CH2018 and Hydro-CH2018 in
line with additional reviewer comments hereunder. Line 145 to 164 now reads.

Here we use CH2018 climate simulations based on the EURO-CORDEX regional climate
modeling ensemble. In CH2018 near-surface air temperatures was downscaled by applying a
statistical bias-correction and downscaling method (Quantile Mapping, a purely statistical and
data-driven method) to the original output of all EURO-CORDEX climate model simulations,
as observational reference station observations and observation-based gridded analyses
were used (CH2018, 2018, Chapter 5). These data are available as both gridded and local
station products (CH2018 Project Team, 2018). Following CH2018, the Hydro-CH2018 project
analyzed the effects of climate change on Swiss water bodies (FOEN, 2021). The gridded
climate product from CH2018 was used to construct projections of future river discharge for 4
hydrological models used in Hydro-CH2018. The location where output from these 4 models
was used in this study is shown in Figure 2a including: (M1) PREVAH-WSL a conceptual
process-based model (Brunner, et al., 2019a; Brunner, et al., 2019b) and (M) PREVAH-UnIiBE
(Muelchi et al., 2021), (M3) HBV Light-UniZH a bucket-type hydrological model (Freudiger et
al., 2021), and (M4) AlpineFlow-EPFL the snowmelt and runoff model Alpine3D coupled to the
semi-distributed hydrological model StreamFlow (Michel et al., 2022). The Hydro-CH2018
project produced projections for 61 out of the 82 FOEN river monitoring stations under 22
GCM-RCM model chains (9 GCM coupled to 8 RCM runs) with 0.11° and 0.44° resolution and
3 climate change scenarios (RCP2.6, 4.5, and 8.5). The available projections, the employed
circulation and hydrological models, and the considered climate change scenarios for all the
different stations that were considered in this study are summarized in Table 1.

L151: | might have missed it, but how many monitoring stations are eventually used in the
study? If these are the stations on Fig. 1 panel a, provide a reference to that fig (also for its
other panels).

We used in total 82 stations (Figure 2 a and b). This is described in section 2, which has
been revised for clarity. Line 113 to 116 now reads.

All available model configurations (i.e., 3,4,5,6,7 and 8 different parameter combinations and
implementations) were evaluated for their applicability to different thermal river regimes
(Appendix A) and allowed for developing optimal site-specific models for all the 82 thermal
river monitoring stations of the Swiss Federal Office of the Environment (FOEN).

L167: DIS criterion: what is the threshold used to assume horizontal distance is “minimal’? &
L168: how is the representativeness of the meteorological stations to upstream drainage
area assessed?

Line 191 to 201 in Section 2.2 now reads:



Meteorological stations were subsequently paired with hydrological stations such that (a) the
horizontal distance between river and meteorological stations was as small as possible i.e.
nearest to nearest (criterion DIS), (b) the meteorological station was representative for the
conditions in the upstream drainage area composing a meteorological station being located in
the same valley and upstream (criterion DRA), and (c) the elevation difference did not exceed
a reasonable threshold of 200 m (criterion ELE). Where possible, all three criteria were met,
that is the closest station passed both ELE and DRA and are noted as DIS in Table 2. If the
closest station were deemed not to be representative (e.g. in a neighboring valley or
downstream) the DIS criteria where failed, such a station are noted as DRA in Table 2. If a
station failed both DIS and DRA but passed ELE it is noted as ELE in Table 2. Station details
and pairings are summarized in Table 2.

Table 2: | would suggest to move this table to the appendix, as it is very extensive and does
not add much to the results.

Table 2 has been moved to appendix

L179: “were already statistically downscaled”, please add details on how this is done. This
could be part of the paragraph where the CH2018 scenarios are explained in more detail.
Also, how big is the bias, and how much would it impact the results?

See adjusted text above regarding the paragraph where the CH2018 scenarios are explained.
The bias for air temperature was small from station to station and while for the projections of
future flow it was substantial compared to measurements in the reference period. So large in
fact that we needed to the bias correction in section 2.3 in order to apply air2stram and
air2water.

L222-228, suggestion to move this paragraph to after the model description.
Paragraph moved to end of section 2.5.Line 295 to 301.

L248-250: The fact that for each river monitoring station, the best water temperature model
is employed is a key strength of the study, and should, to my opinion, be more pronounced
throughout the study (eg intro describing the gap on this, abstract and earlier in the methods
where the multi-fidelity is mentioned first).

Added to section 1 line 102 to 107

By grouping catchments together via statistical pattern recognition, we were able to classify
rivers (including spring-fed rivers) into 5 different thermal regimes, improving model results by
allowing for optimal model selection at each station and enabling regime-specific analyses.
The effect on warming by changing river discharge was investigate through a hysteresis
analysis. Additionally, we introduce the extreme event severity index as an analytic tool to
evaluate the change in thermal extreme amplitude.

L287-320: there is some repetition in this section, and parts are more difficult to follow,
please consider condensing it retaining the same information

We have rewritten this part. Line 313 to 352 now reads



Both air2stream and air2water underestimate the annual temperature trend during the
reference period on average by 0.14 and 0.11 °C per decade, respectively. For air2stream,
the annual trend bias is smallest for the Swiss Plateau thermal regime (0.09 °C per decade)
and largest in the Alpine thermal regime (0.17 °C per decade). Seasonally, the trend bias is
largest from June to August and September to November, whereas, especially for air2water,
the bias is small from December to February and March to May.

