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Abstract.

Success of the Paris Agreement relies on rapid reductions in fossil fuel CO, (ffCO2) emissions. Atmospheric data can
verify the ffCO4 reductions pledged by nations in their nationally determined contributions. However, estimating ffCO2 from
atmospheric COs is challenging due to natural fluxes and varying backgrounds. One approach is to combine with nitrogen
oxides (NO, = NO + NO,), which are co-emitted with CO- during combustion. A key challenge in using NO, to estimate
ffCO; is the computational cost of modelling atmospheric photochemistry. Additionally, the NO5:NO column ratio must be
well understood to convert model NOy columns to NO5 columns for comparison with satellite data. We use random forest
regression to parameterise NO, chemistry, relying only on meteorological parameters and NOy concentration. The regression
is trained on outputs from a nested GEOS (Goddard Earth Observing System)-Chem model simulation for mainland Europe
in 2019. We develop a monthly NO, chemistry parameterisation that performs well when tested on perturbed emission runs
(R? > 0.95) and on unseen meteorology for 2021 (R? > 0.79). We also parameterise the NO2:NO ratio (R? > 0.99 on perturbed
outputs, R? > 0.92 on unseen meteorology). Additionally, we present an alternative method to predict NO, rates by scaling
baseline NO, rates with changes in NO, concentration (R? = 1.0 on perturbed outputs). Our models reproduce NO; columns
with minimal deviation from full-chemistry models, with reconstruction error smaller than the TROPOspheric Monitoring
Instrument (TROPOMI) precision in over 99.9% of cases, supporting robust ffCO inversion efforts. These results provide a
robust framework for accurately estimating fossil fuel CO2 emissions from atmospheric data, enabling more reliable monitoring

and verification of global emissions reductions.

1 Introduction

Reaching net zero greenhouse gas emissions is a global goal, needed to curb further warming of our planet. Achieving that goal
on a national scale requires accurate knowledge about fossil fuel emissions of CO5 (ffCO3) to verify a country’s progress to-
wards achieving their Nationally Determined Contributions under the Paris Agreement. But how can a country assess whether

they are heading in the right direction? The default approach is to use national inventories that are compiled from energy
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statistics and emission factors but they are uncertain for various reasons, mainly associated with the veracity of the statistics
and their spatial and temporal distributions and the default assumption of time-invariant emission factors (Kuenen et al., 2014;
Hoesly et al., 2018). Such ‘bottom-up’ inventories are typically available with a delay of 2 years (Janssens-Maenhout et al.,
2019) thereby introducing a temporal disconnect between climate action and results. The alternative ‘top-down’, data-driven
approach uses Bayes’ theory to infer CO, emission estimates from observed changes in atmospheric COs. This approach is
also subject to uncertainties including errors in atmospheric transport models, sparse observational coverage, and background
concentration estimation (Peylin et al., 2013; Andrew, 2020). One of the remaining challenges associated with this atmospheric
approach is isolating the combustion and natural contributions to atmospheric CO, (Oda et al., 2023). Various approaches have
been proffered to address that challenge, which fall into two broad categories: spatial disaggregation of combustion (Shu and
Lam, 2011; Liu et al., 2018) and natural fluxes and using an additional trace gas (Meijer et al., 1996; Lopez et al., 2013; Wenger
et al., 2019; Super et al., 2020), associated exclusively with combustion or natural processes common to CO5. One such trace
gas is NOy, but due to the large computational overhead of directly modelling the atmospheric NOy photochemistry, we en-
deavor to determine an alternative methodology to model NOy chemistry. Here we describe a parameterisation of tropospheric
nitrogen oxide (NOy = NO + NO-) chemistry that effectively unlocks our ability to usel NO, alongside CO- to quantify ffCO9
estimates within an Bayesian inference framework, particularly in the context of an operational system.

Extracting energy from carbon-based fuels relies on breaking apart atomic bonds that form the molecular structure of the fuel,
thereby releasing energy. This is achieved by combustion in which the fuel, composed primarily of hydrogen-carbon bonds, is
oxidized by molecular oxygen (O2). Generally, more energy is released during combustion for fuels with a higher H:C ratio.
The primary products of combustion are CO» and water vapour. However, when combustion is inefficient — for example, due
to insufficient O to fully oxidise the fuel — a wider range of compounds is released, depending on the composition of the fuel
being burned. For many combustion processes, air is used to provide O5. While molecular nitrogen (N») in air does not take part
in the combustion reaction, the high temperatures involved can thermally dissociate Ny to facilitate the production of NO (and
to a lesser extent NOy), which is subsequently co-emitted with the CO5 emissions. The advantage of using atmospheric NOy
as a tracer of ffCOs is its relatively short lifetime, on the order of hours to days, which means that we can link elevated NO9
satellite columns directly to their parent NO, emissions. Numerous studies are using observations of NO, and NOs to constrain
estimates of ffCO, (Berezin et al., 2013; Lopez et al., 2013; Goldberg et al., 2019; Super et al., 2020). With the increasing
availability of in sifu and satellite measurements of atmospheric CO5, NO; and other fossil-fuel tracers, deriving ffCO5 through
multi-species model inversion techniques is becoming a widely used approach (Feng et al., 2009; Nayagam et al., 2023; Super
et al., 2024; Wang et al., 2025). However, a key limitation of this method is the uncertainty in CO2:NOy emission ratios, which
vary by sector, fuel type, and combustion technology (Jiang et al., 2010; Wang et al., 2025) . Additional challenges include
errors in atmospheric transport modelling, accurate representation of chemical processes, and limited observational coverage.

