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Abstract: The thermal regime is a key indicator of permafrost evolution and thaw trajectories in 

response to climate change but remains poorly represented in global models. In this study, we 

applied the Moving-Grid Permafrost Model (MVPM) - an efficient numerical model to simulate the 

permafrost thermal regime in West Kunlun (WKL), a 55,669 km² region on the remote northwestern 

Qinghai–Tibet Plateau characterized by extreme cold arid conditions. To improve computational 20 

efficiency, we used clustering methods and parallel computing. The model was forced with remote-

sensing-based land surface temperature (LST) data from 1980 onward (1 km × 1 km spatial, monthly 

temporal resolution), reconstructed using machine learning techniques that integrated field 

observations, satellite imagery, and reanalysis products. MVPM demonstrated high stability 

throughout the simulation period, achieving high accuracy (±0.25 °C for ground temperature and 25 

±0.25 m for active layer thickness), outperforming previously reported results. From 1980 to 2022, 

LST increased by an average of 0.40 °C per decade. The responses of the permafrost regime to 

climate warming were closely related to the original thermal conditions shaped by historical climatic 

evolution. These responses exhibited a distinct altitude-dependent spatial variation and differed 

according to soil stratigraphic types. Despite ongoing thermal shifts, the spatial extent of permafrost 30 

in WKL remained relatively stable over the past 43 years, reflecting the delayed response of deep 
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permafrost to surface warming. These results offer valuable insights into permafrost thaw 

trajectories and support improved projections of future permafrost degradation in data-scarce, high-

altitude regions. 

1 Introduction  35 

Permafrost covers approximately 46% of the Qinghai–Tibet Plateau (QTP), making it the 

largest high-elevation permafrost region in the mid- to high-latitudes, with an average elevation 

exceeding 4,000 m a.s.l. (Zou et al., 2017; Zhao et al., 2024). Ground temperature observations show 

clear evidence that permafrost warming has already led to thaw subsidence and widespread near-

surface degradation across the QTP (Zhao et al., 2020, 2024; Biskaborn et al., 2019; Wang et al., 40 

2023; Smith et al., 2022). These changes may trigger climate feedbacks at both regional and global 

scales, with significant consequences for ecosystems, infrastructure, and local communities (Schuur 

et al., 2015; Walvoord et al., 2016; Lafrenière et al., 2019; Cheng et al., 2019; O’Neill et al., 2020; 

Jin et al., 2021; Miner et al., 2021; Hjort et al., 2022). Therefore, accurately assessing and 

understanding current permafrost dynamics in response to climate variability is critical for 45 

evaluating, predicting, and mitigating the impacts of climate change (Smith et al., 2022; IPCC, 2019, 

2021). 

Over the past few decades, numerous field investigations have been carried out, and a 

monitoring network has been established on the QTP to observe changes in permafrost thermal 

conditions (Zhao et al., 2010a, 2010b, 2017, 2019a, 2021). Many of these monitoring sites include 50 

borehole sensor arrays that measure ground profile temperatures at depths of 50 m or more (Zhao 

et al., 2019b, 2021). However, these observations are spatially limited, with most sites concentrated 

in accessible areas such as along the Qinghai–Tibet Highway (QTH) and Qinghai–Tibet Railway 

(QTR), leaving vast, remote regions of the QTP largely unmonitored. To address this gap, detailed 

process-based models have been widely developed to simulate hydrothermal processes of 55 

permafrost areas associated with rapid changes in climate and environment. Despite these efforts, 

most models still struggle to accurately represent the thermal state of permafrost, leading to huge 

errors in projections of permafrost change (Zhao et al., 2024). These inaccuracies are largely due to 

simplified representations of soil properties and thermal dynamics in deep permafrost, driven by 

limited subsurface data, particularly insufficient long-term in situ ground temperature monitoring 60 

(Sun et al., 2019; Zhao et al., 2020, 2024). Moreover, most models focus primarily on near-surface 

hydrothermal processes, typically constrained to the active layer within the upper 2–3 m. This 

limitation is particularly pronounced in large-scale regional modeling at high spatial resolution, 
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where computational costs make it challenging to apply numerical models across broad areas and 

deeper layers (Smith et al., 2022). As a result, simulations with only shallow soil layers may 65 

inadequately capture thermal dynamics in regions with thicker and colder permafrost, whereas 

deeper simulations more effectively represent the long-term thermal response to climate warming 

(Sun et al., 2019; Zhao et al., 2020). In addition, uncertainties in the model forcing datasets further 

contribute to biases in simulating hydrothermal processes in frozen ground (Yi et al., 2018; Guo et 

al., 2017; Hu et al., 2023). Previous studies have shown that soil temperature projections based on 70 

outputs from Earth System Models (ESMs) participating in Coupled Model Intercomparison Project 

Phase 5 and 6 (CMIP5, CMIP6) tend to overestimate future permafrost degradation (Koven et al., 

2013; Lawrence et al., 2012; Slater and Lawrence, 2013; Burke et al., 2020). When air temperature 

and precipitation inputs to land surface models (LSMs) are improved, the estimated rate of 

permafrost degradation decreases by approximately 29% (Lawrence et al., 2012), underscoring the 75 

importance of more accurate and high-resolution forcing datasets. 

To address deficiencies in existing models, the Moving-Grid Permafrost Model (MVPM; Sun 

et al., 2019, 2022) was developed to enhance the simulation of subsurface thermal dynamics in 

permafrost regions. Unlike conventional LSMs that use shallow or fixed soil layers, MVPM adopts 

a flexible vertical discretization scheme that better captures deep soil stratification and variability 80 

in ground ice content. It improves the simulation of freeze–thaw processes by applying the apparent 

heat capacity method, which more realistically represents gradual phase transitions, in line with field 

observations on the QTP. MVPM also explicitly incorporates geothermal heat flux as the lower 

boundary condition—an important factor often neglected in many LSMs, thereby improving the 

accuracy of long-term ground temperature simulations. In addition, the model includes a thaw 85 

settlement module, which is rarely represented in other permafrost models. This module simulates 

surface subsidence and landscape change driven by the melting of excess ground ice, processes that 

are critical to the evolution of permafrost terrain and the development of thermokarst features. These 

landscape changes have the potential to mobilize large quantities of previously frozen organic 

carbon from cold, ice-rich lowlands, thus intensifying the global permafrost carbon–climate 90 

feedback (Westermann et al., 2016; Nitzbon et al., 2020). Together, these advancements allow 

MVPM to more effectively simulate both the attenuation and time lag of thermal signals in deep 

permafrost, making it well-suited for assessing permafrost thermal regimes under a changing 

climate. In our previous work, MVPM was successfully applied to simulate heat transfer processes 

at multiple borehole sites and regions along the QTH. The model demonstrated strong performance 95 

in reproducing both the seasonal dynamics of active layer thawing and refreezing, as well as long-

term ground temperature evolution, when compared with multi-depth soil temperature records and 
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active layer thickness measurements (Sun et al., 2019, 2022, 2023; Zhao et al., 2022). 

The accuracy of permafrost simulation results is closely tied to the spatial resolution and quality 

of input datasets. Several studies have employed gridded datasets derived from in situ 100 

meteorological observations, climate outputs from General Circulation Models (GCMs) or ESMs, 

as well as reanalysis and assimilated data, to simulate soil thermal dynamics over large spatial scales 

across the Circum-Arctic permafrost region (Jafarov et al., 2012; Westermann et al., 2013; Zhang et 

al., 2014; Fiddes et al., 2015). However, substantial uncertainties remain in these climate forcing 

datasets, especially over the QTP, due to harsh climatic conditions, complex terrain, and sparse 105 

observational coverage. These limitations make it difficult to reliably use such datasets to drive the 

MVPM for accurate simulation of permafrost thermal regimes on the QTP (Hu et al., 2019; Yang et 

al., 2020). In addition, gridded outputs from ESMs are typically available at coarse spatial 

resolutions often half-degree latitude/longitude or coarser which are insufficient to capture the high 

spatial variability of ground thermal conditions in the heterogeneous permafrost of the QTP (Zhang 110 

et al., 2013; Hu et al., 2023). In contrast, satellite remote sensing offers a powerful tool for regional 

detection and monitoring of land surface characteristics that influence permafrost thermal dynamics 

(Langer et al., 2013). High-resolution, satellite-driven numerical modeling provides a promising 

approach to assess permafrost thermal states with improved spatial and temporal fidelity 

(Westermann et al., 2015, 2017; Yi et al., 2018). This remote-sensing-based modeling approach has 115 

been successfully applied in various permafrost regions, including Alaska (Yi et al., 2018), Siberia 

(Langer et al., 2013; Westermann et al., 2017), and Canada (Zhang et al., 2013), demonstrating its 

potential for regional-scale, high-resolution permafrost monitoring. On the QTP, Zou et al. (2017) 

and Cao et al. (2023) used MODIS Land Surface Temperature (LST) products as inputs to an 

equilibrium model to map permafrost distribution. Similarly, in our previous work, Zhao et al. (2022) 120 

evaluated and validated the performance of the MVPM at a 1 km spatial resolution using time-series 

MODIS LST data for a localized permafrost region (less than 280 km²) on the QTP. 

In this study, we aim to enhances and extends the MVPM to enable accurate, large-scale 

mapping of permafrost thermal regimes and their spatiotemporal changes under recent climate 

warming. We developed an integrated framework combining numerical modeling, field 125 

observations, remote sensing, and reanalysis data to simulate permafrost dynamics at a 1 km × 1 km 

resolution. Soil properties were parameterized using a geomorphological map and field 

measurements. To address the computational challenges of large-scale thermal modeling, we 

employed a clustering approach to group climate and soil thermal types, and used parallel computing 

to simulate tens of thousands of grid cells efficiently. The MVPM modelling scheme was applied 130 
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over a 43-year period (1980–2022) across WKL in the northwestern QTP, where ground temperature 

and active layer thickness observations were used for validation. Finally, we analyzed the 

spatiotemporal patterns of the thermal regime across diverse environmental settings. 

