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Abstract.

Success of the Paris Agreement relies on rapid reductions in fossil fuel CO2 (ffCO2) emissions. Atmospheric data can

verify the ffCO2 reductions pledged by nations in their nationally determined contributions. However, estimating ffCO2 from5

atmospheric CO2 is challenging due to natural fluxes and varying backgrounds. One approach is to combine with nitrogen

oxides (NOx = NO + NO2), which are co-emitted with CO2 during combustion. A key challenge in using NOx to estimate

ffCO2 is the computational cost of modelling atmospheric photochemistry. Additionally, the NO2:NO column ratio must be

well understood to convert model NOx columns to NO2 columns for comparison with satellite data. We use random forest

regression to parameterise NOx chemistry, relying only on meteorological parameters and NOx concentration. The regression10

is trained on outputs from a nested GEOS (Goddard Earth Observing System)-Chem model simulation for mainland Europe

in 2019. We develop a monthly NOx chemistry parameterisation that performs well when tested on perturbed emission runs

(R2 > 0.95) and on unseen meteorology for 2021 (R2 > 0.79). We also parameterise the NO2:NO ratio (R2 > 0.99 on perturbed

outputs, R2 > 0.92 on unseen meteorology). Additionally, we present an alternative method to predict NOx rates by scaling

baseline NOx rates with changes in NOx concentration (R2 = 1.0 on perturbed outputs). Our models reproduce NO2 columns15

with minimal deviation from full-chemistry models, with reconstruction error smaller than the TROPOspheric Monitoring

Instrument (TROPOMI) precision in over 99.9% of cases, supporting robust ffCO2 inversion efforts. These results provide a

robust framework for accurately estimating fossil fuel CO2 emissions from atmospheric data, enabling more reliable monitoring

and verification of global emissions reductions.

1 Introduction20

Reaching net zero greenhouse gas emissions is a global goal, needed to curb further warming of our planet. Achieving that goal

on a national scale requires accurate knowledge about fossil fuel emissions of CO2 (ffCO2) to verify a country’s progress to-

wards achieving their Nationally Determined Contributions under the Paris Agreement. But how can a country assess whether

they are heading in the right direction? The default approach is to use national inventories that are compiled from energy
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statistics and emission factors but they are uncertain for various reasons, mainly associated with the veracity of the statistics25

and their spatial and temporal distributions and the default assumption of time-invariant emission factors (Kuenen et al., 2014;

Hoesly et al., 2018). Such ‘bottom-up’ inventories are typically available with a delay of 2 years (Janssens-Maenhout et al.,

2019) thereby introducing a temporal disconnect between climate action and results. The alternative ‘top-down’, data-driven

approach uses Bayes’ theory to infer CO2 emission estimates from observed changes in atmospheric CO2. This approach is

also subject to uncertainties including errors in atmospheric transport models, sparse observational coverage, and background30

concentration estimation (Peylin et al., 2013; Andrew, 2020). One of the remaining challenges associated with this atmospheric

approach is isolating the combustion and natural contributions to atmospheric CO2 (Oda et al., 2023). Various approaches have

been proffered to address that challenge, which fall into two broad categories: spatial disaggregation of combustion (Shu and

Lam, 2011; Liu et al., 2018) and natural fluxes and using an additional trace gas (Meijer et al., 1996; Lopez et al., 2013; Wenger

et al., 2019; Super et al., 2020), associated exclusively with combustion or natural processes common to CO2. One such trace35

gas is NOx, but due to the large computational overhead of directly modelling the atmospheric NOx photochemistry, we en-

deavor to determine an alternative methodology to model NOx chemistry. Here we describe a parameterisation of tropospheric

nitrogen oxide (NOx = NO + NO2) chemistry that effectively unlocks our ability to use1 NOx alongside CO2 to quantify ffCO2

estimates within an Bayesian inference framework, particularly in the context of an operational system.

Extracting energy from carbon-based fuels relies on breaking apart atomic bonds that form the molecular structure of the fuel,40

thereby releasing energy. This is achieved by combustion in which the fuel, composed primarily of hydrogen-carbon bonds, is

oxidized by molecular oxygen (O2). Generally, more energy is released during combustion for fuels with a higher H:C ratio.

The primary products of combustion are CO2 and water vapour. However, when combustion is inefficient – for example, due

to insufficient O2 to fully oxidise the fuel – a wider range of compounds is released, depending on the composition of the fuel

being burned. For many combustion processes, air is used to provide O2. While molecular nitrogen (N2) in air does not take part45

in the combustion reaction, the high temperatures involved can thermally dissociate N2 to facilitate the production of NO (and

to a lesser extent NO2), which is subsequently co-emitted with the CO2 emissions. The advantage of using atmospheric NOx

as a tracer of ffCO2 is its relatively short lifetime, on the order of hours to days, which means that we can link elevated NO2

satellite columns directly to their parent NOx emissions. Numerous studies are using observations of NOx and NO2 to constrain

estimates of ffCO2 (Berezin et al., 2013; Lopez et al., 2013; Goldberg et al., 2019; Super et al., 2020). With the increasing50

availability of in situ and satellite measurements of atmospheric CO2, NO2 and other fossil-fuel tracers, deriving ffCO2 through

multi-species model inversion techniques is becoming a widely used approach (Feng et al., 2009; Nayagam et al., 2023; Super

et al., 2024; Wang et al., 2025). However, a key limitation of this method is the uncertainty in CO2:NOx emission ratios, which

vary by sector, fuel type, and combustion technology (Jiang et al., 2010; Wang et al., 2025) . Additional challenges include

errors in atmospheric transport modelling, accurate representation of chemical processes, and limited observational coverage.55

We present a methodology for parameterising NOx chemistry to reduce the associated computational overhead. We consider

NOx because its constituents, NO and NO2, rapidly interconvert (Jacob, 1999). By modelling NOx as a proxy for the combined

NO and NO2 we can save a considerable amount of computational time that would otherwise be spent on photochemical

calculations (previously shown in Wu et al. (2023)). To do this we need a model that can predict the net loss of NOx at each
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time step and grid point. The rate of decay of NOx is driven by a number of meteorological parameters (Nguyen et al., 2022)60

including, but not limited to, the irradiance from sunlight, air temperature and solar zenith angle. In this study, we develop

a machine learning-based random forest regression model, trained on a full-chemistry version of the GEOS (Goddard Earth

Observing System)-Chem atmospheric chemistry model, to accurately predict the atmospheric NOx rate of change using a

small set of driving variables. We evaluate the robustness of our parameterised NOx chemistry using perturbed emissions on

the order of those we typically employ in ensemble Kalman filter techniques. With atmospheric inversion methods in mind,65

atmospheric NOx emission estimates tend to be constrained by satellite column observations of NO2 (Napelenok et al., 2008;

Zhao and Wang, 2009; Kemball-Cook et al., 2015) so our parameterised model must also be able to describe changes in NO2.

