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Abstract. In recent decades, the monitoring of coastal areas has become a priority due to the continued growth of human 8 

population pressure. Areas such as these constitute biodiversity hotspots in which the increase in phytoplankton blooms has 9 

become a socioecological problem with severe impacts at global and regional levels. One area affected by these blooms is the 10 

Patagonian fjords, a complex and intricate coastal system that is highly exposed to climate forces and anthropogenic activities, 11 

particularly the aquaculture industry (primarily salmon and mussel farming), which is the main driver of the local economy. 12 

In this context, ensuring prompt and accurate monitoring of phytoplankton in the area is crucial. As such, the focus of the 13 

present study is on the use of a new technology that combines hyperspectral sensors and unmanned aerial vehicles (UAVs) to 14 

detect, identify and differentiate phytoplankton species from optical data. Findings have identified differences not only 15 

between diatoms and dinoflagellates through the shape and magnitude of the spectral signal at 440, 470, 500, 520, 550, 570 16 

and 580 nm, but also at the genus level (Rhizosolenia sp., Pseudo-nitzschia sp., Skeletonema sp., Chaetoceros sp. and 17 

Leptocylindrus sp.) and species level (Heterocapsa triquetra). Chlorophyll-a concentration played a key role in reflectance 18 

spectra, demonstrating high variability in the green-red (~ 500-750 nm) bands at low concentrations (< 2 µg L-1), and even 19 

greater variability in the blue bands (~ 400-490 nm) under higher concentrations (> 4 µg L-1). Although the present study 20 

represents a positive step forward in the use of new tools and offers a novel monitoring methodology with regards to 21 

phytoplankton found in complex coastal systems, including the detection of a new identification route, increasingly high-22 

quality imaging and data from a broader range of ecosystems and environments remains a necessity. 23 

1 Introduction 24 

Phytoplankton are an essential group of organisms that play a critical role in aquatic ecosystems. They form the base of food 25 

webs, are key species in carbon and nitrogen biogeochemical cycles and provide ecosystem services in the ocean (Legendre, 26 

1990; Le Quéré et al., 2005). However, phytoplankton can also be harmful to the environment and to human beings. Intense 27 

phytoplankton blooms of several species can have multiple negative impacts on coastal systems. These negative effects occur 28 

due to changes in the water quality (i.e., oxygen reduction, turbidity and unpleasant odours), and certain such blooms (~200 29 
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known taxa; Hallegraeff et al., 2021) can also produce toxins which enter the food chain, with severe consequences for aquatic 30 

systems and even human health (Berdalet et al., 2016; León-Muñoz et al., 2018; Díaz et al., 2019; Gobler, 2020). Moreover, 31 

harmful algal blooms (HABs) are becoming increasingly common around the world (Heisler et al., 2008; Anderson, 2012; 32 

Glibert, 2020; Gobler, 2020). The rise in these phenomena is mainly related to the increment in marine resource exploitation 33 

driven by human population growth (Hallegraeff et al., 2021). Thus, the problems caused by HABs, in conjunction with the 34 

expected disruption of phytoplankton communities due to climate change, strengthens calls for permanent monitoring to 35 

facilitate essential forecasting, management and mitigation tasks. 36 

The monitoring of phytoplankton in surface waters using satellite imaging has been a common practice for decades due to the 37 

broad spatial coverage and high temporal resolution afforded by this type of technology (Hu et al., 2005; Shen et al., 2012; Shi 38 

et al., 2019; Li et al., 2021). The optical properties of phytoplankton, such as pigment concentration (algae colour), size and 39 

morphology affect the reflectance signal, thus allowing for the identification of different groups (Moisan et al., 2017; Shi et 40 

al., 2019). Differences in the major absorbance and/or reflectance peaks across the spectrum have been related to the colour of 41 

the algae as well as chlorophyll type and concentration (Mao et al., 2010; Moisan et al., 2017; Gernez et al., 2023). For example, 42 

in the green band (~495-580nm), a peak at approximately 570-580 nm has been associated with Bacillariophyta and 43 

Haptophyta (brown algae). Furthermore, Chlorophyta (green algae), known to contain chlorophyll-b, have displayed peaks at 44 

approximately 540 nm due to their green colour (Jeffrey and Vesk, 1997; Gitelson et al., 1999; Mao et al., 2010). However, 45 

although satellite technology has aided large-scale phytoplankton monitoring and detection, in addition to differentiation 46 

between the main phytoplankton groups and even algal blooms (Hu et al., 2005; Shen et al., 2012; Gernez et al., 2023), the 47 

use of this technology has certain limitations. For example, despite recent advancements in terms of satellites missions that 48 

use hyperspectral sensors (i.e., Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE)), such equipment is still unable to 49 

accurately detect phytoplankton community-composition levels (Shen et al., 2012; Muller-Krager et al., 2018). Limitations in 50 

spatial and temporal resolutions, satellite orbit constraints, restricted surface-to-subsurface signal detection and a restricted 51 

number of reflectance bands are the main obstacles to the detection of dominant bloom-forming species and the identification 52 

of algae (Shen et al., 2012; Muller-Krager et al., 2018; Schaeffer and Myer, 2020).   53 

Phytoplankton monitoring is a complex undertaking in coastal regions with high environmental heterogeneity. Therefore, more 54 

frequent temporal and spatial resolution readings are necessary in order to detect rapid changes. In subantarctic coastal areas, 55 

such as the Patagonian fjords, satellite information availability is limited for part of the year due to cloud cover and the complex 56 

coastal morphology (i.e., fjords and channels). There is a two-layer water circulation pattern throughout this coastal area (Valle-57 

Levinson, 2010; Castillo et al., 2016), which consists of a surface layer fed by continental freshwater (estuarine water) and a 58 

subsurface layer of salty, nutrient-rich subantarctic water that stems from the western Pacific Ocean (Dávila et al., 2002; Pérez-59 

