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Dear Editors: 

We would like to express our sincere appreciation to both reviewers for their thoughtful evaluations 

and constructive feedback on our manuscript. Below is a summary of the main revisions made in 

the revised version: 

1. MVPM Improvements: We have clarified the specific improvements and innovations of MVPM 

compared to existing models (e.g., GIPL, Noah-MP, CLM, CryoGrid) in “Section 1 Introduction”, 

and provided further elaboration in “Section 3.1 The Moving-Grid Permafrost Model”. “Section 

5.3 Comparison with previous studies”, now includes suggestions for integrating MVPM outputs 

into Earth System Models to improve global climate projections. Model forcing limitations: To 

address concerns regarding the use of remote sensing-based LST as model forcing, we provided a 

detailed description of preprocessing steps in “Section 3.2.1 Model forcing”, including how we 

mitigated uncertainties related to cloud cover, snow, and vegetation. In “Section 4.1.1 Comparison 

to in situ data”, we added a comparison with ERA5-Land skin temperature, original LST to 

highlight the improvements achieved by our reconstructed LST. “Section 5 Discussion” now 

summarizes the applicability and limitations of the reconstructed LST, as well as uncertainties 

introduced by the model forcing data 1 km grid resolution, which cannot fully capture micro-

topographic effects. “Section 6 Current model shortcomings and future improvements” has 

been expanded to further address the uncertainties associated with using LST as an upper boundary 

condition and to outline future directions for refinement. Model validation and uncertainty: A 

sensitivity analysis was conducted to assess key parameters such as soil thermal conductivity, heat 

capacity, water/ice content, initial temperature profile, and upper boundary temperature. Results are 

summarized and discussed in “Section 6 Current model shortcomings and future 

improvements”. 

2. Soil stratigraphy representation: We added more detail on soil stratigraphy in Section “3.2.2 

Ground thermal properties”, and discussed related uncertainties in “Section 6 Current model 

shortcomings and future improvements” 

3. Permafrost thermal stability and implications for future projections: “Section 5 Discussion” 

now includes a clearer and more deep discussion of permafrost thermal stability and warming trends, 

including subsurface processes such as latent heat effects and talik formation, along with the 

implications for future projections and potential impacts on the global permafrost carbon–climate 

feedback. 

4. Language and technical corrections: We corrected all typographical errors and thoroughly 

reviewed the manuscript to ensure technical accuracy throughout. Unclear figures have been 

replotted to improve readability. We also carefully checked for any missing co-authors and verified 
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all affiliations. An additional affiliation was added for co-author Wenxin Zhang: School of 

Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK. 

 

We look forward to hearing from you! 

 

 

Best regards, 

Prof. Dr. Lin Zhao 

On behalf of all co-authors 
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Below is our detailed response to each comment, outlining how we have addressed the 

reviewer’s feedback in the revised manuscript. For clarity, the original reviewer comments are 

presented in black font, our responses are in blue font, and the corresponding revisions in the 

manuscript are highlighted in red. References cited in our responses are listed at the end of this 

document. 

Response to Referee#1 egusphere-2024-3956 

General Comments: 

1. In terms of the transient numerical model, First, I would like to understand the distinct 

advantages of the Moving-Grid Permafrost Model (MVPM) compared to existing models, like 

GIPL, Noah-MP, CLM, and CryoGrid. The authors state that the MVPM accounts for the 

thermal properties between frozen and thawed soil, unfrozen water content in frozen soil, 

ground ice distribution, thaw settlement of the ground surface, and geothermal heat flux to 

address model deficiencies. However, these physical processes and parameterization schemes 

are also implemented in other land surface models. Could the authors clarify what specific 

improvements or innovations MVPM provides over these existing models? Second, how dose 

the MVPM model deal with the water balance in the soil domain? Which scheme does it use 

for dynamics of soil water contents? No flow (constant water plus ice contents)? Bucket scheme? 

Richards equation? Third, although the snow cover on the Tibetan Plateau is relatively thin, it 

can significantly affect the hydrothermal state of the permafrost beneath it. dose the MVPM 

model consider the insulation and cooling effect of snow cover? Fourth, dose this study activate 

the ground subsidence module of MVPM? This means that does this study consider the 

existence of excess ice? 

Response: 

The specific improvements and innovations of MVPM are listed below: 

1. Moving-grid (Lagrangian) scheme: The key innovation of MVPM lies in its dynamic vertical 

discretization. Unlike conventional models with fixed soil layers, MVPM employs a moving-

grid (Lagrangian) approach that actively tracks freeze–thaw fronts. This design minimizes 

numerical diffusion and improves the simulation of latent heat effects and delayed thermal 

responses in deep permafrost layers, particularly under transient climate forcing. Such a 

scheme is not commonly found in widely used models such as CLM, GIPL, or CryoGrid. 

2. Integrated and flexible deep soil process representation: MVPM integrates all major thermal 

processes—unfrozen water content, variations in soil thermal properties, geothermal heat flux, 

and the vertical heterogeneity of ground ice—within a computationally efficient moving-grid 

framework. Its flexible vertical discretization enables more accurate representation of deep soil 

stratigraphy and ice distribution, significantly improving long-term simulations of permafrost 

thermal dynamics. In contrast, many existing Land Surface Models (e.g., CLM, Noah-MP) use 
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simplified layering schemes and often neglect geothermal heat flux, leading to reduced 

accuracy in deep permafrost modeling. This limitation is particularly critical on the Qinghai–

Tibet Plateau, which has a relatively high geothermal gradient compared to Arctic and sub-

Arctic regions, resulting in a longer permafrost response time and slower ground temperature 

increase (Jin et al., 2011; Zou et al., 2017).  

3. Improved treatment of phase change: While most LSMs assume a sharp phase transition at 

0 °C, MVPM applies the apparent heat capacity method to simulate gradual phase change over 

a temperature range, based on observed unfrozen water–temperature relationships from 

boreholes (−0.3 °C to 0 °C). This approach is more consistent with field observations from the 

QTP and enhances the realism of freeze–thaw dynamics in the active layer. 

4. Thaw settlement module: MVPM includes a dedicated thaw settlement module that simulates 

surface subsidence and landscape changes driven by the melting of excess ground ice—key 

processes for understanding thermokarst development and permafrost degradation. This 

process-based capability is rarely represented in existing Land Surface Models. 

5. Field observations calibrated and validated: MVPM has been rigorously calibrated using 

detailed field-based thermophysical measurements and soil thermal properties, and has 

demonstrated strong performance in reproducing observed soil temperature profiles, ALT, and 

long-term permafrost dynamics across multiple sites along the Qinghai–Tibet Highway (QTH) 

(Sun et al., 2019, 2022, 2023; Zhao et al., 2022). 

These advancements make MVPM particularly suitable for assessing permafrost thermal 

regimes and their long-term evolution under climate change, especially in the complex and 

heterogeneous terrain of high-altitude permafrost regions like the Qinghai–Tibet Plateau. 

Second, how does the MVPM model deal with the water balance in the soil domain? Which scheme 

does it use for dynamics of soil water contents? No flow (constant water plus ice contents)? Bucket 

scheme? Richards equation? 

We used a no-flow (static) water balance scheme: the total water + ice content in each soil 

layer remains constant (set from field estimates for each soil type), and moisture moves only through 

phase change. This simplification is common in permafrost models for regions with minimal 

infiltration, and it focuses on thermal effects of in-situ freeze/thaw. We have clarified this in the 

section 3.1, line 174 to line 175.  

Third, although the snow cover on the Tibetan Plateau is relatively thin, it can significantly affect 

the hydrothermal state of the permafrost beneath it. dose the MVPM model consider the insulation 

and cooling effect of snow cover? 
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In the current simulation, the MVPM model does not explicitly incorporate snow cover effects. 

While snow can influence permafrost hydrothermal conditions, we decide to omit it due to the 

following reasons: 

First, near-surface ground temperatures are subject to short-term fluctuations driven by air 

temperature, snow, and vegetation. However, the ground acts as a natural low-pass filter, damping 

high-frequency signals with depth. At the depth of zero annual amplitude (ZAA), temperature trends 

reflect long-term climatic patterns rather than short-term surface variability (Jin et al., 2011; 

Dobiński et al., 2022). 

Second, snow cover across the QTP is generally sparse and short-lived due to strong solar 

radiation and wind. Outside alpine regions above 6,000 m, snow depth seldom exceeds 3 cm and 

usually melts within a day (Che et al., 2008; Zou et al., 2017). 

Third, we used the modified MODIS LST dataset developed by Zou et al. (2017), which 

includes cloud-gap filling and calibration with ground-based AWS observations to better account 

for surface heterogeneity. Validation at three typical permafrost sites with distinct surface types—

alpine steppe, alpine meadow, and alpine desert—showed strong agreement between modeled and 

observed LST, with R² values ranging from 0.91 to 0.93 and RMSE values between 2.28 °C and 

2.42 °C. Further evaluation at the TSH AWS site in the WKL region during the 2016–2018 

observation period confirmed the product’s reliability, yielding an R² greater than 0.90 and an 

RMSE of 2.09 °C. These results demonstrate the dataset’s effectiveness in capturing spatial 

variations in LST across the QTP. In our study, we further improved this product by applying a 

machine learning approach to reconstruct pre-2003 LST using multiple data sources. The 

reconstructed LST performed slightly better than the original product (R² > 0.95, MAE = 1.29–

1.50 °C, RMSE = 1.62–1.91 °C) and showed substantial improvement over ERA5-Land LST. 