We present a methodology for parameterising NOy chemistry to reduce the associated computational overhead. We consider
NO because its constituents, NO and NOo, rapidly interconvert (Jacob, 1999). By modelling NOy as a proxy for the combined
NO and NO; we can save a considerable amount of computational time that would otherwise be spent on photochemical

calculations (previously shown in Wu et al. (2023)). To do this we need a model that can predict the net loss of NOy at each
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time step and grid point. The rate of decay of NOy is driven by a number of meteorological parameters (Nguyen et al., 2022)
including, but not limited to, the irradiance from sunlight, air temperature and solar zenith angle. In this study, we develop
a machine learning-based random forest regression model, trained on a full-chemistry version of the GEOS (Goddard Earth
Observing System)-Chem atmospheric chemistry model, to accurately predict the atmospheric NOy rate of change using a
small set of driving variables. We evaluate the robustness of our parameterised NOy chemistry using perturbed emissions on
the order of those we typically employ in ensemble Kalman filter techniques. With atmospheric inversion methods in mind,
atmospheric NOy emission estimates tend to be constrained by satellite column observations of NO5 (Napelenok et al., 2008;
Zhao and Wang, 2009; Kemball-Cook et al., 2015) so our parameterised model must also be able to describe changes in NOs.
We achieve this by developing a further random forest-based model, which can predict the species concentration NO2:NO
ratio.

Figure 1 shows a schematic overview of the steps used to parameterise NO, chemistry and partitioning for efficient mod-
elling of NO; columns. The first stage involves running atmospheric simulations of NOy using offline chemistry rates, which
are either predicted by random forest models (described in section 2.2) or estimated through relative scaling (described in
section 2.3). In the second stage, the NO, output from these simulations is converted to NOo, enabling direct comparison with
satellite observations such as TROPOMI NO,. This approach provides an efficient framework suitable for data assimilation
applications.

In the next section, we describe the GEOS-Chem atmospheric chemistry transport model that we use to train our random
forest models, the satellite observations of column NO; that we use to evaluate our parameterised atmospheric chemistry model
for NOg, and the approach we take to construct the random forest model. In section 3, we report the performance of random
forest models of atmospheric NOy and NO2:NO, and evaluate the corresponding atmospheric NOs columns using satellite

data. We conclude the paper in section 4.

2 Data and methods

Here, we describe the GEOS-Chem atmospheric transport model used to build our random forest regression models, the
satellite column data we use to evaluate our parameterised model of atmospheric NO, chemistry, and details that describe
how we develop our random forest regression models. A random forest regression model, or a constant lifetime scaling based
approach can be used to predict the chemistry rates. The modelled NOy concentrations are then converted to NO, using an
additional random forest model. This efficient approach significantly reduces GEOS-Chem’s computational cost for forward
modelling of NOy columns. This is particularly useful for high resolution data assimilation, allowing anthropogenic NO,
emission perturbations to be compared with satellite NO, observations, such as the TROPOspheric Monitoring Instrument

(TROPOMI).
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2.1 GEOS-Chem atmospheric chemistry transport model

We use version 14.2.2 of the GEOS-Chem atmospheric chemistry transport model (Bey et al., 2001) to describe the emissions,
transport, and chemical production/loss of atmospheric NOy. For the purpose of our study, we use a nested version of the full
chemistry model, centred over mainland Europe (32.75 to 61.25° N, -15 to 40 ° E) with 47 vertical levels, approximately 30 of
which fall below the dynamic tropopause, where the first model layer has a depth of 130-180 m. The nested model runs with
a horizontal spatial resolution of 0.25°x0.3125°. Initial conditions and lateral boundary conditions to the nested domain were
created from a consistent global version of the GEOS-Chem model run at 4°x5°, with three-hourly output fields. We ran the
model with a transport timestep of 5 minutes and a chemistry timestep of 10 minutes.

The model is driven by offline meteorology fields from the GEOS Forward Processing (GEOS-FP) product from the Global
modelling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. GEOS-FP has a native horizontal resolu-
tion of 0.25°x0.3125° with 72 vertical pressure levels and 3 hr temporal resolution. To describe the emissions of NOy we used
anthropogenic emissions from the Community Emissions Data System (CEDS) version 2 (Hoesly et al., 2018), which provides
NO emissions for anthropogenic combustion (industry, energy extraction), and non-combustion sources (agriculture, solvents),
including surface transport and shipping. Aircraft emissions for NO and NOs are taken from the Aviation Emissions Inventory
Code (AEIC) (Simone et al., 2013). Pyrogenic emissions of NO are taken from the Global Fire Emissions Database (GFED)
version 4.1 (Randerson et al., 2017).

GEOS-Chem’s full-chemistry mechanism simulates atmospheric chemistry by explicitly solving a comprehensive network

of chemical reactions, capturing the production, transformation, and loss of NO, and related species. NOy chemical loss is

Random forest regression model : ;
. . . Updated chemistry rate is calculated by
which predicts the NOy chemistry [ GEOS-Chem ] scaling the baseline rate proportionally
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Figure 1. A schematic illustrates how NO chemistry parameterisation models are integrated into GEOS-Chem for modelling of atmospheric
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simulated through key reactions such as NO reacting with ozone (O3) to form NOs, hydroxyl radicals (OH) to produce
nitric acid (HNOs3), and hydroperoxyl radicals (HO-) to form peroxynitric acid (HNO,). Organic nitrate formation is included
through the reactions of NO5 with methyl peroxy radicals (MO3) and methacryloyl peroxy radicals (MCO3), forming methyl
peroxy nitrate (MPN) and peroxyacetyl nitrate (PAN), respectively. Additional loss occurs via NOg reacting with NOs to
produce dinitrogen pentoxide (N2Oj). Simultaneously, the model accounts for important regeneration pathways, including
the thermal decomposition of N3O5 into NO3 and NOo, the breakdown of PAN to release NOy and methacryloyl peroxy
radicals (MCOs), and the photolysis of HNO, to produce NO3 and HO». Rapid NO to NO, exchange is simulated through key
reactions, including NO + O3 — NOy + O4, which relies on ozone to oxidize NO, and NO + NO3 — 2 NO,, which occurs
through the reaction of nitric oxide with nitrate radicals. Additionally, photochemical reactions driven by sunlight include NO4
+ O3 + hv — NO + Ogs, where nitrogen dioxide photodissociates to form nitric oxide. The mechanism determines reaction
rates using reaction rate coefficients that depend on temperature, pressure, and solar radiation, alongside environmental inputs
like meteorological fields and species concentrations.