2 Study area  

The West Kunlun (WKL) permafrost survey area (78.8–81.4°E, 34.5–36.0°N) is located in the 135 

northwestern part of the QTP, with elevations ranging from 4,200 to 6,200 m above sea level (a.s.l.) 

(see Fig. 1a). It covers an area of approximately 4.37 × 10³ km² (Chen et al., 2015; Zhao et al., 

2019b). This region experiences a cold, arid continental climate, as the Pamir–Tian Shan–Kunlun 

Mountain system acts as an orographic barrier, restricting moisture transport from both the 

westerlies and monsoons (Cannon et al., 2016; Baldwin and Vecchi, 2016). Meteorological 140 

observations from the Tianshuihai (TSH) automatic weather station (AWS) (81.4°E, 36.0°N, 5,019 

m a.s.l.) from 2015 to 2018 show a mean annual temperature of approximately –6°C and mean 

annual precipitation of about 103.5 mm (Zhao et al., 2021). Over 78% of this precipitation (~81 mm) 

falls between May and September, and summer temperatures rise above 0°C, averaging around 5.8°

C (Zhao et al., 2021). Glacial and periglacial landforms, such as block fields, stripes, and stone rings 145 

are well developed throughout the region (Wu et al., 2018). Vegetation is sparse, dominated by 

alpine desert, while much of the land surface is barren due to persistent wind erosion (Li et al., 2012; 

Wang et al., 2016; Zhao et al., 2019). The topsoil is generally dry and loose, composed mainly of 

Quaternary aeolian deposits (57.68%; see Table 1), consisting of coarse-grained materials such as 

gravel and sand (see Fig. 1b). Permafrost is well-developed in the WKL region, comprising both 150 

discontinuous and continuous types, and covers approximately 93% of the total area (Li et al., 2012; 

Zhao et al., 2019). Continuous ground temperature monitoring at TSH comprehensive observatory 

(ZK015, 59 m in depth, 79.54°E, 35.36°N, see Fig. 1b) has revealed notable permafrost warming. 

Between 2010 and 2017, temperatures at a depth of 15 m increased at a rate of 0.11°C per decade 

(Zhao et al., 2021; Hu et al., 2023). 155 
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Figure 1. (a) Geographical location of the West Kunlun (WKL) permafrost survey area, 

overlaid on the frozen ground type distribution map from Zou et al. (2017), with background 

base maps adapted from Wen et al. (2024). (b) The WKL survey area includes five 

stratigraphic classes used in ground thermal modeling (see Sect. 3.2.2), along with borehole 160 

sites containing in situ observations (see Sect. 3.3) used for model calibration and validation. 

The yellow star marks the location of an automatic weather station (AWS); red dots represent 

monitoring boreholes in seasonally frozen ground; black dots indicate boreholes located in 

permafrost; and green dots denote thaw depth measurements derived from ground-

penetrating radar (GPR) surveys. Glaciers and lakes are masked in grey. 165 

3 Methodology and data  

3.1 The Moving-Grid Permafrost Model  

The Move-Grid Permafrost Model (MVPM) is a numerical framework that combines a 

moving-grid (Lagrangian) scheme with the heat conduction equation to dynamically track freeze–

thaw fronts and adjust the vertical grid accordingly (Sun et al., 2019, 2022). MVPM integrates key 170 

processes—including unfrozen water content, variable thermal properties, geothermal heat flux, and 

excess ice within an efficient moving-grid framework, enabling improved simulation of deep soil 

heat transfer not typically represented in most land surface models. 

MVPM includes both a heat conduction module and a settlement module, which are coupled 

to simulate time series of ground temperature with the land surface as the upper boundary. Its heat 175 

conduction physics is comparable to that of widely used models such as GIPL2.0 (Nicolsky et al., 

2017) and CryoGrid2.0 (Westermann et al., 2013). The change in ground temperature and internal 

energy is governed by Fourier’s law of heat conduction, accounting for latent heat release or 

absorption due to phase change within an observed freezing range of −0.3 to 0 °C. Water and vapor 

movement are not included; thus, soil water content changes only through freezing and thawing. 180 

Soil temperature dynamics are solved numerically using the one-dimensional nonlinear heat 

conduction equation and the finite difference method (Schiesser, 1991; Westermann et al., 2013; 

Sun et al., 2019). 

3.2 Model operation  

3.2.1 Model forcing 185 

Similar to our previous study (Zhao et al., 2022), a time series of remotely sensed LST was 
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used to drive the MVPM. Specifically, we used a modified MODIS LST product developed by Zou 

et al. (2014, 2017), which partially accounts for surface influences such as snow cover, vegetation, 

and cloud presence through a cloud-gap filling algorithm and calibration with three AWS 

observations from representative permafrost regions with distinct surface types—alpine steppe, 190 

alpine meadow, and alpine desert—in the central QTP. Validation showed strong agreement between 

the modeled and observed LST, with R² values ranging from 0.91 to 0.93 and RMSE values around 

3 °C. Further evaluation at the TSH AWS site in the WKL region during the 2016–2018 observation 

period confirmed the product’s reliability, with an R² greater than 0.90 and an RMSE of 2.09 °C, 

demonstrating its effectiveness in capturing spatial variations in LST across the QTP.  195 

In this study, we further refined the Zou et al. (2017) product to reconstruct historical LST data 

prior to 2003, extending the dataset back to 1980 using machine learning approaches. Three 

statistical models were employed: least squares linear regression (LR; Xing et al., 2023), random 

forest regression (RFR; Breiman et al., 2001), and multiple linear regression (MLR; Jiao et al., 2023). 

The LR model assumes a long-term linear relationship between air temperature (AT) and LST. For 200 

the RFR and MLR models, eight auxiliary variables known to influence LST were incorporated: AT, 

precipitation (Pre), skin temperature (ST), soil temperature in the top 0–10 cm (ST_1), fractional 

cloud cover (CFC), surface net radiation budget (SRB), leaf area index (LAI), and digital elevation 

model (DEM). Detailed descriptions of these variables, including their spatial resolution and data 

sources, are provided in Table 1. The main steps for reconstructing monthly LST from 1980 to 2022 205 

are as follows: 

(1) Pre-processing 

All input variables were resampled to a spatial resolution of 1 km × 1 km using the nearest-

neighbor method to match the resolution of the LST_Zou dataset. Monthly averages were then 

computed from the available data, which varied in temporal resolution across sources. Missing 210 

values were filled through spatial interpolation using nearby data points. Notably, the latest 

downscaled AT and Pre data provided by Qin et al. (2022) extend only through 2019. To fill the data 

gap for 2020–2022, statistical downscaling was applied to AT and Pre from the CN05.1 dataset, 

following the method described by Su et al. (2016). CN05.1 is a gridded dataset developed by the 

China Meteorological Administration (CMA), offering daily meteorological variables at a spatial 215 

resolution of 0.25°. For more details, refer to Wu et al. (2017). Additionally, since the earliest 

available satellite-based  LAI data begin in 1982, values for 1980–1981 were filled by assuming no 

change and using the average LAI from 1982–1986. 
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(2) Model training and test  

Data from 2003 to 2019 were used for model training. In the LR model, AT was used as the 220 

sole input variable, with LST_Zou as the target output. For the MLR and RFR models, eight 

auxiliary variables (see Table 1) were used as inputs, with LST_Zou again serving as the output 

variable. The dataset was randomly partitioned into ten subsets: 10% of the samples were reserved 

for validation, and the remaining 90% were used for training. This process was repeated 2,000 times 

to ensure robustness. Model performance was evaluated using four metrics: R², RMSE, MAE, and 225 

bias (Zhao et al., 2022). Details are provided in Fig. 3. 

(3) Dataset generation  

The monthly values of the eight auxiliary variables from 1980 to 2022 (see Table 1) were used 

as inputs to the trained LR, MLR, and RFR models from step (2). This enabled the generation of a 

continuous monthly LST time series starting from 1980. 230 

Table 1: Summary of the data sources used for the linear regression model (LR), random forest 

regression model (MLR), and multiple linear regression model (RFR) to generate monthly 

land surface temperature from 1980 to 2022.  

Variable 

name 
Data span  

Resolution and 

Horizontal coverage 
Data resource and availability Reference 

LST_Zou 2003-2019 8-day (QTP) https://doi.org/10.5194/tc-11-2527-2017 
Zou et al. 

(2017) 

AT 

Pre 
1961-2019 

Daily/1km×1km 

(China) 

https://doi.org/10.1594/ 

PANGAEA.941329 

Qin et al. 

(2022) 

CN05.1 1961-2020 
0.25°×0.25° 

China 

CMA 

https://ccrc.iap.ac.cn/resource/detail?id

=228 

Wu et al. 

(2017) 

ST 1950-present 
Hourly/~9km×9km 

(global) 

ERA5-Land Reanalyst 

https://cds.climate.copernicus.eu/datase

ts/reanalysis-era5-

land?tab=overview/cdsapp#!/dataset/rea

nalysis-era5-land?tab=overview 

Muñoz-

Sabater et al. 

(2021) 

ST_1 1979-present 
6 hour 

/0.312°×0.312°/ 

NCEP Climate Forecast System 

Reanalysis (CFSR) 

Saha et al. 

(2010) 
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0.204°×0.204° 

(global) 

https://rda.ucar.edu/datasets/ 

ds093.0/dataaccess/ 

CFC 

SRB 
1979-present 

Monthly/

0.25°×0.25° 

(global) 

EUMETSAT, CM SAF 

https://wui.cmsaf.eu/safira/action/view

DoiDetails?acronym=CLARA_AVHRR

_V003 

Karlsson et 

al. (2023) 

LAI 1982-2022 

8-day/0.05° from 

AVHRR, 500 m 

from MODIS 

(global)  

Global Land Surface Satellite (GLASS) 

and MODIS 

http://www.glass.umd.edu/ 

https://modis.gsfc.nasa.gov/data/datapr

od/mod15.php 

Liang et al. 

(2020) 

DEM -- 
90m 

(global) 

SRTM/https://cgiarcsi.community/data/

srtm-90m-digital-elevation-database-

v4-1 

Jarvis et al. 

