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Abstract. Environmental pollution with per- and polyfluoroalkyl substances (PFAS), commonly referred to as “forever 8 

chemicals”, received significant attention due to their environmental persistence and bioaccumulation tendencies. Effluents 9 

from wastewater treatment plants (WWTPs) have been reported to contain significant levels of PFAS. Wastewater treatment 10 

processes such as aeration have the potential to transfer PFAS into the atmosphere. However, understanding their fate during 11 

sewage treatment remains challenging. This study aims to assess aerosolisation of PFAS during WWTP process. Special 12 

emphasis is given to new generation and legacy PFAS (e.g., perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid 13 

(PFOA)) as they are still observed in sewage after years of restrictions. Particulate matter with aerodynamic size ≤10 µm 14 

(PM10) collected above a scaled-down activated sludge tank treating domestic sewage for a population >10,000 people in the 15 

UK were analysed for a range of short-, medium- and long-chain PFAS. Eight PFAS including perfluorobutanoic acid (PFBA), 16 

perfluorobutanesulfonic acid (PFBS), perfluoroheptanoic acid (PFHpA), perfluorohexanesulfonic acid (PFHxS), PFOA, 17 

perfluorononanoic acid (PFNA), PFOS and perfluorodecanoic acid (PFDA) were detected in the PM10. The presence of legacy 18 

PFOA and PFOS in the PM10 samples, despite being restricted for over a decade, raises concerns about their movement through 19 

domestic and industrial sewage cycles. The total PFAS concentrations in PM10 were 15.49 pg m-3 and 4.25 pg m-3 during 20 

Autumn and Spring campaigns, respectively. PFBA was the most abundant PFAS, suggesting a shift towards short chain PFAS 21 

use. Our results suggest that WWT processes such as activated sludge aeration could aerosolise PFAS into airborne PM.  22 

1. Introduction 23 

Particulate matter (PM) is a critical component of air pollution and has significant implications for environment (Boucher et 24 

al., 2013; Chen et al., 2021; Taylor and Penner, 1994; Zhang et al., 2023) and human health (Pope III et al., 2020; Vohra et 25 

al., 2021; Zhou et al., 2024). PM with aerodynamic diameter ≤10 µm (PM10) is of particular concern because they are known 26 

to penetrate into the human respiratory system and cause severe health effects (Abbey et al., 1995; Pope III et al., 1992). The 27 

chemical composition of PM is very complex, and it can contain thousands of organic compounds (Goldstein and Galbally, 28 
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2007) including persistent organic pollutants (POPs) and new and emerging pollutants (NEPs) such as per- and polyfluoroalkyl 29 

substances (PFAS) (Kourtchev et al., 2022; Zhou et al., 2021; Zhou et al., 2022).  30 

PFAS, commonly referred to as “forever chemicals”, are a large group of synthetic organic compounds. PFAS are thermally 31 

and chemically inert due to the strong carbon-fluorine bonds (Buck et al., 2011) and therefore they are widely used in the 32 

production of numerous consumer goods such as water and thermal-resistant apparel, engine oil, cooking wares, etc (Glüge et 33 

al., 2020). PFAS are known for their environmental persistence and bioaccumulation potential (Buck et al., 2011; Lesmeister 34 

et al., 2021). Many PFAS are shown to have negative health effects e.g., endocrine disruption, cancer, and liver disease (Fenton 35 

et al., 2021; Sunderland et al., 2019).  36 

Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are the most scrutinised PFAS due to their 37 

environmental persistence and human health effects (Beach et al., 2006; Saikat et al., 2013; US EPA, 2024b; Zareitalabad et 38 

al., 2013). In 2009, the Stockholm Convention on POPs included PFOS and its salts in Annex B of restricted compounds. 39 

Further, in 2019 and 2022, PFOA and perfluorohexanesulfonic acid (PFHxS) were added to Annex A of compounds for 40 

elimination. Despite being restricted for more than a decade, these compounds are still observed in various environmental 41 

matrices (Li et al., 2022; Nguyen et al., 2017; Xiao et al., 2015; Zhou et al., 2022). Shortly after the introduction of restrictions 42 

for several PFAS, they were replaced with short-chain and other new-generation PFAS that are thought to be less hazardous 43 

(Brendel et al., 2018; Wang et al., 2013, 2015). These include perfluorobutanesulfonic acid (PFBS), fluorotelomer sulfonates 44 