In summary, while transient snow may introduce short-term surface cooling due to high 

albedo and rapid melt (Zhang et al., 2005), its overall influence is minor at the decadal simulation 

scale adopted here. Snow effects are more critical in longer-term (centennial to millennial) modeling 

scenarios. 

Fourth, dose this study activate the ground subsidence module of MVPM? This means that does this 

study consider the existence of excess ice? 

No, in this study, we did not activate the ground subsidence module of the MVPM model. Our 

focus in this work was primarily on the permafrost thermal regime evolution under climate change. 

Additionally, turn off the ground subsidence module helped improve modeling computational cost. 

Therefore, the existence of excess ice and its potential effects on ground subsidence were not 

considered in the present study. 
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We have clarified the specific improvements and innovations of MVPM in “Section 1 

Introduction”, line 76 to line 98: 

To address limitations in existing models, we developed the Moving-Grid Permafrost Model 

(MVPM; Sun et al., 2019, 2022) to enhance the simulation of subsurface thermal dynamics in 

permafrost regions. Unlike conventional LSMs with shallow or fixed-depth soil grids, MVPM 

adopts a flexible, moving vertical structure that better resolves deep soil stratification and spatial 

variability in ground ice content. The model improves the simulation of freeze–thaw processes by 

adopting the apparent heat capacity method, which more realistically captures gradual phase 

transitions, consistent with field observations on the QTP. MVPM also explicitly incorporates 

geothermal heat flux as the lower boundary condition, which often neglected in many LSMs 

enhancing the accuracy of long-term ground temperature modeling. Moreover, the model includes 

a thaw settlement module, rarely represented in other models, that simulates surface subsidence and 

landscape changes caused by the melt of excess ground ice. These processes are crucial for shaping 

permafrost thaw trajectories and driving thermokarst development, with the potential to release vast 

amounts of frozen organic carbon from cold, ice-rich lowlands, thereby amplifying the global 

permafrost carbon–climate feedback (Turetsky et al., 2015; Westermann et al., 2016; Jan et al., 

2020). Together, these advances enable MVPM to effectively capture both the attenuation and time 

lag of thermal signals in deep permafrost, making it well-suited for modeling permafrost thermal 

regimes under a changing climate. In our previous work, MVPM has been successfully applied to 

simulate heat transfer processes at multiple borehole sites and regions along the QTH. The model 

has demonstrated sufficient accuracy in reproducing both the annual dynamics of active layer 

thawing and refreezing, as well as long-term ground temperature evolution, when compared with 

multi-depth soil temperature observations and active layer thickness measurements (Sun et al., 2019, 

2022, 2023; Zhao et al., 2022).  

We provided further elaboration in “Section 3.1 The Moving-Grid Permafrost Model”, Line 

168 to line 179: 

The Move-Grid Permafrost Model (MVPM) is a numerical framework used to infer time series 

of ground temperature with the land surface as the model's upper boundary (Sun et al., 2019). Its 

model physics is similar to other widely employed models, such as GIPL2.0 (Dmitry et al., 2017) 

and CryoGrid2.0 (Westermann et al., 2013): the change of internal energy and temperature in the 

ground is entirely determined by Fourier's law of heat conduction, and the latent heat generated or 

consumed by soil freezing and thawing within a specified temperature range of −0.3 to 0 °C based 

on observations. Movement of water or water vapor in the ground is not included, so the soil water 

content can only change over time due to freezing processes. Soil temperature dynamics are 

simulated by numerically solving the one-dimensional nonlinear conductive heat equation using the 

finite difference method (Schiesser, 1991; Westermann et al., 2013; Sun et al., 2019). The latest 
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version of the MVPM also includes a settlement module, which was not part of our previous model 

configuration (Zhao et al., 2022). 

“Section 6 Current Model Shortcomings and Future Improvements” has been expanded 

to further address the uncertainties associated with using LST as an upper boundary condition and 

to outline future directions for refinement. Line 837 to line 847: 

In addition, the subsurface thermal model MVPM uses satellite-derived LST as the upper 

boundary condition, which does not explicitly account for snow and vegetation canopy effects, 

potentially introducing uncertainties in densely vegetated areas. However, in the permafrost regions 

of the QTP, snow cover is typically thin (~3 cm), short-lived (lasting less than a day per event), and 

vegetation is sparse, with less than 10% cover in the west (Wu and Zhang, 2008; Che et al., 2008; 

Wang et al., 2016; Zou et al., 2017; Yan et al., 2022). Under these conditions, the thermal offset 

between ground surface temperature (GST) and LST is minimal (Hachem et al., 2012). While thin 

snow cover may briefly cool the surface due to high albedo and rapid melt (Zhang et al., 2005), this 

effect is likely negligible over the decadal timescale of our study. Still, the model’s limitations 

highlight the need for further validation, especially regarding hydrogeological influences on 

permafrost thermal regimes and improved representation of surface heterogeneity in future 

developments. 

2. Aiming at model forcing, as the only model forcing variable, this study adopted three statistical 

and machine-learning approaches to extent the land surface temperature from Zou et al (2014, 

2017). I was wondering why the authors selected these eight specific input variables—surface 

air temperature, precipitation, skin temperature, soil temperature, fractional cold over, surface 

radiation budget, leaf area index, and digital elevation model—for the statistical and machine 

learning approaches. Could the authors clarify whether including more (or fewer) variables 

might help to avoid issues of model underfitting or overfitting? Besides, furthermore, what it is 

the basis for selecting the particular datasets used for these variables? For example, the study 

utilizes the uppermost soil temperature from CFSR, while skin temperature is taken from 

ERA5-land. Given that ERA5-land also provides uppermost soil temperature data at a higher 

spatiotemporal resolution compared to CFSR.  

Response: 

We selected these eight specific input variables based on physical relevance, expert knowledge, 

and a thorough review of related published literature (Wang et al., 2022; Xu et al., 2018; Janatian 

et al., 2017; Yang et al., 2023), which guided us to select variables having close relationships with 

LST as input. Moreover, data quality and availability on QTP were even more important 

considerations. We selected variables that had consistent, long-term records that satisfied the 

requirements of our study. 

Regarding model complexity and model underfitting or overfitting, we conducted preliminary 
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experiments and for each machine learning approach, we tested both training and validation errors 

across different variable combinations. For example, models using only air temperature, as shown 

in our previous work (Xing et al., 2023), demonstrated signs of underfitting with systematic errors. 

However, adding related variables significantly improved model performance according to our 

cross-validation tests. Thus, we believe the eight-variable configuration that closely represents LST 

dynamics provided the optimal balance between model performance and parsimony, performing 

better than simpler models with fewer variables. Conversely, whether adding additional parameters, 

such as wind speed, humidity, soil moisture, and snow cover, would lead to model overfitting is 

uncertainly at present. These additional data products exhibit considerable variability in quality 

across the permafrost zone of the QTP. Investigating their potential integration will be the focus of 

future work. 

As for soil temperature selection, our choices were primarily driven by data quality 

assessments. While ERA5-land is a good choice that provides soil temperature at different depths 

at a higher spatiotemporal resolution than CFSR, we selected CFSR soil temperature data based on 

its better performance in preliminary validation against our long-term continuous observations in 

the permafrost zone on the QTP. The validation results suggested CFSR soil temperature products 

were closer to the observations at different depths in the permafrost zone on the QTP despite its 

coarser resolution (Hu et al., 2018). This explains our use of different sources for shallow soil 

temperature and skin temperature. This mixed-source approach allowed us to leverage the strengths 

of each dataset while compensating for their respective limitations in our specific study area. 

In any way, we will try to do more work on the issues raised by the reviewers. 

 

Specific comments: 

1. Line 40: Smith et al 2022? Maybe it is a wrong reference? 

Response: 

Yeah, it was indeed a typo. The correct reference should be Smith et al., 2022, referring to: 

“Smith, S., O’Neill, H., Isaksen, K., Noetzli, J., and Romanovsky, V.: The changing thermal state 

of permafrost, Nat. Rev. Earth Environ., 3, 10–23, https://doi.org/10.1038/s43017-021-00240-1, 

2022.” We have corrected this in the revised manuscript. 

2. Line 49: the reference (Zhao et al., 2019) seemed missing? 

Response: 
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Here should be cited as Zhao et al., 2019a, referring to the following reference: “Zhao, L., Hu, 

G., Zou, D., Wu, X., Ma, L., Sun, Z., Yuan, L., Zhou, H., and Liu, S.: Permafrost Changes and Its 

Effects on Hydrological Processes on the Qinghai-Tibet Plateau, Bull. Chin. Acad. Sci., 34, 1233–

1246, DOI: 10.16418/j.issn.1000-3045.2019.11.006, 2019a.”  

3. Line 51: should the Qinghai-Tibet Highway and Railway be abbreviated as QTH? Not sure. 

Response: 

You're right. Using QTH for both the Qinghai-Tibet Highway and Railway can be confusing. 

After reviewing the literature, we found that QTH is commonly used for the Qinghai-Tibet Highway, 

while QTR refers to the Qinghai-Tibet Railway. In the revised manuscript, we have adopted these 

standard abbreviations (QTH and QTR) separately to ensure clarity. 

4. Line 84: “ALT” should be given tis full name, this is the first time it has been abbreviated. And 

“refreezing” of what? 