(2008) 

Glacier -- -- 

Second Glacier Inventory Dataset of 

China 

https://doi.org/10.3189/2015JoG14J209 

Guo et al. 

(2015) 

Lakes -- -- 
National Tibetan Plateau Data Center 

https://data.tpdc.ac.cn/ 

Zhang et al. 

(2019) 

Note: LST_Zou is an enhanced LST product for the QTP permafrost zone, derived from in situ observations and 

MODIS satellite data. AT refers to air temperature; Pre to precipitation; ST to skin temperature; ST_1 to soil 235 

temperature at the top layer (0–10 cm); CFC to fractional cloud cover; SRB to surface radiation budget; LAI to leaf 

area index; and DEM to digital elevation model data.  

3.2.2 Ground thermal properties  

In our modeling framework, we incorporated detailed thermophysical characterization of the 

subsurface based on measurements from 15 boreholes with observations across the WKL permafrost 240 

survey area, with depths ranging from 15 to 59 m. Core samples, field observations, and borehole 

logs (Li et al., 2012; Zhao et al., 2019b) indicate that ground ice content in the WKL region varies 

between 5% and 50%, depending on the type of Quaternary sediment. Higher ice contents are 

typically found in fine-grained glarosional and lacustrine sediments due to enhanced segregation ice 

formation, while coarse-grained alluvial and colluvial deposits generally show lower ice content. 245 

Vertically, ice-rich layers are consistently observed near the upper boundary of permafrost, typically 

https://doi.org/10.3189/2015JoG14J209
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between 2 and 3 m depth. Ice content tends to increase slightly between 3 and 10 m and remains 

relatively stable below 10 m (Zhao et al., 2010a, 2019b).  

Depth-specific thermophysical parameters (thermal conductivity and heat capacity) for each 

stratigraphic class were estimated by calibrating modeled permafrost temperature and thaw depth 250 

against borehole observations. Calibration was performed using a numerical inverse modeling 

approach that minimizes the difference between simulated and observed ground temperatures by 

adjusting the thermal properties (Marchenko et al., 2024; Nicolsky et al., 2017). This method is 

detailed in Nicolsky et al. (2007, 2017), with examples of soil thermal property optimization 

provided in Zhao et al. (2022) and Marchenko et al. (2024). 255 

Site-level stratigraphic and thermophysical data were spatially upscaled using vector-based 

geomorphological classification maps of western China at a 1:1,000,000 scale (Zhou and Cheng, 

2007). Five common stratigraphic classes in the WKL region, i.e. glarosional, alluvial plain, aeolian, 

colluvial valley, and lacustrine deposits were identified. A summary of major Quaternary deposits 

is provided in Table 2, and their spatial distribution (Fig. 1b) is based on Zhou et al. (2007), gridded 260 

at 1 km × 1 km resolution to match our simulation scale. 

Table 2. Major geological classes and their associated borehole measurement sites. The second 

column indicates the percentage of the study area covered by each Quaternary sediment type, 

while the third column lists the corresponding representative boreholes. 

Quaternary sediments type Percent % Boreholes 

Aeolian 57.68 
ZK01, ZK02, ZK04, ZK12, ZK13, ZK16, 

K514+950, K520+050,  

Glarosion 12.58 ZK06, ZK07 

Alluvial plain  5.96 ZK08 

Lacustrine plain  5.05 ZK14, ZK15, ZK17, ZK18, ZK30, ZK31 

Colluvial valley 3.67 ZK09, ZK04 

Modern Glaciers 12.54 Excluded from the model 

Lakes 2.52 Excluded from the model 

3.2.3 Model computational domain, boundary condition and initialization  265 

The model resolution is determined by the input datasets. The computational domain covers 

the entire 55,669 km² WKL permafrost survey area, with a spatial resolution of 1 km × 1 km and a 
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monthly temporal resolution. Following Zhao et al. (2022), each grid cell extends 100 m vertically, 

divided into 282 layers, with thicknesses ranging from 0.05 m in the top 4 m to 0.5 m at greater 

depths. 270 

For each modelling grid cell, the ground thermal regime is simulated using site-specific 

stratigraphy and a time series of LST as the upper boundary condition. At the lower boundary (100 

m depth), a Neumann condition is applied to represent geothermal heat flux, set at a constant value 

of 0.0724 W/m². This value is derived from measurements obtained from a 700 m deep borehole 

near the WKL permafrost region (Hu et al., 2000). To estimate a realistic initial soil temperature 275 

profile, a model spin-up is conducted using climate forcing from the early simulation years. Steady-

state conditions are considered achieved when the temperature difference at all soil layers between 

consecutive annual cycles is less than 0.0001°C. This equilibrium profile is then adopted as the 

initial condition for the transient simulation. 

3.2.4 Model implementation  280 

After excluding lake and glacier-covered areas, simulations were conducted for 47,284 grid 

cells. To improve computational efficiency, a spatial clustering approach was adopted following 

Cable et al. (2016), grouping grid cells based on similarities in climate forcing and soil thermal 

properties. Instead of simulating each grid cell individually, clusters were used as representative 

units. 285 

To characterize the upper boundary LST forcing, a harmonic function was used to fit the time 

series (Sun et al., 2019). The fitted coefficients (initial annual mean temperature, trend, annual 

amplitude, and phase angle) were used to group climate forcing into distinct clusters. These were 

then combined with five soil thermal property classes (see Table 1), resulting in 13,248 unique input 

combinations for the WKL region. This approach reduced the number of simulations to just 28.02% 290 

of the total grid cells, remarkably lowering computational demand. Similar cluster-based methods 

have been successfully applied in Canada (Zhang et al., 2013, 2014), Alaska (Cable et al., 2016), 

and the Swiss Alps (Fiddes et al., 2015) permafrost zone. 

3.2.5 Simulation results diagnose  

To assess long-term changes in the permafrost thermal regime over the past 43 years, key 295 

diagnostics were extracted from the modelled vertical soil temperature profiles down to 50 m. These 

include the mean annual ground temperature at 15 m depth (MAGT15m), which corresponds to the 

depth of zero annual amplitude (ZAA) on the QTP (Jin et al., 2008; Zhao et al., 2010b), and the 
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temperature at the top of permafrost (TTOP). Additional depths were also evaluated against 

available borehole observations.  300 

The active layer thickness (ALT) was estimated using linear interpolation to locate the 

maximum depth of the 0 °C isotherm during the annual thawing period (Liu et al., 2020). Following 

Zhao et al. (2022) and Wu et al. (2018), a grid cell was classified as permafrost if the maximum 

annual ground temperature remained at or below 0 °C within the 50 m for two consecutive years. 

Cells where the minimum annual ground temperature dropped to ≤ 0 °C within 50 m depth during 305 

the same period were identified as seasonally frozen ground. Cells not meeting either condition were 

classified as unfrozen ground. 

3.3 Field investigation and borehole monitoring datasets  

Extensive scientific research and long-term monitoring efforts have been conducted in the 

WKL region over the past two decades. A comprehensive permafrost monitoring system has been 310 

established by the Cryosphere Research Station of the Chinese Academy of Sciences (CRS-CAS) 

(Zhao et al., 2015, 2019b, 2021). These in-situ datasets greatly enhance our understanding of 

permafrost dynamics and provide essential support for model development and validation (Li et al., 

2012; Zhao et al., 2017, 2019, 2021). Below, we summarize the CRS-CAS datasets used in this 

study. 315 

3.3.1 The Tianshuihai (TSH) comprehensive observatory  

The TSH comprehensive observatory is located in the central-northern part of the WKL 

permafrost survey area (see Fig. 1a). The Quaternary deposits in this region are primarily lacustrine, 

consisting of fine-grained sediment from an ancient lake that dried up in the Lower Pleistocene (Li 

et al., 1991). Since October 2015, an AWS at TSH has continuously recorded key meteorological 320 

variables, including hourly air temperature at 2 m, 5 m, and 10 m heights, relative humidity, 

shortwave and longwave radiation (both upward and downward), wind speed, and precipitation. 

Additionally, ground temperatures have been recorded automatically since 2010 from a 59 m deep 

borehole (ZK015, 79.54°E, 35.36°N; see Fig. 1b) at depths of 3 m, 6 m, 10 m, and 20 m (Zhao et 

al., 2021). LST at TSH is estimated using continuous radiation measurements (since October 2015) 325 

and applying the Stefan-Boltzmann law (see Hu et al., 2024 for details), providing a robust reference 

for validating satellite-derived LST and ground thermal modeling (see Sect. 4.1.1). 

3.3.2 Borehole in situ data sets  
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Beyond the TSH observatory, 27 boreholes have been drilled across the WKL region to monitor 

the ground thermal regime. These boreholes range in depth from 7.5 to 33 m and are distributed 330 

across various geomorphic units, soil types, and vegetation zones, covering elevations from 4200 to 

5200 m a.s.l. (see Fig. 1b). Detailed descriptions are available in Zhao et al. (2019b) and Li et al. 

(2012). 15 of these boreholes, is instrumented with thermistor sensors (accuracy ±0.1°C) placed at 

depths of 3 m, 6 m, 10 m, and 20 m (Zhao et al., 2021) and manual ground temperature 

measurements have been conducted at 1- to 2-year intervals since 2010 during annual field 335 

investigation using a digital multimeter. In this study, data from these 15 boreholes were used for 

model calibration and validation. The remaining boreholes were used to support the spatial modeling 

of permafrost distribution, serving as reference points for identifying permafrost presence or 

absence. 