(FTS), and hexafluoropropylene dimer acid (HFPO-DA, more commonly known as GenX) (Wang et al., 2013, 2015). Recent 45 

studies indicated that numerous replacement PFAS could potentially have similar health effects to those of the legacy ones 46 

(Gomis et al., 2018; Liu et al., 2020; Solan and Lavado, 2022). 47 

The majority of reports on PFAS pollution have predominantly focused on drinking water (Domingo and Nadal, 2019), surface 48 

water (Podder et al., 2021), sewage (Lenka et al., 2021), and soil matrices (Brusseau et al., 2020). Therefore, most of the 49 

current regulations on PFAS are focused on water matrices (Directive (EU) 2020/2184, 2020; US EPA, 2024a). There is 50 

growing evidence that PFAS can transfer from contaminated waters via aerosolisation/volatilisation into atmosphere (Ahrens 51 

et al., 2011; Johansson et al., 2019; Shoeib et al., 2016; Qiao et al., 2024). 52 

Laboratory simulation experiments have shown that the aeration of PFAS-contaminated water leads to formation of aerosolised 53 

PFAS (Nguyen et al., 2024; Pandamkulangara Kizhakkethil et al., 2024). The extent of PFAS aerosolisation has a clear 54 

dependence on the PFAS carbon chain length and functional groups (Johansson et al., 2019; Pandamkulangara Kizhakkethil 55 

et al., 2024; Reth et al., 2011). 56 

Wastewater treatment techniques such as activated sludge (AS) and secondary extended aeration which involve vigorous 57 

aeration/mechanical turbulence, could lead to the aerosolisation/volatilisation of PFAS from contaminated wastewater 58 

effluents (Ahrens et al., 2011; Shoeib et al., 2016). PFAS were detected in gas phase and total suspended particles (TSP) near 59 

the aeration tanks and secondary clarifier in a WWTP in Canada (Vierke et al., 2011). Airborne PFAS were also observed at 60 

WWTPs that employ treatment techniques such as AS, secondary extended aeration, and facultative lagoons in Canada (Shoeib 61 

et al., 2016). PFAS, including restricted PFOS, were identified in the TSP and gas phase above aeration tanks in a WWTP in 62 
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northern Germany (Weinberg et al., 2011). A more recent study by Qiao et al. (2024) identified PFAS in both gas and particle 63 

phases above the influent and aeration tanks at a WWTP in China. 64 

Limited studies have assessed the PFAS emission associated with inhalable PM fraction (e.g., PM10) during WWT processes. 65 

For example, a recent study identified PFAS in the 11 PM size fractions between 0.1 µm to 18 µm, collected from three 66 

WWTPs in Hong Kong, China (Lin et al., 2022). These WWTPs (largest in Hong Kong) utilised treatment techniques such as 67 

AS and chemically enhanced primary treatment (CEPT) to treat sewage from industrialised areas. The study reported that 68 

atmospheric PFAS in WWTPs (e.g., PFOS, PFOA, PFBS and perfluorobutanoic acid (PFBA)) are primarily distributed in 69 

aerosol particles with aerodynamic diameter ≤10 µm. Additionally, the distribution of PFAS depend on the type of WWT 70 

process, nature of sewage, and aerosol properties (e.g., organic content, presence of microbes, etc.) (Lin et al., 2022). This 71 

suggests that PFAS levels in inhalable PM, and thus the associated health risks, will vary based on the location and the type of 72 

sewage being treated. European countries have restricted the production and use of several PFAS such as PFOS, PFOA, 73 

PFHxS, and C9–C14 perfluorocarboxylic acids (PFCA) (Directive (EU) 2020/2184, 2020; ECHA, 2022a; ECHA, 2022b). 74 

Nevertheless, the restricted PFOA and PFOS are still observed in wastewater effluents (Eriksson et al., 2017; Gobelius et al., 75 