Santos et al., 2014; Linford et al., 2024). Consequently, this type of circulation contributes to substantial environmental 60 

variability which, in turn, has a significant influence on phytoplankton distribution and abundance, including HAB occurrence 61 

(Alves-de-Souza et al., 2008; Jacob et al., 2014; León-Muñoz et al., 2018; Cuevas et al., 2019). 62 
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The accurate observation of phytoplankton in coastal areas in which its population characteristics can change rapidly over 63 

short timescales (from hours to days) and at small spatial scales (< 100 m) represents a significant challenge. This observation 64 

is particularly important in the Patagonian fjords, which hosts one of the largest aquaculture industries in the world (primarily 65 

salmon and mussel farming). These industrial activities have experienced recurrent HABs in recent years, leading to significant 66 

socioeconomic and ecosystemic damage in the local area (León-Muñoz et al., 2018; Díaz et al., 2019; Soto et al., 2019; Ugarte 67 

et al., 2022). Therefore, the development and implementation of an effective phytoplankton monitoring system that 68 

incorporates accurate, high-resolution is essential. This will not be an easy undertaking. The complexity and, as yet unknown, 69 

aspects of phytoplankton bloom dynamics, in addition to factors such as the broad diversity of species involved, the complex 70 

topography and the climate heterogeneity (extensive cloud cover and rainfall) in the area of study directly impact the ability 71 

to conduct monitoring activities (Garreaud et al., 2013).  72 

The spatial and temporal resolution required to ensure the accurate detection of phytoplankton in the Patagonian fjords is now 73 

possible due to advances in technology. In particular, unmanned aerial vehicles (UAVs) equipped with high-precision 74 

instruments have recently become more widely used in marine monitoring (Kislik et al., 2018; Kimura et al., 2019; McEliece 75 

et al., 2020; Hong et al., 2021). Specifically, the use of hyperspectral cameras that capture in situ reflectance signals at low 76 

altitudes (< 100 m) through the visible to near-infrared regions of the spectrum (~ 400-1000 nm) is significant, since these 77 

cameras are capable of out-performing more traditional multispectral cameras and satellites (Moses et al., 2012; Olivetti et al., 78 

2023). The identification of phytoplankton species using hyperspectral imaging represents a new method with which to conduct 79 

the in-situ monitoring of temporal and spatial variations at the local level in complex coastal ecosystems. This optical 80 

technology has substantial potential in terms of improving the monitoring of phytoplankton and detection of HABs in coastal 81 

environments. This is due to its continuous spectrum, which includes more than 160 values that range from blue to red bands 82 

(400-750 nm), under a low width spectral signal of 2 nm, in contrast to a width signal of 10 or even 23 nm used in other 83 

sensors. This ensures a more accurate phytoplankton characterization is achieved by means of reflectance (Shen et al., 2012; 84 

Van der Merwe and Price, 2015; Wu et al., 2019; Olivetti et al., 2023). Recent studies have illustrated the usefulness of this 85 

technology for the detection of phytoplankton blooms through the accumulation of algae (Szekielda et al., 2007). Furthermore, 86 

this optical technology allows for the identification of differences in reflectance spectra between recurrent and non-recurrent 87 

bloom areas with changes in the green (~ 545-575 nm) and red bands (~ 650-700 nm) (Min et al., 2021). It also has the 88 

capability to utilize hyperspectral reflectance data to estimate phytoplankton characteristics through pigment concentration 89 

changes. Regarding the latter point, this does not merely relate to the main phytoplankton pigment chlorophyll, which is 90 

recorded by satellites, but also their secondary pigments, such as phycocyanins (Shen et al., 2012). 91 

Accordingly, the present study examines the advantages and disadvantages afforded by hyperspectral imaging using a 92 

hyperspectral camera, coupled to a UAV, in the detection of phytoplankton from reflectance (R(λ)) in complex coastal waters 93 

in remote areas. The primary objective is to characterize the reflectance spectra of different phytoplankton assemblages, either 94 
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harmful or non-harmful, dominated by a single species. By analysing differences in the magnitude and shape at the spectral 95 

signal, the objective is to distinguish distinct phytoplankton groups. 96 

2 Materials and methods 97 

2.1 Study area 98 

The area of study pertaining to the present research is located in one of the three main fjord regions in the world, in northern 99 

Patagonia (~ 41.45-42.75° S), southern Chile (Fig. 1). It should be noted that this region is home to the majority of Chilean 100 

aquaculture activities (salmon, blue mussels and macroalgae) (> 90%) (Soto et al., 2019).  101 

 102 
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 103 
Figure 1: (a) Study area in the northern Patagonian fjords of Chile (~ 41.45-42.75° S) (yellow box), and sampling locations at (b) 104 

Reloncaví Sound and (c) Greater Island of Chiloé.  105 

Throughout this complex coastal system, freshwater inputs from rivers, rainfall, groundwater and melting glaciers generate an 106 

estuarine circulation pattern (Dávila et al., 2002; Valle-Levinson, 2010; Castillo et al., 2016), which has a considerable 107 

influence over the biogeochemical processes and physical oceanography in the area. The freshwater inputs generate 108 

stratification conditions which strongly impact the bio-optical water properties and support the growth of diatom-dominant 109 

phytoplankton communities (Iriarte et al., 2007; Silva et al., 2011; González et al., 2019). 110 

2.2 Field sampling  111 

The present study implemented a field sampling strategy from January to May 2023 (the summer-autumn period in the southern 112 

hemisphere) in the coastal system that constitutes the area of study in order to acquire in situ hyperspectral images and 113 

oceanographic data pertaining to temperature, salinity and phytoplankton. 114 

Specific sectors were selected for the in situ sampling from across the study area (Fig. 1) based on a set of criteria, including 115 

historical physical-chemical characteristics (temperature, salinity and turbidity), local circulation patterns, HAB occurrence 116 

and proximity to aquaculture facilities (Table S1) (Silva et al., 2011; Soto et al., 2019; Soto et al., 2021).  117 