The divergence of both air2stream and air2water models from observed trends warrant a post
simulation bias correction of simulated trends. The bias is river station dependent, making an
individual correction at each station preferable (Tables B3 to B6 in Appendix B). However, only
about 30% of the river stations investigated have long enough data sets (30 years) for
individual correction. Therefore, we tied the seasonal trend bias correction to the thermal
regime, thereby keeping the correction linked to local conditions. Note that no river station of
the Spring thermal regime had enough data to allow for the trend bias correction. Spring river
stations were therefore not trend bias corrected. As the trend bias correction is acting on
climate simulations of river temperature stretching from 1990 to 2099, the bias correction had
to be scaled towards how air temperature trends shift in the climate models. The scaling was
designed such that it did not affect the bias correction during the reference period (1990 to
2019), while adjusting the correction towards how the air temperature trend (TTair) changes
in the near- (2030 to 2059) and far-future (2070 to 2099). For this purpose, an adjustment
factor Fs (-) was constructed from the mean climate models air temperature trends for each
climate scenario. Fs is thus specific for each climate scenario, river station and season.

TTair; ¢
Fsis = mm (2)
ref,s

Here TTair;s is the mean of the air temperature trends from the climate models, which is
changing for each season and with the reference, near- and far-future periods, TTair.s is the
mean of the seasonal air temperature trend during the reference period, i is the number of
days, and s denotes the season. The temporal gaps between 1990 to 2019, 2030 to 2059 and
2070 to 2099, during which the air temperature trends were calculated, were linearly filled with
shape-preserving piecewise cubic interpolation resulting in a continuous factor Fs;s from 1990
to 2099. Fs;s varied from -2 to +3 depending on the season and climate scenario and was
applied for simulations using discharge input from models M1 to Ms, while for simulations using
Ms, Fs;s was set to 1 from 1990 to 2099 due to too short simulation time frames in M4 (only
one decade). With Fs;s, the seasonal and thermal regime dependent water temperature bias
Tb; s (regime dependent mean from Table C3 to C6 in Appendix C) is turned into the thermal
regime and climate scenario dependent seasonal bias correction Bcs (°C day™)

i=n
Bc, = Z Fsis *Thys 3)
i=1

where n is the number of days since 1t of January 1990. Before adjusting the water
temperature model output from 1990 to 2099, the seasonal Bcs was combined into a
continuous dataset Bc. To avoid a sharp shift in Bc between each season, a 3- to 5-day gap
in between each season was smoothed with shape-preserving interpolation (Piecewise cubic
Hermite interpolation, PCHIP; Matlab R2022a).



L332: could you give a more explicit explanation of a hysteresis example here, relevant for
Swiss rivers?

Yes, paragraph has been updated on line 357 to 365

Hysteresis, wherein a dependent variable (water temperature or suspended sediments) can
exhibit multiple values in response to a single value from the independent variable (discharge),
is a common phenomenon in hydrology (Gharari & Razavi, 2018). Sediment transport
hysteresis can be caused in rivers by emptying and refilling of sediment layers on the river
bed (Tananaev, 2012) and through erosion on land as shown in the Alps with the contributing
location (river bed or eroded area) determining the hysteresis loop shape and rotation direction
(Misset et al., 2019). Stream temperature can also show hysteresis effects, example being a
lag in the response to air temperature caused by ice-melt or reservoir release (Van Vliet et al.,
2011; Webb & Nobilis, 1994).

L357-361: this is a good example of lines that could be shortened.
Now on line 390 to 393

Extreme conditions depend on what is considered to be extreme in relation to normal
conditions (Stephenson, 2008). Here, water temperatures are considered to be extremely high
if they exceed the 90" percentile during the 30-year reference, near- and far-future periods
(IPCC, 2014).

L368-372: if an extreme is defined by the deviation of the 90th percentile compared to the
median of a certain 30 year period, why does this period need to be detrended? i.e., there is
no certain time (beginning or end of period) where the analysis is carried out? Oram |
missing something?

Within a 30-year period (1990 to 2019, 2030 to 2059, 2070 to 2099) small trends from the
underlying climate may exist. If such a trend is observable and positive, it means that at the
end of the 30-year period it will be easier for a temperature event to be above the 90"
percentile of the 30-year period compared to during the beginning of the period. These high
temperature events could potentially incorrectly be classified as an extreme. By detrending
within these 30 years, each extreme candidate will be considered irrespectively of whether it
is in the beginning or at the end of the 30 years period.

L396-400: If this info would be presented in a small table, it would be easier to grasp Section
3.2 on hysteresis analysis. For a non-expert in hysteresis, | found the results difficult to
interpret. To my opinion, it would be beneficial to provide some guiding sentences on how
these results could be interpreted.

Sections 3.2 have been reworked to make it easier for the reader. Line 454 to 486

The hysteresis class could be determined for each station with future and present river
discharge (47 out of 82 stations). For all stations, climate scenarios, and climate models, the
index found solutions in hysteresis intervals ranging from 164 to 328 days.



During the reference period the dominant hysteresis class was IV (45.6%) followed by Il
(25.0%), -l (14.7%), -1l (11.8%) and | (2.9%) while no stations belonged to class Il. For the
reference period the classes remained independent in relation to the climate scenario
(RCP8.5, 4.5, 2.6) or hydrological model (M1, M2, M3) used, while in the near- and far-future
differences startto show. For RCP8.5 in the far-future period the dominant class was -1 (48.5%)
followed by class IV (33.8%), Il (13.2%) and -l (4.4%).