2023; Moneta et al., 2023; Müller et al., 2023; Semerád et al., 2020) raising a question whether these chemicals could be 76 

aerosolised during open air aeration WWT processes. To the best of our knowledge, there are no studies assessing the PFAS 77 

levels in PM10 at European WWTPs. Furthermore, PM10 associated emission of PFAS from WWTPs have been assessed only 78 

for a limited number of PFAS.  79 

As highlighted in the reviews by Phong Vo et al. (2020) and O’Connor et al. (2022), domestic wastewater has been reported 80 

to contain significant levels of PFAS, albeit at concentrations lower than those typically found in industrial effluents. Despite 81 

this, studies on PFAS atmospheric emissions from sewage have primarily focused on WWTPs processing industrial effluents 82 

or a mix of industrial and domestic sources. Consequently, a knowledge gap exists regarding the atmospheric fate of PFAS, 83 

particularly their association with PM10 aerosols, during the treatment of domestic wastewater, especially under conditions of 84 

vigorous aeration. 85 

The aim of the current study is to assess the aerosolisation potential of PFAS during WWTP process that involves vigorous 86 

aeration steps. Special emphasis is given to (a) legacy PFAS, such as PFOS and PFOA, as they are still observed in sewage 87 

after 15 and 5 years of restrictions, respectively, and (b) new generation and replacement PFAS such as FTS. To achieve this, 88 

PM10 samples collected from a scaled-down AS tank processing domestic wastewater (from a population of > 10,000 people) 89 

in the United Kingdom (UK) were screened for 15 PFAS (C4–C11) including legacy and new-generation replacement 90 

compounds such as FTS.    91 
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2. Method 92 

2.1 Materials and chemicals 93 

The materials and chemicals include: 10 mL headspace glass vials (Chromacol 10-HSV, Thermo Scientific); metal screw caps 94 

(Chromacol 18-MSC, Thermo Scientific); polytetrafluoroethylene (PTFE) septa (Chromacol 18-ST101 Thermo Scientific); 95 

PTFE membrane filter (Iso-Disc PTFE-13−4, 13 mm × 0.45 μm); glass fiber filters (GFF) (47 mm, Advantec®, Model No. 96 

GB-100R); EPA 533 PAR mix containing 25 PFAS i.e., PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUdA, 97 

PFDoA, HFPO-DA, PFMPA, PFMBA, 3,6-OPFHpA, L-PFBS, L-PFPeS, PFHxS, L-PFHpS, PFOS, 4:2 FTS, 6:2 FTS, 8:2 98 

FTS, NaDONA, 9Cl-PF3ONS, 11Cl-PF3OudS, PFEESA each having a concentration of 0.5 ng µL-1 (Wellington laboratories 99 

Inc, Canada); EPA533ES  isotope dilution standard mixture containing 16 mass labelled (13C) PFAS i.e., M3PFBS, M5PFHxA, 100 

M6PFDA, M3PFHxS, M8PFOS, MPFBA, M5PFPeA, M4PFHpA, M8PFOA, M9PFNA, M7PFUdA, MPFDoA, M2-4:2 FTS, 101 

M2-6:2 FTS, M2-8:2 FTS and M3HFPO with the concentrations of 0.5–2.0 ng µL-1; liquid chromatography (LC)-mass 102 

spectrometry (MS) grade water (Optima ™, Fisher Scientific); methanol, LC-MS grade (Optima ™, Fisher Scientific); formic 103 

acid, LC-MS grade (Optima™, Fisher Chemicals); ammonium acetate, LC-MS grade (Optima™, Fisher chemicals). The full 104 

names of the listed chemicals are given in the Table S1 and S2 of supplement. 105 

2.2 Sampling site 106 

The PM10 samples were collected above a scaled-down AS tank processing municipal wastewater equivalent to that of a 107 

population > 10,000 people (the location of the facility is anonymised due to a non-disclosure agreement). The AS tank, 108 

constructed from high-density polyethylene (HDPE), contains an aeration basin of volume 3.06 m3. The aeration basin of the 109 

AS tank is connected to a secondary clarifier (of volume 0.86 m3) where sewage, after aeration, is allowed to settle. The AS 110 

tank continuously receives and processes primary treated sewage (with a solid retention time (SRT) of 10 days) from the parent 111 

large-scale WWTP using pumps. 112 

2.3 PM10 sample collection 113 

The MiniVol™ tactical air sampler (Air Metrics, United States of America) used for PM10 sampling was installed near the 114 

aeration tank with the sampling head slightly above the rim of the tank. The PM10 samples were collected on GFF at 10 L min-115 

1. Prior to sampling, GFF were baked at 450 °C for 24 h to eliminate potential organic contaminants. The samples were 116 

collected during two sampling periods: between (1) 2 October 2023–6 October 2023 and (2) 4 March 2024–8 March 2024. 117 

