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Abstract.

Success of the Paris Agreement relies on rapid reductions in fossil fuel CO, (ffCO2) emissions. Atmospheric data can
verify the ffCO4 reductions pledged by nations in their nationally determined contributions. However, estimating ffCO2 from
atmospheric COs is challenging due to natural fluxes and varying backgrounds. One approach is to combine with nitrogen
oxides (NO, = NO + NO,), which are co-emitted with CO- during combustion. A key challenge in using NO, to estimate
ffCO4 is the computational cost of modelling atmospheric photochemistry. Additionally, the NO2:NO column ratio must be
well understood to convert model NOy columns to NO5 columns for comparison with satellite data. We use random forest
regression to parameterise NO, chemistry, relying only on meteorological parameters and NOy concentration. The regression
is trained on outputs from a nested GEOS (Goddard Earth Observing System)-Chem model simulation for mainland Europe
in 2019. We develop a monthly NO, chemistry parameterisation that performs well when tested on perturbed emission runs
(R? > 0.95) and on unseen meteorology for 2021 (R? > 0.79). We also parameterise the NO2:NO ratio (R? > 0.99 on perturbed
outputs, R? > 0.92 on unseen meteorology). Additionally, we present an alternative method to predict NO, rates by scaling
baseline NO, rates with changes in NO, concentration (R? = 1.0 on perturbed outputs). Our models reproduce NO; columns
with minimal deviation from full-chemistry models, with reconstruction error smaller than the TROPOspheric Monitoring
Instrument (TROPOMI) precision in over 99.9% of cases, supporting robust ffCO inversion efforts. These results provide a
robust framework for accurately estimating fossil fuel CO2 emissions from atmospheric data, enabling more reliable monitoring

and verification of global emissions reductions.

1 Introduction

Reaching net zero greenhouse gas emissions is a global goal, needed to curb further warming of our planet. Achieving that
goal on a national scale requires accurate knowledge about fossil fuel emissions of CO5 (ffCOs) to verify a country’s progress
towards achieving their Nationally Determined Contributions under the Paris Agreement. But how dees-a-countryknow-they-are
headed-can a country assess whether they are heading in the right direction? The default approach is to use national inventories
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that are compiled from energy statistics and emission factors but they are uneertainty-uncertain for various reasons, mainly
associated with the veracity of the statistics and their spatial and temporal distributions and the default assumption of time-
invariant emission factors (Kuenen et al., 2014; Hoesly et al., 2018). Such ‘bottom-up’ inventories are typically available with
a delay of feast-a—year-2 years (Janssens-Maenhout et al., 2019) thereby introducing a temporal disconnect between climate
action and results. The alternative ‘top-down’, data-driven approach uses Bayes’ theory to infer CO, emission estimates from
observed changes in atmospheric CO,. This approach is also subject to uncertainties including errors in atmospheric transport
models, sparse observational coverage, and background concentration estimation (Peylin et al., 2013; Andrew, 2020). One of
the remaining challenges associated with this atmospheric approach is isolating the combustion and natural contributions to
atmospheric CO5 (Oda et al., 2023). Various approaches have been proffered to address that challenge, which fall into two
broad categories: spatial disaggregation of combustion (Shu and Lam, 2011; Liu et al., 2018) and natural fluxes and using an
additional trace gas (Meijer et al., 1996; Lopez et al., 2013; Wenger et al., 2019; Super et al., 2020), associated exclusively
with combustion or natural processes common to CO,. Bue-One such trace gas is NOy, but due to the large computational
overhead of directly modelling the atmospheric NOy photochemistry, we endeavor to determine an alternative methodlogy
methodology to model NOy chemistry. Here we describe a parameterisation of tropospheric nitrogen oxide (NOyx = NO +
NO;) chemistry that effectively unlocks our ability to use NO alongside CO3 to quantify ffCO5 estimates within an Bayesian
inference framework, particularly in the context of an operational system.