For the RCP8.5 scenario classes are shown for the reference, near- and far-future periods in
Table 3 (hysteresis classes for RCP4.5 are shown in Table B9, and for RCP2.6 in Table B10,
both in Appendix B). Under RCP8.5, the number of stations which changed hysteresis classes
between the reference and the near-future was 23%, increasing to 51% until the far-future.
Correspondingly, under RCP4.5, 23% had changed hysteresis classes when reaching the
near-future, while 38% of the stations changed classes until the far-future. Under RCP2.6,
28% of stations had changed classes until the near-future, but once reaching the far-future,
some stations changed back again and the fraction of stations that were in a different
hysteresis class compared to the reference period was reduced to 21%.

Considering only the far-future period (2070 to 2099), stations belonging to the Swiss Plateau
thermal regime showed the largest change in hysteresis loop classes, with 58% changing
under RCP8.5, 42% under RCP4.5 and 12% under RCP2.6. Considering again only the far-
future, stations belonging to the Regulated thermal regime exhibited hysteresis loop class
changes of 50% under RCP8.5, 33% under RCP4.5 and 50% under RCP2.6. Least prone to
hysteresis class changes in the far-future were stations of the Alpine thermal regime (38%
under RCP8.5 and RCP4.5, 23% under RCP2.6). Out of the 20 Downstream Lake thermal
regime stations only 2 stations were investigated with discharge (i.e. model with air2stream
instead of air2water). From these 2 stations, 1 changed hysteresis class with RCP8.5 by the
far-future, 1 with RCP2.6 but none with RCP4.5. As can be seen from 4 representative stations
for the Swiss Plateau, Regulated, Alpine, and Downstream Lake illustrated in Figure 5, a
change in hysteresis class is usually associated with a counterclockwise rotation and
stretching of the loop from, for example from a lower to a higher class (lll to IV). Such a rotation
and stretching appears as a result of increased warming in summer combined with a decrease
in summer discharge, while warming in winter is smaller than in summer and discharge is
increasing.

Section 3.3 and figure 6. It should be more clear from the start of the paragraph that the
“extreme event severity index” is used, so the values do not represent absolute extremes,
but deviations from the “normal” in the respective period. L477-479 indicate this, but it should
be more up front in the paragraph and figure to avoid confusion for the reader.

Section 3.3 has been updated following the reviewer's comment. Line 495 to 523

The analysis is focused on temperature extremes in the summer months (June to August),
during which the severity of extremes varies in between climate scenarios and is different on
individual station basis and on a thermal regime basis (Figure 6). Note that the use of extreme
event severity as an index should be viewed as the minimum temperature increase of extreme
events in the future while it denotes the increase of the 90" percentile. From the reference
(1990 to 2019) to the far-future (2070 to 2099) period the extreme event severity for scenario
RCP2.6 increased on average by +0.20 °C (Figure 6a), by +0.38 °C for RCP4.5 (Figure 6 b)
and by +0.61 °C for RCP8.5 (Figure 6 c).



Looking at extreme events at the level of thermal regimes, during the reference period (1990
to 2019), the most sever extreme temperatures occurred at stations in the Swiss Plateau and
Downstream Lake thermal regimes. Swiss Plateau thermal regime (mean extreme event
severity +2.8 °C) Downstream Lake (+2.2 °C), Regulated (+1.3 °C), Alpine (+1.1 °C) and
Spring thermal regimes (+0.12 °C).

For all climate scenarios and all thermal regimes, the severity of extreme events increased
throughout the 215t century. For the far-future (2070 to 2099), under all climate scenarios the
Swiss Plateau and the Downstream Lake thermal regime stations remain as the stations with
the severest extreme events, while the increase in extreme event severity increases the most
forthe Regulated and the Swiss Plateau thermal regimes. As the Swiss Plateau and Regulated
thermal regime stations are mostly located in the Swiss low land in the Northwestern part of
Switzerland (see Figure 2b), they are the ones that are expected to experience the most
severe low flow conditions, especially in summer months under the RCP8.5 scenario, with a
discharge reduction ranging from 5 to 60 % (FOEN, 2021; Brunner, et al., 2019; Brunner, et
al., 2019; CH2018, 2018). The largest increase from the reference to the far-future period was
found at stations for the Regulated thermal regime (mean extreme event severity increase
RCP2.6: +0.28 °C, RCP4.5: +0.54 °C, RCP8.5: +0.93 °C) followed by the Swiss Plateau
(RCP2.6: +0.26 °C, RCP4.5: +0.48 °C, RCP8.5: +0.78 °C), Alpine (RCP2.6: +0.23 °C,
RCP4.5: +0.45 °C, RCP8.5: +0.68 °C), Downstream Lake (RCP2.6: +0.23 °C, RCP4.5: +0.40
°C, RCP8.5: +0.61 °C) and Spring thermal regimes (RCP2.6: +0.01 °C, RCP4.5: +0.01 °C,
RCP8.5: +0.03 °C).

L515-525: these are very general sentences which fit better in an introduction section than in
a conclusion

Sentences has been moved to the introduction. Line 80 to 90

The study of climate change includes the investigation of physical processes on global,
regional and local scales. As scales change so too does the required level of detail needed to
resolve the different water cycle components that are relevant on the respective scale. An
ideally suited approach to address this challenge in hydrological modeling is a multi-fidelity
model framework, which combines multiple computational models of varying complexity in an
automated selection framework that ensures robust predictions while limiting the computation
to only the necessary level of detail (Fernandez-Godino, 2023). The use of process dependent
fidelity ensures proper representation of physical processes on regional to local scales while
keeping computational costs to a minimum. Multi-fidelity modeling is especially useful when
acquiring high-accuracy data is costly and/or computationally intensive, as is the case for
climate change impact assessment on the hydrological cycle.