PM10 samples were collected separately during day and night. Sampling dates and duration are given in Table 1.  118 

GFF with PM10 were rolled using prewashed stainless-steel tweezers, keeping aerosol content inside, and placed into a 119 

prewashed 10 mL headspace glass vial. 5 mL methanol (LC-MS grade) was added to the vial to disinfect the filters from 120 

potential pathogenic microorganisms and extract the organic compounds including PFAS. The samples were then stored at 5 121 
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°C until the day of analysis. The vials, PTFE septa, and metal screw caps were prewashed with LC-MS grade methanol and 122 

dried before use to remove potential PFAS contamination. PFAS leaching from the vials, PTFE septa, and metal screw caps 123 

was assessed in another study which reported minimal PFAS leachables from these consumables (Kourtchev et al., 2022). 124 

Various types of blanks were prepared to evaluate possible PFAS contamination from handling the filters. These include: 1) 125 

baked filters and 2) baked filters placed in MiniVol® air sampler and collecting air above the AS tank at 10 L min-1 for 2 min. 126 

It is important to note that the use of GFF and quartz fiber filters (QFF) during PM sampling has been reported to cause positive 127 

sampling artefacts, such as the adsorption of gas-phase organic compounds (Turpin et al., 1994). Previous studies have shown 128 

that certain PFAS, such as PFOS and PFOA, can transition from aqueous aerosols to the gas phase (Ahrens et al., 2012; 129 

McMurdo et al., 2008). As a result, the GFF used in our study may also include a small fraction of gas-phase PFAS. 130 

Consequently, the reported PM10 concentrations of PFAS in our study might be slightly overestimated. 131 

 132 

Table 1 PM10 sample collection dates and duration 133 

Sampling date Sample type Sampling duration (h) 

2 October 2023 
Day sample 3.3 

Night sample 9.2 

3 October 2023 
Day sample 5.7 

Night sample 17.9 

4 October 2023 
Day sample 5.7 

Night sample 18 

5 October 2023 
Day sample 5.7 

Night sample 18 

4 March 2024 
Day sample 1.4 

Night sample 19.1 

5 March 2024 
Day sample 4.5 

Night sample 18.8 

6 March 2024 
Day sample 4.8 

Night sample 18.5 

7 March 2024 
Day sample 4 

Night sample 19 
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2.4 Extraction and analysis of PM10 GFF samples 134 

The GFF samples stored in methanol were spiked with internal standards (IS), a mixture of  16 13C PFAS labelled compounds 135 

(EPA533 ES, Wellington laboratories Inc, Canada) at concentrations 20 ng L-1 for M2-4:2 FTS, M2-6:2 FTS, and M2-8:2FTS 136 

and 5 ng L-1 for the remaining compounds and extracted using the procedure published in Kourtchev et al. (2022). 137 

Briefly, the vial content was subjected to ultrasonic agitation for 40 min. The methanol extracts were then filtered through a 138 

prewashed 0.45 µm PTFE syringe filter. The PTFE filters used in our study were assessed for PFAS leaching potential in 139 

Kourtchev et al. (2022). Minimal leaching of PFAS was observed from the PTFE filters after purging them with 5 mL LC-MS 140 

grade methanol three times (total volume of 15 mL) (Kourtchev et al., 2022). The extracts were then reduced by volume to 1 141 

mL under gentle nitrogen flow. 142 

The methanolic extract was then topped up with 4 mL of LC-MS grade water providing the 80:20 (v/v) water: methanol ratio 143 

required for the online solid phase extraction (SPE) (Kourtchev et al., 2022). The vial content was homogenised by vortex 144 

mixing and analysed using online SPE LC-high resolution mass spectrometry (HRMS) using the method published elsewhere 145 

(Kourtchev et al., 2022). 146 

The online SPE and chromatographic separation was carried out using EQuan MAX Plus Thermo Scientific™ Vanquish™ 147 

UHPLC system using a Thermo Scientific™ TriPlus™ RSH autosampler. Online SPE was performed using a Thermo 148 

Scientific™ Hypersil GOLD aQ Column, 20 × 2.1 mm, 12 µm column. 0.1 % formic acid in water was used as the loading 149 

phase for the online SPE. Following online SPE, the chromatographic separation was achieved using Waters® CORTECS 150 