We achieve this by developing a further random forest-based model, which can predict the species concentration NO2:NO

ratio.

Figure 1 shows a schematic overview of the steps used to parameterise NOx chemistry and partitioning for efficient mod-70

elling of NO2 columns. The first stage involves running atmospheric simulations of NOx using offline chemistry rates, which

are either predicted by random forest models (described in section 2.2) or estimated through relative scaling (described in

section 2.3). In the second stage, the NOx output from these simulations is converted to NO2, enabling direct comparison with

satellite observations such as TROPOMI NO2. This approach provides an efficient framework suitable for data assimilation

applications.75

In the next section, we describe the GEOS-Chem atmospheric chemistry transport model that we use to train our random

forest models, the satellite observations of column NO2 that we use to evaluate our parameterised atmospheric chemistry model

for NO2, and the approach we take to construct the random forest model. In section 3, we report the performance of random

forest models of atmospheric NOx and NO2:NO, and evaluate the corresponding atmospheric NO2 columns using satellite

data. We conclude the paper in section 4.80

2 Data and methods

Here, we describe the GEOS-Chem atmospheric transport model used to build our random forest regression models, the

satellite column data we use to evaluate our parameterised model of atmospheric NOx chemistry, and details that describe

how we develop our random forest regression models. A random forest regression model, or a constant lifetime scaling based

approach can be used to predict the chemistry rates. The modelled NOx concentrations are then converted to NO2 using an85

additional random forest model. This efficient approach significantly reduces GEOS-Chem’s computational cost for forward

modelling of NO2 columns. This is particularly useful for high resolution data assimilation, allowing anthropogenic NOx

emission perturbations to be compared with satellite NO2 observations, such as the TROPOspheric Monitoring Instrument

(TROPOMI).
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2.1 GEOS-Chem atmospheric chemistry transport model90

We use version 14.2.2 of the GEOS-Chem atmospheric chemistry transport model (Bey et al., 2001) to describe the emissions,

transport, and chemical production/loss of atmospheric NOx. For the purpose of our study, we use a nested version of the full

chemistry model, centred over mainland Europe (32.75 to 61.25◦ N, -15 to 40 ◦ E) with 47 vertical levels, approximately 30 of

which fall below the dynamic tropopause, where the first model layer has a depth of 130-180 m. The nested model runs with

a horizontal spatial resolution of 0.25◦x0.3125◦. Initial conditions and lateral boundary conditions to the nested domain were95

created from a consistent global version of the GEOS-Chem model run at 4◦×5◦, with three-hourly output fields. We ran the

model with a transport timestep of 5 minutes and a chemistry timestep of 10 minutes.

The model is driven by offline meteorology fields from the GEOS Forward Processing (GEOS-FP) product from the Global

modelling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. GEOS-FP has a native horizontal resolu-

tion of 0.25◦x0.3125◦ with 72 vertical pressure levels and 3 hr temporal resolution. To describe the emissions of NOx we used100

anthropogenic emissions from the Community Emissions Data System (CEDS) version 2 (Hoesly et al., 2018), which provides

NO emissions for anthropogenic combustion (industry, energy extraction), and non-combustion sources (agriculture, solvents),

including surface transport and shipping. Aircraft emissions for NO and NO2 are taken from the Aviation Emissions Inventory

Code (AEIC) (Simone et al., 2013). Pyrogenic emissions of NO are taken from the Global Fire Emissions Database (GFED)

version 4.1 (Randerson et al., 2017).105

GEOS-Chem’s full-chemistry mechanism simulates atmospheric chemistry by explicitly solving a comprehensive network

of chemical reactions, capturing the production, transformation, and loss of NOx and related species. NOx chemical loss is
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Figure 1. A schematic illustrates how NOx chemistry parameterisation models are integrated into GEOS-Chem for modelling of atmospheric

NOx without a full chemistry scheme.
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simulated through key reactions such as NO2 reacting with ozone (O3) to form NO3, hydroxyl radicals (OH) to produce

nitric acid (HNO3), and hydroperoxyl radicals (HO2) to form peroxynitric acid (HNO4). Organic nitrate formation is included

through the reactions of NO2 with methyl peroxy radicals (MO2) and methacryloyl peroxy radicals (MCO3), forming methyl110

peroxy nitrate (MPN) and peroxyacetyl nitrate (PAN), respectively. Additional loss occurs via NO3 reacting with NO2 to

produce dinitrogen pentoxide (N2O5). Simultaneously, the model accounts for important regeneration pathways, including

the thermal decomposition of N2O5 into NO3 and NO2, the breakdown of PAN to release NO2 and methacryloyl peroxy

radicals (MCO3), and the photolysis of HNO4 to produce NO2 and HO2. Rapid NO to NO2 exchange is simulated through key

reactions, including NO + O3 −→ NO2 + O2, which relies on ozone to oxidize NO, and NO + NO3 −→ 2 NO2, which occurs115

through the reaction of nitric oxide with nitrate radicals. Additionally, photochemical reactions driven by sunlight include NO2

+ O2 + hv −→ NO + O3, where nitrogen dioxide photodissociates to form nitric oxide. The mechanism determines reaction

rates using reaction rate coefficients that depend on temperature, pressure, and solar radiation, alongside environmental inputs

like meteorological fields and species concentrations.