L525: why are the water temperature models of “lower fidelity”?

Due to the simplified level of detail. The water temperature models used here are semi-
empirical, meaning detailed physical representation has been simplified thus the low fidelity.
The inclusion of empirical climate models brings a high-fidelity element to our study.
Importantly, the use of low fidelity water temperature models enables us to use the full set of
climate models, and not a selection of representative models required while using high fidelity
water temperature models (e.g. Michel et al. 2022), in our nationwide study.



L587-593: why is it important to study these hysteresis effects?

A change in hysteresis as described here with elongated loops points to an added warming
effect caused by a decrease in the amount of water being heated, i.e. a change in physical
function as less water is more easily heated.

L605-614: | would move these lines to the results section, and provide more explanations on
the differences between thermal regimes here in the discussion.

Text worked into section 3.3. see above. Section 4.4 on line 657 to 670now reads

The here proposed extreme event severity index together with a removal of the climatic trend
during each period, allowed us to investigate the change in the baseline of extreme
temperature under each thermal regime considered here. The index is independent of past
extreme conditions and relate extremes to the time period being investigated. Like for the
water temperature warming rates and trends, the severity of temperature extremes was
impacted the most by the choice of the climate scenario, similarly so for thermal regimes as a
whole and for individual stations. The largest increase of river temperature extremes occurred
under the RCP8.5 scenario, followed by the RCP4.5 scenario. Noteworthy is that under the
RCP2.6 scenario, extreme event frequency and severity stayed more or less constant
throughout the 21t century. As the discharge projections have been directly considered in the
employed multi-fidelity modeling approach, the strong increase in extreme event severity for
these stations is thus a direct result of the expected increased occurrence of low flow events,
while the seasonal near-surface air temperature changes are mostly responsible for an
increasing median of river water temperatures.

L634-652: same comment as above, these lines are more for the results section, which
would make that section more digestible.

Text moved to section 3.4 line 530 to 548

Textual comments

L93-94: “multi-fidelity modelling” and “from multiple different fidelity levels”, | would avoid
such repetitions in the same sentence

Now reads on line 109 to 111

In this study a multi-fidelity modeling approach using two semi-empirical surface water
temperature models, air2water and air2stream (Toffolon & Piccolroaz, 2015; Piccolroaz et
al., 2013), was employed.

L111-114: this is repetition of what is said above

Removed

Caption Table 1: “hydraulic models” or “hydrological models”™?
Corrected

L161: “Only stations...”, hydrological measuring stations are meant here, | suppose?



Corrected

L170-172: “For situations ...”, You lost me in this sentence. Would it be possible to
reformulate more clearly?

Section re-written, see above section 2.2

L374: section title: indicate that the thermal thresholds are for fish.
2.9 Thermal thresholds for fish

L421-422: reformulate “at for each station for with ...”

Now on line 454 to 456 reads

The hysteresis class could be determined for each station with future and present river
discharge (47 out of 82 stations). For all stations, climate scenarios, and climate models, the
index found solutions in hysteresis intervals ranging from 164 to 328 days.

L667: suggestion to just name this section “5. Conclusions”

5. Conclusions



We thank the reviewer for constructive comments and provide our answers hereunder.

RC2
Raman Vinna and colleagues have used a coupled climate-hydrological-temperature model
setup with different levels of representation of reality (fidelity) to simulate river temperatures
in Swiss rivers, including future climate projections. They include extreme temperatures and
ecological thresholds in their analysis. The topic and scope are rather similar to the Michel et
al. (2022, cited in text) paper, also published in HESS, but they expand on it by their multi-
model approach and additional analysis of thresholds, extremes, and hysteresis. The paper
is well-written, clear, and comprehensive, and | did not have major comments, only some
minor and mostly technical ones that | outline below.
Minor and technical comments:

e 24 ->"put also in rivers where...”
Corrected.

e 239: -> “inverse stratification”
Corrected.

e 261: | cannot find Table C2. | assume you meant B2?
Yes, it is B2. Corrected.

o 332: “refiling” or “refilling”?
Refilling, corrected.

e Figure 3: Change y-axis to “Water temperature”
Corrected.

o 357: -> “straightforward”
Corrected.

e 362-373: | like this definition of a severity index

Thank you, yes, it is neat to be able to compare across temporal scales and between
scenarios.

e 421: “at’ or “for”
Corrected.

e 450: -> “from, for example, ...”



Corrected.

The caption of Table 3 mentions yellow marking which does not occur in the table.
It should be jtalic. Table 3, B9 and B10 caption has been updated.

525-528: It is unclear from this sentence what vital principle is referred to..
Section reworked, on line 581 to 596 it now reads

4.1 Multi-fidelity modeling approach

The use of semi-empirical models by definition means that some of the physical processes
affecting heating is simplified under parameterization and some are directly resolved. The
models air2stream and air2water resolve the effect of river depth, discharge, thermal signals
from tributaries, inverse stratification in lakes during winter, and seasonal cycles. Parts of
the heat balance (e.g. short and longwave radiation) is thus not allowed to change as
climate change in our study. However indirectly we consider heat budget changes by using
high quality air temperature and discharge projections as input. Glacier retreat is included
in the hydrological models providing discharge projections to this study (eg. Muelchi et al.,
2021), however for temperature this effect is only indirectly considered in air2stream and
air2water through reduced water availability in summer. The effect of high altitude warming
as snow and ice recede is not included. Therefore as the cooling caused by melt water
recedes, it is expected that warming in high altitude rivers is larger than projected in this
study. Yet the lower fidelity water temperature model approach using high-fidelity
climate/hydrological model outputs as input enable the important principle of multi-model
ensemble, comparison and analysis that is required for robust climate change impact
assessments (Duan et al., 2019).