C18 Column, 90 Å, 100 × 2.1 mm, 2.7 µm analytical column. The eluents used for chromatographic separation were A) 2 mM 151 

ammonium acetate in 10 % methanol and B) 100 % methanol. A Q Exactive™ Focus Hybrid Quadrupole-Orbitrap™ Mass 152 

Spectrometer (Thermo Fisher, Bremen, Germany) fitted with electrospray ionisation (ESI) (Ion Max™) source was employed 153 

for the mass spectrometric analysis. The mass spectrometric analysis was performed in single ion monitoring (SIM) negative 154 

ionisation mode. The mass spectrometer was calibrated prior to analysis to have a mass accuracy of ≤ 5 ppm. The limit of 155 

detection (LOD) values for the analytes in this study were similar to those reported by Kourtchev et al. (2022), with the 156 

exception for PFBA. The LOD for PFBA was 1.47 ng L-1, which is higher than the value reported by Kourtchev et al. (2022) 157 

and could potentially be due to higher background levels of the analyte in the system blanks. 158 

2.5 Quality assurance (QA) and quality control (QC) 159 

Several steps were taken to ensure the QA and QC during the sampling and analysis. PFAS-containing consumables were 160 

avoided as much as possible during the sampling, extraction, and LC-HRMS analysis. To prevent accumulation of PFAS in 161 

the LC-HRMS system, prior to the analysis, the system was flushed with the mobile at composition of 60:40 A: B (A: 2 mM 162 

ammonium acetate in 10 % methanol and B: 100 % methanol) and 0.3 mL min-1 flow rate, overnight (Kourtchev et al., 2022). 163 

System suitability tests (SST) were performed before the analysis of each batch to ensure the adequate performance of the LC-164 

HRMS system. Pass criteria were evaluated based on chromatographic peak area and height, retention times, mass accuracy, 165 
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and peak tailing factors. System blanks (“zero volume”) and 80:20 water: methanol (v/v) blanks were injected at the start of 166 

the batch, in between the samples, and at the end of the batch to monitor a potential PFAS carry over. The zero volume blanks 167 

and 80:20 water: methanol blanks reported PFAS concentrations less than the method LOD values. 168 

3. Results and discussion 169 

3.1 PFAS composition of PM10 above the AS tank 170 

Figure 1 shows the concentrations of PFAS detected in PM10 samples collected above the AS tank during the two sampling 171 

periods. Out of the 15 target PFAS, eight compounds were detected across the collected samples. 172 
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Figure 1 Concentrations of PFBA, PFBS, PFHpA, PFHxS, PFOA, PFOS, PFNA, and PFDA in the PM10 samples collected 174 

from the AS tank in October 2023 and March 2024. The absence of data points on certain sampling days indicates that the 175 

compound was either not detected or below the method LOD. The error bars represent the standard deviation of the value from 176 

three replicate injections. The data of Figure 1 are shown in Tables S3 and S4. 177 

 178 

The detected PFAS include short-chain PFBA and PFBS, medium-chain PFHpA, PFHxS, PFOA, PFNA, and PFOS, and long-179 

chain PFDA. The most abundant PFAS detected in the PM10 from both sampling campaigns was a short-chain PFBA with a 180 

maximum concentration of 19.6±0.8 pg m-3 in October 2023 and 8.8±0.9 pg m-3 in March 2024. The concentration of PFAS 181 

detected in the samples from October 2023 followed the order PFBA>PFOS>PFOA>PFDA, with maximum concentrations 182 

recorded at 17.4±0.2 pg m-3 for PFOS, 8.1±0.4 pg m-3 for PFOA, and 3.7±0.1 pg m-3 for PFDA. The samples collected during 183 

March 2024 showed a different pattern, with PFOA (1.70±0.01 pg m-3) having the highest concentration after PFBA, followed 184 

by PFOS at 0.76±0.02 pg m-3. It has been reported that aerosolisation of PFAS from contaminated water depends on carbon 185 

chain length and functional groups, with higher aerosol enrichment for long chain PFAS and perfluorosulfonic acids (PFSA) 186 

compared to PFCA (Johansson et al., 2019; Pandamkulangara Kizhakkethil et al., 2024; Reth et al., 2011). However, it is 187 

interesting to note that the PFAS levels in the PM10 in our study followed a reverse order with short chain PFBA detected at 188 

higher values.  189 

The detected PFAS have been associated with different sources. For example, PFOS, PFNA, and PFOA have historically been 190 

produced and used in the manufacturing of numerous products, such as firefighting foam, fluoropolymers, textiles, leather, 191 

paper, and lubricants (ATSDR, 2015; Buck et al., 2011; de Alba-Gonzalez et al., 2024; Wang et al., 2014). PFHxS and its 192 

salts/related compounds have been used in applications such as firefighting foam, coatings, electronics and semiconductors, 193 

and polishing agents (in many of these applications PFHxS has been introduced as a replacement for PFOS) 194 