3.3.3 Thaw depth measurement data sets  340 

During field investigation in September 2010, when seasonal thaw depths reach their annual 

maximum, GPR was used to manually measure thaw depth at 45 sites, most of which were located 

near boreholes (see Fig. 1b). The methodology and results are comprehensively described in Zhao 

et al. (2019b). After removing duplicate measurements within the same 1 km × 1 km grid cells, a 

total of 25 unique thaw depth measurements were retained for model validation. 345 

3.4 Additional validation datasets 

In addition to site-based observations (Sect. 3.3), we further evaluated model performance in 

simulating regional permafrost distribution by comparing it with four representative permafrost 

maps developed over different decades: i) A 1980s permafrost map of the QTP at 1:3,000,000 scale, 

compiled by the Lanzhou Institute of Glaciology and Geocryology, CAS (Li and Cheng, 1996); ii) 350 

A comprehensive 2000s map of glaciers, permafrost, and deserts in China at 1:4,000,000 scale, 

produced by the Cold and Arid Regions Environmental and Engineering Research Institute, CAS 

(Wang et al., 2006); iii) A 2010 permafrost distribution map of the QTP with 1 km² resolution (Cao 

et al., 2023); and iv) A 2016 permafrost distribution map of the Tibetan Plateau with 1 km² resolution 

(Zou et al., 2017). 355 

4 Result  

4.1 Forcing dataset  

4.1.1 Comparison to in situ data 
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We implemented and compared the three algorithms described in Section 3.2.1 to identify the 

optimal model for reconstructing monthly LST data from 1980 onward. The validation results are 360 

presented in Fig. 2. Most data points in the scatter plots cluster closely along the 1:1 line, indicating 

a strong positive correlation (R² > 0.90) and good agreement between LST_Zou and the estimated 

LST values. The LR model produced MAE of 2.05°C and a RMSE of 2.61°C. The MLR model 

showed moderate improvement, with lower errors (MAE=1.16°C, RMSE=1.55°C). However, the 

RFR model yielded the best performance, achieving the lowest error metrics (MAE=0.87°C, 365 

RMSE=1.26°C). 

 

Figure 2: Scatterplots of estimated monthly LST using (a) LR: linear regression model, (b) 

MLR: multiple linear regression model, and (c) RFR: random forest regression model during 

the validation stage (10-fold cross-validation; see details in Sect. 3.2.1). The best linear fits are 370 

shown in blue, while the 1:1 line is represented in red. Error metrics are provided in the bottom 

right corner of each graph. 

Fig. compares the mean annual cycle of LST estimates from the three statistical models (LR, 

MLR, and RFR) with ERA5 Land, LST_Zou and in situ observations from the TSH AWS over the 

period 2016–2018. All datasets exhibit a similar seasonal cycle consistent with the in-situ data. 375 

However, both LST_Zou and ERA5-Land LST exhibit a systematic cold bias, particularly during 

the summer months of July, August, and September. The LST values estimated by all three statistical 

models help reduce this bias to varying extents, with the RFR model performing best. Despite this 

improvement, a residual cold bias in LST_Zou remains apparent during the same period. Overall, 

the RFR model-generated LST time series closely matches in situ observations and demonstrates 380 

sufficient accuracy for use in subsequent ground thermal modeling. Therefore, the RFR-derived 

monthly LST was adopted as the input forcing in the following simulation analyses. 
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Figure 3: Monthly average LST from satellite-derived data (LST_Zou), reanalysis data 

(ERA5-Land), three algorithm estimates (LR, MLR, and RFR), and in situ measurements 385 

from the TSH AWS (see Sect. 3.3.1) were compared for periods with available observations 

between 2016 and 2018. 

4.1.2 Spatiotemporal variability of forcing datasets  

Fig. 4 shows the regional average of annual LST anomalies relative to the 1980–2022 mean. 

The results reveal a consistent positive trend of +0.40°C per decade over the WKL region during 390 

this period. Interdecadal analysis highlights a remarkable warming trend in the mid-1980s, which 

then slowed slightly from the 2000s, during which LST deviations were relatively smaller. In the 

last decade, only positive anomalies were recorded, with 2016 exhibiting the largest positive 

deviation (+1.45°C) compared to the 1980–2022 climate average.  

 395 

Figure 4: Time series of regional average annual LST anomalies in the WKL permafrost 

survey area from 1980 to 2022. The 9-year moving average is depicted with a blue line, while 
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the linear trend, calculated using standard linear regression (with long-term changes based on 

the slope of the regression), is shown with a red dashed line. The anomalous LST series are 

obtained by subtracting the mean LST from 1980 to 2022.  400 

To further assess regional LST anomaly patterns in WKL, Fig. 5 shows decadal deviations from 

the 1980–2022 mean. In the 1980s, most of the region (63.25%) exhibited negative anomalies 

between –1.5°C and –0.5°C, with only 0.46% mainly at high elevations falling below –1.5°C. The 

1990s shown a sharp warming, with 90.95% of the area shifting to near-normal levels (–0.5°C to 0°

C). By the 2000s, warming intensified: 83.78% of WKL showed positive anomalies (0°C to 0.5°C), 405 

and 4.34% exceeded 0.5°C. Between 2011 and 2022, warming became more pronounced, with 63.97% 

of the region above 0.5°C, and some high-altitude zones surpassing 1.0°C. 

 

Figure 5. Decadal anomalies of LST over the WKL permafrost region for the 1980s, 1990s, 

2000s, and 2010–2022, relative to the mean LST for the full period (1980–2022). Anomalies are 410 

computed by subtracting the 1980–2022 mean LST from each decadal average. Glaciers and 

lakes are masked in grey. 

4.2 Modeled the thermal state of permafrost  

4.2.1 Model validation   

To validate the model’s representation of large-scale ground thermal conditions, simulation 415 
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outputs were compared with available in situ datasets (Fig. 1; Sect. 3.3), including MAGT at 10 m 

(MAGT10m) measurements from 15 sites in 2010, ALT data from 11 sites, thaw depth observations 

from 25 sites, and four historical permafrost distribution maps spanning different periods. 

Ground temperatures. The comparison between observed and modeled MAGT10m at 15 

permafrost boreholes shows that 93.3% (14 out of 15) of the data points cluster closely around the 420 

best-fit line, with deviations within ±0.25°C (Fig. 6a). The analysis indicates strong overall 

agreement between measured and modeled MAGT10m for temperatures above -1°C, with errors of 

0.10°C or less. However, for MAGT10m below -2°C, the model shows a slight cold bias, 

particularly in areas with lacustrine sediments in the lowland regions of central WKL, where ground 

temperatures vary drastically due to complex local conditions (Fig. 6b). Despite this, the deviations 425 

between observed and simulated temperatures remain within 0.3°C. Overall, the comparison 

suggests that the MVPM effectively replicates the measured MAGT10m, capturing the spatial 

variability in the validation area, with a correlation coefficient of r = 0.98 (p < 0.01), and achieving 

a MAE and RMSE of 0.12°C and 0.15°C, respectively. 

 430 

Figure 6: (a) Scatter plot comparing observed (Zhao et al., 2019b; Li et al., 2012) and modeled 

MAGT 10m for 2010. Different symbols denote soil stratigraphic classes (Glarosion, Aeolian, 

Lacustrine, Colluvial). Grey line indicates biases within ±0.25 °C, and the 1:1 reference line is 

shown in red. (b) Map showing the spatial distribution of modeled MAGT10 m in 2010. Circle 

size and color represent the temperature difference between observed and modeled values at 435 

the nearest 1 km × 1 km grid point. Seasonally frozen ground is highlighted in red, while 

glaciers and lakes are shown in grey. 

Active layer thickness (thaw depths)：The scatter plots and spatial maps comparing measured 
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and modeled ALT at 11 sites and thaw depths at 25 sites are shown in Figure 7. The comparisons 

indicate that the model generally captures the range of ALT across the WKL region effectively. At 440 

72.7% of the sites (8 out of 11), the simulated ALT values closely match the observations, with 

deviations within ±0.25 m of the measurements (Fig. 7a). Notably, for the Aeolian sediment class, 

characterized by relatively shallow ALT around 2 m, the model performs exceptionally well, 

showing minimal bias (≤0.05 m), which suggests that the modeling approach is well-suited to these 

conditions. However, the model underestimates ALT by approximately 0.25 m in lacustrine 445 

sediments near lake areas, where measured ALT exceed 3 m (Fig. 7c). 

A similar pattern is modeled for thaw depths: 91.3% of the modeled values (21 out of 23) fall 

within ±0.25 m of the observations (Fig. 7b). For thaw depths greater than 3 m, the model tends to 

underestimate values, with the largest discrepancies up to 0.5 m occurring in northern marginal 

permafrost zones (Fig. 7c). 450 

Overall, despite slightly larger biases (>0.25 m) at a few locations, the model effectively 

captures the spatial variability of ALT and thaw depth across the major geomorphological units of 

the WKL region. It yields a r of 0.96 for ALT and 0.94 for thaw depth, with corresponding 

MAE/RMSE values of 0.13 m/0.16 m for ALT and 0.16 m/0.18 m for thaw depth. 



19 

 

 455 

Figure 7: (a) Scatter plot comparing borehole-observed ALT in 2010 (Zhao et al., 2019b; Li et 

al., 2012) with modeled values. (b) Same as (a), but for thaw depths (Zhao et al., 2019). Grey 

line indicates deviations within ±0.25 m, and the 1:1 reference line is shown in red. (c) Modeled 

spatial distribution of ALT and thaw depths for 2010. Circle size and color represent the 

differences between borehole (or GPR) observations and modeled values at the nearest 1 km 460 

× 1 km grid point. Seasonally frozen ground is marked in red, while glaciers and lakes are 

shown in grey. 

Permafrost distribution：Figure 8 compares four representative frozen soil type maps of the 

WKL region with the corresponding outputs from MVPM simulation outputs. In this analysis, 28 

boreholes (see details in Fig. 1 and Sect. 3.3) are used as reference points to evaluate the accuracy 465 

of permafrost and seasonally frozen ground distribution. The results show that while the maps by Li 

and Cheng (1996) and Wang et al. (2006) capture the general presence of permafrost across WKL, 

they fail to accurately delineate areas of seasonally frozen ground (Fig. 8a–c). Notably, these two 

maps show remarkably discrepancies in the northeastern WKL, where they indicate continuous 
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permafrost, while our simulation identifies seasonally frozen ground (Fig. 8i–j). 470 

In contrast, the maps by Cao et al. (2023) and Zou et al. (2017), along with our simulation 

results, display a more accurate spatial pattern of frozen ground types, correctly identifying nearly 

all permafrost and seasonally frozen ground locations, except for a single site near lakes in the 

southern WKL (Fig. 8c–d, g–h). However, small mismatches remain: compared to our simulations, 

Cao et al. (2023) and Zou et al. (2017) overestimate the extent of seasonally frozen ground by 1.84% 475 

and 1.61%, respectively, designating certain areas as seasonally frozen where our model indicates 

permafrost (Fig. 8k–l). Additionally, our simulation identifies about 0.61% (Cao) and 0.58% (Zou) 

of the central lowland region as seasonally frozen ground, whereas both maps categorize these areas 

as permafrost (Fig. 8k–l). 