Extracting energy from carbon-based fuels relies on breaking apart atomic bonds that form the molecular structure of the
fuel, thereby releasing energy. This is achieved by combustion in which the fuel, composed primarily of hydrogen-carbon
bonds, is oxidized by molecular oxygen (O2). Generally, more energy is released during combustion for fuels with a higher
H:C ratio. The primary eombustion-produets-products of combustion are CO, and water vapour;butas-the-combustion-becomes
more-ineffieient-(e-g—, However, when combustion is inefficient — for example, due to insufficient O, to react-completely-with
the—fuel)-fully oxidise the fuel — a wider range of compounds are-released;—determined-by-is released, depending on the

composition of the fuel being burned. For many combustion processes, air is used to provide O5. While molecular nitrogen
(N3) in air does not take part in the combustion reaction, the high temperatures involved can thermally dissociate Ny to
facilitate the production of NO (and to a lesser extent NO3), which is subsequently co-emitted with the CO, emissions. The
advantage of using atmospheric NOy as a tracer of ffCOs is its relatively short lifetime, on the order of hours to days, which
means that we can link elevated NO, satellite columns directly to their parent NO emissions. Numerous studies are using
observations of NOy and NO; to constrain estimates of ffCO- (Berezin et al., 2013; Lopez et al., 2013; Goldberg et al.,
2019; Super et al., 2020). With the increasing availability of in sifu and satellite measurements of atmospheric CO2, NO4 and

other fossil-fuel tracers, deriving ffCO, through multi-species model inversion techniques is becoming a widely used approach

{Fengetal;2009; Nayagam-et-al;2023-Super-et-als2024)-(Feng et al., 2009; Nayagam et al., 2023; Super et al., 2024; Wang et al., 202

. However, a key limitation of this method is the uncertainty in CO5:NO, emission ratios, which vary by sector, fuel type, and

combustion technolo Jiang et al., 2010; Wang et al., 2025) . Additional challenges include errors in atmospheric transport

modelling, accurate representation of chemical processes, and limited observational coverage.
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We present a methodology for parameterising NOy chemistry to reduce the associated computational overhead. We consider
NO because its constituents, NO and NOo, rapidly interconvert (Jacob, 1999). By modelling NO, as a proxy for the combined
NO and NOs we can save a considerable amount of computational time that would otherwise be spent on photochemical
calculations (previously shown in Wu et al. (2023)). To do this we need a model that can predict the net loss of NOy at each
time step and grid point. The rate of decay of NOy is driven by a number of meteorological parameters (Nguyen et al., 2022)
including, but not limited to, the irradiance from sunlight, air temperature and solar zenith angle. In this study, we develop
a machine learning-based random forest regression model, trained on a full-chemistry version of the GEOS (Goddard Earth
Observing System)-Chem atmospheric chemistry model, to accurately predict the atmospheric NOy rate of change using a
small set of driving variables. We evaluate the robustness of our parameterised NOy chemistry using perturbed emissions on
the order of those we typically employ in ensemble Kalman filter techniques. With atmospheric inversion methods in mind,
atmospheric NO, emission estimates tend to be constrained by satellite column observations of NOy (Napelenok et al., 2008;
Zhao and Wang, 2009; Kemball-Cook et al., 2015) so our parameterised model must also be able to describe changes in NOs.
We achieve this by developing a further random forest-based model, which can predict the species concentration NO2:NO
ratio.

Figure 1 shows a schematic that-provides—an—overview of the different—steps—wetise—steps used to parameterise NO
chemistry and partitioning for efficient modelling of NOy :NO-columnsand-relate—them—columns. The first stage involves

running atmospheric simulations of NO, using offline chemistry rates, which are either predicted by random forest models

described in section 2.2) or estimated through relative scaling (described in section 2.3). In the second stage, the NO, output

from these simulations is converted to NOgso-that-ean-be-compared-, enabling direct comparison with satellite observations
such as TROPOMI NO,. This approach provides an efficient framework suitable for data assimilation applications. tadividuat

In the next section, we describe the GEOS-Chem atmospheric chemistry transport model that we use to train our random
forest models, the satellite observations of column NO, that we use to evaluate our parameterised atmospheric chemistry model
for NOo, and the approach we take to construct the random forest model. In section 3, we report the performance of random
forest models of atmospheric NO, and NO5:NO, and evaluate the corresponding atmospheric NO2 columns using satellite

data. We conclude the paper in section 4.