(UNEP/POPS/POPRC.15/7/Add.1, 2019). PFBA and PFBS, have been used as replacements for legacy and longer chain PFAS 195 

(Ateia et al., 2019; Christian, 2024; Wang et al., 2013). PFBA is used in the manufacturing of food packaging materials, 196 

carpets, and fluorosurfactants (Christian 2024; US EPA, 2022). PFBS and PFBS based compounds are used in applications 197 

such as metal plating, as flame retardant, and surfactant (Wang et al., 2013). PFDA, a long chain PFAS identified in the PM 198 

in this study, have been reported as a breakdown product of stain- and grease-proof coatings on food packaging, furniture, and 199 

carpets (Christian, 2024). 200 

Clear differences were observed in the concentrations of PFAS in PM10 samples from the two sampling campaigns. In general, 201 

concentrations of all detected PFAS except PFHxS were higher in the samples collected in October 2023 compared to the 202 

March 2024 samples. For example, highest concentration of PFBA reported during the March 2024 period was less than half 203 

of that reported in the October 2023 period. PFNA and PFDA were absent in the samples from March 2024, but they were 204 

detected in the October 2023 samples. The concentrations of PFHxS and PFHpA reported during both sampling periods were 205 

higher than the method LOD but slightly lower than the method limit of quantification (LOQ) values. There are several 206 

potential reasons for the observed seasonal differences in the concentrations of PFAS which include the pH value, density, and 207 
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composition of the wastewater. The pH value of the contaminated water has been found to affect the water to atmospheric 208 

transfer behaviour of PFAS (Ahrens et al., 2012; Barton et al., 2007; Pandamkulanagra Kizhakkethil et al., 2024; Vierke et al., 209 

2013). For example, the average pH of the wastewater in October 2023 was 7.5, whereas the average pH was 9.3 during the 210 

March 2024 sampling campaign. Additionally, the sewage density and potentially the composition were different during the 211 

two sampling periods (the pH and density data are not shown in the manuscript due to the non-disclosure agreement). PFAS 212 

are well known for their sorption to biosolids in sewage (Ebrahimi et al., 2021; Link et al., 2024). During the March 2024 213 

sampling period, the sewage was thicker compared to October 2023, potentially leading to higher sorption of PFAS in the 214 

biosolids and consequently lesser PM10 associated emissions. It should be noted that the sewage composition was not static 215 

during the sampling periods. The SRT of the AS tank was 10 days, and the chamber received and processed primary treated 216 

wastewater from the parent WWTP continuously. Therefore, the variation in the sewage composition could potentially explain 217 

the differences in the airborne PFAS concentration Moreover, the surface runoff, linked to rainfall, could also be a factor 218 

influencing the overall PFAS levels, as it may introduce additional contaminants to the wastewater system. 219 

Since the sampling campaigns were conducted at two different seasons, the atmospheric conditions e.g., temperature, relative 220 

humidity (See Fig. S1–S4 of a supplement for the average temperature and relative humidity at the sampling periods) could 221 

also influence the PFAS partitioning to aerosols from the contaminated water (Ahrens et al., 2012). It should be noted that the 222 

absence of PFNA and PFDA in the March 2024 samples could be attributed to lower concentration of these analytes in the 223 

sewage resulting in PFAS PM10 bound concentrations below the method LOD. 224 

Several PFAS exhibited day and night variations in PM10 samples. For example, the PFBA concentration was higher during 225 

the day compared to the night in specific sampling days of October 2023. On the other hand, PFBA concentration during the 226 

day was close to the background levels during the March 2024 campaign. PFHpA and PFHxS were not detected in the day 227 

samples during both sampling campaigns. Legacy PFOS and PFOA showed higher concentrations during the day on specific 228 

sampling days. The difference in the diurnal concentrations could potentially be due to variability in the composition of the 229 

wastewater at the respective sampling time. The diurnal variations in the environmental conditions such as temperature and 230 

relative humidity could also contribute to the observed higher PFAS concentrations observed in the specific day samples 231 

compared to the night samples. 232 

3.2 Comparison to previous studies 233 

The observation of high levels of PFBA in our study is consistent with the results of Weinberg et al. (2011), who identified 234 