The average diurnal cycle of NOy chemical rate of change calculated from full-chemistry simulations is presented in Fig. A1l
for the four seasons of the year. The shape of the diurnal cycle in the NOy tendency varies seasonally, influenced by changing
sunlight intensity and atmospheric conditions. In winter, the net NOy loss peaks predominantly at night, when photolytic
regeneration ceases and reservoir species like HNO3 and PAN accumulate, removing NOy from the reactive pool. During
spring and autumn, while a nighttime peak loss remains, there is an additional peak of comparable magnitude in the morning
around 0900-1000 local solar time (LST). In summer, the maximum net loss shifts to the early morning hours 0700-0800 LST,
likely driven by rapid photochemical activity as sunlight increases. Meanwhile, by the afternoon we find episodes of net NO
production, reflecting stronger photolytic regeneration under high solar intensity. These seasonal and diurnal variations reflect
complex interactions between photochemistry, emission patterns, and atmospheric transport, resulting in shifts of NO, sinks
and sources throughout the day and year.

The NO, concentration, the NOy chemical rates of change, and relevant meteorology were output at a temporal resolution
of one hour. The chosen meteorological parameters are shown in Table 1. These were selected as they were all found to have a
relationship with the net NOy chemical rate of change.

The model was run for the full year 2019 with baseline (unperturbed) NO, anthropogenic emissions taken from the CEDs
emission inventory. This data was used to train the regression models. To further validate the regression model’s performance
under varying emissions, additional model runs were conducted with random perturbations applied to anthropogenic NO
emissions on the order of +20%. We chose this size of perturbation because a 20% increase in emissions induces changes in
NO; columns on the same order of magnitude as the difference observed between GEOS-Chem and TROPOMI (as in Fig. 2a).
These perturbed runs were performed for 10 days in January, April, July, and October. A model run for the year 2021 was also

performed in order to test the regression performance for an unseen meterological period.
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Figure 2. a) Sensitivity testing shows that the impact of 20% emission perturbations on modelled NO2 columns is on the same order as the
deviations between GEOS-Chem and TROPOMI. (b) The impact of emission perturbations on the NOx chemistry rate becomes negligible
(<1% change, or ANO, rate < 9x 10® molec/cm®/s) above 3km from the ground. Additionally, chemistry rate change is negligible in all

cases where ANOy concentration < 5x 10? molecules/cm?.

Parameter Description Units Rate predicition  Ratio predicition
NO«x Species concentration molec cm—3 v X
SZA Solar zenith angle at grid point degrees v v
Longitude Grid point coordinate degrees-East v v
Latitude Grid point coordinate degrees-North v v
Altitude Height above ground level m v v
Radiation Incident short wave radiation W m~2 v v
Temperature | Atmospheric temperature K v v
Humidity Water vapour mixing ratio vol vol =1 v v
Wind speed Wind speed magnitude ms~! v v
Density Dry air density kgm—3 X X
PBL height Planetary boundary layer height m X X
Pressure Air pressure hPa X X
CO Carbon monoxide dry mixing ratio vol vol =1 X X
O3 Ozone dry mixing ratio vol vol ~1 X X

Table 1. Input parameters selected through forward feature selection for random forest regression models predicting the NOx chemical net

rate of change [molec cm™3 s™1] and the NO2:NO partitioning ratio.
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2.2 Random Forest regression modelling

We trained two random forest regressor models to predict the NOy net chemical rate of change, and the NO5:NO partitioning
ratio. Random forest models are an ensemble machine learning method, which combine the predictions of many decision trees
to improve accuracy and reduce overfitting (Breiman, 2001). A decision tree is a simple predictive model that makes a series
of splits in the data based on input variables. At each node, the algorithm chooses the predictor and threshold that best separate
the data with respect to the target, continuing until each final branch (or “leaf”) gives a prediction. While a single tree is easy
to interpret, it can overfit the data. Random forests address this by building a “forest” of many trees, each trained on a random
subset of the data and predictors. This randomness ensures the trees capture diverse patterns, and averaging their outputs yields
more robust predictions. Such an algorithm is well-suited to this study as, unlike traditional regression approaches, it does not
require assumptions about linearity and can flexibly capture complex relationships and interactions between meteorological
drivers and chemical tendencies. Additionally, random forests are relatively computationally efficient to train and can handle
correlated predictor variables, making them well suited for large atmospheric datasets.

These models were built using the Sci-kit learn python package (Pedregosa et al., 2011). We evaluated model performance
using the coefficient of determination (R?), which quantifies the proportion of variance explained by the model; the mean
absolute error (MAE), which measures the mean magnitude of prediction errors; and the mean bias, which indicates the mean
tendency of the model to overpredict or underpredict relative to observations. These are defined by the following equations,

where y; are true values, ¢; are predicted values, ¥ is the mean of the true values, and N is the number of datapoints:

N N
1 1
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We separately trained both regression models for each month of the year, for which we report results from January, April,

R*=1-

July, and October 2019. The models were developed using the NO, concentration, the spatial location and a range of meteoro-
logical variables as input parameters. We considered a total of 14 input parameters as predictors in the models, shown in table
1.