Six locations were identified throughout the area in line with the aforementioned criteria. These were: Ilque (I), Isla Tenglo 118 

(T) and Canal Tenglo (CT), all within the Reloncaví Sound coastal system; Chaparano (C), located in the Reloncaví Fjord; 119 

and Pulelo (P) and Yaotal (Y), two sampling points located on the coast of the Greater Island of Chiloé (Table S1, Fig. 1b & 120 

1c). Sampling transects of three or four stations were performed across these monitoring locations, depending on topography 121 

and UAV flight autonomy.  122 

The field sampling was undertaken during daylight hours (~ 10.30-16.00 hours local time) under safe and optimal weather 123 

conditions. Although meteorological conditions varied between clear and cloudy days, all sampling transects were conducted 124 

under conditions in which there was no rain, wind speeds were low (< 15 m s-1) and surface waters were calm (waves < 1 m).  125 

Water samples for oceanographic monitoring were collected simultaneously with the optical data at each station. The geo-126 

location (latitude/longitude) was sent from equipment onboard the research ship to the UAV technician, who was located on 127 

the shore, to coordinate water sampling using aerial observations. The autonomous flights were configured using DJI Pilot 2 128 

drone software at an altitude of 100 m above the sea surface and a flight speed of ~ 1-2 m s-1, in order to obtain images of an 129 

area of 2,500 m2 around the oceanographic sampling points.  130 

Since phytoplankton is commonly distributed within the first ~ 20-30 m of the water column, two sampling depths were 131 

established: the first was at the surface (~ 1.5 m), while the second was based on water transparency rather than at a defined 132 

depth. Temperature, salinity and in situ chlorophyll-a (Chl-a) levels were established using two conductivity, temperature and 133 

depth probes (CTDs), an RBRconcerto³ and an AML-Oceanographic Metrec XL. Transparency was determined by a Secchi 134 
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disk. Water samples were collected using a Niskin bottle, at both the surface and at Secchi depths, and stored in opaque plastic 135 

bottles for subsequent analysis at the laboratory, in terms of both phytoplankton in situ total biomass (Chl-a) and phytoplankton 136 

abundance and taxonomy. Discrete water samples collected for analyses of phytoplankton abundance and taxonomy were 137 

fixed with Lugol’s iodine solution (1%). 138 

2.3 Phytoplankton analysis 139 

Phytoplankton species abundance was estimated according to the microphytoplankton range (~ 20-200 μm) in the laboratory. 140 

The phytoplankton identification and cell counts were performed following the Utermöhl method (Utermöhl, 1958), i.e., 10 141 

mL of a fixed water sample were sedimented from day to day prior to observations being taken using an inverted light 142 

microscope (Olympus CKX-41). Taxonomic identification was conducted to the lowest rank possible (genus or species) 143 

(Mardones and Clément, 2016; Lincoqueo, 2019).  144 

2.4 UAV system, reflectance measurement and hyperspectral imaging 145 

The UAV deployed in the present study was a DJI Matrice 300 RTK drone with the capacity to support a maximum weight of 146 

~ 9 kg and a flight autonomy of approximately 30 minutes (Fig. 2a). A hyperspectral camera, model Resonon Pika L, was 147 

connected to the drone by a custom-made 3D printed carbon fibre gimbal (Fig. 2b). In addition, an Intel NUC mini-personal 148 

computer (mini-PC) was attached to the drone using a custom-made 3D printed mount, including batteries (Fig. 2b).  149 

  150 

Figure 2: UAV system: (a) DJI Matrice 300 RTK drone, and (b) Resonon Pika L hyperspectral camera, 3D printed mount with 151 
batteries and Intel NUC mini-PC. 152 

 153 

The Resonon Pika L camera captures 236 spectral bands covering a spectrum range from ~ 400 to 900 nm with a spectral 154 

resolution of approximately ~ 2.1 nm. A Flame S spectrometer (Flame Ocean Insight) was used to record the light conditions 155 

(solar radiation) during the flight, in the same spectral bands as those captured by the hyperspectral camera.  156 
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A laptop connected via a cellular connection or a Wireless Local Area Network (WLAN) to the mini-PC was used to operate 157 

the camera and record reflectance data. In remote areas where connectivity was not available, communication between 158 

computers was established by an Ubiquiti Loco M5 access point through a local wireless network.  159 

2.5 Data processing and analyses  160 

Prior to conducting the data analyses, a pre-selection was performed, in which all samples with several co-occurring 161 

phytoplankton genera (> 3) were removed from the final dataset. Only stations where one or a maximum of two genera 162 

dominated the community by > 80% of abundance were considered for the reflectance fingerprint analysis and differentiation 163 

among the spectral signals. 164 

Several steps were involved in processing the raw image data captured by the hyperspectral camera using Spectronon Pro 165 

software. The raw data were processed to obtain reflectance (R(λ)) using the calibration file provided by Resonon and the 166 

downwelling irradiance data provided by a miniature spectrometer (Flame Ocean Insight). Subsequently, pixel cleaning was 167 

undertaken using an adapted Normalized Difference Water Index (NDWI), whereby pixels that did not correspond to water 168 

and those that were saturated due to the solar angle of incidence were masked (Xie et al., 2014). Due to the lack of reference 169 

points in the monitoring areas, non-geometric correction was applied to the raw image data. A consequence of this was that 170 

the raw data were used only as reflectance data rather than images in the present study. These data were normalized using the 171 

min-max method. The Savitzky-Golay method, or digital smoothing polynomial filtering (DISPO), based on the least-squares 172 

polynomial smoothing and differentiation fit (Ruffin and King, 1999; Gallagher, 2020), was then applied to reduce the noise 173 

signal and obtain a clean spectrum, without altering its properties. Finally, reflectance data were averaged in order to obtain a 174 

reflectance value at each band to emphasize the shape singularities of each spectrum. For analysing and comparing the spectral 175 

signals of the different phytoplankton species, the reflectance R(λ) values were used at a spectral resolution of approximately 176 