Response: 

Here, we have given full name for ALT (active layer thickness). I want to express that, based 

on our previous simulations, the MVPM can provide sufficient accuracy to capture the annual 

dynamics of active layer thawing and refreezing, but it seems that 'thawing' was missing. In the 

revised manuscript, we have corrected this in revised manuscript. 

5. Line 161: dose this study activates the settlement module? 

Response: 

No, in this study, we did not activate the ground subsidence module of the MVPM model. 

Please refer to the answer to the first question. 

6. Line 183: what is the surface radiation budget? Net radiation? Net shortwave radiation? Or net 

longwave radiation? It is not clear. 

Response: 

Net radiation, and we have corrected this in revised manuscript. 

7. Line 189: the resolution of all input data is not daily. 

Response: 

Exactly, we have corrected in revised manuscript. The text there reads as: 
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“Monthly averages were then calculated from the available data (which varied in temporal 

resolution across datasets), and missing values were filled by interpolating from nearby data.” 

8. Line 271: how to deal with initial water/ice content?  

Response: 

Initial water and ice content were estimated from moisture measurements of borehole cores 

taken from various Quaternary sediment types, including fluvioglacial, lacustrine, alluvial, and 

aeolian deposits. These values were further refined through model calibration to improve simulation 

accuracy. Volumetric ice content was highest in fluvioglacial sediments, followed by lacustrine 

sediments and weathered residual slide rock. Vertically, ground ice is concentrated near the 

permafrost table, where the active layer thickness (ALT) is typically 2–3 m. Ice content generally 

increases between 3–10 m depth and stabilizes below 10 m. 

9. Line 274: “approximately”? it should be an exact number for the grid cell to be simulated. 

Response: 

I agree, this was not an appropriate expression and has been corrected in the revised manuscript. 

The text there reads as: 

After excluding lake and glacier-covered areas, simulations were conducted for 47,284 grid 

cells. 

10. Line 300: “filed investigation and borehole monitoring datasets”? I guess it is “Field”. 

Response: 

Yes, exactly, we made a typo. Thank you so much for pointing it out. We have also carefully 

checked and corrected similar typographical errors throughout the text. 

11. Line 430: “Grey Shading”? only saw the grey line. 

Response: 

Yes, it should be 'grey line' instead of 'Grey Shading.' This has been corrected. 

12. Section 4.2.4: the author states, “permafrost area in the West Kunlun kept stable from 1980 to 

1999, decrease in the 2000s, while increase between 2010 and 2022.” However, the MVPM 

model is just forced by land surface temperature, while showed an increasing trend between 

1980 and 2022 (Figure 4). Could the author explain why permafrost area increase between 2010 

and 2022?  



 11 / 41 

 

Response: 

This apparent contradiction can be attributed to two key factors: 

First, although the regional average LST shows an overall warming trend from 1980 to 2022, 

substantial interannual and spatial variability exists within the study area. Some localized regions 

experienced short-term cooling phases within the broader warming trend, which may have 

supported new permafrost formation or local expansion. 

Second, the thermal response of soil layers to surface warming occurs at different rates and 

includes significant time lags—especially in deeper, ice-rich layers. The high thermal inertia of 

permafrost delays its response to surface warming by years or even decades. As a result, the 

simulated slight increase in permafrost extent between 2010 and 2022 likely reflects a delayed 

thermal response to earlier, cooler conditions rather than a contradiction of recent warming. 

These findings underscore the non-linear and lagged nature of permafrost response to climate 

change in the WKL region. 

We added related clarify Permafrost thermal Stability: “Section 5 Discussion” in our revised 

manuscript, line 665 to line 670: 

Interestingly, while regional average LST showed a steady increase from 1980 to 2022, 

considerable interannual and spatial variability was simulated. We hypothesize that intermittent 

cooling episodes may have triggered the formation or re-expansion of permafrost in certain areas 

through delayed responses, a view supported by our simulation, which showed a slight increase in 

permafrost extent between 2010 and 2022 despite continued warming. 

13. Line 601-609: so how about the reanalysis data (like Chinese meteorological forcing datasets, 

ERA5 land)? Compared with the forcing data from ESMs, the spatiotemporal resolution of them 

is better. 

Response: 

Exactly. While reanalysis and assimilated data products offer higher spatiotemporal resolution 

than ESM outputs, their accuracy in the permafrost regions of the QTP remains limited due to sparse 

observational constraints (Jiao et al., 2023). For instance, Hu et al. (2018) found that GLDAS-

NOAH and ERA-Interim performed poorly in the QTP when compared with soil temperature 

observations. Similarly, Yang et al. (2020) reported that reanalysis datasets such as CFSv2, ERA-

Interim, GLDAS-Noah, and ERA5 can capture temporal trends but significantly underestimate soil 

temperatures during thawing periods. 
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For Chinese reanalysis specifically, Hu et al. (2024) showed that although CLDAS performs 

well over most of China, it exhibits large errors in the QTP permafrost zone (bias = 2.09°C, MAE 

= 3.64°C, RMSE = 4.67°C), largely due to limited observational input and inadequate representation 

of permafrost surface conditions. 

Therefore, despite their resolution advantages, reanalysis products still face major limitations 

in permafrost modeling over the QTP. 

In “Section 5 Discussion” of the revised manuscript, we have supplemented information about 

current reanalysis or assimilated soil temperature products and their application in the permafrost 

region of the QTP The text there reads as:  

Previous studies have shown that currently widely reanalysis or assimilated soil temperature 

products, such as ERA-Interim (0.125°  ×  0.125°), ERA5-Land (0.1°  × 0.1°) and CLDAS 

(0.0625° × 0.0625°) exhibit substantial uncertainties when applied to the QTP, particularly in 

permafrost regions (Hu et al., 2019; Qing et al., 2020; Yang et al., 2020).  

14. Could the author explain how this study can be extended to be the future projections? Due to 

its inability to obtain the land surface temperature with higher resolution from remote sensing 

data in the future, how to diagnose the future condition of permafrost in West Kunlun. 

Response: 

Near-surface ground temperature closely follows seasonal air temperature variations, but these 

fluctuations diminish with depth and become negligible at the zero annual amplitude (ZAA) depth—

typically 10–20 m in the permafrost zones of the QTP (Lunardini et al., 1995; Jin et al., 2011; 

Dobiński et al., 2022). At this depth, seasonal signals vanish, and ground temperatures reflect long-

term climate trends rather than short-term variability (Smith and Riseborough, 1983; Buteau et al., 

2004). This makes ZAA temperatures a robust indicator for modeling permafrost response to 

climate change, even without high-resolution remote sensing data. 

To evaluate future permafrost dynamics, ground temperature profiles can be modeled under 

scenarios of linearly increasing air temperature. The IPCC Sixth Assessment Report (WG1 AR6) 

projects mean annual air temperature increases over the QTP from 1995–2014 to 2081–2100 of 

0.013°C yr⁻¹ (RCP2.6), 0.028°C yr⁻¹ (RCP4.5), and 0.060°C yr⁻¹ (RCP8.5), based on the CMIP5 

multi-model ensemble (21–29 models). CMIP6 projections under SSPs estimate warming rates of 

0.017°C yr⁻¹ (SSP1-2.6), 0.032°C yr⁻¹ (SSP2-4.5), and 0.064°C yr⁻¹ (SSP5-8.5), based on 31–34 

model outputs. A similar projection approach can be found in our following published literature: 

Hu et al. (2015), Li et al. (1999), Sun et al. (2020), and Zhao et al. (2022). 
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Response to Referee#2 egusphere-2024-3956 

Major Comments: 

1. Model validation and uncertainties  

The authors report high model accuracy (±0.25 °C for ground temperature and ±0.25 m for active 

layer thickness). However, the discussion of model uncertainties could be expanded. Key areas for 

improvement include: 

* a sensitivity analysis of key model parameter such as soil thermal properties and initial boundary 

conditions to assess their impact on the results. 

* a deeper discussion on the limitations of the forcing datasets, particularly the machine-learning-

based reconstruction of LST prior to 2003 and impact of the cold bias of 0.8degC (Compared to in 

situ measurements, we found a slight cold bias in our reconstructed LST series, averaging 

approximately -0.80°C) 

Response: 

A sensitivity analysis was conducted to assess the key parameters contributing to uncertainties 

in our modeling results, with findings summarized and discussed in “Section 6 Current model 

shortcomings and future improvements”, Line 793 to line 811: 

To quantify model parameter uncertainty, we conducted a one-at-a-time sensitivity analysis 

(Figure 12) using three representative boreholes located in stable permafrost, unstable permafrost, 

and seasonally frozen ground (see Table 4). Key model parameters were perturbed by ±10% to 

evaluate their effects on permafrost thermal regime (MAGT15 m and ALT). The result shown that 

among all parameters, upper boundary temperature (e.g., surface forcing) exerted the strongest 

influence on MAGT15 m, though the absolute impact was modest, around ±0.15 °C in seasonally 

frozen ground and ≤±0.1 °C in permafrost areas. ALT showed similarly limited sensitivity, varying 

by ~±0.1 m in stable permafrost and ±0.05 m in unstable zones. Soil thermal conductivity and 

water/ice content had a more pronounced effect on ALT, particularly in unstable permafrost, where 

a 10% change could lead to a ±0.10m~ ±0.15 m variation. In contrast, soil heat capacity had minimal 

influence on both MAGT and ALT. 