To identify the most relevant features for the models, we performed a comprehensive forward selection wrapper procedure,
which iteratively adds the feature that yields the largest improvement in mean absolute error until no further gain is observed.
Figs. A2a and A2b detail how the performance of the models changed as we added features for the prediction of chemistry
rate and the partitioning ratio, respectively. Based on this procedure, we selected a set of nine features for the chemistry rate
model, and eight features for the partitioning ratio model (presented in Table 1). Five of the parameters; air pressure, air
density, height of the planetary boundary layer, and the mixing ratio of ozone (O3) and the mixing ratio of carbon monoxide
(CO), were consistently excluded from all models during feature selection. The respective importance of each feature across
both models for the four months studied are plotted in Fig. A2c. For the chemistry rate prediction, the NOy concentration and
the solar zenith angle are consistently emerge as the most important predictorss, contributing around 70% of the total feature
importance in the model. In the ratio prediction, solar zenith angle, altitude, and temperature are the primary predictors during

the colder months (January and October), while temperature alone serves as the dominant predictor in the warmer months
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(April and July). Additionally, the impact on model performance of removing each of the 14 parameters in turn is presented in
Fig. A2d. The individual relationship between the nine selected predictors and the NO, chemistry rate of change are shown in
Fig. A3.

To avoid unnecessarily complex models, we tuned the model hyperparameter values to optimise the trade-off between com-
putational efficiency and prediction accuracy. Specifically, we conducted a grid search across the four main hyperparameters in
the random forest regression model: the number of trees (estimators), maximum tree depth, maximum number of leaf nodes,
and maximum number of features considered at each split. We selected each hyper-parameter as the value at which performance
plateaued, defined here as the point beyond which further increases in the parameter resulted in less than a 2% improvement in
model performance. The results of the such tuning are presented in Fig. A4. The final optimised model achieved a prediction
time of 6 ms per sample, providing a good balance between accuracy and computational cost. In addition to reducing computa-
tional time, simplifying the random forest by limiting tree complexity and number also reduces the risk of overfitting, thereby
improving the generalisability of the model to new data.

We trained and tested our NOy chemistry regression models on model grid points in the first 3 km above the surface —
the region where changes to surface emissions were found to directly influence the atmospheric chemistry, see Fig. 2b. The
regression model for the NO2:NO ratio was predicted for each level in the troposphere, and trained on the subset of model
data that coincides with the TROPOMI swath (11:30 - 15:30 LST overpass). The NO5:NO ratio can be used to convert the
concentration of NOy to NOs:

NOQZNO

NOy=NO,— 227
0> Ol—i—NOg:NO

2

To evaluate model generalisability, we tested model performance using two complementary approaches. Primarily, we as-
sessed predictions on unseen emission perturbation scenarios while holding meteorology fixed. Specifically, we focused on
+20% emission perturbations similar to those used in ensemble Kalman filter applications (Feng et al., 2009, 2023). This iso-
lates the model’s responsiveness to emission changes under consistent atmospheric conditions and reflects its intended use in
inversion frameworks, where emissions are perturbed while meteorology remains prescribed. In addition, we include in the ap-
pendix (Fig A6) an evaluation on an entirely independent simulation run for the year 2021, representing unseen meteorological
conditions due to its different temporal period. For both approaches, training and testing datasets were constructed via random
sampling across all spatial locations and time steps. The training set comprised a random 10% subset of the unperturbed data,
while the test set comprised 0.25% of the perturbed (or 2021) data, ensuring minimal overlap in specific spatiotemporal condi-
tions. Combined, this dual testing strategy rigorously evaluates the models’ ability to generalise across both emission changes

and meteorological variability, providing confidence in their performance for atmospheric inversion applications.
2.3 NO, chemical lifetime

In an alternative formulation, we apply the assumption that the effective lifetime of atmospheric NOy remains constant under

stable meteorological conditions. Hence, if a full chemistry model run is available for a baseline emission scenario, the chem-
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istry rates for perturbed scenarios can be calculated by scaling the original rate according to the proportional change in NOy
concentration. This approach serves as an alternative to using regression models for predicting the chemistry rates.
The effective atmospheric lifetime, 7 of NOy is given by:

NOy
~ Ryo,’

3)

T

where NO, denotes the combined NO and NO, species concentrations [molec cm ™3] and R0, is the instantaneous chemical
rate of net loss [molec cm~3s~!], which accounts for the balance between its chemical production (e.g., from reactions involv-
ing NO or NO,, precursors) and its chemical loss processes (e.g., reactions forming reservoirs like HNO3 or NOy species). Note
that when NO, experiences an instantaneous net chemical production, this effective atmospheric lifetime becomes negative.
We advise the reader that this effective lifetime does not represent an intrinsic first-order decay timescale for NOy. Instead, it
provides a practical framework to express net rates of change relative to the amount of NOy present, which we find to be an
intrinsically stable metric. The benefit of looking at the effective chemical lifetime, rather than the net rate of change, is that
the quantity is largely independent of species concentration. This independence allows for a more stable understanding of the
NOy chemistry, irrespective of fluctuations in its concentration caused by emission changes.

We found that while the influence of £20% emission perturbations cause clear changes to the NO, chemical net rate of
change, the resulting changes to atmospheric lifetime are considerably smaller (see Fig. AS). This result suggests that the
chemical lifetime is driven by the meteorology and location in the model but is less sensitive to changing concentrations of
NOy. The unperturbed model run provides NOy concentrations and rates of change at a 1-hour temporal resolution, allowing
the chemical rate of change to be updated every hour under the assumption of an unchanged chemical lifetime. The new rate
of change can be determined using the NO, lifetime, 7, and the local NOy concentration:
NOx(z,y, 2,t)

=T @

Ryo, (z,y,2,t) =

For this method, an initial unperturbed full-chemistry model run must be employed to determine the NO, chemical lifetime
7(x,y,z2,t) for each grid-point and time-point for the spatial and temporal region of interest. Then for any further perturbed
model runs, the chemistry rates can be determined without the need of an integrated chemistry scheme, thereby saving consid-
erable computational time. The updated chemistry rates are then simply scaled by the ratio of the new NO, concentration to
the original NO, concentration; so, if the concentration doubles then we assume a doubling in the net chemical rate of change.