~ 2.1 nm, while the wavelength bands were limited to the visible and near-infrared light of between 400 and 750 nm.  177 

A hierarchical cluster analysis (HCA) was performed to explore the changes in R(λ) under different genera domains. A 178 

resemblance matrix based on the hyperspectral normalized R(λ) was generated using the nearest neighbour single linkage 179 

algorithm and the cosine index, as a distance measure for calculating similarities among spectral signals.  180 

Differentiation among spectral signals for the stations in which the same phytoplankton genus domain was identified using the 181 

non-parametric Kolmogorov-Smirnov test. To assess the influence of pigment concentration at spectral signals, a statistical 182 

analysis was applied to determine the differences among low (< 2 µg L-1), moderate (> 4 µg L-1) and high (> 8 µg L-1) Chl-a 183 

concentrations. 184 

The in situ temperature and salinity were converted to the conservative temperature and absolute salinity by applying the 185 

algorithms proposed in the Thermodynamic Equation of Seawater 2010 (TEOS-10). The conservative temperature is similar 186 

to the potential temperature, although it represents the heat content of seawater with greater precision. Conversely, absolute 187 
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salinity represents the spatial variation in the composition of seawater by considering the different thermodynamic properties 188 

and the horizontal density gradient in the open ocean (IOC et al., 2010). 189 

Oceanographic variables across the present study area were characterized on a seasonal scale, with a permutational analysis of 190 

variance (One-way PERMANOVA) conducted to determine the differences between the stations. Prior to the analysis, data 191 

were homogenized (log-transformed) and normalized in order to enhance approximate multivariate normality.  192 

Data were visualized and processed using Ocean Data View (ODV) (Schlitzer, 2023), in which the Data-Interpolating 193 

Variational Analysis (DIVA) for gridding and interpolation were applied (Troupin et al., 2012), and also by PRIMER 7 (Clarke 194 

and Gorley, 2015) and PAST 4.06 software tools (Hammer et al., 2001).  195 

3 Results  196 

3.1 Phytoplankton and spectral signals 197 

Although the phytoplankton community identified in the present investigation was typical of the summer-autumn diatoms 198 

assemblage described for the area of study, its composition changed between seasons, with an increase in diversity and a 199 

decrease in dominance, in addition to a slight increase in richness in the autumn, with the exception of Canal Tenglo (Fig. 3, 200 

Table S2). 201 

 202 
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Figure 3: Microphytoplankton community composition (histogram) and total biomass (black dotted line) during summer and 203 
autumn at sampling locations. Each colour represents a genus of the community. Location codes: I= Ilque, P= Pulelo, T= Isla Tenglo, 204 
Y= Yaotal, C= Chaparano, and CT= Canal Tenglo.  205 

Although merely one bloom of the microalgae Heterocapsa triquetra was detected during the study period, composition 206 

analysis showed a clear monogenus domain (> 80% abundance) of Rhizosolenia sp. at Ilque, and Pseudo-nitzschia sp. at Pulelo 207 

and Isla Tenglo, in the summer (Fig. 3). In the autumn, a combination of two genera was required in order to reach 80% 208 

abundance, at Chaparano, Yaotal and Pulelo (Fig. 3). 209 

Although the reflectance spectrums, under a diatom genus domain, displayed similar patterns across the blue and green bands 210 

(~ 400-565 nm), differences in the shape of the curve and the reflectance values were observed, including between sample 211 

stations at the same location (Figs. 4 and 5). During summer, samples at Ilque, which were dominated by Rhizosolenia sp., 212 

displayed significant differences in the spectral signal (p < 0.01) between stations in both the blue (~ 400-490 nm) and the 213 

green to near infra-red (~ 500-750 nm) bands (Fig. 4a, Table S3).  214 
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 215 
Figure 4: Diatoms spectral signals: (a) Rhizosolenia sp. at Ilque (aqua green, orange and purple lines); (b) Pseudo-nitzschia sp. at 216 
Pulelo (aqua green, orange, purple and pink line) and Isla Tenglo (jasmine green, yellow and brown line) (~ 41.45°-42.75° S). 217 

Similarly, under Pseudo-nitzschia sp. domain, significant spectral differences (p < 0.01) were detected at Pulelo in the total 218 

spectrum (Table S3). In the blue (~ 400-490 nm) bands, similar signals recorded at stations 1 and 3 differ from those measured 219 

at stations 2 and 4 (Fig. 4b, Table S3). In the same way, signals from stations 1 and 2 differed significantly in the spectral 220 

signal from those at stations 3 and 4 (Fig. 4b, Table S3), from the green to near infra-red (~ 500-750 nm) bands. At Isla Tenglo, 221 

only station 3 displayed a spectral signal significantly different in the green to near infra-red (~ 500-750 nm) bands (Fig. 4b, 222 

Table S3).  223 
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The analysis displayed a more homogeneous reflectance signal in relation to the March to April (autumn) samples (Fig. 5). At 224 

Pulelo, similar spectral signals were detected, with the exception of station 8 (Fig. 5a, pink line), in the green to near infra-red 225 

(~ 500-750 nm) bands (Fig. 5a, Table S3). Furthermore, only station 2 at Chaparano (Fig. 5b, orange line) displayed a 226 

statistically different total spectrum (p < 0.05) and spectral signal in the blue (~ 400-490 nm) bands (p < 0.01) (Fig. 5b, Table 227 