PFBA (up to 8.4 pg m-3) as the most abundant PFAS in the PM samples (TSP) collected above the aeration tanks of two 235 

WWTPs processing a mixture of domestic and industrial wastewater in Northern Germany. PFBA was also identified as the 236 

dominant ionic PFAS in the atmosphere of WWTPs in other studies (Shoeib et al., 2016; Lin et al., 2022). For example, air 237 

samples collected using sorbent-impregnated polyurethane foam (SIP) passive air samplers at WWTPs employing AS 238 

(processing mixed wastewater), secondary extended aeration (one processing domestic and the other two processing mixed 239 
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wastewater), and facultative seasonal discharge lagoons (processing domestic wastewater) in Canada detected PFBA up to 240 

60±21 % of the total PFCA detected (Shoeib et al. 2016). Similarly, Lin et al. (2022) reported PFBA at considerable levels in 241 

the atmosphere near the aeration tanks of two WWTPs and above a WWTP using CEPT (processing wastewater from urban 242 

areas) in Hong Kong, China. The concentrations of PFBA in TSP reported by Lin et al. (2022), with maximum values of 9.17 243 

pg m-3 and 15.6 pg m-3 near the aeration tanks, which are comparable to the values reported in our study.  244 

The high PM10-associated concentration of PFBA in our study could potentially be explained by the recent increase in the use 245 

of short-chain PFAS as a replacement for legacy PFOS and PFOA (Ateia et al., 2019; Wang et al., 2013). PFBA is one of the 246 

most volatile PFAS observed in our study. Further, short chain PFAS such as PFBA and PFBS are reported to have lower 247 

aerosolisation tendencies compared to long chain compounds (e.g., PFOS and PFOA) (Johansson et al., 2019; 248 

Pandamkulangara Kizhakkethil et al., 2024). Despite being volatile and having low aerosolisation tendency, the presence of 249 

PFBA in the PM10 aerosols at considerable concentrations in our study could potentially be due to the presence of high levels 250 

of PFBA in the sewage during the sampling period.  251 

The concentrations of PFAS in PM10 reported in our study, except for PFHxS, were higher than those estimated by Weinberg 252 

et al. (2011) in the particulate phase (TSP) above the aeration tanks of a WWTP that processed a mix of domestic and industrial 253 

waste in Northern Germany. For example, during the October 2023 sampling period, legacy PFAS such as PFOS and PFOA 254 

were detected in our study at levels up to 17.4 ± 0.2 pg m-3 and 8.1 ± 0.4 pg m-3, respectively. In contrast, the maximum 255 

concentrations of PFOS and PFOA during March 2024 were 0.76 ± 0.02 pg m-3 and 1.70 ± 0.01 pg m-3, respectively. Weinberg 256 

et al. (2011) estimated PFOS and PFOA concentrations in the TSP to be up to 0.9 pg m-3 and 1.3 pg m-3, respectively. The 257 

difference in the PFAS emission levels could be potentially due to the difference in PFAS composition in the wastewater. 258 

PFAS composition in wastewater across European Union (EU) have been reported to differ depending on the region (Lenka 259 

et al., 2021) 260 

The PFDA concentrations of (up to 1.31 pg m-3) in the TSP samples reported by Lin et al. (2022) above the aeration tanks of 261 

WWTPs in Hong Kong, China were lower than the PFDA levels observed in our study during the October 2023 period (3.7 ± 262 

0.1 pg m-3). However, for other PFAS compounds such as PFBS, PFHxS, PFHpA, PFOA, PFOS, and PFNA, Lin et al. (2022) 263 

reported considerably higher values in the TSP samples than those observed in our study. Lin et al. (2022) investigated the 264 

distribution of PFAS across 11 PM size fractions (ranging from 0.1 µm to >18 µm) collected from three WWTPs (two using 265 

aeration and one using CEPT), as well as a landfill and two reference sites. PFOS in PM from all studied WWTPs (treating 266 

urban wastewater) showed major distribution around the PM fractions with aerodynamic size between 0.1 and 10 µm. 267 