This method for updating the NOy chemistry is referred to as the constant lifetime scaling-based method.
2.4 Regression-based atmospheric chemistry transport modelling

For this study, we added the NOy species to the GEOS-Chem tagged carbon model, CO2, CO, methane, and carbonyl sulphide,
in which individual tagged tracers track contributions of these trace gases from geographical regions and/or natural and human-
driven fluxes. This model does not include an integrated chemistry scheme and therefore the NO, species chemical rate of
change is determined using the NOy chemistry regression model. Going forward, we refer to this model as the regression-

based atmospheric chemistry transport model (shown in Fig. 1).
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We performed a full-chemistry model run with emission perturbations to evaluate the impact of emission changes on NO
chemistry, and later to assess the performance of our regression model in predicting the effects of emission changes. An
analysis of how the emission-driven changes in chemistry rate varied with the atmospheric altitude as well as the change in
NOy concentration is shown in Fig. 2b. The net rate of change in NO, chemistry showed minimal variability at altitudes
above 3 km, where the chemistry change was less than 9x 10 molec/cm®/s. Additionally, minimal variability in atmospheric
chemistry was observed when the absolute change in NO, concentration was less than 5x 10* molec/cm?®, which corresponds
to a chemistry change of less than 2x 103 molec/cm3/s. Based on these findings, we set a condition to update the NO, net
chemical rate of change using the unperturbed full-chemistry outputs for altitudes above 3 km and for regions where the
change in NO, concentration is less than 5x 10* molec/cm?®. For all other regions, the chemistry regression model is used to
predict the new rate of change.

We also used the constant lifetime scaling method (see above) to predict the new rate of change. Looking to Fig. 1 we can
see that this methodology provides an alternative approach to the regression-based atmospheric chemistry model for modelling
NOy columns. Throughout this paper we will compare the results of the regression-based chemistry scheme and the constant
lifetime scaling-based approach.

We ran the model for 10 days in January, April, July, and October which provided contrasting seasonal conditions to test the
model. For each run, we use the £20% perturbed anthropogenic NOy emission sets. To evaluate the veracity of the NOy column
model outputs for the regression-based chemistry model and for the constant lifetime scaling model, we compare them with
the full-chemistry model outputs. We use our NO2:NO ratio regression model to convert NO, results from our atmospheric
chemistry regression model to NOy columns, sampled at the time and location of TROPOMI data, so they can be compared

with TROPOMI NO, column data.
2.5 TROPOMI satellite column observations of NO

We use TROPOMI NO, tropospheric columns (SSP Level 2, product version 2.2.0, processing version 1.6.0.) to compare
with the GEOS-Chem model output (see Fig. 1). TROPOMI was launched in 2017 in a Sun-synchronous orbit with a local
equatorial overpass time of 13:30. It has a swath width of 2600 km and a ground pixel of 7x7 km? in the nadir. Due to the
width of the swath, the 13:30 overpass time corresponds to data captured with local solar time (LST) ranging from 11:30 and
15:30 in the highest latitude regions of the European domain. We only used data with a quality flag > 0.75, filtering out data
affected by elevated cloud cover, aerosol loading, and larger solar and viewing zenith angles. We analysed TROPOMI data for
10 days in January, April, July, and October 2019.

For our study, we regridded TROPOMI data to our 0.25°x0.3125° GEOS-Chem model grid. To enable a comparison be-
tween TROPOMI and GEOS-Chem, we sampled the model at the location and time of each TROPOMI observation. We
applied scene-dependent TROPOMI averaging kernels, describing the instrument sensitivity to changes in atmospheric NO,

to the corresponding model NO», profiles.

10
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3 Results and discussion

Here, we report the model performance of our atmospheric chemistry prediction models for NO, and the accompanying
regression model for the NO2:NO ratio that enables us to convert NOy columns to NO, columns observed by satellites. We
assess the fidelity of our results from these models using the full-chemistry version of GEOS-Chem and evaluate our results

using TROPOMI NO; column data.
3.1 Performance of atmospheric chemistry regression models for NO,
3.1.1 NOy chemistry random forest

Fig. 3a shows that the NO, chemistry random forest model has an impressive performance at reproducing results from the full-
chemistry version of GEOS-Chem for the four months we study in 2019. The model performance R? values are 0.97, 0.97, 0.96
and, 0.95 for January, April, July, and October 2019, respectively. The MAE values are largest in July (4x10* molec/cm?/s)
and smallest in January (2.3 x 10* molec/cm?®/s), reflecting the increase in magnitude of chemistry rates during summer months
over Europe.

We also tested our regression-based atmospheric chemistry model with model data from 2021 (Fig. A6). As expected, the
regression model performance has less skill in reproducing data that has not been used for training. In this case, the MAE
values are higher by a factor of 1.3-1.8 compared with the overall performance comparison shown in Fig. 4). Nevertheless, the
model still shows substantial skill despite substantial differences in anthropogenic emissions between 2019 and 2021 due to
COVID-19. Specifically, NOy emissions were found to decrease by 18-24% during lockdown periods (Miyazaki et al., 2021)
leading to a mean observed reduction in NO5 of 29% (Cooper et al., 2022).

3.1.2 NOy chemistry prediction using constant lifetime scaling

Fig. 3b shows results from using our alternative atmospheric chemistry regression NOy model that employs a constant at-
mospheric lifetime scaling approach (eq. 4). The resulting model performance is a significant improvement above the other
regression model for all four study months. Using our scaling approach, we found consistent values of R? = 1.0 and MAE
values that are approximately 2-3 times smaller than the other regression model. As with the other regression model, the size
of the error is scaled by the seasonal changes in chemistry rates.