The average diurnal cycle of NOx chemical rate of change calculated from full-chemistry simulations is presented in Fig. A1120

for the four seasons of the year. The shape of the diurnal cycle in the NOx tendency varies seasonally, influenced by changing

sunlight intensity and atmospheric conditions. In winter, the net NOx loss peaks predominantly at night, when photolytic

regeneration ceases and reservoir species like HNO3 and PAN accumulate, removing NOx from the reactive pool. During

spring and autumn, while a nighttime peak loss remains, there is an additional peak of comparable magnitude in the morning

around 0900–1000 local solar time (LST). In summer, the maximum net loss shifts to the early morning hours 0700–0800 LST,125

likely driven by rapid photochemical activity as sunlight increases. Meanwhile, by the afternoon we find episodes of net NOx

production, reflecting stronger photolytic regeneration under high solar intensity. These seasonal and diurnal variations reflect

complex interactions between photochemistry, emission patterns, and atmospheric transport, resulting in shifts of NOx sinks

and sources throughout the day and year.

The NOx concentration, the NOx chemical rates of change, and relevant meteorology were output at a temporal resolution130

of one hour. The chosen meteorological parameters are shown in Table 1. These were selected as they were all found to have a

relationship with the net NOx chemical rate of change.

The model was run for the full year 2019 with baseline (unperturbed) NOx anthropogenic emissions taken from the CEDs

emission inventory. This data was used to train the regression models. To further validate the regression model’s performance

under varying emissions, additional model runs were conducted with random perturbations applied to anthropogenic NOx135

emissions on the order of ±20%. We chose this size of perturbation because a 20% increase in emissions induces changes in

NO2 columns on the same order of magnitude as the difference observed between GEOS-Chem and TROPOMI (as in Fig. 2a).

These perturbed runs were performed for 10 days in January, April, July, and October. A model run for the year 2021 was also

performed in order to test the regression performance for an unseen meterological period.
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(a) (b)

Figure 2. a) Sensitivity testing shows that the impact of 20% emission perturbations on modelled NO2 columns is on the same order as the

deviations between GEOS-Chem and TROPOMI. (b) The impact of emission perturbations on the NOx chemistry rate becomes negligible

(<1% change, or ∆NOx rate < 9×103 molec/cm3/s) above 3km from the ground. Additionally, chemistry rate change is negligible in all

cases where ∆NOx concentration < 5×104 molecules/cm3.

Parameter Description Units Rate predicition Ratio predicition

NOx Species concentration molec cm−3 ✓ ×
SZA Solar zenith angle at grid point degrees ✓ ✓

Longitude Grid point coordinate degrees-East ✓ ✓

Latitude Grid point coordinate degrees-North ✓ ✓

Altitude Height above ground level m ✓ ✓

Radiation Incident short wave radiation W m−2 ✓ ✓

Temperature Atmospheric temperature K ✓ ✓

Humidity Water vapour mixing ratio vol vol−1 ✓ ✓

Wind speed Wind speed magnitude m s−1 ✓ ✓

Density Dry air density kg m−3 × ×
PBL height Planetary boundary layer height m × ×
Pressure Air pressure hPa × ×
CO Carbon monoxide dry mixing ratio vol vol−1 × ×
O3 Ozone dry mixing ratio vol vol−1 × ×

Table 1. Input parameters selected through forward feature selection for random forest regression models predicting the NOx chemical net

rate of change [molec cm−3 s−1] and the NO2:NO partitioning ratio.

6



2.2 Random Forest regression modelling140

We trained two random forest regressor models to predict the NOx net chemical rate of change, and the NO2:NO partitioning

ratio. Random forest models are an ensemble machine learning method, which combine the predictions of many decision trees

to improve accuracy and reduce overfitting (Breiman, 2001). A decision tree is a simple predictive model that makes a series

of splits in the data based on input variables. At each node, the algorithm chooses the predictor and threshold that best separate

the data with respect to the target, continuing until each final branch (or “leaf”) gives a prediction. While a single tree is easy145

to interpret, it can overfit the data. Random forests address this by building a “forest” of many trees, each trained on a random

subset of the data and predictors. This randomness ensures the trees capture diverse patterns, and averaging their outputs yields

more robust predictions. Such an algorithm is well-suited to this study as, unlike traditional regression approaches, it does not

require assumptions about linearity and can flexibly capture complex relationships and interactions between meteorological

drivers and chemical tendencies. Additionally, random forests are relatively computationally efficient to train and can handle150

correlated predictor variables, making them well suited for large atmospheric datasets.

These models were built using the Sci-kit learn python package (Pedregosa et al., 2011). We evaluated model performance

using the coefficient of determination (R2), which quantifies the proportion of variance explained by the model; the mean

absolute error (MAE), which measures the mean magnitude of prediction errors; and the mean bias, which indicates the mean

tendency of the model to overpredict or underpredict relative to observations. These are defined by the following equations,155

where yi are true values, ŷi are predicted values, ȳ is the mean of the true values, and N is the number of datapoints:

R2 = 1−
∑N

i=1 (yi − ŷi)
2∑N

i=1 (yi − ȳ)
2

MAE =
1

N

N∑
i=1

|yi − ŷi| Mean Bias =
1

N

N∑
i=1

(yi − ŷi) (1)

We separately trained both regression models for each month of the year, for which we report results from January, April,

July, and October 2019. The models were developed using the NOx concentration, the spatial location and a range of meteoro-

logical variables as input parameters. We considered a total of 14 input parameters as predictors in the models, shown in table160

1.

To identify the most relevant features for the models, we performed a comprehensive forward selection wrapper procedure,

which iteratively adds the feature that yields the largest improvement in mean absolute error until no further gain is observed.