The above analysis indicates that the model demonstrates robustness to parameterization 

uncertainties and that uncertainties associated with stratigraphy have a limited effect on overall 

performance.  Although stratigraphic classification and spatial variability inevitably introduce 

some degree of uncertainty, our approach is well supported by field measurements and observed 

thermal properties. Despite these limitations, we are confident that the model accurately represents 
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the key thermal characteristics of each sediment class —key factors for simulating permafrost 

dynamics. Continued improvements in subsurface datasets, particularly in permafrost regions, will 

be essential for improving model performance in future applications. 

Table S1. Information on three representative borehole sites used for one-at-a-time sensitivity analysis 

Borehole Description 

ZK30 
The borehole reaches a depth of 15 m, with the ground primarily composed of fine sand and silty 

sand. The MAGT is -1.66 °C, and the ALT is 2.4 m, classifying the site as stable permafrost. 

ZK12 

The borehole has a drilling depth of 13.5 m, with a vegetation-free surface. The core consists 

primarily of Fluvial sand and sand. Frozen soil was first encountered at a depth of 4.9 m, where 

small ice crystals are evenly distributed within a granular soil structure. Below 5.5 m, the frozen 

layer disappears, accompanied by a noticeable increase in ground temperature. The 4.9–5.5 m 

interval represents a transition zone, and the site is classified as unstable permafrost. 

ZK13 
No frozen soil was encountered during the drilling process, and the site is classified as seasonally 

frozen ground 

Note: This information is compiled from Li et al. (2012) and Zhao et al. (2019). 

 

Figure S1. One-at-a-time sensitivity analysis showing the effects of ±10% variation in individual model 

parameters, e.g., soil thermal conductivity, heat capacity, water/ice content, initial temperature, and upper 

boundary temperature—on (top row) mean annual ground temperature (MAGT) at 15 m depth and (bottom 

row) active layer thickness (ALT), across three ground conditions: stable permafrost (left), unstable 

permafrost (middle), and seasonally frozen ground (right). 
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* The effect of snow cover on LST reconstruction and subsurface thermal dynamics is not 

sufficiently addressed. How are snow-insulated period accounted for? Is there any bias introduced 

by could-covered or snow-covered days in the satellite-derived LST? (linked to point 2)  

Response: 

Firstly, in the vast permafrost zone of the QTP, strong solar radiation and wind lead to rare, 

thin snow cover (~3 cm) that typically persists for less than a day per snowfall event (Wu and Zhang, 

2008; Che et al., 2008; Zou et al., 2017; Yan et al., 2022). Vegetation is sparse, dominated by dwarf 

alpine grassland, with cover often below 10% in the western QTP (Wang et al., 2016). Under these 

conditions, the average thermal offset between ground surface temperature (GST) and LST is 

minimal (Hachem et al., 2012). 

Secondly, the MVPM model uses LST as the upper boundary forcing and employs a modified 

MODIS LST product developed by Zou et al. (2017, 2014). This product incorporates cloud-gap 

filling and calibration with ground-based AWS observations at three representative sites—alpine 

steppe (Xidatan), alpine meadow (Tangula), and alpine desert (Wudaoliang)—in the central QTP 

permafrost region, to better account for surface heterogeneity. Model validation at these sites 

showed strong performance, with R² values ranging from 0.91 to 0.93, mean absolute error (MAE) 

from 2.28 to 2.42°C, and root mean square error (RMSE) from 2.96 to 3.05°C. In our study, this 

product was further improved using a machine learning approach to reconstruct pre-2003 LST by 

integrating multiple data sources. The reconstructed LST slightly outperformed the original product 

(R² > 0.95, MAE = 1.29–1.50°C, RMSE = 1.62–1.91°C), and showed substantial improvement over 

ERA5-Land LST (see also our response to the second question regarding MODIS LST as forcing 

data).  

Our model simulations reliably reproduce mean annual ground temperature, ALT, and 

permafrost distribution across different time periods. While thin snow cover may temporarily cool 

the ground due to high albedo and rapid melt (Zhang et al., 2005), its short duration suggests 

minimal impact at the decadal time scales of our simulation. Snow cover effects are more relevant 

for centennial to millennial time-scale modeling  
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2. Use of MODIS LST as forcing data 

While MODIS LST provides high spatial resolution and extensive temporal coverage, it poses 

several challenges when used to force model models: 

* MODIS measures skin temperature rather than subsurface ground temperature, which can differ 

significantly—especially under snow cover or vegetation (vegetation is acknowledged in this study)  

* Snow cover introduces thermal insulation, decoupling surface LST from the subsurface thermal 

regime (Albeit often nonexistent or thin snow cover). However, wind driven snow drift can be 

significant and give spatial heterogeneity at high model resolutions. The significance of these effects 

needs to be addressed in this study region.  

* Cloud cover causes data gaps, which can lead to temporal inconsistencies or biases if gap-filling 

methods are not robust—particularly problematic in winter months?  

* MODIS LST captures only clear-sky conditions, potentially biasing the dataset toward colder 

nighttime or warmer daytime extremes, depending on retrieval timing.  

The paper should better articulate how these limitations are mitigated in the LST reconstruction, 

and what implications they have for subsurface heat fluxes and permafrost thermal state. A 

comparison with measured air-temperature or reanalysis-based forcing would also help. 

Response: 

Surface (skin) temperature was used as the upper boundary forcing in our model, where we 

applied machine learning techniques to reconstruct remote-sensing-based LST. We acknowledge 

the reviewer's concern: MODIS LST reflects skin temperature (e.g., canopy or snow surface), not 

ground surface temperature (GST), and is subject to limitations such as thermal insulation from 

snow cover, data gaps due to cloud cover, and clear-sky sampling bias. To address these issues, we 

implemented several preprocessing and correction steps: 

First, we used a modified MODIS LST product since 2003 developed by Zou et al. (2017), 

based on the MOD11A2 (Terra) and MYD11A2 (Aqua) Collection 6 datasets, which provide twice-

daily observations. Gaps caused by cloud cover and other factors were filled using the Harmonic 

Analysis of Time Series (HANTS) method (Xu et al., 2013; Zou et al., 2017), effectively reducing 

cold bias and smoothing the time series, particularly over the QTP. 

Second, daily mean LST values were estimated from MODIS instantaneous daytime and 

nighttime data using multi-step statistical models calibrated against GST data from three AWS in 

central QTP permafrost regions (Zou et al., 2014, 2017). This empirical correction model was 

applied across the QTP, with strong validation at three representative sites—alpine steppe (Xidatan), 

alpine meadow (Tangula), and alpine desert (Wudaoliang)—showing high accuracy (R² = 0.91–

0.93, MAE = 2.28–2.42°C, RMSE = 2.96–3.05°C). In our work, additional validation in the West 
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Kunlun region using 2016–2018 data from the our established TSH AWS (81.4°E, 36.0°N, 5019 m) 

yielded R² > 0.90, MAE = 1.62°C, and RMSE = 2.09°C. 

Third, in this study, the modified LST product from Zou et al. (2017) was further refined to 

reconstruct historical LST data prior to 2003—extending back to 1980, using machine learning 

models trained on eight variables from ground observations, satellite products, and reanalysis 

datasets. This reconstructed LST was validated using monthly in situ data from TSH AWS (2016–

2018), achieving R² > 0.95, MAE = 1.29–1.50°C, and RMSE = 1.62–1.91°C. It outperformed the 

original MODIS LST and ERA5-Land in accuracy (Figure S2). 

Fourth, although direct validation before 2003 was not possible due to lack of observations, 

we performed indirect validation. The reconstructed LST was used to drive MVPM simulations of 

permafrost dynamics from 1980 onward, which were compared with observed data and published 

permafrost distribution maps for multiple periods (Li et al., 1996; Wang et al., 2006; Cao et al., 

2023; Zou et al., 2017). The model results aligned well with these independent sources. Moreover, 

the reconstructed LST captured the observed long-term warming trend in the West Kunlun region 

since the mid-1980s, with accelerated warming in the last decade, consistent with regional studies 

(Jin et al., 2011; You et al., 2021; Yao et al., 2019; Li et al., 2024). 

In summary, while we acknowledge the limitations of our model forcing and the lack of direct 

historical data, the multi-step correction, machine learning reconstruction, and multiple validation 

strategies collectively provide strong support for the reliability of the LST dataset used in this study. 

In revised manuscript, we added a detailed description of preprocessing steps to mitigate 

related uncertainties in “Section 3.2.1 Model forcing”, line 182 to line 192: 

We used a modified MODIS LST product developed by Zou et al. (2014, 2017), which partially 

accounts for surface influences such as snow cover, vegetation, and cloud presence through a cloud-

gap filling algorithm and calibration with AWS observations from three representative permafrost 

regions with distinct surface types—alpine steppe, alpine meadow, and alpine desert—in the central 

QTP. Validation showed strong agreement between the modeled and observed LST, with R² values 

ranging from 0.91 to 0.93 and RMSE values around 3 °C. Further evaluation at the TSH AWS site 

in the WKL region during the 2016–2018 observation period confirmed the product’s reliability, 

with an R² greater than 0.90 and an RMSE of 2.09 °C, demonstrating its effectiveness in capturing 

spatial variations in LST across the QTP. 
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In “Section 4.1.1 Comparison to in situ data”, we added a comparison with ERA5-Land skin 

temperature to highlight the improvements achieved by our reconstructed LST. 