While this approach shows extremely encouraging abilities to determine NOy chemistry rates, its effectiveness relies on
having a full-chemistry model run available for at least one set of emission inputs. Consequently, this approach is particularly
useful for emission perturbation studies, for which numerous emission distribution scenarios might be needed for model inver-
sion work. In this case, the full-chemistry model would only need to be run once for the given time period of interest. However,

we cannot predict the NO, chemistry using this method for a previously unmodelled meterological period.
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Figure 3. Actual versus predicted scatter plots for models tested on simulations with unseen emission perturbations. (a) The random forest
regression model for predicting the NOx chemistry rate, (b) the constant lifetime scaling for reconstructing the NOy chemistry rate using an
unperturbed chemistry dataset, (c) the reconstruction of NO3 from NOy using the random forest regression model for predicting the NO2:NO

ratio.
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3.1.3 NO-2:NO ratio regression model

We find the random forest regression model to predict NO2:NO ratios also demonstrates significant performance. The predicted
ratio is used to convert NOy concentrations to NO, concentrations (eq. 2). Figure 3c shows that the regression model can
reproduce “true” NOy values from the full-chemistry of the GEOS-Chem model, with values of R? of 1.0; the exception is
January when R? = 0.99.

Generally, the model performance is better during summer months and worse in winter months, with MAE values an order
of magnitude smaller in July compared to January. This is partly due to NO2 concentrations increasing during colder months
due to increased combustion and longer nights, and because we find that NO2:NO ratios become increasingly hard to determine
at higher solar zenith angles, typically experienced over Europe during daytime through winter months. We also examine the
performance of this regression model using data from the unseen year 2021. As with the atmospheric chemistry regression
model, described above, the performance was good but worse than for 2019 in which data was used to train the model. The
MAE increased by a factor of 3.25, 3.52, 3.04, and 3.14 for January, April, July, and October respectively. We found the R2
performance reduced most for January from 0.99 to 0.92, During April and October R? reduced from 1.0 to 0.99, while R?=1.0

was maintained in July.
3.2 NOy atmospheric modelling

Fig. 5 shows the NO, column reconstruction for the two regression models used to describe the NO, chemistry rates from
the full-chemistry version of the GEOS-Chem model. From a visual inspection, there are no obvious differences in the spatial
distribution of the NO, columns reconstructed using both the regression-based chemistry model and the constant lifetime
scaling model. However, when mapping the differences, there are areas of deviation from the full-chemistry model. Broadly,
this deviation is significantly smaller when we use the scaling-based model compared to the regression-based. In addition, the
error accumulation in January is notably smaller than in other months.

Fig. 6 shows the temporal variation in the reconstruction error. The range, IQR, and median values are shown in 6a and the
mean absolute percentage error (MAPE) is shown in 6b. For the regression-based chemistry method the range in deviation
peaks at up to 3x 10" molec/cm? in January, 5x10'* molec/cm? in April and 6x10** molec/cm? in July and October. This
is reflected in maximum MAPE values of 2.8%, 9.7%, 8.9%, and 9.3% for the four months, respectively. On the whole, the
MAPE reduces through time, with final deviation values of 1.7%, 3.4%, 2.0%, and 4.8% after the full 10-day run.

Reconstruction errors for the constant lifetime scaling model show much smaller errors, particularly in January, with MAPE
< 0.2% throughout the 10-day run. This is driven by the smaller impact that emission perturbations have on the NO, chemistry
in January as shown by Fig. AS. In particular, the lifetime of NO, is relatively unchanged between the unperturbed and
perturbed model runs. This reduced impact in January is likely due to the slower rate of photochemical reactions in the winter
months and increased atmospheric stability at lower temperatures. The other months do see a more prominent deviation of
up to a maximum of 4x 10'* molec/cm?, with peak MAPE values of 6.6%, 5.7%, and 4.5%, for April, July, and October,

respectively. As with the regression-based model outputs, here the MAPE also generally decreases through time with final
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Figure 4. Regression model prediction performance compared when tested on a 20% perturbed model run for 2019 and an unseen year,
2021. (a) Shows the NOx chemistry regression model performance comparisons and (b) shows the NO2 prediction performance using the

NO2:NO regression model.

deviation values of 0.1%, 1.1%, 0.2%, and 0.3% for each month, respectively. Interestingly, while the range and IQR are
relatively stable throughout the run when using the regression-based reconstruction, these quantities decrease considerably
with time when we use the scaling-based reconstruction.

The reconstruction error has a small diurnal cycle, peaking in the morning and to a lesser extent in the evening, reflecting
the diurnal cycle of NOy chemistry (Fig A1). Overall the absolute model error for both the regression-based and scaling-based
methods peaks after the first day and then gradually reduce, plateauing by ~day 6. This early peak in error followed by a
reduction and eventual plateau is likely due to compensating errors, where the regression model’s over- and under-predictions
balance each other out over time, leading to a stabilisation of the overall error. It is encouraging that there is no accumulation
of error through time, suggesting this approach would be suitable for studies longer than for ten days. It is clear that the optimal
reconstruction performance is found when using the scaling-based method, but as we already note there are limitations to this
method. The regression-based approach still provides excellent reconstruction performance for our purposes.

To evaluate the performance of the regression-based chemistry modelling approach with regression models trained on a

different meteorological time period, the same models were applied to simulate atmospheric NO, over Europe for 2021.
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Figure 5. The modelled NOx columns sampled at 12:00 UTC after a 10-day model run with £20% emission perturbations. NOx columns
are compared for the GEOS-Chem full-chemistry model and (a) NOx columns are simulated using the regression-based chemistry method

and (b) using the constant lifetime scaling method.