Figs. A2a and A2b detail how the performance of the models changed as we added features for the prediction of chemistry

rate and the partitioning ratio, respectively. Based on this procedure, we selected a set of nine features for the chemistry rate165

model, and eight features for the partitioning ratio model (presented in Table 1). Five of the parameters; air pressure, air

density, height of the planetary boundary layer, and the mixing ratio of ozone (O3) and the mixing ratio of carbon monoxide

(CO), were consistently excluded from all models during feature selection. The respective importance of each feature across

both models for the four months studied are plotted in Fig. A2c. For the chemistry rate prediction, the NOx concentration and

the solar zenith angle are consistently emerge as the most important predictorss, contributing around 70% of the total feature170

importance in the model. In the ratio prediction, solar zenith angle, altitude, and temperature are the primary predictors during

the colder months (January and October), while temperature alone serves as the dominant predictor in the warmer months
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(April and July). Additionally, the impact on model performance of removing each of the 14 parameters in turn is presented in

Fig. A2d. The individual relationship between the nine selected predictors and the NOx chemistry rate of change are shown in

Fig. A3.175

To avoid unnecessarily complex models, we tuned the model hyperparameter values to optimise the trade-off between com-

putational efficiency and prediction accuracy. Specifically, we conducted a grid search across the four main hyperparameters in

the random forest regression model: the number of trees (estimators), maximum tree depth, maximum number of leaf nodes,

and maximum number of features considered at each split. We selected each hyper-parameter as the value at which performance

plateaued, defined here as the point beyond which further increases in the parameter resulted in less than a 2% improvement in180

model performance. The results of the such tuning are presented in Fig. A4. The final optimised model achieved a prediction

time of 6 ms per sample, providing a good balance between accuracy and computational cost. In addition to reducing computa-

tional time, simplifying the random forest by limiting tree complexity and number also reduces the risk of overfitting, thereby

improving the generalisability of the model to new data.

We trained and tested our NOx chemistry regression models on model grid points in the first 3 km above the surface –185

the region where changes to surface emissions were found to directly influence the atmospheric chemistry, see Fig. 2b. The

regression model for the NO2:NO ratio was predicted for each level in the troposphere, and trained on the subset of model

data that coincides with the TROPOMI swath (11:30 - 15:30 LST overpass). The NO2:NO ratio can be used to convert the

concentration of NOx to NO2:

NO2 =NOx
NO2 :NO

1+NO2 :NO
. (2)190

To evaluate model generalisability, we tested model performance using two complementary approaches. Primarily, we as-

sessed predictions on unseen emission perturbation scenarios while holding meteorology fixed. Specifically, we focused on

±20% emission perturbations similar to those used in ensemble Kalman filter applications (Feng et al., 2009, 2023). This iso-

lates the model’s responsiveness to emission changes under consistent atmospheric conditions and reflects its intended use in

inversion frameworks, where emissions are perturbed while meteorology remains prescribed. In addition, we include in the ap-195

pendix (Fig A6) an evaluation on an entirely independent simulation run for the year 2021, representing unseen meteorological

conditions due to its different temporal period. For both approaches, training and testing datasets were constructed via random

sampling across all spatial locations and time steps. The training set comprised a random 10% subset of the unperturbed data,

while the test set comprised 0.25% of the perturbed (or 2021) data, ensuring minimal overlap in specific spatiotemporal condi-

tions. Combined, this dual testing strategy rigorously evaluates the models’ ability to generalise across both emission changes200

and meteorological variability, providing confidence in their performance for atmospheric inversion applications.

2.3 NOx chemical lifetime

In an alternative formulation, we apply the assumption that the effective lifetime of atmospheric NOx remains constant under

stable meteorological conditions. Hence, if a full chemistry model run is available for a baseline emission scenario, the chem-
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istry rates for perturbed scenarios can be calculated by scaling the original rate according to the proportional change in NOx205

concentration. This approach serves as an alternative to using regression models for predicting the chemistry rates.

The effective atmospheric lifetime, τ of NOx is given by:

τ =
NOx

RNOx

, (3)

where NOx denotes the combined NO and NO2 species concentrations [molec cm−3] and RNOx is the instantaneous chemical

rate of net loss [molec cm−3s−1], which accounts for the balance between its chemical production (e.g., from reactions involv-210

ing NO or NO2 precursors) and its chemical loss processes (e.g., reactions forming reservoirs like HNO3 or NOy species). Note

that when NOx experiences an instantaneous net chemical production, this effective atmospheric lifetime becomes negative.

We advise the reader that this effective lifetime does not represent an intrinsic first-order decay timescale for NOx. Instead, it

provides a practical framework to express net rates of change relative to the amount of NOx present, which we find to be an

intrinsically stable metric. The benefit of looking at the effective chemical lifetime, rather than the net rate of change, is that215

the quantity is largely independent of species concentration. This independence allows for a more stable understanding of the

NOx chemistry, irrespective of fluctuations in its concentration caused by emission changes.

We found that while the influence of ±20% emission perturbations cause clear changes to the NOx chemical net rate of

change, the resulting changes to atmospheric lifetime are considerably smaller (see Fig. A5). This result suggests that the

chemical lifetime is driven by the meteorology and location in the model but is less sensitive to changing concentrations of220

NOx. The unperturbed model run provides NOx concentrations and rates of change at a 1-hour temporal resolution, allowing

the chemical rate of change to be updated every hour under the assumption of an unchanged chemical lifetime. The new rate

of change can be determined using the NOx lifetime, τ , and the local NOx concentration:

RNOx(x,y,z, t) =
NOx(x,y,z, t)

τ(x,y,z, t)
. (4)

For this method, an initial unperturbed full-chemistry model run must be employed to determine the NOx chemical lifetime225

τ(x,y,z, t) for each grid-point and time-point for the spatial and temporal region of interest. Then for any further perturbed

model runs, the chemistry rates can be determined without the need of an integrated chemistry scheme, thereby saving consid-

erable computational time. The updated chemistry rates are then simply scaled by the ratio of the new NOx concentration to

the original NOx concentration; so, if the concentration doubles then we assume a doubling in the net chemical rate of change.