S3). 228 

 229 
Figure 5: Diatoms spectral signals: (a) Chaetoceros sp. & Thalassiosira sp. at Pulelo (green, orange, purple and pink lines); (b) 230 
Skeletonema sp. & Chaetoceros sp. at Chaparano (green, orange and purple lines) and Leptocylindrus sp. & Gyrodinium sp. at Yaotal 231 
(pink line) (~ 41.45°-42.75° S). 232 
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By performing a band-based comparison, it was found that all samples under diatoms genera domain displayed a similar pattern 233 

in the blue (~ 400-490 nm) bands, with the exception of Leptocylindrus sp. at Yaotal, with the highest R(λ) (> 0.9 sr-1) registered 234 

at 470-480 nm (Fig. 5b). In the green (~ 500-565 nm) bands, where chlorophyll pigments reflect light, generally high values 235 

of reflectance (> 0.9 sr-1) were recorded, in addition to a higher variability in terms of both shape and R(λ) values (Figs. 4 and 236 

5). In fact, at Ilque, where Rhizosolenia sp. dominated, the reflectance exhibited an acute downward slope between the green 237 

and yellow (~ 550-610 nm) bands (Fig. 4a), in which the absorption peaks of accessory pigments, such as phycoerythrin and 238 

phycocyanin, are usually detected. A similar slope was observed at Pulelo and Isla Tenglo under Pseudo-nitzschia sp. domain 239 

(Fig. 4b). This slope was less pronounced at Chaparano (Fig. 5b).  240 

The spectral reflectance from all diatom genera displayed a declining slope in the red to near-infra-red (~ 650-740 nm) bands, 241 

where another peak in chlorophyll reflectance is typical. In this area of the spectrum, two main peaks were observed, between 242 

~ 680-720 nm and with an acute decline at ~ 714 nm (Figs. 4 and 5). Strong variability was registered among genera in this 243 

area of the spectrum, with the highest values detected at Chaparano for the Skeletonema sp. and Chaetoceros sp. assemblage 244 

(Fig. 5b). 245 

Furthermore, important differences were observed in the spectra between diatoms and dinoflagellates. The spectral signal of 246 

dinoflagellates was captured on merely one occasion, under a bloom of the Heterocapsa triquetra species. The spectrum shape 247 

of this species displayed a completely different pattern compared to those of diatom genera. In the Heterocapsa triquetra 248 

spectral signal, a clear increase in the R(λ) from the blue to green bands (~ 400-565 nm) was observed (Fig. 6).  249 

 250 
Figure 6: Spectral signal of the dinoflagellate Heterocapsa triquetra at Canal Tenglo (green-Sta.1, orange-Sta.2) (~ 41.45°-44.75° S). 251 
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R(λ) values were up to two or three times lower than for diatoms in the blue (~ 400-490 nm) bands (Figs. 4, 5 and 6), with 252 

differences observed between station signals (Table S3). The main peak of R(λ) was at 570 nm in the yellow-green area (Fig. 253 

6). Differences between dinoflagellates and diatoms were also registered in the red to near infra-red (~ 650-740 nm) bands, 254 

with a distinctive signal of two R(λ) peaks at 670 and 680 nm (> 0.55 sr-1), in conjunction with a plateau structure at 720 nm 255 

(Figs. 4, 5 and 6). In summary, differences between groups were detected by means of the shape (Figs. 4, 5 and 6), the peaks 256 

observed at 440, 470, 500, 520, 550, 570 and 580 nm, and the variations in magnitude displayed in the blue-green (~ 400-565 257 

nm) and the red to near infra-red (~ 650-740 nm) bands (Figs. 4, 5 and 6).  258 

3.2 Oceanographic conditions and reflectance 259 

 260 

Oceanographic conditions were subject to seasonal changes (F= 8.18, p < 0.01), whereby the highest conservative temperature 261 

was registered in the summer of 2023, while conservative temperatures generally ranged from 14°-18° C (Fig. 7a, b). In the 262 

autumn, the water temperature reduced overall variability, with maximum values not exceeding 13° C in the surface layer (Fig. 263 

7c, d). 264 
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 265 

Figure 7: Conservative temperature and absolute salinity scatter diagram, including density (𝞼) isoline (grey vertical lines) collected 266 
during the 2023 summer and autumn oceanographic campaigns. Images (a and c) show incorporation of Chl-a; images (b and d) 267 
show water depth where data was obtained. In (a) the grey dots in the Ilque area denote no Chl-a data. 268 
 269 

The absolute salinity minimum was observed in the surface layer (20-22 g/kg) of Chaparano during the autumn, contributing 270 

to the decrease in water density (Fig. 7d).  In summer, absolute salinity varied from 26-33 g/kg (Fig. 7b). According to the 271 

salinity criteria (Silva et al., 2008), estuarine water (0-31 g/kg) and modified subantarctic water (31-33 g/kg) were observed 272 

along both seasonal stations. In the case of Chl-a distribution, the highest values (15 µg/L) were registered at the surface layer 273 

of Canal Tenglo during the autumn, although no general pattern was observed.  274 

In terms of chlorophyll-a, the reflectance spectra displayed variability when to different Chl-a concentrations were compared 275 

(Fig. 8). For example, significant differences (p < 0.01) in spectra signals were detected at Ilque, with Rhizosolenia dominant, 276 

between January (low Chl-a= 0.8 µg L-1) and March (high Chl-a= 1.6 µg L-1). 277 
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 278 
Figure 8: Microphytoplankton spectral signals with different Chlorophyll-a concentrations. Low chlorophyll-a (< 2 µg L-1) (jasmine 279 
green and orange lines); moderate chlorophyll-a (> 4 to 7.9 µg L-1) (aqua green line); and high chlorophyll-a (> 8 µg L-1) (pink and 280 
purple lines).  281 