Figure 7a shows the reconstructed NOy columns after a 10 day model run. As expected, the reconstruction performance is
clearly worse than when the regression-based chemistry is just applied in 2019 with emission perturbations (Fig 5a). However,
from a visual inspection, there are no obvious changes to the spatial distribution of the NO, columns reconstructed using
regression-based chemistry in comparison to the full-chemistry model output. Additionally, the temporal variation in error is
shown through plots of the MAPE (Fig 7b). We see maximum MAPE values of 11.0%, 10.0%, 16.7%, and for January, April,
July, and October 2021 respectively. For all months this is an increase in the maximum deviation observed when applying
this methodology to a perturbed 2019 run. Overall, this is reflective of the reduction in prediction power of the regression
models when we apply to 2021, which has unseen meteorology. Overall, the same pattern of the absolute error gradually
reducing and plateauing by ~ day 6 is also observed here. However, the diurnal cycle of variation in the reconstruction error
is more pronounced in the 2021 case, likely due to the fact that the regression model is worse performing during the night for
unseen meteorology. The error tends to reduce dramatically towards the middle of the day, which is helpful if we consider the
application of model comparison with satellite data such as a TROPOMI, which has a 13.30 overpass time.

Substantial computational time is saved when we employ these regression methods to model atmospheric NOy. Figure 6¢
shows the time taken for each model to perform a 1-day model run. This was calculated as the mean average for the model to

run for a single day out of the 10 days run for each of the four months, repeated for 3 model runs. Clearly, the full-chemistry
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Figure 6. Comparison of the temporal variation in NOx column reconstruction for the regression-based and scaling-based model. (a) The
median (dashed line), IQR (light-shaded region) and range (dark-shaded region) of the NOyx column reconstruction error over the 10-day runs.
(b) The mean absolute percentage error over the 10-day runs. (c) Shows the reduction in computational time when modelling atmospheric

NOy using each of our chemistry prediction methods compared to running with the full-chemistry model.

model takes the longest, with a mean of 52 minutes per day for our nested model over Europe. The regression-based chemistry
model is significantly faster with a mean of 16 minutes (3.25 times improvement), while the constant lifetime scaling method
is even faster, with a mean of 12 minutes (4.3 times improvement). It is important to note that the model run times reported

here are subject to variability due to fluctuations in the relative loading experienced by the computer system used.
3.3 NO; column reconstruction
Finally, we assess the capability of our NO5:NO regression model, convolved with TROPOMI instrument averaging kernels,

to reproduce observation column distributions of NOy from TROPOMI. The absolute differences in NOy columns between
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Figure 7. (a) The modelled NOy columns sampled at 12:00 UTC after a 10-day model run in 2021 using the regression models trained on

2019 compared with full-chemistry. (b) The mean absolute percentage error for the 10-day runs.

GEOS-Chem full-chemistry and the GEOS-Chem regression-based and scaling-based models are compared to the absolute
difference in TROPOMI NO5 and GEOS-Chem full-chemistry, as well as to the magnitude of the TROPOMI NO> column
precision data. This is presented in Fig. 8a, compared for 8 days in January, April, July, and October. We apply the regression-
based method to a 2019 perturbed model run, and to a 2021 model run.

We find comparable NO, reconstruction errors for the four months we study. Earlier, with the NOy reconstruction, we found
that the error was smaller for January than the other months (Fig. 3a and 3b), however, the higher error from the January
NO-2:NO regression model (Fig. 3c) offsets this advantage, ultimately bringing the overall reconstruction error for all months
to a comparable level. We observe comparable magnitudes of reconstruction error when we compare our NO; reconstructions
based on the scaling-based and regression-based methods applied to the 2019 model run. However, the reconstruction error
tends to be consistently larger when we apply our regression-based method to the year 2021. This is particularly notable in
January and July, which can be attributed to the greatest deterioration in NO, chemistry regression performance in July 2021,
and the greatest deterioration in the NO2 prediction performance in January 2021 (see Fig 4).

When we compare the difference between GEOS-Chem and TROPOMI NOs, columns, we find that the NOs reconstruction
errors are much smaller and much smaller than the estimated precision values for the data. This is the case for the scaling-
based approach and the regression-based approach applied to both 2019 and 2021. This provides confidence that our model

reconstruction performance is robust enough for use in inversion work, even in the case of using regression models that
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have been trained on unseen meteorological periods. See Appendix B for a more detailed analysis on the difference between
modelled column NO5 and observed TROPOMI data.

Fig. 8b, shows that the median NOs column model reconstruction errors are 2.8% of the actual deviation from TROPOMI
in the scaling-based approach, compared to 6.5% and 7.3% in the regression-based approach for 2019 and 2021, respectively.
Similarly, these construction errors represent a median value of 1.3% of the TROPOMI precision value for the scaling-based
approach, compared to 2.9% and 3.2% for the regression-based approach for 2019 and 2021, respectively. Across all recon-
structed data points, we found that over 99.9% of the data had reconstruction errors smaller than the corresponding TROPOMI
column precision for both reconstruction methods in 2019. For the regression-based method applied in 2021, this was true for

over 99.7% of the data.

4 Concluding remarks

We have demonstrated that the NOy chemistry rates and NO2:NO ratio described by a leading 3-D atmospheric chemistry
model can be reproduced using random forest-based regression models using NO, concentrations, the spatial location, and
meteorological variables as input parameters. The models perform successfully on perturbed testing data through all months of
2019 with R% > 0.95 for predicting NO, chemistry rates and R? > 0.99 for predicting the corresponding NO:NO concentra-
tion ratios. We also show that these models maintain their prediction capability when tested on model outputs from an unseen
year (2021) with contrasting environment conditions.

We have also demonstrated that the atmospheric lifetime of NOy is stable against varying emissions, particularly in winter
months. From this, we have demonstrated that it is also possible to predict updated NO, chemistry rates of change as a result of
emission perturbations, with knowledge of NOy chemistry from an initial unperturbed model run. This scaling-based approach
has impressive prediction performance with R2=1.0.