This method for updating the NOx chemistry is referred to as the constant lifetime scaling-based method.230

2.4 Regression-based atmospheric chemistry transport modelling

For this study, we added the NOx species to the GEOS-Chem tagged carbon model, CO2, CO, methane, and carbonyl sulphide,

in which individual tagged tracers track contributions of these trace gases from geographical regions and/or natural and human-

driven fluxes. This model does not include an integrated chemistry scheme and therefore the NOx species chemical rate of

change is determined using the NOx chemistry regression model. Going forward, we refer to this model as the regression-235

based atmospheric chemistry transport model (shown in Fig. 1).
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We performed a full-chemistry model run with emission perturbations to evaluate the impact of emission changes on NOx

chemistry, and later to assess the performance of our regression model in predicting the effects of emission changes. An

analysis of how the emission-driven changes in chemistry rate varied with the atmospheric altitude as well as the change in

NOx concentration is shown in Fig. 2b. The net rate of change in NOx chemistry showed minimal variability at altitudes240

above 3 km, where the chemistry change was less than 9×103 molec/cm3/s. Additionally, minimal variability in atmospheric

chemistry was observed when the absolute change in NOx concentration was less than 5×104 molec/cm3, which corresponds

to a chemistry change of less than 2×103 molec/cm3/s. Based on these findings, we set a condition to update the NOx net

chemical rate of change using the unperturbed full-chemistry outputs for altitudes above 3 km and for regions where the

change in NOx concentration is less than 5×104 molec/cm3. For all other regions, the chemistry regression model is used to245

predict the new rate of change.

We also used the constant lifetime scaling method (see above) to predict the new rate of change. Looking to Fig. 1 we can

see that this methodology provides an alternative approach to the regression-based atmospheric chemistry model for modelling

NOx columns. Throughout this paper we will compare the results of the regression-based chemistry scheme and the constant

lifetime scaling-based approach.250

We ran the model for 10 days in January, April, July, and October which provided contrasting seasonal conditions to test the

model. For each run, we use the ±20% perturbed anthropogenic NOx emission sets. To evaluate the veracity of the NOx column

model outputs for the regression-based chemistry model and for the constant lifetime scaling model, we compare them with

the full-chemistry model outputs. We use our NO2:NO ratio regression model to convert NOx results from our atmospheric

chemistry regression model to NO2 columns, sampled at the time and location of TROPOMI data, so they can be compared255

with TROPOMI NO2 column data.

2.5 TROPOMI satellite column observations of NO2

We use TROPOMI NO2 tropospheric columns (S5P Level 2, product version 2.2.0, processing version 1.6.0.) to compare

with the GEOS-Chem model output (see Fig. 1). TROPOMI was launched in 2017 in a Sun-synchronous orbit with a local

equatorial overpass time of 13:30. It has a swath width of 2600 km and a ground pixel of 7×7 km2 in the nadir. Due to the260

width of the swath, the 13:30 overpass time corresponds to data captured with local solar time (LST) ranging from 11:30 and

15:30 in the highest latitude regions of the European domain. We only used data with a quality flag ≥ 0.75, filtering out data

affected by elevated cloud cover, aerosol loading, and larger solar and viewing zenith angles. We analysed TROPOMI data for

10 days in January, April, July, and October 2019.

For our study, we regridded TROPOMI data to our 0.25◦×0.3125◦ GEOS-Chem model grid. To enable a comparison be-265

tween TROPOMI and GEOS-Chem, we sampled the model at the location and time of each TROPOMI observation. We

applied scene-dependent TROPOMI averaging kernels, describing the instrument sensitivity to changes in atmospheric NO2,

to the corresponding model NO2 profiles.
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3 Results and discussion

Here, we report the model performance of our atmospheric chemistry prediction models for NOx and the accompanying270

regression model for the NO2:NO ratio that enables us to convert NOx columns to NO2 columns observed by satellites. We

assess the fidelity of our results from these models using the full-chemistry version of GEOS-Chem and evaluate our results

using TROPOMI NO2 column data.

3.1 Performance of atmospheric chemistry regression models for NOx

3.1.1 NOx chemistry random forest275

Fig. 3a shows that the NOx chemistry random forest model has an impressive performance at reproducing results from the full-

chemistry version of GEOS-Chem for the four months we study in 2019. The model performance R2 values are 0.97, 0.97, 0.96

and, 0.95 for January, April, July, and October 2019, respectively. The MAE values are largest in July (4×104 molec/cm3/s)

and smallest in January (2.3×104 molec/cm3/s), reflecting the increase in magnitude of chemistry rates during summer months

over Europe.280

We also tested our regression-based atmospheric chemistry model with model data from 2021 (Fig. A6). As expected, the

regression model performance has less skill in reproducing data that has not been used for training. In this case, the MAE

values are higher by a factor of 1.3-1.8 compared with the overall performance comparison shown in Fig. 4). Nevertheless, the

model still shows substantial skill despite substantial differences in anthropogenic emissions between 2019 and 2021 due to

COVID-19. Specifically, NOx emissions were found to decrease by 18-24% during lockdown periods (Miyazaki et al., 2021)285

leading to a mean observed reduction in NO2 of 29% (Cooper et al., 2022).

3.1.2 NOx chemistry prediction using constant lifetime scaling

Fig. 3b shows results from using our alternative atmospheric chemistry regression NOx model that employs a constant at-

mospheric lifetime scaling approach (eq. 4). The resulting model performance is a significant improvement above the other

regression model for all four study months. Using our scaling approach, we found consistent values of R2 = 1.0 and MAE290

values that are approximately 2-3 times smaller than the other regression model. As with the other regression model, the size

of the error is scaled by the seasonal changes in chemistry rates.