 480 

Figure 8: Spatial distribution of frozen ground types in the WKL permafrost survey area, as 

represented by four historical maps: (a) the 1980s (Li et al., 1996), (b) the 2000s (Wang et al., 
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2006), (c) 2010 (Cao et al., 2023), and (d) after 2010 (Zou et al., 2017) (left column). The 

corresponding MVPM simulations are shown in the middle column (e –h), and spatial 

discrepancies between each historical map and the MVPM outputs are highlighted in the right 485 

column(i–l). 

4.2.2 Initial thermal status of permafrost condition   

To investigate how the thermal state of permafrost evolves under ongoing climate change, it is 

first necessary to understand its initial conditions. Fig. 9 presents the modeled baseline distribution 

of MAGT15m, TTOP, and ALT for the year 1980. The results reveal pronounced spatial variability 490 

in the ground thermal regime across the WKL permafrost survey area. MAGT15m decreases 

dramatically with elevation, with the warmest average values around 0.5 °C simulated in the central 

low-elevation zones (below 4800 m a.s.l.), and the coldest, below –10 °C, found in high-elevation 

areas (around 6000 m a.s.l.). Moderate variations in MAGT15m are also modeled across different 

soil stratigraphic classes. The coldest average MAGT15m, approximately –3.5 °C, occurs in Aeolian 495 

sediments, while the warmest, about –1 °C, is found in Alluvial plain deposits. 

A similar spatial pattern is evident in the modeled TTOP, although TTOP values are generally 

slightly lower than MAGT15m across the region (Fig. 9d–f). Likewise, ALT shows a strong 

elevation dependency. In lower elevation areas (below 5400 m a.s.l.), ALT typically ranges from 

2.5 m to 3.0 m, with some localized zones exceeding 3.0 m. At higher elevations, ALT decreases 500 

progressively, dropping below 1.0 m, and approaches 0 m in areas above 6000 m a.s.l., where 

perennially frozen conditions prevail. ALT also varies markedly across stratigraphic classes: the 

Alluvial class exhibits the greatest average ALT, while the Glarosion class shows the shallowest 

(Fig. 9i). 
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 505 

Figure 9: Spatial distribution of simulated MAGT15 m (first column, a–c), TTOP (second 

column, d–f), and ALT (third column, g–i) from the initial model output for the year 1980. 

Seasonally frozen ground is shown in red, and glaciers and lakes are in grey (top row). The 

middle row displays boxplots of MAGT15m, TTOP, and ALT grouped by elevation bands 

ranging from 4300 to 6000 m a.s.l. (excluding specific areas). The bottom row shows boxplots 510 

categorized by soil stratigraphic classes: Glarosion, Alluvial plain, Aeolian, Colluvial valley, 

and Lacustrine. In each boxplot, the box bounds represent the 25th and 75th percentiles, the 

whiskers extend to 1.5 times the interquartile range, and the horizontal line inside the box 

indicates the median. 

4.2.3 Evolution of permafrost thermal conditions  515 

Fig. 10 shows the simulated interdecadal changes in MAGT15m, TTOP, and ALT across the 

WKL permafrost region from 1980 to 2022. From the 1980s to 1990s, MAGT15m remained 

relatively stable in 62.4% of the region (±0.3°C; Fig. 10a). A clear warming trend emerged from the 

1990s to 2000s, with MAGT15m rising in 67.2% of the area and localized increases exceeding 1.8°

C (Fig. 10b). From the 2000s to 2010–2022, warming became more variable, and 47.1% of the 520 
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region experienced cooling, with decreases up to −1.8°C (Fig. 10c). Overall, from 1980 to 2022, 

58.6% of the region warmed (up to +1.8°C), while 25.5% mainly in central WKL cooled, with 

decreases below −1.8°C (Fig. 10d). 

TTOP followed a similar trend. The largest increase occurred between the 1990s and 2000s, 

when 86.7% of the region warmed, and 16.4% showed increases above 0.8°C (Fig. 10e). From the 525 

2000s to 2010–2022, 70.5% of the region continued to warm (up to +1.8°C; Fig. 10f–g). Over the 

full period, 81.7% of the region experienced a TTOP increase, with 17.2% warming by over 1.3°C. 

However, a small central area (~7.4%) showed declines ranging from −0.3°C to −1.3°C (Fig. 10h). 

ALT increased most significantly between the 1980s and the 1990s, with 74.2% of the region 

showing growth of 0.1–1.5 m, and some areas exceeding 1.5 m (Fig. 10i). From the 1990s to 2000s, 530 

58% of the region continued to increase, although 7.6% modeled a decrease of −0.3 m to −1.0 m 

(Fig. 10j). From the 2000s to 2010–2022, 59% of the area experienced ALT increases, while 0.97% 

showed sharp declines beyond −0.8 m (Fig. 10k). Overall, ALT increased by an average of 0.17 m 

across WKL from 1980 to 2022, with 83.1% of the region warming and 16.9%, mainly central—

cooling, in some places by more than −0.8 m (Fig. 10l). 535 
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Figure 10. Spatial distribution of relative changes in modeled MAGT 15 m (left column: a–d), 

TTOP (middle column: e–h), and ALT (right column: i–l) for the 1980s, 1990s, 2000s, and 

2010–2022. Seasonally frozen ground is shown in purple; glaciers and lakes are in grey. 

Fig. 11 illustrates the interdecadal variations of MAGT15m, TTOP, and ALT across different 540 

elevation zones and soil stratigraphic classes. Overall, the modeled MAGT15m showed minor 

fluctuations and a slight upward trend from the 1980s to the 2010–2022. The most noticeable 

increase occurred at the highest elevations (5600–6000 m a.s.l.), though changes remained less 

pronounced than those in TTOP (Fig. 11a–b). MAGT15m showed no remarkably differences across 

soil classes (Fig. 11d). In contrast, TTOP exhibited a clear warming trend across most soil classes, 545 

except in alluvial sediments. ALT increased remarkable with elevation from the 1980s to 2000s (Fig. 

11c) and showed substantial variability among soil classes. The largest ALT increase (>0.17 m) 

occurred in alluvial and lacustrine sediments, while the smallest (0.11 m) was in glarosion sediments 

(Fig. 11f). 
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 550 

Figure 11. Boxplot maps of modeled MAGT15m (first column: a, d), TTOP (middle column: 

b, e), and ALT (right column: c, f) for four periods (1980s, 1990s, 2000s, and 2010–2022), shown 

in differently colored boxes. The first row categorizes the data by elevation (ranging from 4300 

m a.s.l. to 6000 m a.s.l.), while the bottom row categorizes it by soil stratigraphic (Glarosion, 

Alluvial plain, Aeolian, Colluvial valley, and Lacustrine). The top and bottom lines of the 555 

boxplots represent the 75th and 25th percentiles, respectively, with the whiskers extending to 

the highest and lowest values within 1.5 times the interquartile range. The middle line of each 

boxplot indicates the median. 

4.2.4 Evolution of permafrost extent  

Table 3 permafrost aggradation and degradation in response to climate variability across the 560 

WKL permafrost area from 1980 to 2022. Based on the initial simulation for the 1980s, 

approximately 82.27% of the WKL area was underlain by permafrost, with 55.58% occurring in 

Aeolian stratigraphy and 67.9% at elevations between 4800 and 5600 m a.s.l. 

Permafrost extent remained unchanged from the 1980s to 1990s. A slight decline of 0.15% was 

simulated between the 1990s and 2000s, followed by a 0.44% increase from the 2000s to 2010–565 

2022. These changes were primarily concentrated in low-elevation areas below 4800 m a.s.l. and in 

regions with alluvial plain sediments (Table 3). Overall, the simulations indicate that permafrost 

extent in WKL has remained relatively stable over the past 43 years. 

Table 3. Changes in the areal extent of frozen ground types in the WKL permafrost region 

from 1980 to 2022, categorized by elevation and soil stratigraphic class. 570 
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Altitude 

range 

(102𝑚 𝑎. 𝑠. 𝑙) 

Permafrost areal extent (%) 
SF. 

(%) <48 48-50 50-52 52-54 54-56 56-60 >60 Sum 

1980s 2.74 12.58 18.79 24.32 12.22 9.07 2.56 82.27 2.67 

1990s 2.87 12.48 18.76 24.32 12.22 9.07 2.56 82.27 2.67 

2000s 2.84 12.46 18.67 24.31 12.22 9.07 2.56 82.13 2.81 

2010-2022 3.01 12.62 18.78 24.32 12.22 9.07 2.56 82.57 2.36 

Stratigraphic 

class 
1 2 3 5 6     

1980s 12.32 5.92 55.58 3.51 4.95   82.27 2.67 

1990s 12.36 5.75 55.71 3.51 4.94   82.27 2.67 

2000s 12.36 5.70 55.62 3.51 4.95   82.13 2.81 

2010-2022 12.34 5.81 55.94 3.51 4.97   82.57 2.36 

Note: SF. indicates seasonally frozen ground. The numbers for soil stratigraphy correspond to the following sediment 

classes: 1: Glarosion; 2: Alluvial plain; 3: Aeolian, 5: Colluvial valley, and 6: Lacustrine. The glacier and lake area, 

accounting for 15.06%, was excluded from this statistic. Mainly changes are shown in bold. 