552-556: Are there 15 or 16 Alpine stations?

This study includes 16 Alpine stations. Note that station 2462 is not shown in Figures 6 and
7 since Model M4 lacked 30 years of data.

585: -> “Rhone”
Corrected.

584-586: Could you rewrite this sentence? It is not clear whether lakes or rivers warmed
faster in the cited reference.

Paragraph on line 637 to 648 rewritten to:

In terms of overall warming, the strongest warming on an annual basis emerged for stations
in the Alpine thermal regime, followed, in order, by stations in the Downstream Lake,
Regulated, Swiss Plateau, and Spring thermal regimes (Figure 4). The strong warming of
Alpine regime stations has its origins in the strongest near-surface air temperature warming
trend in summer that is occurring in southern parts of Switzerland (CH2018, 2018). The strong



warming in the Downstream Lake thermal regime can be explained by the extended residence
time of water in lakes compared to rivers in general (allowing longer time for waters to heat
up) and to a difference in seasonal patterns, aspects that the employed air2water model
explicitly considers. A previous coupled modeling study by the author showed that future lake
surface waters (epilimnion) heat faster compared to river waters, with a difference in warming
trends between Lake Biel and the Aare River of +0.03 °C per decade and between Lake
Geneva and the Rhoéne River of +0.11 °C per decade (Raman Vinna et al., 2018).

625: “brown trout’s” -> “brown trout”
Corrected.

675-676: 0.37 °C/decade over 11 decades would be a 4 °C increase. Could you double
check the numbers? Moreover, the Results mention a 3.18 °C increase total and 0.36
°C/decade, so please standardise these values.

Corrected. The change is from 2020 to 2099 (8 decades) corrected in manuscript. Line 707
to 710

According to the simulations, for the high emission climate scenario (RCP8.5), average river
water temperatures across Switzerland will increase by 3.2 °C (0.36 °C per decade from
2020 to 2099), while under the low emission scenario (RCP2.6) temperatures increase by
only 0.9 °C.

Discussion: One major process for river temperature in the studied systems seems to be
the role of disappearing glaciers and snow cover. This is also likely an important factor for
changing hysteresis patterns. The discharge models used in the paper may take this into
account, but air2water/air2stream do not (e.g. L. 280). It may be valid to assume a
nonlinear response of river temperature to disappearing snow/ice that may not be
reflected well in the training data (especially for Alpine streams and their low number of
stations with long measurement time series). It would be good to add a short paragraph to
the Discussion on how this may affect the projections in this paper.

Section 4.1 line 581 to 607 now reads:

The use of semi-empirical models by definition means that some of the physical processes
affecting heating is simplified under parameterization and some are directly resolved. The
models air2stream and air2water resolve the effect of river depth, discharge, thermal signals
from tributaries, inverse stratification in lakes during winter, and seasonal cycles. Parts of the
heat balance (e.g. short and longwave radiation) is thus not allowed to change as climate
change in our study. However indirectly we consider heat budget changes by using high quality
air temperature and discharge projections as input. Glacier retreat is included in the
hydrological models providing discharge projections to this study (eg. Muelchi et al., 2021),
however for temperature this effect is only indirectly considered in air2stream and air2water
through reduced water availability in summer. The effect of high altitude warming as snow and
ice recede is not included. Therefore as the cooling caused by melt water recedes, it is
expected that warming in high altitude rivers is larger than projected in this study. Yet the lower
fidelity water temperature model approach using high-fidelity climate/hydrological model



outputs as input enable the important principle of multi-model ensemble, comparison and
analysis that is required for robust climate change impact assessments (Duan et al., 2019).

To expand on previous results of river water temperature projections for Switzerland (Michel
et al., 2022), we employed a multi-fidelity modeling approach able to automate the generation
of water temperature simulators for the different national river temperature monitoring stations
of Switzerland, as summarized in Figure 1. Models of varying complexity were built from
integrating high-fidelity climate and hydrological modeling outputs (i.e., downscaled climate
(Table 1) and hydrological model outputs (Figure 2a), CH2018 and Hydro-CH2018) with low-
fidelity river temperature models of varying degrees of parametrization i.e., air2water and
air2stream (Toffolon & Piccolroaz, 2015; Piccolroaz et al., 2013). Statistical learning-based
coupling of atmospheric and hydrological stations (Table 2) and classification of river stations
into thermal regimes (Figure 2b & 2c) enabled optimal low-fidelity model selection (Figure 2d)
and parametrization.



We thank the reviewer for constructive comments and provide our answers hereunder.

RC3

This paper introduces modelling climate change impacts to river temperatures in Switzerland.
To do this, the authors conducted a multi fidelity modelling method which uses statistical
pattern recognition to estimate river water temperatures under climate change and thereby
close the aforementioned spatial gap by determining, in an automated manner and on a
country-wide scale, how future river water temperatures are likely going to change.