While this approach shows extremely encouraging abilities to determine NOx chemistry rates, its effectiveness relies on

having a full-chemistry model run available for at least one set of emission inputs. Consequently, this approach is particularly

useful for emission perturbation studies, for which numerous emission distribution scenarios might be needed for model inver-295

sion work. In this case, the full-chemistry model would only need to be run once for the given time period of interest. However,

we cannot predict the NOx chemistry using this method for a previously unmodelled meterological period.
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(a)

(b)

(c)

Figure 3. Actual versus predicted scatter plots for models tested on simulations with unseen emission perturbations. (a) The random forest

regression model for predicting the NOx chemistry rate, (b) the constant lifetime scaling for reconstructing the NOx chemistry rate using an

unperturbed chemistry dataset, (c) the reconstruction of NO2 from NOx using the random forest regression model for predicting the NO2:NO

ratio.
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3.1.3 NO2:NO ratio regression model

We find the random forest regression model to predict NO2:NO ratios also demonstrates significant performance. The predicted

ratio is used to convert NOx concentrations to NO2 concentrations (eq. 2). Figure 3c shows that the regression model can300

reproduce “true” NO2 values from the full-chemistry of the GEOS-Chem model, with values of R2 of 1.0; the exception is

January when R2 = 0.99.

Generally, the model performance is better during summer months and worse in winter months, with MAE values an order

of magnitude smaller in July compared to January. This is partly due to NO2 concentrations increasing during colder months

due to increased combustion and longer nights, and because we find that NO2:NO ratios become increasingly hard to determine305

at higher solar zenith angles, typically experienced over Europe during daytime through winter months. We also examine the

performance of this regression model using data from the unseen year 2021. As with the atmospheric chemistry regression

model, described above, the performance was good but worse than for 2019 in which data was used to train the model. The

MAE increased by a factor of 3.25, 3.52, 3.04, and 3.14 for January, April, July, and October respectively. We found the R2

performance reduced most for January from 0.99 to 0.92, During April and October R2 reduced from 1.0 to 0.99, while R2=1.0310

was maintained in July.

3.2 NOx atmospheric modelling

Fig. 5 shows the NOx column reconstruction for the two regression models used to describe the NOx chemistry rates from

the full-chemistry version of the GEOS-Chem model. From a visual inspection, there are no obvious differences in the spatial

distribution of the NOx columns reconstructed using both the regression-based chemistry model and the constant lifetime315

scaling model. However, when mapping the differences, there are areas of deviation from the full-chemistry model. Broadly,

this deviation is significantly smaller when we use the scaling-based model compared to the regression-based. In addition, the

error accumulation in January is notably smaller than in other months.

Fig. 6 shows the temporal variation in the reconstruction error. The range, IQR, and median values are shown in 6a and the

mean absolute percentage error (MAPE) is shown in 6b. For the regression-based chemistry method the range in deviation320

peaks at up to 3×1014 molec/cm2 in January, 5×1014 molec/cm2 in April and 6×1014 molec/cm2 in July and October. This

is reflected in maximum MAPE values of 2.8%, 9.7%, 8.9%, and 9.3% for the four months, respectively. On the whole, the

MAPE reduces through time, with final deviation values of 1.7%, 3.4%, 2.0%, and 4.8% after the full 10-day run.

Reconstruction errors for the constant lifetime scaling model show much smaller errors, particularly in January, with MAPE

< 0.2% throughout the 10-day run. This is driven by the smaller impact that emission perturbations have on the NOx chemistry325

in January as shown by Fig. A5. In particular, the lifetime of NOx is relatively unchanged between the unperturbed and

perturbed model runs. This reduced impact in January is likely due to the slower rate of photochemical reactions in the winter

months and increased atmospheric stability at lower temperatures. The other months do see a more prominent deviation of

up to a maximum of 4×1014 molec/cm2, with peak MAPE values of 6.6%, 5.7%, and 4.5%, for April, July, and October,

respectively. As with the regression-based model outputs, here the MAPE also generally decreases through time with final330
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(a)

(b)

Figure 4. Regression model prediction performance compared when tested on a 20% perturbed model run for 2019 and an unseen year,

2021. (a) Shows the NOx chemistry regression model performance comparisons and (b) shows the NO2 prediction performance using the

NO2:NO regression model.

deviation values of 0.1%, 1.1%, 0.2%, and 0.3% for each month, respectively. Interestingly, while the range and IQR are

relatively stable throughout the run when using the regression-based reconstruction, these quantities decrease considerably

with time when we use the scaling-based reconstruction.

The reconstruction error has a small diurnal cycle, peaking in the morning and to a lesser extent in the evening, reflecting

the diurnal cycle of NOx chemistry (Fig A1). Overall the absolute model error for both the regression-based and scaling-based335

methods peaks after the first day and then gradually reduce, plateauing by ≃day 6. This early peak in error followed by a

reduction and eventual plateau is likely due to compensating errors, where the regression model’s over- and under-predictions

balance each other out over time, leading to a stabilisation of the overall error. It is encouraging that there is no accumulation

of error through time, suggesting this approach would be suitable for studies longer than for ten days. It is clear that the optimal

reconstruction performance is found when using the scaling-based method, but as we already note there are limitations to this340

method. The regression-based approach still provides excellent reconstruction performance for our purposes.

To evaluate the performance of the regression-based chemistry modelling approach with regression models trained on a

different meteorological time period, the same models were applied to simulate atmospheric NOx over Europe for 2021.
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(a) (b)

Figure 5. The modelled NOx columns sampled at 12:00 UTC after a 10-day model run with ±20% emission perturbations. NOx columns

are compared for the GEOS-Chem full-chemistry model and (a) NOx columns are simulated using the regression-based chemistry method

and (b) using the constant lifetime scaling method.