5 Discussion  

5.1 Applicability of the forcing data  575 

Previous studies have shown that coarse-resolution soil temperature products from atmospheric 

reanalysis datasets, such as ERA-Interim (0.125° × 0.125°) and ERA5-Land (0.1° × 0.1°) as well 

as assimilated products like the CMA forcing dataset CLDAS (0.0625° × 0.0625°), exhibit 

substantial uncertainties when applied to the QTP, particularly in permafrost regions (Hu et al., 2019; 

Yang et al., 2020). Moreover, at these spatial scales, the forcing data often fail to capture the complex 580 

heterogeneity in surface cover and soil moisture that drives spatial variability in ground temperature 

and ALT across the QTP (Hu et al., 2023). These limitations contribute to large uncertainties in 

simulating permafrost thaw depth and often result in degradation rates that deviate from observed 

trends (Lawrence et al., 2012; Zhao et al., 2024). 

In contrast, satellite remote sensing products such as MODIS LST offer higher spatial 585 

resolution and larger regional coverage, and can potentially better capture surface heterogeneity, 

thereby reducing modeling uncertainties. However, MODIS LST has several limitations for 

permafrost modelling applications: it measures the skin temperature rather than the true ground 

surface temperature, often reflecting the surface temperature of vegetation canopies or snow. 
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Additionally, snow cover introduces thermal insulation effects, cloud cover leads to data gaps, and 590 

only clear-sky conditions are captured. 

To address these challenges, we used a modified LST product developed by Zou et al. (2017), 

which incorporates cloud-gap filling and calibration with ground-based AWS observations to better 

account for surface heterogeneity. Validation at three typical permafrost sites in the central 

permafrost zone and the WKL region demonstrated strong performance. In our study, this product 595 

was further improved using a machine learning approach to reconstruct pre-2003 LST by integrating 

multiple data sources. The reconstructed LST outperformed the original product slightly (R² > 0.95, 

MAE =1.29–1.50°C, RMSE =1.62–1.91°C), and showed significant improvement over ERA5-Land 

LST. 

While direct validation of pre-2003 LST is not possible due to the lack of satellite or ground 600 

observations in the WKL region. We employed an indirect validation approach: the reconstructed 

LST was used to force the MVPM to simulate permafrost thermal dynamics from 1980 onward. The 

simulation results were evaluated against existing permafrost monitoring data and previously 

published permafrost distribution maps from various periods, i.e.1980s (Li et al., 1996), 2000s 

(Wang et al., 2006), 2010 (Cao et al., 2023), and post-2010 (Zou et al., 2017). The strong agreement 605 

between the MVPM outputs and these independent sources supports the reliability of the pre-2003 

LST reconstruction. Moreover, our analysis reveals pronounced LST warming in the WKL survey 

area since the mid-1980s, with accelerated warming over the last decade. This trend aligns with 

recent documented warming across the QTP (Jin et al., 2011; Yao et al., 2019; You et al., 2021; Li 

et al., 2024), providing further indirect validation of the reconstructed LST. Collectively, this multi-610 

faceted validation approach provides reasonable confidence in our LST dataset, despite the lack of 

direct early-period observations. While we acknowledge this limitation, we believe our 

methodology offers a robust solution given the data constraints of this remote and observationally 

challenging region. 

The above comparisons show that the reconstructed LST closely aligns with in situ data and is 615 

suitable for ground thermal modeling. However, a seasonal cold bias remains, especially in July–

September of Zou_LST (Fig. 3), leading to a slight underestimation of shallow soil temperatures, 

resulting in a cold bias in ALT. Such bias is likely due to the sensitivity of near-surface ground 

temperature to seasonal forcing. Similarly, Westermann et al. (2015) found that an LST uncertainty 

of ±2 °C can lead to a ±3 cm uncertainty in simulated thaw depth. ERA5-Land skin temperature 620 

exhibits a notable winter cold bias over the QTP, likely due to overestimated snow cover persistence 
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and excessive snowfall in the ERA5-Land snow reanalysis product (Orsolini et al., 2019). These 

factors enhance surface albedo, leading to exaggerated surface cooling—a bias well documented by 

Cao et al. (2020.). We conducted a sensitivity analysis (Fig. 12) to evaluate the impact of 

uncertainties in model forcing (e.g., LST) on simulation results, and the findings confirm the model's 625 

robustness to LST biases. Moreover, since thermal signals attenuate with depth and ground 

temperatures at the ZAA level reflect long-term trends (Jin et al., 2011; Dobiński et al., 2022), the 

observed cold bias appears to be seasonal and has limited influence on long-term permafrost 

dynamics.  

Nonetheless, in complex mountainous terrain, a 1 km × 1 km grid cell is insufficient to capture 630 

micro-topographic features such as slope, aspect, and wind-driven snow redistribution—factors that 

strongly influence local permafrost hydrothermal dynamics. Therefore, our modeling scheme should 

be considered as a first-order approximation of permafrost thermal distribution, rather than a tool 

for detailed slope-scale assessments in these areas. In addition, resampling coarse-resolution input 

datasets to match the model resolution introduces uncertainties in the LST reconstruction process. 635 

Despite these limitations, the model successfully reproduces regional permafrost thermal patterns 

in the WKL area, as confirmed by in situ observations and existing permafrost maps. Although 

constrained by the spatial resolution of satellite-derived LST, the approach performs well in 

simulating the thermal state and ALT of permafrost, providing valuable insights for remote, data-

scarce regions of the western QTP. Future improvements will require the integration of higher-640 

resolution datasets and enhanced representation of sub-grid variability. 

5.2 Permafrost thermal stability and warming trends  

Permafrost thermal degradation is a complex and lagged response to climate warming, further 

modulated by local environmental factors such as soil type, ground ice content, geothermal heat 

flux, and the initial thermal state of the ground (Zhao et al., 2020; 2024; Hu et al., 2023). In response 645 

to climate change, permafrost does not degrade instantaneously but undergoes a gradual adjustment 

of its thermal regime over various timescales—ranging from years to centuries or even millennia. 

On QTP, this response is particularly nuanced. Wu et al. (2010) proposed a classification of 

permafrost degradation stages based on ground temperature profiles, including the warming stage, 

the zero-geothermal-gradient stage, the talik development stage, and eventual disappearance. These 650 

thermal states reflect ongoing degradation processes since the Last Glacial Maximum (LGM), 

shaped by both climate history and local ground conditions. 
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Compared to high-latitude permafrost regions in the Arctic and sub-Arctic, permafrost on the 

QTP is generally warmer and occurs under a relatively higher geothermal gradient. This distinct 

thermal setting leads to a slower increase in ground temperature and prolongs the degradation 655 

response time despite pronounced atmospheric warming (Jin et al., 2011; Zou et al., 2017; Biskaborn 

et al., 2019). In contrast, Arctic permafrost tends to be colder and more sensitive to warming, 

resulting in faster thermal responses. These regional differences highlight the importance of 

accounting for reginal-specific thermal regimes when assessing the vulnerability of permafrost to 

climate change. 660 

Our study investigated the spatiotemporal dynamics of the permafrost thermal regime in the 

WKL region of the northwestern QTP from 1980 to 2022. The most pronounced warming in 

MAGT15m and TTOP occurred between the 1990s and 2000s, whereas ALT changes aligned more 

closely with LST fluctuations, peaking between the 1980s and 1990s. Furthermore, TTOP showed 

a faster and more intense response to surface warming than deeper MAGT15m. Furthermore, our 665 

simulation results found that approximately 70.98% of permafrost in the region is currently in a 

warming phase, characterized by initial MAGT values below –2.0 °C and ALT less than 1.5 m, 

predominantly occurring at elevations above 4800 m a.s.l. and experiencing the most pronounced 

warming. An additional 17.58% is transitioning toward the zero geothermal gradient stage, while 

only 11.44% has reached or is progressing toward talik development. These latter zones are typically 670 

found at lower elevations (below 4800 m a.s.l.) and are associated with relatively high MAGT15m 

(above –1 °C), indicating active degradation, where even modest temperature increases. 

Permafrost forms when long-term ground surface heat loss exceeds incoming heat under 

persistently cold climate conditions (Wu et al., 2010). In a warming climate, sustained increases in 

surface temperature disturb the previous thermal equilibrium, leading to excess heat accumulation 675 

in the active layer. This causes progressive ground warming from the surface downward and reduces 

the vertical thermal gradient within the permafrost. Notably, during the early stages of warming, 

permafrost temperatures rise more quickly than thaw occurs, as much of the energy is used to warm 

the frozen soil to its thaw point. This explains why the overall areal extent of permafrost distribution 

in the WKL remained relatively stable during the simulation period, despite a pronounced warming 680 

trend. Interestingly, while regional average LST showed a steady increase from 1980 to 2022, 

considerable interannual and spatial variability was simulated. We hypothesize that intermittent 

cooling episodes may have triggered the formation or re-expansion of permafrost in certain areas 

through delayed responses, a view supported by our simulation, which showed a slight increase in 

permafrost extent between 2010 and 2022 despite continued warming. 685 
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Looking ahead, under continued climate warming, MAGT is project to increase further. As 

heat penetrates deeper into the ground, the thermal gradient at the base of the permafrost eventually 

drops below the geothermal gradient, causing heat to flow upward from the unfrozen substrate. This 

initiates basal thaw, leading to a gradual upward retreat of the permafrost base and overall thinning 

of the permafrost layer. Due to its relatively high geothermal gradient, the QTP shows a slower 690 

thermal response to atmospheric warming than Arctic and sub-Arctic regions (Jin et al., 2011), 

resulting in lower rates of ground temperature increase (Zou et al., 2017). 

As permafrost temperatures approach 0 °C, ground ice near the permafrost table begins to melt, 

absorbing large amounts of latent heat, a process known as the “zero curtain effect”. This effect 

notably slows or temporarily halts further warming, dampening seasonal temperature fluctuations 695 

in the shallow permafrost. At the same time, geothermal heat from below is primarily consumed by 

bottom-up thawing. The zero geothermal gradient stage marks a critical transitional phase, during 

which nearly all incoming heat is used for ice melt. As a result, permafrost warming during this 

stage is slower, smaller in magnitude, and less responsive to climate forcing. Once seasonal freezing 

no longer reaches the permafrost table, a talik—an unfrozen zone within the permafrost forms and 700 

begins to expand. Numerical simulations by Sun et al. (2019) demonstrate that talik development 

marks a tipping point, triggering accelerated thaw and irreversible permafrost degradation until 

complete loss. 