We have developed two viable methodologies to model atmospheric NO in a more computationally efficient way than using
the GEOS-Chem 3-D model. The regression-based chemistry method has the advantage of not requiring prior knowledge of
the NOy lifetimes for a baseline model run, and reduces the computational time by a factor of 3.25. The lifetime scaling-based
approach reduces the model run time slightly further by a factor of 4.3, but a baseline full-chemistry model run is required.
This scaling-based approach has smaller model reconstruction errors, but generally both approaches have reconstruction errors
smaller than the TROPOMI precision values for over 99.9% of the reconstructed data (399,502 points).

Our study provides confidence in random forest models being used to describe NO, chemistry to a sufficient accuracy for
them to play an important role in inversion methods. Previous work has already found that NO can be used to help constrain
ffCO, (Berezin et al., 2013; Lopez et al., 2013; Goldberg et al., 2019; Super et al., 2020), and this work develops a new
methodology to more efficiently infer NOy column enhancements from changes to NOy emission inputs. The methodologies
developed here will be used within a joint NO,:CO» model inversion to constrain geographically resolved ffCO,. This will
be explored using an ensemble Kalman filter within the GEOS-Chem model framework, as well as within the Integrated

Forecasting System (IFS) using an incremental 4D-Var algorithm (Inness et al., 2013). Results from our study are particularly
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415 timely with the launch in the next few years of the Copernicus Anthropogenic Carbon Dioxide Monitoring constellation
(CO2M) that include column measurements of CO5 and NOs. Overall this work will support the development and employment
of European CO5 measurement, reporting and verification systems.

5 Code/Data availability

The analysis code, model output data, and random forest regression models (in .pkl format) are available upon request from
420 the corresponding author (cschooli@ed.ac.uk).
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Figure Al. Diurnal cycle of NOy chemistry for four months of the year. Median and interquartile range net rates of change at the surface of

the atmosphere averaged across the European domain.
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Figure A2. a) Feature selection results for the rate prediction models, obtained using a forward selection wrapper method. Plotted are the
coefficient of determination (R?) and mean absolute error (MAE) as functions of the number of features included, for each of the four
seasonal models (January, April, July, October). (b) Same as (a), but for the partitioning ratio prediction models. (c) Feature importance
distributions for each of the four monthly models, showing the relative contributions of each predictor variable to the rate prediction models
(using nine features) and the partitioning ratio prediction models (using eight features). (d) Change in MAE resulting from the removal of
each of the 14 features in turn, demonstrating the individual impact of each feature on model performance and highlighting the importance

of specific predictors for accurate rate and ratio estimates.
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Figure A3. Individual relationships between the nine regression input parameters and the NOx net rate of change. A LOWESS fit (red
line) illustrates smoothed trends in the data, with R? values reported for each fit. Among the parameters, NO concentration, altitude, and

temperature exhibit noticeable trends with chemistry rates, while the remaining parameters show little to no clear trends individually.
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Figure A4. Impact of hyperparameter changes on random forest regression model performance for predicting NOx chemistry rates. Plots
show the effect of varying the number of trees, maximum tree depth, maximum leaf nodes, and maximum features per decision on mean R?,
MAE, and prediction time (shaded regions represent performance ranges across monthly models). Increased algorithm complexity improves
R? and reduces MAE but increases prediction time. Optimal hyperparameters—40 trees, depth of 30, 300,000 leaf nodes, and 4 features per

decision—achieve balanced performance with a prediction time of 6 ms.
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Figure AS. The spatial distribution of the impact of £20% emission perturbations on (a) the NOy net rate of change, and (b) the atmospheric

lifetime of NOx. Overall, it is clear that the impact on the atmospheric lifetime is much smaller, due to its independence from the NOx species
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Figure A6. Testing the regression models on 2021. (a) The random forest regression model for predicting the NOx chemistry rate, (b) The

reconstruction of NO2 from NOx using the random forest regression model for predicting the NO2:NO ratio.
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Appendix B: Comparison with TROPOMI

The NO; columns modelled by GEOS-Chem was compared directly with the TROPOMI data for assessment of agreement.
Scatter plots between the two are shown in Fig. B1, where we found significant Pearson correlations (p<0.001) in all months.
In January we observe a general positive bias, where the model is overestimating NO5, while in July and October, a negative
bias is seen.

The spatial distribution of the deviation between GEOS-Chem and TROPOMI is shown in Fig. B2. While there are clear
areas of difference, it is notable that the general regions where we observe elevated levels of NO, are in alignment. In general,
the spatial distribution of high-emission regions throughout Europe is fairly well understood. However, there is likely some
error on the magnitudes of the emissions in the inventories used. This is likely to explain the majority of the areas of large
bias between the model and the observations. However, it must be noted that other sources of error are present, which include
model errors in transport processes, potential inaccuracies in the model meteorology used, errors in parameterising deposition
processes, and the limiting factor of the model spatial resolution. Furthermore, there is also error on the TROPOMI measure-
ments (largely characterised by the TROPOMI column precision value) including from instrument noise, cloud and aerosol
interference, and vertical profile and sensitivity assumptions. Looking to Fig. 8 it is clear that there are many regions where the
error between the model and observations is significantly smaller than the satellite precision, and for such areas the contribution
of NO4 emissions is likely to be accurate.

On the whole, it is promising to the performance of the model that there is a general correlation of agreement between the
model and satellite data. However, there is room for improvement in model agreement, and model inversions would be one

approach to achieve this.
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Figure B1. Correlation between modelled GEOS-Chem NOz columns and observed TROPOMI NO; for the four months of interest. The

Pearson rank and mean absolute area are shown in the legend. The best-fit line (red-dashed) can be compared to the y=x line (black).
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Figure B2. Comparison between GEOS-Chem and TROPOMI for 5 days in January, April, July, and October.
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