Figure 7a shows the reconstructed NOx columns after a 10 day model run. As expected, the reconstruction performance is

clearly worse than when the regression-based chemistry is just applied in 2019 with emission perturbations (Fig 5a). However,345

from a visual inspection, there are no obvious changes to the spatial distribution of the NOx columns reconstructed using

regression-based chemistry in comparison to the full-chemistry model output. Additionally, the temporal variation in error is

shown through plots of the MAPE (Fig 7b). We see maximum MAPE values of 11.0%, 10.0%, 16.7%, and for January, April,

July, and October 2021 respectively. For all months this is an increase in the maximum deviation observed when applying

this methodology to a perturbed 2019 run. Overall, this is reflective of the reduction in prediction power of the regression350

models when we apply to 2021, which has unseen meteorology. Overall, the same pattern of the absolute error gradually

reducing and plateauing by ≃ day 6 is also observed here. However, the diurnal cycle of variation in the reconstruction error

is more pronounced in the 2021 case, likely due to the fact that the regression model is worse performing during the night for

unseen meteorology. The error tends to reduce dramatically towards the middle of the day, which is helpful if we consider the

application of model comparison with satellite data such as a TROPOMI, which has a 13.30 overpass time.355

Substantial computational time is saved when we employ these regression methods to model atmospheric NOx. Figure 6c

shows the time taken for each model to perform a 1-day model run. This was calculated as the mean average for the model to

run for a single day out of the 10 days run for each of the four months, repeated for 3 model runs. Clearly, the full-chemistry
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(a)

(b) (c)

Figure 6. Comparison of the temporal variation in NOx column reconstruction for the regression-based and scaling-based model. (a) The

median (dashed line), IQR (light-shaded region) and range (dark-shaded region) of the NOx column reconstruction error over the 10-day runs.

(b) The mean absolute percentage error over the 10-day runs. (c) Shows the reduction in computational time when modelling atmospheric

NOx using each of our chemistry prediction methods compared to running with the full-chemistry model.

model takes the longest, with a mean of 52 minutes per day for our nested model over Europe. The regression-based chemistry

model is significantly faster with a mean of 16 minutes (3.25 times improvement), while the constant lifetime scaling method360

is even faster, with a mean of 12 minutes (4.3 times improvement). It is important to note that the model run times reported

here are subject to variability due to fluctuations in the relative loading experienced by the computer system used.

3.3 NO2 column reconstruction

Finally, we assess the capability of our NO2:NO regression model, convolved with TROPOMI instrument averaging kernels,

to reproduce observation column distributions of NO2 from TROPOMI. The absolute differences in NO2 columns between365
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(a)

(b)

Figure 7. (a) The modelled NOx columns sampled at 12:00 UTC after a 10-day model run in 2021 using the regression models trained on

2019 compared with full-chemistry. (b) The mean absolute percentage error for the 10-day runs.

GEOS-Chem full-chemistry and the GEOS-Chem regression-based and scaling-based models are compared to the absolute

difference in TROPOMI NO2 and GEOS-Chem full-chemistry, as well as to the magnitude of the TROPOMI NO2 column

precision data. This is presented in Fig. 8a, compared for 8 days in January, April, July, and October. We apply the regression-

based method to a 2019 perturbed model run, and to a 2021 model run.

We find comparable NO2 reconstruction errors for the four months we study. Earlier, with the NOx reconstruction, we found370

that the error was smaller for January than the other months (Fig. 3a and 3b), however, the higher error from the January

NO2:NO regression model (Fig. 3c) offsets this advantage, ultimately bringing the overall reconstruction error for all months

to a comparable level. We observe comparable magnitudes of reconstruction error when we compare our NO2 reconstructions

based on the scaling-based and regression-based methods applied to the 2019 model run. However, the reconstruction error

tends to be consistently larger when we apply our regression-based method to the year 2021. This is particularly notable in375

January and July, which can be attributed to the greatest deterioration in NOx chemistry regression performance in July 2021,

and the greatest deterioration in the NO2 prediction performance in January 2021 (see Fig 4).

When we compare the difference between GEOS-Chem and TROPOMI NO2 columns, we find that the NO2 reconstruction

errors are much smaller and much smaller than the estimated precision values for the data. This is the case for the scaling-

based approach and the regression-based approach applied to both 2019 and 2021. This provides confidence that our model380

reconstruction performance is robust enough for use in inversion work, even in the case of using regression models that
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have been trained on unseen meteorological periods. See Appendix B for a more detailed analysis on the difference between

modelled column NO2 and observed TROPOMI data.

Fig. 8b, shows that the median NO2 column model reconstruction errors are 2.8% of the actual deviation from TROPOMI

in the scaling-based approach, compared to 6.5% and 7.3% in the regression-based approach for 2019 and 2021, respectively.385

Similarly, these construction errors represent a median value of 1.3% of the TROPOMI precision value for the scaling-based

approach, compared to 2.9% and 3.2% for the regression-based approach for 2019 and 2021, respectively. Across all recon-

structed data points, we found that over 99.9% of the data had reconstruction errors smaller than the corresponding TROPOMI

column precision for both reconstruction methods in 2019. For the regression-based method applied in 2021, this was true for

over 99.7% of the data.390

4 Concluding remarks

We have demonstrated that the NOx chemistry rates and NO2:NO ratio described by a leading 3-D atmospheric chemistry

model can be reproduced using random forest-based regression models using NOx concentrations, the spatial location, and

meteorological variables as input parameters. The models perform successfully on perturbed testing data through all months of

2019 with R2 > 0.95 for predicting NOx chemistry rates and R2 > 0.99 for predicting the corresponding NO2:NO concentra-395

tion ratios. We also show that these models maintain their prediction capability when tested on model outputs from an unseen

year (2021) with contrasting environment conditions.

We have also demonstrated that the atmospheric lifetime of NOx is stable against varying emissions, particularly in winter

months. From this, we have demonstrated that it is also possible to predict updated NOx chemistry rates of change as a result of

emission perturbations, with knowledge of NOx chemistry from an initial unperturbed model run. This scaling-based approach400

has impressive prediction performance with R2=1.0.

We have developed two viable methodologies to model atmospheric NOx in a more computationally efficient way than using

the GEOS-Chem 3-D model. The regression-based chemistry method has the advantage of not requiring prior knowledge of

the NOx lifetimes for a baseline model run, and reduces the computational time by a factor of 3.25. The lifetime scaling-based

approach reduces the model run time slightly further by a factor of 4.3, but a baseline full-chemistry model run is required.405

This scaling-based approach has smaller model reconstruction errors, but generally both approaches have reconstruction errors

smaller than the TROPOMI precision values for over 99.9% of the reconstructed data (399,502 points).