The authors frequently refer to their method as novel. | suggest to remove all occurrences of
this claim of novelty. Simply describe the model used. Some would argue that the discipline of
stream temperature modelling has advanced beyond the use of air temperature and discharge
alone for predicting river temperature, regardless of whether it is focused on current versus
future climate. While it may be practical for a nationwide attempt, and in that case also
‘efficient’, it is not necessarily “novel”.

The word novel occurred once on line 93, it has been removed from the manuscript.

The reason physically-based models require a lot of data is because they attempt to represent
mechanisms and therefore attribute causality of rising river temperatures. River temperatures
are a function of many processes beyond simply river discharge and air temperature, as has
been discussed in recent literature. The limitation of the “efficient” model approach is that
many, many physical drivers of river warming are completely ignored. In predictions of stream
temperature, simplifying the “more complex processes into purely empirical parameters” often
involves using lumped parameters and lumped heat exchange coefficients which ignore
aspects of climate change, especially with respect to the shortwave and longwave radiation
balance, and increases in atmospheric emissivity which is driving the air temperature
warming. There is not a single mention of any of this. The authors simplify the controls to the
energy balance as being based on discharge and air temperature, which is not complete, nor
does it use best-available-science. If the authors make simplifications in processes, and vary
the number of parameters used across their different simulations in order to get a nation-wide
dataset for Switzerland, they need to be very clear about this approach and also be upfront
about the many, many limitations of their results.

Physical drivers are not ignored in this kind of study, they are included indirectly through
parameterization. One can correctly argue that being included under a parameter constitute
being frozen in time. Since we use air temperature as input from Ch2018, we capture part of
the changes over time in the surface heat budget relevant for water temperature. A more
complete heat budget was included for snow and glacier melt in Hydro-CH2018, which
provides the discharge to this study.

Apart from the effect of air temperature on water temperature, the models additionally resolve
the effect of river discharge, depth, thermal signals from tributaries, inverse stratification in
lakes during winter, and seasonal cycles.

The manuscript has been updated in both the introduction, method and discussion sections to
make it clearer for the reader the limitations and advantages of our approach.



Line 60 to 107 in section 1

A common challenge for model-based studies is the question of the optimal model to use. In
surface hydrological applications, models can broadly be split into two major groups: process -
based and statistical/stochastic models (Benyahya et al., 2007). Process-based models are
based on physical equations and can resolve many hydrological processes in a physically
robust manner, from the local to the catchment scale. However, albeit physically more robust,
process-based models generally require a significant amount of input data and computational
resources for the simulation of hydrological processes on the catchment scale, therefore
limiting their applicability for climate change analyses on national scales. Statistical/stochastic
models, as opposed to process-based models, are data driven, that is, are based on empirical
relationships between input and output data. While they are physically less robust, their
advantage lies in their relative simplicity and limited data requirements, sacrificing detail for
increased repeatability and spatial coverage. However, in order to build on the efficiency of
statistics whilst preserving a clear physical basis, as a compromise between the two major
model groups, a sub-group of semi-empirical models, which employs physically meaningful
equations but simplifies the more complex processes into purely empirical parameters, was
developed (Piccolroaz et al., 2013). These semi-empirical models are ideally suited for
hydrological climate change projections, as they provide much more robust projections
compared to purely statistical approaches but simultaneously allow for a more comprehensive
analysis than process-based models by enabling multi-model climate change ensemble
analyses (La Fuente et al., 2022; Meehl et al., 2007).

The study of climate change includes the investigation of physical processes on global,
regional and local scales. As scales change so too does the required level of detail needed to
resolve the different water cycle components that are relevant on the respective scale. An
ideally suited approach to address this challenge in hydrological modeling is a multi-fidelity
model framework, which combines multiple computational models of varying complexity in an
automated selection framework that ensures robust predictions while limiting the computation
to only the necessary level of detail (Fernandez-Godino, 2023). The use of process dependent
fidelity ensures proper representation of physical processes on regional to local scales while
keeping computational costs to a minimum. Multi-fidelity modeling is especially useful when
acquiring high-accuracy data is costly and/or computationally intensive, as is the case for
climate change impact assessment on the hydrological cycle.

Given the past and future changes to Swiss river water temperatures and considering both
the high sensitivity of aquatic species to river water temperatures and the increasing demand
for river water by agriculture, industry and society as a whole, it is critical to obtain a robust
spatial and temporal understanding of the temperature increases that are expected for the
many different rivers and streams of Switzerland. Here, we developed an efficient multi-fidelity
modeling method guided by statistical pattern recognition to estimate river water temperatures
under climate change and thereby close the aforementioned spatial gap by determining, in an
automated manner and on a national scale, how future river water temperatures are likely
going to change. Compared to previous projections of climate warming in Swiss rivers (Michel
et al., 2022), the simplified multi-fidelity modeling approach not only enabled to cover the
national scale (+90%) but also further thermal regimes (here 5, previously 2) and based on 22
GCM-RCM chains (previously 7). By grouping catchments together via statistical pattern
recognition, we were able to classify rivers (including spring-fed rivers) into 5 different thermal
regimes, improving model results by allowing for optimal model selection at each station and
enabling regime-specific analyses. The effect on warming by changing river discharge was



investigate through a hysteresis analysis. Additionally, we introduce the extreme event severity
index as an analytic tool to evaluate the change in thermal extreme amplitude.