 

Figure S2. Monthly average LST at the TSH AWS from 2016 to 2018, including reanalysis-derived LST 

(ERA5-Land), modified satellite-derived LST (LST_Zou), estimates from three machine learning models (LR, 

MLR, and RFR), and in situ observations. 

In Section 5 Discussion, we summarized the applicability and limitations of the reconstructed 

LST, line 583 to line 623: 

In contrast, satellite remote sensing products such as MODIS LST offer a long-term temporal 

coverage and broader regional coverage with higher spatial resolution. However, MODIS LST has 

several limitations when applied to permafrost modeling. It measures skin temperature rather than 

ground surface temperature, often reflecting vegetation canopy or snow temperature. Additionally, 

snow cover introduces thermal insulation effects, cloud cover creates data gaps, and only clear-sky 

conditions are captured. To address these challenges, we used a modified LST product developed 

by Zou et al. (2017), which incorporates cloud-gap filling and ground-based AWS observations to 

account for surface heterogeneity. Validation at three typical permafrost sites in central permafrost 

zone as well as WKL region showed strong performance. In our study, this product was further 

enhanced using machine learning to reconstruct pre-2003 LST by integrating multiple data sources. 

The reconstructed LST performed slightly better than the original product (R² > 0.95, MAE = 1.29–

1.50°C, RMSE = 1.62–1.91°C), with notable improvement over ERA5-Land LST. 

While direct validation of pre-2003 LST is not possible due to the lack of satellite or ground 

observations in the WKL region. We employed an indirect validation approach: the reconstructed 

LST was used to force the MVPM to simulate permafrost thermal dynamics from 1980 onward. The 

simulation results were evaluated against existing permafrost monitoring data and previously 

published permafrost distribution maps from various periods, i.e.1980s (Li et al., 1996), 2000s 

(Wang et al., 2006), 2010 (Cao et al., 2023), and post-2010 (Zou et al., 2017). The strong agreement 
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between the MVPM outputs and these independent sources supports the reliability of the pre-2003 

LST reconstruction. Moreover, our analysis reveals pronounced LST warming in the WKL survey 

area since the mid-1980s, with accelerated warming over the last decade. This trend aligns with 

recent documented warming across the QTP (Jin et al., 2011; Yao et al., 2019; You et al., 2021; Li 

et al., 2024), providing further indirect validation of the reconstructed LST. Collectively, this multi-

faceted validation approach provides reasonable confidence in our LST dataset, despite the lack of 

direct early-period observations. While we acknowledge this limitation, we believe our 

methodology offers a robust solution given the data constraints of this remote and observationally 

challenging region. 

The above comparisons show that the reconstructed LST closely aligns with in situ data and is 

suitable for ground thermal modeling. However, a seasonal cold bias remains, especially in July–

September (Figure 3), leading to a slight underestimation of shallow soil temperatures, resulting in 

a cold bias in ALT. Such bias is likely due to the sensitivity of near-surface ground temperature to 

seasonal forcing. Similarly, Westermann et al. (2015) found that an LST uncertainty of ±2 °C can 

lead to a ±3 cm uncertainty in simulated thaw depth. We conducted a sensitivity analysis (Figure 12) 

to evaluate the impact of uncertainties in model forcing (e.g., LST) on simulation results, and the 

findings confirm the model's robustness to LST biases. Moreover, since thermal signals attenuate 

with depth and ground temperatures at the ZAA level reflect long-term trends (Jin et al., 2011; Dobi

ński et al., 2022), the observed cold bias appears to be seasonal and has limited influence on long-

term permafrost dynamics. 

In “Section 6 Current model shortcoming and future improvements”, has been expanded 

to discuss limitations of the model forcing, line 837 to line 847: 

In addition, the subsurface thermal model MVPM uses satellite-derived LST as the upper 

boundary condition, which does not explicitly account for snow and vegetation canopy effects, 

potentially introducing uncertainties in densely vegetated areas. However, in the permafrost regions 

of the QTP, snow cover is typically thin (~3 cm), short-lived (lasting less than a day per event), and 

vegetation is sparse, with less than 10% cover in the west (Wu and Zhang, 2008; Che et al., 2008; 

Wang et al., 2016; Zou et al., 2017; Yan et al., 2022). Under these conditions, the thermal offset 

between ground surface temperature (GST) and LST is minimal (Hachem et al., 2012). While thin 

snow cover may briefly cool the surface due to high albedo and rapid melt (Zhang et al., 2005), this 

effect is likely negligible over the decadal timescale of our study. Still, the model’s limitations 

highlight the need for further validation, especially regarding hydrogeological influences on 

permafrost thermal regimes and improved representation of surface heterogeneity in future 

developments.  
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3. Representation of soil stratigraphy  

The study highlights variations in permafrost responses based on soil stratigraphy, but further clarity 

is needed regarding: 

* The specific role of soil moisture and ice content in modulating permafrost temperature trends. 

* Potential biases in stratigraphic classification and how these might affect regional variability in 

permafrost degradation. 

* The extent to which subsurface heterogeneity is accounted for in the model. 

Response: 

In our modeling framework, we incorporated detailed thermophysical characterization of the 

subsurface based on measurements from 15 boreholes distributed across the WKL permafrost 

survey area, with depths ranging from 15 to 59 m. Core sampling, field observations, and borehole 

descriptions (Li et al., 2012; Zhao et al., 2019) indicate that ground ice content in the region varies 

between 5% and 50%, depending on the type of Quaternary sediments. Higher ice contents are 

typically found in fine-grained glarosional and lacustrine deposits due to the prevalence of 

segregation ice, while lower contents are associated with coarse-grained alluvial and colluvial 

materials. Vertically, ice-rich layers are consistently found near the upper boundary of permafrost, 

generally within the top 2–3 m. Ice content tends to slightly increase with depth between 3 m and 

10 m, then remains relatively stable below 10 m (Zhao et al., 2010). 

To extrapolate these site-level stratigraphic and thermophysical data spatially, we employed 

vector-based geomorphological classification maps of western China. Five major stratigraphic 

classes were identified in the WKL region: glarosional, alluvial plain, aeolian, colluvial valley, and 

lacustrine deposits. 

Our simulation results highlight the critical role of ground ice content in controlling permafrost 

thermal dynamics. Modeled ground temperature and ALT vary across stratigraphic classes, with the 

deepest ALT observed in ice-poor alluvial sediments and the shallowest in ice-rich glarosional 

deposits.  

During permafrost degradation, surface heat is used for two processes: (i) melting ground ice 

(latent heat) and (ii) warming the soil (sensible heat). The latent heat of the ice–water phase 

transition (334 kJ/kg) far exceeds the sensible heat needed to raise the temperature of ice or water 

(2 and 4.2 kJ/kg·K, respectively). 

Heat distribution varies by degradation stage (Sun et al., 2023). In the early stage, low 

temperatures and minimal unfrozen water limit phase change, so soil warms rapidly through 
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sensible heat. In the zero-geothermal-gradient stage, as the entire permafrost nears the melting point, 

increased unfrozen water leads to greater latent heat consumption, slowing or halting further 

warming. 

This mechanism explains our simulation results: the largest ALT increases (>0.17 m) occurred 

in ice-poor alluvial sediments in warmer zones, while the smallest increase (0.11 m) was found in 

ice-rich glarosional deposits at cold, high-elevation area. Ice-rich permafrost thus acts as a thermal 

buffer, delaying the downward propagation of surface warming and slowing active layer deepening 

despite continued atmospheric warming 

While some uncertainty in stratigraphic classification and spatial representation are 

unavoidable, our approach is grounded in field data and measured thermal properties. Sensitivity 

analyses show that model outputs are robust to variation in key soil parameters. 

We acknowledge the presence of fine-scale heterogeneity, especially in complex mountainous 

terrain, which is not fully resolved at the 1 km modeling resolution. Within-class variability may 

also contribute to local biases. Nonetheless, the model effectively captures the key thermal behavior 

of each sediment type, which is essential for simulating permafrost response to climate change. 

Future improvements in spatially resolved soil property datasets will be vital for enhancing model 

accuracy. 

We have added more detail on soil stratigraphy in Section “3.2.2 Ground Thermal 

Properties”, line 238 to line 246: 

In our modeling framework, we incorporated detailed thermophysical characterization of the 

subsurface based on measurements from 15 boreholes with observations across the WKL permafrost 

survey area, with depths ranging from 15 to 59 m. Core samples, field observations, and borehole 

logs (Li et al., 2012; Zhao et al., 2019) indicate that ground ice content in the WKL region varies 

between 5% and 50%, depending on the type of Quaternary sediment. Higher ice contents are 

typically found in fine-grained glarosional and lacustrine sediments due to enhanced segregation ice 

formation, while coarse-grained alluvial and colluvial deposits generally show lower ice content. 

Vertically, ice-rich layers are consistently observed near the upper boundary of permafrost, typically 

between 2 and 3 m depth. Ice content tends to increase slightly between 3 and 10 m and remains 

relatively stable below 10 m (Zhao et al., 2010).  

The discussed related soil properties uncertainties in “Section 6 Current model shortcomings 

and future improvements” see details in response of “Model validation and uncertainties”. 
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4. Permafrost stability and warming trends  

The study concludes that despite significant warming trends in LST, permafrost extent remains 

stable. While plausible given the thermal inertia of deep permafrost, the paper could be benefit from: 

* A clearer discussion on why this stability is observed and how it compares with degradation rates 

reported in other high-altitude or Arctic regions.  