Our study provides confidence in random forest models being used to describe NOx chemistry to a sufficient accuracy for

them to play an important role in inversion methods. Previous work has already found that NO2 can be used to help constrain

ffCO2 (Berezin et al., 2013; Lopez et al., 2013; Goldberg et al., 2019; Super et al., 2020), and this work develops a new410

methodology to more efficiently infer NO2 column enhancements from changes to NOx emission inputs. The methodologies

developed here will be used within a joint NOx:CO2 model inversion to constrain geographically resolved ffCO2. This will

be explored using an ensemble Kalman filter within the GEOS-Chem model framework, as well as within the Integrated

Forecasting System (IFS) using an incremental 4D-Var algorithm (Inness et al., 2013). Results from our study are particularly
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(a)

(b)

Figure 8. (a) The absolute difference in NO2 between GEOS-Chem full-chemistry and the constant lifetime scaling based model (blue); the

regression-based chemistry model applied to a 2019 perturbed run (green) and applied to a 2021 run (purple); deviation from the observed

NO2 TROPOMI columns (red); as well as the TROPOMI NO2 tropospheric column precision values (yellow). (b) The normalised NO2

differences are calculated by normalising the reconstructed model deviation by the absolute deviation between GEOS-Chem and TROPOMI,

as well as by the TROPOMI column precision values. For the different model reconstructions, the NO2 deviation is consistently less than the

corresponding TROPOMI precision value in more than 99.5% datapoints.
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timely with the launch in the next few years of the Copernicus Anthropogenic Carbon Dioxide Monitoring constellation415

(CO2M) that include column measurements of CO2 and NO2. Overall this work will support the development and employment

of European CO2 measurement, reporting and verification systems.

5 Code/Data availability
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Appendix A

Figure A1. Diurnal cycle of NOx chemistry for four months of the year. Median and interquartile range net rates of change at the surface of

the atmosphere averaged across the European domain.
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(a) (b) (c)

(d)

Figure A2. a) Feature selection results for the rate prediction models, obtained using a forward selection wrapper method. Plotted are the

coefficient of determination (R2) and mean absolute error (MAE) as functions of the number of features included, for each of the four

seasonal models (January, April, July, October). (b) Same as (a), but for the partitioning ratio prediction models. (c) Feature importance

distributions for each of the four monthly models, showing the relative contributions of each predictor variable to the rate prediction models

(using nine features) and the partitioning ratio prediction models (using eight features). (d) Change in MAE resulting from the removal of

each of the 14 features in turn, demonstrating the individual impact of each feature on model performance and highlighting the importance

of specific predictors for accurate rate and ratio estimates.
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Figure A3. Individual relationships between the nine regression input parameters and the NOx net rate of change. A LOWESS fit (red

line) illustrates smoothed trends in the data, with R2 values reported for each fit. Among the parameters, NOx concentration, altitude, and

temperature exhibit noticeable trends with chemistry rates, while the remaining parameters show little to no clear trends individually.
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Figure A4. Impact of hyperparameter changes on random forest regression model performance for predicting NOx chemistry rates. Plots

show the effect of varying the number of trees, maximum tree depth, maximum leaf nodes, and maximum features per decision on mean R2,

MAE, and prediction time (shaded regions represent performance ranges across monthly models). Increased algorithm complexity improves

R2 and reduces MAE but increases prediction time. Optimal hyperparameters—40 trees, depth of 30, 300,000 leaf nodes, and 4 features per

decision—achieve balanced performance with a prediction time of 6 ms.
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(a) (b)

Figure A5. The spatial distribution of the impact of ±20% emission perturbations on (a) the NOx net rate of change, and (b) the atmospheric

lifetime of NOx. Overall, it is clear that the impact on the atmospheric lifetime is much smaller, due to its independence from the NOx species

concentration. Note that a negative lifetime of NOx arises in areas where we have a net chemical production of NOx.

(a)

(b)

Figure A6. Testing the regression models on 2021. (a) The random forest regression model for predicting the NOx chemistry rate, (b) The

reconstruction of NO2 from NOx using the random forest regression model for predicting the NO2:NO ratio.
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Appendix B: Comparison with TROPOMI515

The NO2 columns modelled by GEOS-Chem was compared directly with the TROPOMI data for assessment of agreement.

Scatter plots between the two are shown in Fig. B1, where we found significant Pearson correlations (p<0.001) in all months.

In January we observe a general positive bias, where the model is overestimating NO2, while in July and October, a negative

bias is seen.

The spatial distribution of the deviation between GEOS-Chem and TROPOMI is shown in Fig. B2. While there are clear520

areas of difference, it is notable that the general regions where we observe elevated levels of NO2 are in alignment. In general,

the spatial distribution of high-emission regions throughout Europe is fairly well understood. However, there is likely some

error on the magnitudes of the emissions in the inventories used. This is likely to explain the majority of the areas of large

bias between the model and the observations. However, it must be noted that other sources of error are present, which include

model errors in transport processes, potential inaccuracies in the model meteorology used, errors in parameterising deposition525

processes, and the limiting factor of the model spatial resolution. Furthermore, there is also error on the TROPOMI measure-

ments (largely characterised by the TROPOMI column precision value) including from instrument noise, cloud and aerosol

interference, and vertical profile and sensitivity assumptions. Looking to Fig. 8 it is clear that there are many regions where the

error between the model and observations is significantly smaller than the satellite precision, and for such areas the contribution

of NOx emissions is likely to be accurate.530

On the whole, it is promising to the performance of the model that there is a general correlation of agreement between the

model and satellite data. However, there is room for improvement in model agreement, and model inversions would be one

approach to achieve this.

Figure B1. Correlation between modelled GEOS-Chem NO2 columns and observed TROPOMI NO2 for the four months of interest. The

Pearson rank and mean absolute area are shown in the legend. The best-fit line (red-dashed) can be compared to the y=x line (black).
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(a) (b)

(c) (d)

Figure B2. Comparison between GEOS-Chem and TROPOMI for 5 days in January, April, July, and October.
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