However, the overall process of permafrost degradation tends to be slow and delayed, 

particularly in deep permafrost, as confirmed by previous studies showing that permafrost loss, 705 

particularly in terms of areal extent, does not follow a linear trajectory, and that permafrost thermal 

responses to climate warming occur more gradually than suggested by many earlier assessments 

(Guo et al., 2012; Ni et al., 2021). Even under the extreme RCP8.5 scenario, simulations project 

only gradual deepening of the permafrost table. For example, by 2050, permafrost is still expected 

to persist at a depth of 40 m at Wudaoliang and Tanggula—two borehole sites in the continuous 710 

permafrost zone, where ground temperatures are cold and permafrost layers are thick. In contrast, 

at Xidatan, located near the lower boundary of the permafrost zone with a warmer, thinner (~32 m) 

permafrost layer, the permafrost base is projected to retreat more significantly. Nevertheless, 

simulations suggest permafrost will still exist at this site through 2100, based on trends in deep 

ground temperature, ice content, and thermal gradients. Similar results have been reported for the 715 

northern margin of the QTP permafrost zone. MVPM-based modeling (Zhao et al., 2022) indicates 

that MAGT will continue to rise under gradual warming. Warming rates are projected to be slightly 

higher under CMIP6 Shared Socioeconomic Pathways (e.g., 0.064°C yr⁻¹ for SSP5-8.5) compared 
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to CMIP5 Representative Concentration Pathways (e.g., 0.060°C yr⁻¹ for RCP8.5), but little 

difference is projected in areal permafrost extent. These findings suggest that while permafrost 720 

temperatures are increasing, spatial loss remains relatively slow—an important consideration for 

modeling permafrost carbon feedback and related hydrological processes. 

It is also important to recognize that the thermal response of permafrost to warming may vary 

considerably in ice-rich zones, particularly those with excess ground ice. In such areas, thawing of 

massive ground ice and associated water dynamics significantly shape degradation trajectories, 725 

often leading to landscape changes such as surface subsidence and thermokarst pond formation 

(Westermann et al., 2016). These hydrological feedbacks can either slow or accelerate thaw. 

Efficient drainage of meltwater delays talik development and surface collapse (Westermann et al., 

2016), while surface water accumulation promotes heat transfer and deeper thawing (Nitzbon et al., 

2020). These processes increase the potential release of vast stores of frozen organic carbon—730 

particularly CO₂ and CH₄—trapped in cold, ice-rich lowlands. Therefore, thermokarst-driven 

permafrost degradation under continued warming could greatly amplify the global permafrost 

carbon–climate feedback (Schuur et al., 2015). 

5.3 Comparison with previous studies 

Global warming has markedly affected permafrost thermal regimes worldwide, yet the 735 

mechanisms, rates, and spatial patterns of permafrost responses to climate variability remain poorly 

understood (Smith et al., 2022; Hu et al., 2023; Zhao et al., 2024). This is partly due to the limited 

representation of permafrost thermal dynamics in global models, especially in complex terrains like 

the QTP, leading to large uncertainties in simulated permafrost change and related climate feedbacks. 

In this study, we employed the MVPM framework to simulate permafrost thermal regime in 740 

the WKL region from 1980 to 2022. We quantified spatial changes in both permafrost and seasonally 

frozen ground, and compared our results with four published permafrost distribution maps (see Fig. 

9). Overall, our simulated permafrost extent aligns well with existing maps, though discrepancies 

are notable in areas classified as seasonally frozen ground. Similar inconsistencies were also 

reported in Zhao et al. (2022) for the Xidatan region of QTP, likely due to differences in model 745 

inputs, structures, spatial resolution, study periods, and local environmental factors (Zhao et al., 

2022; Zou et al., 2017). 

Maps by Li and Cheng (1996) and Wang et al. (2006), derived from field data, aerial photos, 

and satellite imagery, used coarse-scale topographic maps (1:3,000,000 to 1:4,000,000) and manual 
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delineation based on air temperature or MAGT isotherms. These low-resolution methods introduce 750 

substantial uncertainties and are inadequate for capturing fine-scale ground thermal variability or 

validating model outputs. In contrast, the maps by Cao et al. (2023), Zou et al. (2017), and our 

simulations utilize enhanced remote sensing LST data at 1 km × 1 km resolution, offering improved 

accuracy in identifying both permafrost and seasonally frozen ground. These remote-sensing-based 

approaches also better match borehole observations, highlighting their advantage for regional 755 

permafrost mapping on the QTP, as previously noted by Zhao et al. (2022). 

However, the equilibrium assumptions underlying the Cao et al. (2023) and Zou et al. (2017) 

maps—based on climate averages from 2005–2010 and 2003–2012, respectively, do not reflect the 

current nonequilibrium thermal state of permafrost. Their models typically extend to depths less 

than 3 m and fail to capture deeper permafrost dynamics. In areas with supra-permafrost taliks, the 760 

TTOP criterion may underestimate permafrost extent. Consequently, these maps likely 

underestimate permafrost area compared to our transient simulation results (Zhao et al., 2022). 

Unlike equilibrium-based models, our approach captures transient responses of permafrost to 

evolving climate conditions. Results show that permafrost extent in the WKL region remained 

relatively stable from 1980 to 2022, with less than 0.5% experiencing degradation or aggradation. 765 

This agrees with borehole data (Jin et al., 2011), which indicate greater thermal stability in the QTP's 

continental interior, particularly in the west and north where westerlies dominate. 

Some studies report more rapid permafrost degradation (Guo and Wang, 2012, 2016; Ni et al., 

2021), likely due to model configurations that overlook the lag between atmospheric warming and 

deep ground response in regions with thick permafrost. This discrepancy is often due to sparse 770 

observations and incomplete understanding of permafrost processes on the QTP (Sun et al., 2019; 

Hu et al., 2023). Many models focus on shallow soil layers and neglect coupled heat–moisture 

dynamics, limiting their ability to simulate long-term changes accurately. 

Permafrost on the QTP developed over millennia under cold paleoclimates, resulting in deeply 

frozen ground rich in ice (Jin et al., 2011; Zhao et al., 2020). Present-day ground temperatures reflect 775 

cumulative effects of past climate variability, especially at depths of tens to hundreds of meters 

(Lachenbruch and Marshall, 1986; Allen et al., 1988; Buteau et al., 2004; Langer et al., 2024). 

Accurately modeling permafrost therefore requires realistic initial conditions that consider this 

legacy. However, many models neglect deep legacy effects below 1 m ground ice and oversimplify 

geothermal heat flux by applying zero-flux or constant-temperature boundaries (Wu et al., 2010; 780 

Xiao et al., 2013; Zhao et al., 2022), introducing major uncertainties into both present and future 
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projections. 

To improve long-term permafrost simulations in ESMs, we recommend the following key 

developments: i) Enhance bottom boundary conditions by extending soil profiles to 50–100 m and 

incorporating realistic geothermal heat fluxes to better capture deep ground thermal dynamics; ii) 785 

Improve vertical resolution and initialization, including high-resolution soil layering, longer spin-

up periods, and calibration using in situ data to better capture the thermal memory of deep 

permafrost; iii) Advance the representation of ground ice processes, including sub-grid variability, 

the formation and melt of excess and segregated ice, and thaw-induced surface changes such as 

thermokarst; iv) Improve the accuracy and resolution of climate forcing data; v) Leverage MVPM 790 

outputs to calibrate LSMs, using high-resolution, observation-constrained simulations and remote 

sensing data to optimize parameters and reduce uncertainties. 

5.4 Current model shortcoming and future improvements  

Representation of soil stratigraphy: Accurate representation of soil properties is critical for 

modeling water and heat transport in frozen soils at both global and regional scales (Dai et al., 2019; 795 

Lawrence and Slater, 2008; Harp et al., 2016; Hu et al., 2023). However, most soil datasets used in 

models are based on data from seasonally frozen regions, and there remains a notable lack of 

coverage in the permafrost areas of the QTP, particularly for deeper soil layers (Hengl et al., 2017; 

Li et al., 2014; 2015; Shangguan et al., 2013). Westermann et al. (2017) addressed similar limitations 

in the Siberian permafrost region by using geomorphological classification maps to parameterize 800 

large-scale patterns of ground thermal properties such as sediment type, ground ice content, and 

surface characteristics. 

In this study, we adopted a comparable approach by applying an existing stratigraphic 

classification map, gridded at 1 km × 1 km resolution to represent the spatial distribution of sediment 

types, ground ice, and surface properties in the WKL region. These classifications were then used 805 

to parameterize subsurface properties in our model. However, small-scale heterogeneity in ground 

conditions may introduces considerable variability in ground thermal regime, which cannot be 

resolved at the 1 km × 1 km resolution. Moreover, variability within each sediment class (Table 1) 

can result in biased model outputs. 

To quantify aforementioned model parameter uncertainty, we conducted a one-at-a-time 810 

sensitivity analysis (Fig. 12) using three representative boreholes located in stable permafrost, 

unstable permafrost, and seasonally frozen ground (see Table 4). Key model parameters were 
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perturbed by ±10% to evaluate their effects on permafrost thermal regime (MAGT15 m and ALT). 