Also in January, measurements at Pulelo (low Chl-a= 2.92 µg L-1) and Isla Tenglo (high Chl-a= 5.93 µg L-1) exhibited 282 

significant differences (p < 0.01), with Pseudo-nitzschia dominant. Regardless of the dominant species, at low Chl-a 283 

concentration levels (< 2 µg L-1) reflectance spectral signals exhibited more significant variability in the green-red (from 500 284 

to 750 nm) bands, while under moderate (> 4 µg L-1) to high (> 8 µg L-1) Chl-a concentrations this variability was greater in 285 

the blue (~ 400-490 nm) band (Fig. 8). 286 

Finally, the cluster analysis grouped together spectra that corresponded to stations under the same dominant groups and genera 287 

more closely (Fig. 9). Although similarity values were high, two main distinctions were identified: the first relates to locations 288 

being grouped together due to the dominance of diatoms, while the second relates to locations grouped together due to the 289 

dominance of the dinoflagellate Heterocapsa triquetra (Canal Tenglo) (Fig. 9). 290 
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 291 
Figure 9: Dendrogram of microphytoplankton hyperspectral normalized R(λ) signals classified by the dominant genus. Colours 292 
identify different genus and sampling locations: Leptocylindrus sp. in Yaotal (blue); Rhizosolenia sp. in Ilque (cyan); Chaetoceros sp. 293 
& Thalassiosira sp. in Pulelo (black); Pseudo-nitzschia sp. in Pulelo & Isla Tenglo (green); Skeletonema sp. in Chaparano (violet) and 294 
Heterocapsa triquetra in Canal Tenglo (red). 295 

Within the diatoms, two groups can be described. The first (G-1) pertains to the group identified at Yaotal during the autumn, 296 

which was dominated by Leptocylindrus sp. (78.95%), in which the dinoflagellate Gyrodinium sp. (5.26%) was the secondary 297 

genus. The second group (G-2) grouped together the remaining locations that were dominated by diatoms (Fig. 8). Within G-298 

2, all samples were grouped together by the dominant genus, with the exception of Ilque (Fig. 9). Nevertheless, the dendrogram 299 

grouped together locations based not only on the dominant genus, but also on the basis of similar oceanographic conditions 300 

(Fig. 9). Thus, when observing Fig. 9 it is possible to see Yaotal (blue) and Ilque (cyan) on the left side of the cluster, which 301 

were associated with changes in salinity during the autumn season and characterized by low Chl-a values. On the right side of 302 

the cluster, the locations of Canal Tenglo (red) and Chaparano (violet) were characterized by the detection of high Chl-a values. 303 

4 Discussion 304 

4.1 Phytoplankton assemblages and spectral R(λ) variability 305 

In the present work, a hyperspectral R(λ) data set with a total of 20 R(λ) spectra was obtained. This data set characterizes the 306 

fingerprints of the main phytoplankton groups as well as the predominant genera in the northern Patagonian fjords (Iriarte et 307 
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al., 2007; Alves-de-Souza et al., 2008; Jacob et al., 2014; Cuevas et al., 2019). These spectral fingerprints are representative 308 

of the most dominant species-genera among the phytoplankton community and appear consistent, including under varying 309 

oceanographic conditions. The results of the present paper are highly relevant, particularly in a context in which a limited 310 

number of existing datasets or studies incorporate in situ hyperspectral reflectance (R(λ)) as a new means with which to 311 

investigate phytoplankton composition (Casey et al., 2020). 312 

In the present study, two main groups (diatoms and dinoflagellates) and three sub-groups of phytoplankton assemblages were 313 

identified through the R(λ) spectrum, with a variability observed not only between groups, but also among genera. Although 314 

the R(λ) spectrum of different diatom genera was similar in shape and magnitude across the blue to green bands (~ 400-520 315 

nm), the spectral signal enabled the “fingerprints” of different genera to be detected. These differences are especially observed 316 

at the blue (~ 400-490 nm) and the red to near infra-red bands (~ 650-740 nm), where the absorption and fluorescence of 317 

accessory pigments are highest (Kramer et al., 2022).   318 

In the red to near infra-red bands (~ 650-740 nm), absorbance peaks of 683 and 700 nm have been previously related to HABs 319 

(Shen et al., 2012), in concurrence with the drops in reflectance values registered for both diatom and dinoflagellate groups in 320 

the present study. Past spectral studies have shown differences in the signal of diatoms and dinoflagellate species (Tao et al., 321 

2013). For example, Zhao et al. (2010) described three different spectral fingerprints that grouped several species together. In 322 

the aforementioned study, the dinoflagellate Heterosigma akashiwo was characterized by a single reflectance peak of 680-750 323 

nm. However, the results of the present study showed a more accurate spectrum, due to the width of the spectral signal, with 324 

a double peak structure between 670-690 nm, a plateau at around 720-730 nm and a previous higher peak in the green bands 325 

at ~570 nm. This main peak has been previously described to characterize the spectral signal of the HAB dinoflagellate species 326 

Lepidodinium chlorophorum (Gernez et al., 2023), thus raising the possibility of it being considered a dinoflagellate spectral 327 

signal characteristic. However, the hyperspectral reflectance results of diatom species in the present study demonstrate a similar 328 

peak at around 560-570 nm for Skeletonema sp., in line with studies that utilize satellite remote-sensing reflectance (Tao et al., 329 

2013).  330 

The effects of pigment concentrations and the community composition of phytoplankton on the reflectance spectrum have 331 

been shown to be essential factors in the development of optical fingerprints at the genus or species levels (Mao et al., 2010; 332 