* Consideration of potential threshold effect (e.g., rapid degradation once a critical warming 

threshold is exceeded) 

* More discussion on subsurface processes such as latent heat effects and talik formation, which 

may delay degradation despite rising surface temperatures.  

* The observed increase in permafrost area despite a warming trend of 0.4°C per decade is surprising 

and warrants closer examination and justification.  

Response: 

Permafrost thermal degradation is a complex and lagged response to climate warming, further 

modulated by local environmental factors such as soil type, ground ice content, geothermal heat 

flux, and the initial thermal state of the ground (Zhao et al., 2020; 2024; Hu et al., 2023). In response 

to climate change, permafrost does not degrade instantaneously but undergoes a gradual adjustment 

of its thermal regime over various timescales—ranging from years to centuries or even millennia 

(Wu et al., 2010). 

On QTP, this response is particularly nuanced. Wu et al. (2010) proposed a classification of 

permafrost degradation stages based on ground temperature profiles, including the warming stage, 

the zero-geothermal-gradient stage, the talik development stage, and eventual disappearance. These 

thermal states reflect ongoing degradation processes since the Last Glacial Maximum (LGM), 

shaped by both climate history and local ground conditions. 

Compared to high-latitude permafrost regions in the Arctic and sub-Arctic, permafrost on the 

QTP is generally warmer and occurs under a relatively higher geothermal gradient. This distinct 

thermal setting leads to a slower increase in ground temperature and prolongs the degradation 

response time despite pronounced atmospheric warming (Jin et al., 2011; Zou et al., 2017; 

Biskaborn et al., 2019). In contrast, Arctic permafrost tends to be colder and more sensitive to 

warming, resulting in faster thermal responses. These regional differences highlight the importance 

of accounting for reginal-specific thermal regimes when assessing the vulnerability of permafrost 

to climate change. 
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Our study found that approximately 70.98% of the permafrost in the Western Kunlun region is 

in the temperature-rising stage, characterized by an initial MAGT15m below –2.0 °C and ALT of 

less than 1.5 m. This type predominantly occurs in high-elevation zones above 4800 m a.s.l. An 

additional 17.58% of the permafrost is transitioning from the temperature-rising stage to the zero 

geothermal gradient stage. Only 11.44% is in the zero geothermal gradient stage or progressing 

toward talik development, which signals ongoing degradation. These permafrost types are primarily 

found at lower elevations (below 4800 m a.s.l.) and exhibit relatively high MAGTs (above –1 °C). 

Permafrost forms when long-term heat loss at the ground surface exceeds heat input under a 

persistently cold climate (Wu et al., 2010). In a warming climate, sustained increases in ground 

surface temperature disrupt this thermal equilibrium. The active layer begins to retain more heat 

each year, initiating progressive warming from the surface downward and reducing the temperature 

gradient within the permafrost. During the early stages of warming, permafrost temperatures rise 

more rapidly than thawing occurs, as much of the incoming energy is consumed raising the frozen 

soil to its thawing point. This explains why, despite a pronounced warming trend, the areal extent 

of permafrost in the Western Kunlun region remained relatively stable during the simulation period. 

Furthermore, while the regional average LST exhibited a consistent warming trend from 1980 

to 2022, substantial interannual and spatial variability was observed. We suggest that periodic 

cooling events contributed to the formation or expansion of new permafrost in certain areas, 

producing a delayed and spatially heterogeneous response. This is supported by our simulated 

permafrost maps, which show a slight increase in permafrost extent between 2010 and 2022, despite 

overall warming during this period. 

Under continued climate warming, MAGTs are projected to rise further. As heat penetrates 

deeper into the ground, the thermal gradient within the permafrost diminishes and eventually 

becomes smaller than the geothermal gradient, resulting in upward heat flow from underlying 

unfrozen ground. This process initiates basal thawing and leads to a gradual upward retreat of the 

permafrost base. 

As permafrost temperatures approach 0 °C, ground ice near the permafrost table begins to melt, 

consuming large amounts of latent heat in a process known as the “zero curtain effect.” This phase 

significantly slows or temporarily halts further warming, extending the duration of thermal inertia 

and dampening seasonal temperature variations in the upper permafrost. At the same time, 

geothermal heat from below is primarily consumed in thawing the permafrost from the bottom up. 

The zero geothermal gradient stage represents a critical transitional phase in permafrost 

degradation. During this stage, nearly all surface-derived energy is expended on melting ground ice, 

accelerating the downward movement of the permafrost table. Once seasonal freezing no longer 

reaches the permafrost, a talik—a zone of unfrozen ground within permafrost—forms and expands. 
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Numerical simulations by Sun et al. (2019) demonstrate that talik development marks a tipping 

point, triggering accelerated thaw and irreversible permafrost degradation until complete loss. 

A more detailed discussion of permafrost thermal stability and warming trends—incorporating 

subsurface processes such as latent heat effects and talik formation, along with the implications for 

future projections and potential feedbacks to the global carbon cycle—is provided in Section 5: 

Discussion, line 641 to line 688: 

Permafrost thermal degradation is a complex and lagged response to climate warming, further 

modulated by local environmental factors such as soil type, ground ice content, geothermal heat 

flux, and the initial thermal state of the ground (Zhao et al., 2020; 2024; Hu et al., 2023). In response 

to climate change, permafrost does not degrade instantaneously but undergoes a gradual adjustment 

of its thermal regime over various timescales—ranging from years to centuries or even millennia. 

On QTP, this response is particularly nuanced. Wu et al. (2010) proposed a classification of 

permafrost degradation stages based on ground temperature profiles, including the warming stage, 

the zero-geothermal-gradient stage, the talik development stage, and eventual disappearance. These 

thermal states reflect ongoing degradation processes since the Last Glacial Maximum (LGM), 

shaped by both climate history and local ground conditions. 

Compared to high-latitude permafrost regions in the Arctic and sub-Arctic, permafrost on the 

QTP is generally warmer and occurs under a relatively higher geothermal gradient. This distinct 

thermal setting leads to a slower increase in ground temperature and prolongs the degradation 

response time despite pronounced atmospheric warming (Jin et al., 2011; Zou et al., 2017; Biskaborn 

et al., 2019). In contrast, Arctic permafrost tends to be colder and more sensitive to warming, 

resulting in faster thermal responses. These regional differences highlight the importance of 

accounting for reginal-specific thermal regimes when assessing the vulnerability of permafrost to 

climate change. 

Our study investigated the spatiotemporal dynamics of the permafrost thermal regime in the 

WKL region of the northwestern QTP from 1980 to 2022. The most pronounced warming in 

MAGT15m and TTOP occurred between the 1990s and 2000s, whereas ALT changes aligned more 

closely with LST fluctuations, peaking between the 1980s and 1990s. Furthermore, TTOP showed 

a faster and more intense response to surface warming than deeper MAGT15m. Furthermore, our 

simulation results found that approximately 70.98% of permafrost in the region is currently in a 

warming phase, characterized by initial MAGT values below –2.0 °C and ALT less than 1.5 m, 

predominantly occurring at elevations above 4800 m a.s.l. and experiencing the most pronounced 

warming. An additional 17.58% is transitioning toward the zero geothermal gradient stage, while 

only 11.44% has reached or is progressing toward talik development. These latter zones are typically 

found at lower elevations (below 4800 m a.s.l.) and are associated with relatively high MAGT15m 
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(above –1 °C), indicating active degradation, where even modest temperature increases. 

Permafrost forms when long-term heat loss at the ground surface exceeds heat input under a 

persistently cold climate (Wu et al., 2010). In a warming climate, sustained increases in ground 

surface temperature disrupt this thermal equilibrium. The active layer begins to retain more heat 

each year, initiating progressive warming from the surface downward and reducing the temperature 

gradient within the permafrost. During the early stages of warming, permafrost temperatures rise 

more rapidly than thawing occurs, as much of the incoming energy is consumed raising the frozen 

soil to its thawing point. This explains why, despite a pronounced warming trend, the areal extent 

of permafrost in the Western Kunlun region remained relatively stable during the simulation period. 

Furthermore, while the regional average LST exhibited a consistent warming trend from 1980 

to 2022, substantial interannual and spatial variability was observed. We suggest that periodic 

cooling events contributed to the formation or expansion of new permafrost in certain areas, 

producing a delayed and spatially heterogeneous response. This is supported by our simulated 

permafrost maps, which show a slight increase in permafrost extent between 2010 and 2022, despite 

overall warming during this period. 

Looking ahead, under continued climate warming, MAGTs are projected to rise further. As 

heat penetrates deeper into the ground, the thermal gradient within the permafrost diminishes and 

eventually becomes smaller than the geothermal gradient, resulting in upward heat flow from 

underlying unfrozen ground. This process initiates basal thawing and leads to a gradual upward 

retreat of the permafrost base. Compared to Arctic and sub-Arctic regions, the QTP exhibits a 

relatively high geothermal gradient, which contributes to a longer permafrost response time and a 

slower ground temperature increase (Jin et al., 2011; Zou et al., 2017). 