Line 261 to 273 in section 2,5 Surface water temperature model setup

Both models include up to eight parameters (a; to ag) which are fitted towards measured data.
Apart from the effect of air temperature on water temperature, the models additionally resolve
the effect of river depth, discharge, thermal signals from tributaries, inverse stratification in
lakes during winter, and seasonal cycles. Model complexity, i.e. how many processes are
directly being resolved by the models or indirectly included through parameter estimation, can
be varied by removal of one or more of the additional processes listed above, resulting in the
use of 8, 7, 6, 5, 4 or 3 parameters. Depending on local conditions, model performance can
be improved by the removal of processes which play a minor or insignificant role for water
temperature. Where this simplification with removal of parameters was done (Table B2),
removed processes plays a minor role for the simulation of water temperature as evident from
decreased model performance while being included. For additional information about
air2stream and air2water see Appendix A and Piccolroaz et al. (2013) and Toffolon &
Piccolroaz (2015).

Lines 302 to 318, Section 2.6 Trend correction

Empirical models generally predict less warming in the future compared to physically based
models, the primary reason being underrepresentation of the thermal catchment memory,
including snow and ice (Leach & Moore, 2019). To quantify how good the models air2stream
and air2water, which both lack deterministic considerations of snow and ice melt, are able to
recreate past trends, we compared trends from river water temperature measurements and
corresponding modeled temperature trends between 1990 and 2019. On an annual basis, this
comparison was possible for 25 out of 82 river stations, consisting of 9 Downstream Lake, 7
Regulated, 7 Swiss Plateau, 2 Alpine, and 0 Spring thermal regime river stations. Stations
were selected with a 30 years of continuous data requirement in air and water temperature
and river discharge. Only statistically significant trends (p < 0.05) were considered.

Both air2stream and air2water underestimate the annual temperature trend during the
reference period on average by 0.14 and 0.11 °C per decade, respectively. For air2stream,
the annual trend bias is smallest for the Swiss Plateau thermal regime (0.09 °C per decade)
and largest in the Alpine thermal regime (0.17 °C per decade). Seasonally, the trend bias is
largest from June to August and September to November, whereas, especially for air2water,
the bias is small from December to February and March to May.

Line 580 to 596

4 Discussion

4.1 Multi-fidelity modeling approach

The use of semi-empirical models by definition means that some of the physical processes
affecting heating is simplified under parameterization and some are directly resolved. The
models air2stream and air2water resolve the effect of river depth, discharge, thermal signals
from tributaries, inverse stratification in lakes during winter, and seasonal cycles. Parts of the
heat balance (e.g. short and longwave radiation) is thus not allowed to change as climate



change in our study. However indirectly we consider heat budget changes by using high quality
air temperature and discharge projections as input. Glacier retreat is included in the
hydrological models providing discharge projections to this study (eg. Muelchi et al., 2021),
however for temperature this effect is only indirectly considered in air2stream and air2water
through reduced water availability in summer. The effect of high altitude warming as snow and
ice recede is not included. Therefore as the cooling caused by melt water recedes, it is
expected that warming in high altitude rivers is larger than projected in this study. Yet the lower
fidelity water temperature model approach using high-fidelity climate/hydrological model
outputs as input enable the important principle of multi-model ensemble, comparison and
analysis that is required for robust climate change impact assessments (Duan et al., 2019).

Lines 122-125: It is unclear how many years of actual data were used. This must be clarified.
In one sentence, they say at least 1 year, in another sentence they say “data should preferably
cover 30 years”. Authors need to specify which simulations used which timespan of datasets,
as this is a fundamental influence on the accuracy of the predictions you are reporting in your
Results section.

The duration of datasets used for calibration and validation are given in Table B2 and are
described in section 2.5. The following section has been moved from section 2.5. to 2.1.
“Temporally overlapping, daily averaged near-surface air temperature and river discharge
measurements spanning the 30-year reference period of 1990 to 2020 were used as
calibration data, while for validation the data from 1980 to 1990 were used (Table B2 in
Appendix). By choosing to use the most recent data for calibration rather than validation
ensures that recent local climate conditions are carried into future projections (Shen et al.,
2022). For the few cases where no forcing data for calibration did exist between 1990 to 2020
(Table B2), validation was deprioritized and calibration performed for the 1980-1990 data.”

Lines 151-153: The authors state, “For monitoring stations at which historic river discharge
data or future river discharge projections weren't available, only future near-surface air
temperature projections were used to simulate water temperature.” This is a major limitation.
For how many stations did the authors predict river temperature only from air temperature
alone? And how do you correct for the fact that come used discharge and some didn’t use
discharge, but you are presenting the results of those two different simulation approaches as
being equal in your Results section?

Lines 154-156: Many studies have demonstrated that the resolution of the climate model data
will influence your results. Here the authors state, “Where climate projections were available
at multiple different spatial resolutions (i.e. 0.11° and 0.44°), only one model, as indicated in
Table 1, was included in the analysis, following the approach of Muelchi et al., 2021.”

These two items above both will affect the model results, potentially significantly. Sometimes
the authors use air temperature and discharge to predict river temperature. Sometimes the
authors use only air temperature to predict river temperature (many authors have shown this
is not sufficient). Sometimes the authors used 0.11° spatial resolution and sometimes they
used 0.44° resolution. How are the results defensible and comparable?



We agree with the reviewer that discharge is an important parameter for modeling water
temperature and should be used wherever applicable. Here at 47 out of 82 stations we could
use river discharge. 35 stations were modeled without discharge (Table B1).

Our study combines a wide variety of datasets (measured and modelled) with varying degree
of data availability and accuracy. In the multi-fidelity modeling approach, we do not rank the
inputs from climate models or measurements. Nor do we select “representative” model runs
or climate scenarios.