Kramer et al., 2022; Gernez et al., 2023). Although increases in absorbance and decreases in reflectance generally correlate 333 

directly with changes in algal density (cell concentration) in monospecific laboratory experiments (Gitelson et al., 1999), non-334 

significant differences in spectral signals under different cell concentrations were detected during field monitoring. The lack 335 

of relationship between cell density and reflectance is likely given in the range of densities observed in the present study, 336 

which varied from 1,582,600 to 3,400 cells L-1. In this context, the main factor that affects reflectance signals with differences 337 

in curve shapes in relation to the same species was related to pigment concentration (Chl-a). In fact, significant differences in 338 

major spectral bands (blue, green and red) were observed on the basis of this pigment concentration. In the summer, under low 339 

Chl-a concentrations, peaks in reflectance in the green-red (~ 500-750 nm) bands, where chlorophyll pigment reflects light, 340 
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showed significant variability in both shape and magnitude of R(λ), both among genera and across the different locations. In 341 

terms of spectral signals registered in the autumn, under higher Chl-a concentrations and a more diverse community, greater 342 

variability was detected in the blue (~ 400-490 nm) bands. However, as indicated by Mao et al. (2010), such variations in the 343 

blue bands (i.e., 400-450 nm) are driven by the species composition under low Chl-a concentrations, in contrast to the green 344 

(500-550 nm) bands. 345 

Recent studies have described a covariation between pigments, both accessory and specific groups, and optical properties such 346 

as fluorescence, scattering or cellular grouping (Kramer et al., 2022). In the present study, total Chl-a has been shown to play 347 

a key role in the spectra with the R(λ) signal classification. The HCA groups together the same phytoplankton assemblages 348 

and genera, including under variable oceanographic conditions (primarily by salinity and Chl-a). Furthermore, it groups 349 

locations with similar total biomass concentration (Chl-a) and phytoplankton community composition. Locations with open 350 

water circulation, in which there were different dominant diatoms genera, characterized by low total biomass concentrations 351 

(min. < 1 µg L-1), higher salinity and the presence of dinoflagellates (Gyrodinium sp. and other thecate dinoflagellates) were 352 

grouped together more closely (Yaotal, Ilque and Pulelo). Conversely, stations with high Chl-a concentrations (min. >1 µg L-353 

1), located mainly in enclosed areas like Chaparano and Canal Tenglo, formed part of another group. Additionally, it should 354 

be noted that locations with the lowest Chl-a concentrations also displayed the lowest mean values of abundance.  355 

The variability in reflectance can be associated with multiple factors, including biological (community composition, cellular 356 

morphology, cell density, pigment composition and concentration or physiological status), physical-chemical (suspended 357 

matter, stratification, the roughness of the surface or the specular reflection), and meteorological (wind speed, solar radiation, 358 

cloudiness and solar angle) (Gitelson et al., 1999; Kim et al., 2016; Muñoz et al., 2023). For example, stratification plays a key 359 

role in the vertical distribution of phytoplankton and matter in estuarine and coastal waters. River discharge and glacier melting 360 

constitute an important input of coloured dissolved organic matter (CDOM) and total suspended matter (TSM), and they also 361 

alter the bio-optical signals, especially in the blue bands (Simis et al., 2017; Kramer et al., 2022; Adhikari et al., 2023). Indeed, 362 

in the Patagonian fjords, and particularly in the Chiloé Inner Sea, high synchrony between Chl-a and turbid river plumes has 363 

been detected using remote sensing reflectance (Rrs645 product) at 645 nm (Muñoz et al., 2023). 364 

In fact, variations in bio-optical water properties have not only been related to a punctual parameter, but also to the interactions 365 

of these parameters and their seasonality (Flores et al., 2022; Adhikari et al., 2023; Muñoz et al., 2023), with changes in the 366 

optical signal associated with both biological (phytoplankton succession) and non-biological (stratification) characteristics in 367 

the water column (Simis et al., 2017). Moreover, the ability to accurately distinguish the effect of different factors on in situ 368 

reflectance signals is complex, since it may be a nonlinear relationship. Therefore, further research is necessary to understand 369 

both the biological features, i.e., phytoplankton composition and pigment concentration, including accessory pigments, and 370 

non-biological characteristic on the reflectance signal. 371 

4.2 New technologies: limitations, opportunities and challenges 372 
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Optical technology for the remote detection of phytoplankton, such as satellites, have been employed for decades (Hu et al., 373 

2005; Shen et al., 2012; Moisan et al., 2017; Gernez et al., 2023). Although limitations related to satellite observations 374 

associated with spatial-temporal and spectral band resolution are well known (Muller-Karger et al., 2018; Schaeffer and Myer, 375 

2020), more modern satellites that use multi- or hyperspectral sensors, such as Plankton, Aerosol, Cloud, Ocean Ecosystem 376 

(PACE) and Hyperspectral Imager for the Coastal Ocean (HICO), have shown improvements in spatial (~ 1200-90 m) and/or 377 

spectral resolution (~ 350-900 nm) in recent years (Kramer et al., 2022; Gernez et al., 2023). Crucially, these modern multi- 378 

or hyperspectral sensors favour observation in the ultraviolet (UV), visible and near-infrared bands. Nevertheless, certain 379 

limitations remain in terms of the number of spectral bands and satellite orbit cycles or those caused by cloud cover and 380 

sunglint in remote areas. 381 

Accurate observations represent a challenge in coastal areas where the spatial-temporal variability of phytoplankton changes 382 

rapidly. The recent development of new technologies, such as UAVs and hyperspectral cameras to detect and monitor 383 

phytoplankton blooms, particularly harmful algae species at a high spatial-temporal resolution, can fill in the gaps of satellite 384 

data and also help to validate this data with in situ measurements. The utility of this technology in terms of in situ measurements 385 

has been demonstrated around the world, especially in coastal areas in which current or future economic activities, or future 386 

projects under prospecting are present (Kim et al., 2016; Kimura et al., 2019; McEliece et al., 2020; Min et al., 2021). 387 