As permafrost temperatures approach 0 °C, ground ice near the permafrost table begins to melt, 

consuming large amounts of latent heat in a process known as the “zero curtain effect.” This phase 

significantly slows or temporarily halts further warming, extending the duration of thermal inertia 

and dampening seasonal temperature variations in the upper permafrost. At the same time, 

geothermal heat from below is primarily consumed in thawing the permafrost from the bottom up. 

The zero geothermal gradient stage represents a critical transitional phase in permafrost 

degradation. During this stage, nearly all surface-derived energy is consumed in melting ground ice, 

accelerating the downward retreat of the permafrost table. Once seasonal freezing no longer 

penetrates the permafrost, a talik—an unfrozen zone within permafrost—begin to form and expand. 

Numerical simulations by Sun et al. (2019) demonstrate that the onset of a talik development marks 

a tipping point, triggering accelerated thaw and irreversible permafrost degradation until complete 

loss. 
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5. Implications for future projections  

While the paper effectively documents historical changes, it lacks a forward-looking component. 

While I realize this is beyond the scope of the paper perhaps some additional point could be added 

to the discussion to enhance its relevance, such as: 

* Discussion how the observed trends might evolve under different climate scenarios. 

* Assess the potential for abrupt future permafrost degradation/non-linearly of the system and its 

implications for infrastructure and carbon release. 

* Offer suggestions for integrating MVPM outputs into Earth System Models to improve global 

climate projections. 

Response: 

Thank you for this thoughtful and constructive suggestion. Understanding the current status of 

permafrost in the context of its historical evolution is essential for projecting future changes, and 

we agree that incorporating a forward-looking component enhances the relevance of the paper. 

In fact, in our previous work (Sun et al., 2019; Zhao et al., 2022), we used MVPM to simulate 

and assess permafrost thermal dynamics under various future climate change scenarios. Our 

modeling results indicated that permafrost degradation, particularly in terms of areal extent, does 

not follow a linear trajectory, and the response of permafrost temperature to climate warming is not 

as rapid as projected in many published reports (Guo et al., 2012; Ni et al., 2021). Even under the 

most extreme warming scenario (RCP8.5), the permafrost table was projected to deepen only 

gradually. By 2050, permafrost would still remain at a depth of 40 m at both Wudaoliang and 

Tanggula, two borehole sites located in the continuous permafrost zone characterized by cold 

ground temperatures and thick permafrost layers. In contrast, at Xidatan, a site located at the lower 

boundary of the permafrost zone, with warmer ground and a thinner permafrost layer of about 32m, 

the permafrost base is projected to move upward significantly. Nevertheless, permafrost is still 

expected to persist at this site through 2100 based on projected changes in the deep permafrost 

ground temperature, ground ice, and thermal gradients. 

Along the northern margin of the permafrost zone on the QTP, MVPM simulations (Zhao et 

al., 2022) show that MAGT will continue to rise under both RCP and SSP scenarios, with slightly 

higher warming rates under SSPs. However, the projected differences in areal permafrost extent 

between the two scenario types were minimal. These findings imply that, although permafrost 

temperatures are rising rapidly under climate warming, the rate of areal permafrost loss remains 

relatively slow—a result with important implications for estimating the timing and magnitude of 

permafrost-related carbon and hydrological feedbacks.  
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It is worth noting that the slow response of the permafrost thermal regime to future climate 

warming may exhibit substantial variability in ice-rich permafrost zones (e.g., those containing 

excess ground ice), largely due to the melting of massive ground ice and the vertical movement of 

water. These processes exert a strong influence on permafrost thaw trajectories, often leading to 

landscape changes such as thermokarst pond formation and surface subsidence (Westermann et al., 

2016). The associated hydrological dynamics can either accelerate or delay permafrost degradation. 

Specifically, when meltwater from thawed ice-rich layers drains effectively, both ground subsidence 

and talik formation are delayed (Westermann et al., 2016). In contrast, if meltwater accumulates at 

the surface, it can form ponds that enhance heat transfer into the ground, thereby accelerating talik 

development and intensifying permafrost thaw (Jan et al., 2020). This process holds substantial 

potential to unlock vast stores of currently frozen organic carbon, particularly greenhouse gases like 

CO2 and CH4 stored in cold, ice-rich lowlands. As such, thermokarst-related permafrost degradation 

in a warming climate could significantly amplify the global permafrost carbon–climate feedback 

(Turetsky et al., 2015). 

We agree that integrating MVPM outputs into Earth System Models (ESMs) is essential for 

improving global climate projections. Based on our findings and previous modeling experience, we 

offer the following suggestions for improving land surface models (LSMs) within ESMs: 

First, lower boundary conditions: Many existing LSMs use shallow soil profiles (e.g., less 

than 10 m) and simplified zero-flux lower boundaries, which are inadequate for capturing deep 

ground thermal processes. We recommend implementing deeper soil configurations (e.g., 50–100 

m) combined with geothermal heat flux boundary conditions to better represent the ground thermal 

regime over decadal to centennial timescales. 

Second, vertical resolution and initialization: Accurately simulating permafrost degradation 

requires high vertical resolution and robust initialization of subsurface thermal and moisture states. 

We suggest increasing the number of soil layers and conducting long spin-up runs, ideally 

constrained by in situ data, to reflect the extended thermal memory of permafrost systems (Razavi 

et al., 2015). 

Third, Ground ice representation: Ground ice critically influences soil thermal properties 

and permafrost thaw dynamics. However, current LSMs often rely on overly simplified 

parameterizations that do not account for excess or segregated ice, nor their formation mechanisms 

(Lu et al., 2017). We advocate for incorporating sub-grid-scale representations of ground ice 

distribution, modeling the dynamic formation and melt of different ice types, and explicitly 

simulating processes such as thaw-induced subsidence and thermokarst ponding (Lee et al., 2014; 

Westermann et al., 2016; Sun et al., 2022). 

Fourth, Improving the accuracy and resolution of forcing data necessary as the quality of 
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atmospheric forcing datasets plays a critical role in the performance of frozen soil simulations. 

Finally, high-resolution, observation-constrained MVPM simulations can serve as valuable 

benchmarks for evaluating and calibrating LSMs across diverse permafrost environments. 

Additionally, integrating satellite-based remote sensing products for parameter optimization can 

substantially enhance model realism and reduce simulation uncertainty. 

We added implications for future projections and potential impacts on the global permafrost 

carbon–climate feedback in “Section 5 Discussion”, line 689 to line 718: 

However, the overall process of permafrost degradation tends to be slow and delayed, 

particularly in deep permafrost, as confirmed by previous studies showing that permafrost loss, 

particularly in terms of areal extent, does not follow a linear trajectory, and that permafrost thermal 

responses to climate warming occur more gradually than suggested by many earlier assessments 

(Guo et al., 2012; Ni et al., 2021). Even under the extreme RCP8.5 scenario, simulations project 

only gradual deepening of the permafrost table. For example, by 2050, permafrost is still expected 

to persist at a depth of 40 m at Wudaoliang and Tanggula—two borehole sites in the continuous 

permafrost zone, where ground temperatures are cold and permafrost layers are thick. In contrast, 

at Xidatan, located near the lower boundary of the permafrost zone with a warmer, thinner (~32 m) 

permafrost layer, the permafrost base is projected to retreat more significantly. Nevertheless, 

simulations suggest permafrost will still exist at this site through 2100, based on trends in deep 

ground temperature, ice content, and thermal gradients.  

Similar results have been reported for the northern margin of the QTP permafrost zone. 

MVPM-based modeling (Zhao et al., 2022) indicates that MAGT will continue to rise under gradual 

warming. Warming rates are projected to be slightly higher under CMIP6 Shared Socioeconomic 

Pathways (e.g., 0.064°C yr⁻¹ for SSP5-8.5) compared to CMIP5 Representative Concentration 

Pathways (e.g., 0.060°C yr⁻¹ for RCP8.5), although little difference is projected in areal permafrost 

extent. These findings suggest that while permafrost temperatures are increasing, spatial loss 

remains relatively slow—an important consideration for modeling permafrost carbon feedback and 

related hydrological processes. 

It is also important to recognize that the thermal response of permafrost to warming may vary 

considerably in ice-rich zones, particularly those with excess ground ice. In such areas, thawing of 

massive ground ice and associated water dynamics significantly shape degradation trajectories, 

often leading to landscape changes such as surface subsidence and thermokarst pond formation 

(Westermann et al., 2016). These hydrological feedbacks can either slow or accelerate thaw. 

Efficient drainage of meltwater delays talik development and surface collapse (Westermann et al., 

2016), while surface water accumulation promotes heat transfer and deeper thawing (Jan et al., 

2020). These processes increase the potential release of vast stores of frozen organic carbon—
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particularly CO₂ and CH₄—trapped in cold, ice-rich lowlands. Therefore, thermokarst-driven 

permafrost degradation under continued warming could greatly amplify the global permafrost 

carbon–climate feedback (Turetsky et al., 2015). 

Section 5.3 Comparison with previous studies”, now includes suggestions for integrating 

MVPM outputs into Earth System Models to improve global climate projections, line 768 to line 

776: 

To improve long-term permafrost simulations in ESMs, we recommend the following key 

developments: i) Enhance bottom boundary conditions by extending soil profiles to 50–100 m and 

incorporating realistic geothermal heat fluxes to better capture deep ground thermal dynamics; ii) 

Improve vertical resolution and initialization, including high-resolution soil layering, longer spin-

up periods, and calibration using in situ data to better capture the thermal memory of deep 

permafrost; iii) Advance the representation of ground ice processes, including sub-grid variability, 

the formation and melt of excess and segregated ice, and thaw-induced surface changes such as 

thermokarst; iv) Improve the accuracy and resolution of climate forcing data; v) Leverage MVPM 

outputs to calibrate LSMs, using high-resolution, observation-constrained simulations and remote 

sensing data to optimize parameters and reduce uncertainties. 