Instead, the simplicity of this method enables us to use a wide range of climate models, flow
models and water temperature models. Through the use of ensembles and combined analysis
inconsistencies and biases included in all data and models are smooth out. This follows
recommendations from recent climate model downscaling in Switzerland: “To account for the
inherent climate model and greenhouse gas scenario uncertainty, we also advise users to
employ a maximum number of CH2018 simulations (CH2018 project team).”

A trend correction was preformed to correct for seen discrepancies between our models and
measurements during the reference period. The correction needed was smallest for the
air2water model (18 stations) compared to air2stream (17 stations). The air2water model
which works completely without discharge outperformed air2stream downstream of lakes, this
indicates that despite lacking the input of discharge we could model the impact of climate
change satisfactionally without river discharge see section 2.6 above.

Lines 165-172: Again, the deviation across methods raise concerns for presenting comparable
results. This study employs large datasets which require some level of computational
proficiency, but it appears they did not employ spatial interpolation methods of weather data
across elevation or across distance. It is very common (and not difficult) to employ spatial
interpolation methods of time-series weather data to a particular river location, in order to
produce more accurate results at a specific distance along a river. The authors state:
“Meteorological stations were subsequently paired with hydrological stations such that (a) the
horizontal distance between river and meteorological stations was minimal (criterion "DIS"),
(b) the meteorological station was representative of the conditions in the upstream drainage
area (criterion "DRA"), and (c) the elevation difference didn't exceed a reasonable threshold
of 200 m (criterion "ELE"). Where possible, all three criteria were adhered to. For situations
where the closest meteorological station was either not fulfilling DRA or ELE, the DIS criterion
was evaluated only for stations which fulfilled both DRA and ELE.” While this explanation is,
in theory, reproducible, | am not sure that adjusting the criteria on a station-by-station basis is
defensible. Authors need to address this.

Both the air2stream and air2water models use representative atmospheric forcing for a
drainage area above a certain point to model water temperature. Simulations are thus
conducted towards all relevant heat transfers taking place upstream of this point as captured
by water temperature measurements obtained at the point. Thus, for these models the exact
location of atmospheric forcing in the drainage area is of minor importance. It is far more
important to have representative meteorological conditions, hence the selection criteria’s
above. Anny remaining inconsistency between the actual dataset used as input and how local
atmospheric conditions affect water temperature in the drainage area, are compensated for in
the calibration of the two models with up to 8 parameters. By preforming spatial interpolation
of meteorological data and climate model results unknown biases are created, especially in



settings with pronounced relief (the Alps), bias which increase with the distance from each
station.

In Ch2018, regional climate models were downscaled with quantile mapping towards
measurements at local stations. Naturally, the quality of this downscaling improved towards
the meteorological stations with minimal climate model bias right next to each station. Thus,
by selecting to use the downscaled climate model data delivered at the location of the
meteorological stations, climate model bias was minimized.

For processes such as stream discharge, spatial and temporal distribution of precipitation and
snow/glacier melt is more important compared to heat budget processes for water temperature
modeling. Spatial dependency was considered in Hydro-Ch2018, those discharge projections
we use here.

Lines 322-324: What do the authors mean by “shape-preserving interpolation” across multiple
days without data, and where is this interpolation method presented in this paper? Authors
state: “Before adjusting the water temperature model output from 1990 to 2099, Bcs was
combined into a continuous dataset by filling in the 3- to 5-day gap in between each season
with shape-preserving interpolation.”

Now reads on lines 348to 352:

.Before adjusting the water temperature model output from 1990 to 2099, the seasonal Bcs
was combined into a continuous dataset Bc. To avoid a sharp shift in Bc between each season,
a 3- to 5-day gap in between each season was smoothed with shape-preserving interpolation
(Piecewise cubic Hermite interpolation, PCHIP; MATLAB® R2022a)."

Line 439: “Considering only the far future” ¢ what do the authors mean by “far future”. Please
clarify.
Far-future period (2070 to 2099), is defined in the manuscript.

The authors’ most significant result is summarized by “Climate change impact was
heterogeneous between stations, yet common patterns were found within thermal regimes”. It
is concerning to present results when each result was achieved through a subtle deviation
from the methods, the spatial resolution of inputs, the handling of missing days of data, and
even using different model inputs. In some simulations the only model input is air temperature.
How can results and hysteresis loops be viewed as comparable across simulations by the
reader, when the methods employed to get there were modified, changed, required deviation
of some methods, used a different number of parameters in ‘air2water’/’air2stream’ (i.e. Line
695 “adapting their parametrization complexity to the required level”), or were slightly different
methods across simulations?

The reviewer is correct that the methods differed for each station. However, this was an
intended and needed but not a random process. The process, which is known as multi-fidelity
modelling, selects for each station the best possible model according to the available data (in
this context meaning the model with optimal model complexity as warranted by the data). It
would of course be desirable to have an identical data basis for all stations, but this is the real -
world, and in the real-world, this is absolutely never the case. Hence, in order to project river
water temperatures for real-world measurement stations, one is left with the choice to either
use the lowest complexity model for all stations, as warranted by the station with the poorest
data basis for projection, which would lead to comparable but underwhelming projections, or



one can choose the optimal model complexity as warranted by the data availability of each
individual station, producing, for all stations, projections with the highest fidelity. We chose, in
agreement with the multi-fidelity modelling approach and philosophy, to compare the
projections of all stations based on their highest fidelity model and data basis. This is the most
appropriate approach to compare and judge projections for real-world stations. For more
precise viewpoints we referee to our previous answers in this review.