Consequently, an essential factor in this regard is the optical system chosen for to capture the spectral signal. Currently, there 388 

are multiple possibilities, including radiometers and hyperspectral and multispectral cameras, which offer several 389 

characteristics, such as distinct spectral resolutions, different model sizes and varying imaging systems (Kislik et al., 2018; 390 

Olivetti et al., 2023). Although hyperspectral cameras are a high-cost technology, their high resolution is considered the best 391 

option for phytoplankton and HAB monitoring in complex and small coastal areas with aquaculture activities, including fjords, 392 

bays and estuaries (Olivetti et al., 2023). 393 

The present study has identified a series of advantages and challenges of using UAVs and hyperspectral technology for the 394 

detection and identification of phytoplankton assemblages in complex coastal waters. One of these advantages is the 395 

continuous spectral resolution afforded by the hyperspectral camera, which is capable of measuring each ~ 2 nm, from 400 to 396 

1000 nm, i.e., it is a powerful tool with which to differentiate between phytoplankton assemblages through changes in spectral 397 

signals at high spectral resolution. The use of UAVs for in situ reflectance measurement is another advantage. For example, 398 

conducting monitoring at optimal altitudes (< 100 m) allows for a high spatial resolution (~3.5 cm by pixel) to be achieved. 399 

UAVs can also be deployed to capture reflectance under cloud cover or other atmospheric conditions, such as suspended dust 400 

and other particulate matter. These advantages contrast with the major challenges in terms of capturing satellite reflectance in 401 

coastal systems with complex topographies and high cloud cover throughout the year. The challenge is especially significant 402 

if it is necessary to obtain images and water samples simultaneously.  403 

Despite the aforementioned advantages, the use of UAVs as a means of phytoplankton monitoring in remote areas remains a 404 

challenge. Although this technology can help to reduce sampling times and provide researchers with the possibility to conduct 405 
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monitoring in remote coastal areas, the dependency on a strong network signal in the vicinity constitutes a major limitation, 406 

particularly in more isolated areas where network signal is weak or inconsistent. Furthermore, adverse weather conditions, 407 

such as wind or rain, as previously identified by Kislik et al. (2018), can compromise the use of a UAV. Other limitations that 408 

were identified during the undertaking of the present study relate to technical aspects, including flight time being limited by 409 

battery life and the lack of reference points over large expanses of water (Kislik et al., 2018; Wu et al., 2019). A further aspect 410 

to consider is the camera size. Hyperspectral cameras are a relatively new technology and, as such, are large and heavy. 411 

Therefore, their functionality is somewhat limited since those who wish to utilize this equipment are forced to invest in a large, 412 

expensive drone in order to carry the camera. In addition, a further related challenge to overcome is the high variability of 413 

these cameras available on the market, with a broad range of specifications in terms of spectral resolution, geometry acquisition 414 

and imaging systems. As a result, a degree of caution is required at the moment of acquisition because the specifications of the 415 

camera that is purchased will determine the ability of the user to capture and compare data and apply algorithms in future 416 

work. Further significant obstacles that can hinder the identification of phytoplankton using reflectance data include the 417 

analysis of the vertical distribution of phytoplankton in the water column (~ 1-40 m), using both satellites and UAV-418 

hyperspectral camera systems, particularly in the design of future algorithms. This also includes the difficulties associated with 419 

conducting analyses of the presence of other particles, mainly non-biological, in the water column, as well as their impact on 420 

solar radiation absorption/reflexion and in terms of other physical aspects, such as water roughness.  421 

The high resolution afforded by this new technology has the potential to enhance the classical detection algorithms that are 422 

based on reflectance and/or absorbance ratios and which have traditionally been applied on the basis of satellite data (Mao et 423 

al., 2010; Tao et al., 2013; Gernez et al., 2023). However, despite recent works having increasingly included hyperspectral 424 

data for the study of phytoplankton assemblages, these datasets remain limited to specific areas and/or are unavailable. Indeed, 425 

the lack of a robust hyperspectral image library is another important factor to consider. Therefore, future observations must 426 

combine UAV-hyperspectral camera systems and next-generation satellite hyperspectral data with the in-situ collection of 427 

biological (phytoplankton concentration, pigments and taxonomy) and non-biological data (CDOM & TSM) across multiple 428 

and diverse environments.   429 

5 Conclusions 430 

The aim of the present study was to take the first steps in the identification of phytoplankton from in situ hyperspectral signals 431 

using a UAV and hyperspectral technology in a complex coastal system, which in this case was the Patagonian fjords. The 432 

results obtained show the potential of hyperspectral data for the detection and identification of phytoplankton assemblages. 433 

Evidence was found of differences between the spectral signals of diatoms (i.e., Rhizosolenia sp., Pseudo-nitzschia sp. and 434 

Leptocylindrus sp.) that were detected in the blue band (~ 400-490 nm) with those of dinoflagellates (i.e., Heterocapsa 435 

triquetra) that were observed in the red to near-red bands (~ 650-740 nm), regardless of cellular concentration. In addition, 436 
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pigment concentrations were validated as determinants, with Chl-a playing a significant role in the classification of the 437 

reflectance spectra signal. The present study illustrates the great potential of hyperspectral technology and the usefulness of 438 

UAV systems to support and improve both satellite and in situ monitoring in complex coastal waters, such as the Patagonian 439 

fjords. The reflectance data registered in the present study, which is associated with a specific genera label, in conjunction with 440 

information on oceanographic conditions and phytoplankton pigments, can be employed in a possible next step to aid in the 441 

development of an accurate algorithm through machine learning. This would not only help to identify and differentiate 442 

phytoplankton genera blooms, but also non-biological particles (suspended materials and sediment.) and other water 443 

characteristics.  444 
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