6 Spatial resolution  

The use of 1km spatial resolution may not adequately capture topographic effects (e.g., slope, 

aspect), which can critically influence local permafrost dynamics. The paper should be further 

justifying the adequacy of this resolution, particularly in complex mountainous terrain and variables 

snow cover (controlled by wind redistribution, slope, aspect) 

Response: 

Our choice of a 1 km resolution represents a trade-off between spatial coverage and detail, 

constrained primarily by the resolution of available forcing datasets, i.e. the satellite-derived LST 

product. Nonetheless, this resolution marks a substantial improvement over previous large-scale 

modeling studies that used coarser grids (e.g., 10 km in Zhang et al., 2022; ~62 km in Guo et al., 

2012), while providing more regional relevance than purely site-specific simulations (e.g., Sun et 

al., 2019, 2022). 

Importantly, the modeling region (WKL) is located within an alluvial and fluvial basin, and 

most part of the area is characterized by relatively gentle terrain (see Fig. S3). This reduces the 

influence of slope and aspect on permafrost processes compared to more rugged mountainous 

regions. The relatively uniform topography further supports the adequacy of the 1 km resolution for 

capturing the dominant patterns of permafrost thermal behavior in this area. 
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We fully acknowledge that a 1 km grid is insufficient to resolve micro-topographic features—

such as slope, aspect, and wind-driven snow redistribution—which are known to exert strong local-

scale controls on permafrost conditions. Therefore, we added the discussion that our results should 

be interpreted as first-order approximations of regional permafrost thermal distribution rather than 

slope-scale assessments. 

Despite this limitation, our model successfully reproduces key spatial features of the 

permafrost thermal regime in the WKL region, including (a) differences in ALT across stratigraphic 

classes (e.g., alluvial, glarosional, lacustrine, colluvial), and (b) elevation-dependent patterns in 

ground temperature. These outputs are supported by validation against in situ ground temperature 

observations from regional monitoring sites and show consistency with published permafrost 

distribution maps. 

Looking ahead, we agree that improving spatial resolution, particularly to better resolve 

topographic and snow-cover variability will be an important step. Future developments will benefit 

from higher-resolution remote sensing products and data assimilation techniques that can better 

account for small-scale heterogeneity in permafrost systems. 

  

Figure S3. Slope distribution derived from DEM across the WKL permafrost modeling region. 

In Section 5, Discussion, we further discuss the limitations of our forcing data, including the 

resolution constraint of the 1 km grid in capturing micro-topographic variability, line 624 to line 

635: 

In complex mountainous terrain, a 1 km grid cell is insufficient to capture micro-topographic 

features such as slope, aspect, and wind-driven snow redistribution—factors that strongly influence 

local permafrost hydrothermal dynamics. Therefore, our modeling scheme should be considered as 

a first-order approximation of permafrost thermal distribution, rather than a tool for detailed slope-
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scale assessments in these areas. In addition, resampling coarse-resolution input datasets to match 

the model resolution introduces uncertainties in the LST reconstruction process. Despite these 

limitations, the model successfully reproduces regional permafrost thermal patterns in the WKL 

area, as confirmed by in situ observations and existing permafrost maps. Although constrained by 

the spatial resolution of satellite-derived LST, the approach performs well in simulating the thermal 

state and ALT of permafrost, providing valuable insights for remote, data-scarce regions of the 

western QTP. Future improvements will require the integration of higher-resolution datasets and 

enhanced representation of sub-grid variability. 

7 Figure 5 and Figure 10 

These figures display a gridded pattern at approximately 25km resolution, which appears 

inconsistent with the stated 1km model resolution. the source of this pattern should be clarified and 

discussed. Is it an artefact of the clustering used? This deserves explanation, especially given the 

emphasis on fine-scale modelling. 

Response: 

We believe the gridded pattern observed in the figures particularly in Figure 5 is not caused by 

the clustering methods used in our modeling. Figure 5 shows decadal anomalous LST maps for the 

WKL permafrost region based on our reconstructed LST dataset from 1980 to 2022. Importantly, 

no clustering algorithms were applied in generating these maps. Although clustering was used to 

produce the spatial distribution maps in Figures 6, 7, and 9, no gridded artifacts are present in those 

figures, further supporting that the patterns in Figure 5 are not artifacts of clustering. 

Instead, the gridded appearance is primarily due to uncertainties introduced during the 

resampling of input datasets used in LST reconstruction. Key input variables to the machine learning 

model—such as skin temperature (ST, 0.312° × 0.312°), fractional cold cover (CFC, 0.25° × 0.25°), 

surface net radiation budget (SRB, 0.25° × 0.25°), and leaf area index (LAI, 0.05° × 0.05°)—have 

coarser native resolutions than our model's 1 km target. These were resampled to 1 km × 1 km using 

the nearest-neighbor method. This upscaling process introduces artifacts, particularly from coarser 

inputs like ST, which has a native resolution of ~25–30 km at these latitudes. While resampling 

allows analysis at finer spatial scales, it can produce visible grid-like patterns in the output. 

We acknowledge this limitation and have added a discussion on the uncertainties introduced 

by the resampling process during model forcing reconstruction in Section 5 Discussion. Please see 

our response under the comment titled 'spatial resolution' for further details. 

 

Minor Comments 
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* Line 283: Typo: “account for only 28.02% of the total model grid cells, remarkable reducing 

computation time” 

Response: 

Yes, we have corrected this typo in the revised manuscript. The revised sentence now reads: 

“account for only 28.02% of the total model grid cells, remarkably reducing computation time.” 

* Line 300: Typo: Section title should read “3.3 Filed investigation and borehole monitoring datasets” 

Response: 

Yeah, thanks, we have made the revision. We have also carefully checked and corrected similar 

typos throughout the text. 

*Figure 7: Missing units on the lagend: overall presentation could be improved. 

Response: 

In the revised manuscript, we have added the units to the legend in Figure 7 

 

*Line 538: Add space in “with 74.20%” to read “with 74.20%” 

Response: 

We have added space in the revised manuscript. 
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* Figure 11: Legend and labelling could be enhanced for readability. 

Response: 

We have revised Figure 11 to enhance readability by improving the resolution of the legend 

and increasing the font size of the labels for better clarity. We hope these improvements make the 

figure easier to interpret. 

 

 

* Line 600: Discussion: “Most previous evaluations indicated that soil temperature products derived 

from atmospheric circulation model or ESMs, which typically have coarse resolutions (~300km) …” 

Consider replacing “ESMs” with “GCMs” for clarity. Or revise to more moderate number typical 

of historical forcing datasets such as ERA5 (25km) or ERA5-Land (9km) as you do not use GCMs 

in this study. 

Response: 

Yeah, exactly. We agree that "GCMs" would be a more accurate term than "ESMs" in this 

context and have revised the sentence accordingly. The revised sentence now reads: 

“Previous studies have shown that coarse-resolution soil temperature products from atmospheric 

reanalysis datasets—such as ERA-Interim (0.125° × 0.125°) and ERA5-Land (0.1° × 0.1°)—as well 

as assimilated products like the Chinese meteorological forcing dataset CLDAS (0.0625° × 0.0625°), 

exhibit substantial uncertainties when applied to the QTP, particularly in permafrost regions (Hu et 

al., 2019; Qing et al., 2020; Yang et al., 2020).” 

* Line 613: Clarify what is mean by “compared to in situ measurements, we found a slight cold bias 

in our reconstructed LST series, averaging approximately -0.80℃”-is this computed over the entire 

period? Please specify the period. 

Response: 
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The reconstructed LST was evaluated against monthly in situ observations from the TSH AWS 

for the period 2016–2018. The average bias across all months during this period was approximately 

–0.80°C. A systematic cold bias is evident in the mean annual cycle of LST, particularly during the 

summer months of July, August, and September, as shown in Figure 1. 

* Line 858: Typo: “experiencing recover or degradation” should be revised to “experiencing 

recovery or degradation.” 

Response: 

The revision has been made in the revised manuscript. 

* Line 185: How and what in situ measurement integrated? Please add additional clarification here. 

(this dataset was created by integrating in situ observations with satellite-based LST from the 

Moderate Resolution Imaging Spectroradiometer (MODIS).) 

Response: 

To estimate daily mean LST values from Aqua and Terra's instantaneous daytime and 

nighttime observations, Zou et al. (2014, 2017) developed a multi-stepwise statistical model based 

on GST data from three AWS located in typical permafrost regions of the central QTP. These 

relationships capture actual climate conditions corresponding to satellite overpass times. The 

resulting empirical correction model was then applied across the entire QTP permafrost zone to 

upscale and generate reliable LST estimates. We therefore believe that the modified MODIS LST 

dataset developed by Zou et al. (2017) partially accounts for the influence of surface conditions—

including snow cover, vegetation, and cloud cover—through the use of a cloud-gap filling algorithm 

and the incorporation of AWS observations from representative permafrost regions in the central 

QTP. Please see details in response of secondary question “Use of MODIS LST as forcing data” 
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