The result shown that among all parameters, upper boundary temperature (i.e., surface forcing) 

exerted the strongest influence on MAGT15 m, though the absolute impact was modest, around 815 

±0.15 °C in seasonally frozen ground and ≤±0.1 °C in permafrost areas. ALT showed similarly 

limited sensitivity, varying by ~±0.1 m in stable permafrost and ±0.05 m in unstable zones. Soil 

thermal conductivity and water/ice content had a more pronounced effect on ALT, particularly in 

unstable permafrost, where a 10% change could lead to a ±0.10m~ ±0.15 m variation. In contrast, 

soil heat capacity had minimal influence on both MAGT15m and ALT. 820 

The above analysis indicates that the model demonstrates robustness to parameterization 

uncertainties and that uncertainties associated with stratigraphy have a limited effect on overall 

performance. Although stratigraphic classification and spatial variability inevitably introduce some 

degree of uncertainty, our approach is well supported by field measurements and observed thermal 

properties. Despite these limitations, we are confident that the model accurately represents the key 825 

thermal characteristics of each sediment class —key factors for simulating permafrost dynamics. 

Continued improvements in subsurface datasets, particularly in permafrost regions, will be essential 

for improving model performance in future applications. 

Table 4. Description of three representative borehole sites used for one-at-a-time sensitivity 

analysis 830 

Borehole Description 

ZK30 
The borehole reaches a depth of 15 m, with ground primarily composed of fine sand and silty sand. 

The MAGT is −1.66 °C, and the ALT is 2.4 m, classifying the site as stable permafrost. 

ZK12 

The borehole reaches a depth of 13.5m and is located on a vegetation-free surface. The core consists 

mainly of fluvial sand and sand. Frozen soil was first encountered at a depth of 4.9 m, with small 

ice crystals uniformly distributed within a granular soil structure. Below 5.5 m, the frozen layer 

disappears, accompanied by a noticeable increase in ground temperature. The 4.9–5.5 m interval 

represents a transition zone, and the site is classified as unstable permafrost. 

ZK13 
No frozen soil was encountered during the drilling process, and the site is classified as seasonally 

frozen ground 

Note: This information is compiled from Li et al. (2012) and Zhao et al. (2019). 
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Figure 12. One-at-a-time sensitivity analysis showing the effects of ±10% variation in 

individual model parameters, e.g., soil thermal conductivity, heat capacity, water/ice content, 

initial temperature, and upper boundary temperature—on (top row) MAGT 15 m and 835 

(bottom row) ALT, across three ground conditions: stable permafrost (left), unstable 

permafrost (middle), and seasonally frozen ground (right). 

Model initialization: The model assumes equilibrium initial conditions based on the first year’s 

climate forcing, implying a stable land–atmosphere heat exchange prior to 1980. While this setup 

doesn't capture transient ground temperature states at that time, its influence diminishes over time. 840 

Sensitivity analysis also shows that initial conditions have limited impact (e.g., moderate in 

seasonally frozen ground (~±0.12 °C) and negligible in permafrost areas). Moreover, simulated 

permafrost temperatures, ALT, and thaw depth align well with observations and benchmark maps, 

suggesting initialization uncertainties have minimal impact on long-term results. 

Model physics: The current MVPM configuration does not include some processes such as soil 845 

water convection or lateral heat and water fluxes, which can significantly affect ground thermal 

regimes, especially near taliks, water bodies, and permafrost margins (Boike et al., 2015; Bense et 

al., 2012; Sjöberg et al., 2016; Kurylyk et al., 2016). As a result, the model may not fully capture 

thermal dynamics in areas with strong lateral fluxes, such as sharp mountain ridges or zones near 

lakes. Nevertheless, the model performs well in simulating ground temperature and ALT in the WKL 850 

region, suggesting that one-dimensional heat conduction captures the dominant thermal processes 

in this area. 

In addition, the subsurface thermal model MVPM uses satellite-derived LST as the upper 
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boundary condition, which does not explicitly account for snow and vegetation canopy effects, 

potentially introducing uncertainties in densely vegetated areas. However, in the permafrost regions 855 

of the QTP, snow cover is typically thin (~3 cm), short-lived (lasting less than a day per event), and 

vegetation is sparse, with less than 10% cover in the west (Wu and Zhang, 2008; Che et al., 2008; 

Wang et al., 2016; Zou et al., 2017; Orsolini et al., 2019; Yan et al., 2022). Under these conditions, 

the thermal offset between GST and LST is minimal (Hachem et al., 2012). While thin snow cover 

may briefly cool the surface due to high albedo and rapid melt (Zhang et al., 2005), it contributes 860 

little thermal insulation and effect is likely negligible over the decadal timescale of our study. Still, 

the model’s limitations highlight the need for further validation, especially regarding 

hydrogeological influences on permafrost thermal regimes and improved representation of surface 

heterogeneity in future developments.  

6 Conclusions 865 

The thermal state of permafrost is vital for understanding climate, ecology, hydrology, and 

infrastructure stability on the QTP. In this study, we quantitatively assessed the spatiotemporal 

dynamics of permafrost thermal regimes from 1980 to 2020 in the remote WKL region of the 

northwestern QTP, using the enhanced MVPM numerical model. The key conclusions drawn from 

this study are summarized below:  870 

- Compared to conventional climate forcing, the reconstructed model forcing enables higher-

resolution and more accurate simulations of permafrost thermal states. The MVPM remains 

stable under model parameter uncertainties, reproducing 10m ground temperatures within 

±0.25°C and ALT within ±0.25m throughout the simulation period. 

- Approximately 80% of permafrost in the WKL region has initial MAGT 15 m between −7.5 °C 875 

and −1.5 °C. Warmer ground temperatures (~−0.5 °C) and deeper ALT (2.5–3.0 m) occur in 

low-elevation areas (<4,800 m), while colder temperatures (<−10 °C) and shallower ALT (<1 m) 

are found at elevations above 5,600 m a.s.l.  Among soil types, alluvial plains show the deepest 

ALT (~2.5 m), and glarosion sediments the shallowest (~1.5 m). 

- From 1980 to 2022, the WKL permafrost region experienced a notable warming trend in LST, 880 

averaging 0.40 °C per decade. In response, the most notable increases in MAGT15m occurred 

between the 1990s and 2000s, while the maximum ALT variations align more closely with LST 

peaks during the 1980s–1990s. 

- During the same period, about 71% of permafrost showed signs of warming, mainly at 
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elevations above 4,800 m a.s.l. Another 17.6% is transitioning toward the zero geothermal 885 

gradient stage, while 11.4%—mostly in lower areas below 4,800 m—has entered or is 

progressing toward talik formation, indicating potential degradation. Despite these changes, the 

overall permafrost extent in WKL remained relatively stable, with less than 0.5% showing signs 

of recovery or loss over the study period. 

Code and data availability  890 

In situ monitoring data from field observation sites, provided by the Cryosphere Research 

Station on the Qinghai–Xizang Plateau of the Chinese Academy of Sciences (CAS), are available at 

the National Tibetan Plateau Data Center: https://data.tpdc.ac.cn/en/disallow/789e838e-16ac-4539-

bb7e-906217305a1d/ (December 12, 2024; Zhao et al., 2021).as well as Zhao et al. (2019b) 

(Permafrost and environment changes on the Qinghai-Tibetan Plateau. Beijing, China: Science 895 

Press). 

Enhanced MODIS LST data since 2003 were obtained from Zou et al. (2017): 

https://doi.org/10.5194/tc-11-2527-2017.  

Daily air temperature and precipitation data from 1961–2019 were provided by Qin et al. 

(2022): https://doi.pangaea.de/10.1594/PANGAEA.941329 (December 12, 2024). 900 

The CN05.1 dataset is available on request from Dr. Jun Wang (wangjun@mail.iap.ac.cn): 

https://ccrc.iap.ac.cn/resource/detail?id=228 (December 12, 2024). 

Additional datasets used in this study include: 

• Skin temperature: ERA5-Land, European Centre for Medium-Range Weather Forecasts 

(ECMWF): https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land (December 12, 905 

2024). 

• Soil temperature: NCEP Climate Forecast System Reanalysis (CFSR): 

https://rda.ucar.edu/datasets/ds093.0/dataaccess/ (December 12, 2024). 

• Fractional cloud cover and surface radiation budget: EUMETSAT CM SAF, 

CLARA_AvHRR_V003: 910 

https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=CLARA_AVHRR_V003. 

• Leaf area index (LAI): Global Land Surface Satellite (GLASS) and MODIS: 

https://data.tpdc.ac.cn/en/disallow/789e838e-16ac-4539-bb7e-906217305a1d/
https://data.tpdc.ac.cn/en/disallow/789e838e-16ac-4539-bb7e-906217305a1d/
https://doi.org/10.5194/tc-11-2527-2017
https://doi.pangaea.de/10.1594/PANGAEA.941329
mailto:wangjun@mail.iap.ac.cn
https://ccrc.iap.ac.cn/resource/detail?id=228
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land
https://rda.ucar.edu/datasets/ds093.0/dataaccess/
https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=CLARA_AVHRR_V003
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https://modis.gsfc.nasa.gov/data/dataprod/mod15.php (December 12, 2024). 

• Topography: Shuttle Radar Topography Mission (SRTM), 1 arcsec (~30 m) DEM from CIAT: 

http://srtm.csi.cgiar.org (July 13, 2025; Jarvis et al., 2008). 915 

• Background maps of China: Wen et al. (2024): https://doi.org/10.1007/s10584-024-03712-7. 

• Tibetan Plateau boundary: Zhang (2019), available from National Tibetan Plateau Data Center 

(TPDC) (http://data.tpdc.ac.cn/zh-hans/, December 12, 2024). 

• Geological sediment classification and lakes: Zhou et al. (2007), available from TPDC: 

http://data.tpdc.ac.cn/zh-hans/ (December 12, 2024). 920 

• Glacier inventory: Second Glacier Inventory Dataset of China: 

https://doi.org/10.3189/2015JoG14J209 (July 13, 2025; Guo et al., 2015). 

• Permafrost distribution maps: Li et al. (1996); Wang et al. (2006); Zou et al. (2017); Cao et al. 

(2023): https://doi.org/10.5194/essd-15-3905-2023 —all available via TPDC. 

Model code availability 925 

The permafrost model source code developed for this study is available upon request from the 

following co-authors: Jianting Zhao (first author): jt.zhao@nuist.edu.cn; Lin Zhao (corresponding 

author): lzhao@nuist.edu.cn; Zhe Sun: sunzhe@lzb.ac.cn. 
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