Similarly, PFBA and PFBS were also found to be primarily associated with particles of aerodynamic size less than 10 µm, 268 

indicating that the PM10 collected in our study could have potentially captured a majority of the PFAS bound particles. The 269 

reported values in our study therefore provide insights into the total aerosol bound emissions of studied PFAS during the WWT 270 

process. 271 

The PFAS reported in our study were significantly lower than the PM (TSP) values reported by Vierke et al. (2011) (processing 272 

wastewater from Ontario, an urban area in Canada). For example, the average PM concentrations of PFOS and PFOA above 273 
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the aeration tank of a WWTP in Canada study were 3900 pg m-3 and 71 pg m-3, respectively (Vierke et al., 2011). Similarly, 274 

Qiao et al. (2024) also reported considerably higher values for legacy PFOS (1.7–65.1 pg m-3) and PFOA (3.1–101 pg m-3) in 275 

the TSP samples above the influent and aeration tanks of two WWTPs (one processing domestic wastewater and the other one 276 

processing industrial wastewater) in China. 277 

It is interesting to note that the PFAS levels in PM₁₀ reported in our study are comparable to those reported by Weinberg et al. 278 

(2011) in the TSP samples, which is the only study that investigated atmospheric PFAS levels in European WWTPs. The 279 

similarity in the TSP and PM10 concentrations could be due to PFAS being associated mainly with aerosols having aerodynamic 280 

size less than 10 µm as shown for several type of sewage in Lin et al. (2022). In contrast, higher PFAS levels in TSP samples 281 

were reported in all other studies conducted at WWTPs in Canada and China (Lin et al., 2022; Vierke et al., 2011; Qiao et al., 282 

2024). The differences of PFAS levels in PM could potentially be due to variations in wastewater composition in these regions. 283 

For example, the WWTP studied by Vierke et al. (2011) is situated in Ontario, a heavily industrialised city in Canada. Similarly, 284 

the WWTPs investigated by Lin et al. (2022) and Qiao et al. (2024) are located in China, one of the most heavily industrialised 285 

countries in the world.  The facility in our study processes sewage mainly from households (for approximately 30,000 people) 286 

rather than industries, which may contain lower PFAS levels in the sewage and thus in aerosol. The total PFAS concentrations 287 

associated with PM10 fractions in our study were 15.49 pg m-3 in October 2023 and 4.25 pg m-3 in March 2024 (see Table S3 288 

and S4 of supplement), which is comparable (2-13 pg m-3) to that in the TSP from mixed wastewater in Northern Germany 289 

reported by Weinberg et al. (2011). 290 

4. Conclusion 291 

In this study, we investigated, for the first time, the PFAS concentrations associated with the health-relevant PM10 fraction of 292 

airborne aerosols emitted during the AS aeration process at a WWTP processing domestic wastewater. PM10 samples were 293 

collected over two sampling campaigns at two different seasons (i.e., October 2023 and March 2024) above a scaled-down AS 294 

tank consisting of an aeration basin of volume ~3 m3, treating wastewater equivalent to > 10,000 people. Eight PFAS were 295 

observed across the collected PM10 samples. These include legacy PFOS and PFOA, which were detected up to concentrations 296 

of 17.4±0.2 pg m-3 and 8.1±0.4 pg m-3, respectively in the samples from October 2023.  297 

The presence of legacy PFOS and PFOA in the PM even after a decade-long restriction raises concern and suggests that PFOS 298 

and PFOA-containing products are still in use or in the recirculation cycle. More studies are needed to understand if these 299 

legacy compounds could have been formed in the wastewater during the treatment process from the degradation of precursor 300 

compounds such as fluorotelomer alcohols (FTOH) perfluorooctane sulfonamides (FOSA), perfluorooctane 301 

sulfonamidoethanols (FOSE) as suggested by Dauchy et al. (2017) and Xiao (2022). 302 

Presence of PFBA at high concentrations in the collected samples potentially suggests the increased shift towards the use of 303 

short-chain PFAS as a replacement for legacy PFAS.  304 
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Our results indicate that WWT processes involving aeration could aerosolise and transfer PFAS into the atmosphere. 305 

Considering the sheer number of different PFAS that are in the production and used today, the estimated total PFAS 306 

concentrations could potentially represent only a fraction of the actual emissions during the aeration process.  307 

To the best knowledge, this is the first study to investigate the presence of PFAS in the PM10 fraction of the airborne aerosols 308 

from the AS aeration process in a WWTP in the UK and Europe. 309 
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