2 Data and methods

Here, we describe the GEOS-Chem atmospheric transport model used to build our random forest regression models, the
satellite column data we use to evaluate our parameterised model of atmospheric NOy chemistry, and details that describe
how we develop our random forest regression models. A random forest regression model, or a constant lifetime scaling based
approach can be used to predict the chemistry rates. The modelled NO, concentrations are then converted to NO, using an
additional random forest model. This efficient approach significantly reduces GEOS-Chem’s computational cost for forward

modelling of NOy columns. This is particularly useful for high resolution data assimilation, allowing anthropogenic NOy



emission perturbations to be compared with satellite NO, observations, such as the TROPOspheric Monitoring Instrument
(TROPOMI).

2.1 GEOS-Chem atmospheric chemistry transport model

95 We use version 14.2.2 of the GEOS-Chem atmospheric chemistry transport model (Bey et al., 2001) to describe the emissions,
transport, and chemical production/loss of atmospheric NOy. For the purpose of our study, we use a nested version of the full
chemistry model, centred over mainland Europe (32.75 to 61.25° N, -15 to 40 © E) with 47 vertical levels, approximately 30 of
which fall below the dynamic tropopause, where the first model layer has a depth of 130-180 m. The nested model runs with
a horizontal spatial resolution of 0.25°x0.3125°. Initial conditions and lateral boundary conditions to the nested domain were

100 created from a consistent global version of the GEOS-Chem model run at 4°x5°, with three-hourly output fields. We ran the
model with a transport timestep of 5 minutes and a chemistry timestep of 10 minutes.

The model is driven by offline meteorology fields from the GEOS Forward Processing (GEOS-FP) product from the

Global modelling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. GEOS-FP has a native horizontal

resolution of 0.25°x0.3125° with 72 vertical pressure levels and 3 hr temporal resolution. To describe the emissions of NO

105 we used anthropogenic emissions from the Community Emissions Data System (CEDS) version 2 (Hoesly et al., 2018), which

provides NO emissions for anthropogenic combustion (industry, energy extraction), and non-combustion sources (agriculture,

solvents), including surface transport and shipping. Aircraft emissions for NO and NOs, are taken from the Aviation Emissions

Inventory Code (AEIC) (Simone et al., 2013). Pyrogenic emissions of NO are taken from the Global Fire Emissions Database

Random forest regression model ; .
. : . Updated chemistry rate is calculated by
which predicts the NO, chemistry [ GEOS-Chem ] scaling the baseline rate proportionally

rate using meteorological inputs to the change in NO, concentration

- Regression Constant - -
Parametrise NOy ‘ based lifetime - Predict chemistry
chemistry chemistry scaling by scaling

Random forest regression model OUtPUt
which  predicts the NO:NO,

ratio using meteorological inputs
[ Parametrise ] Convert NO, to NO, l

NO,:NO columns

Perturbations
applied to ffNO,

Data
assimilation
l NO, columns |< Compare )

Figure 1. A schematic illustrates how NO chemistry parameterisation models are integrated into GEOS-Chem for modelling of atmospheric

Observed

satellite NO,
e.g. TROPOMI

NOy without a full chemistry scheme.
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(GFED) version 4.1 (Randerson et al., 2017). In addition, the NO, emissions from soil and lightning are parameterised within
GEOS-Chem (Vinken et al., 2014; Gressent et al., 2016).

GEOS-Chem’s full-chemistry mechanism simulates atmospheric chemistry by explicitly solving a comprehensive network
of chemical reactions, capturing the production, transformation, and loss of NO, and related species. NOy chemical loss is
simulated through key reactions such as NO reacting with ozone (O3) to form NOs, hydroxyl radicals (OH) to produce
nitric acid (HNOs3), and hydroperoxyl radicals (HO-) to form peroxynitric acid (HNO,). Organic nitrate formation is included
through the reactions of NO5 with methyl peroxy radicals (MO3) and methacryloyl peroxy radicals (MCO3), forming methyl
peroxy nitrate (MPN) and peroxyacetyl nitrate (PAN), respectively. Additional loss occurs via NOg reacting with NO to
produce dinitrogen pentoxide (N2Oj). Simultaneously, the model accounts for important regeneration pathways, including
the thermal decomposition of N3O5 into NO3 and NOo, the breakdown of PAN to release NOy and methacryloyl peroxy
radicals (MCOs), and the photolysis of HNO, to produce NO2 and HO». Rapid NO to NO, exchange is simulated through key
reactions, including NO + O3 — NOy + O4, which relies on ozone to oxidize NO, and NO + NO3 — 2 NOy, which occurs
through the reaction of nitric oxide with nitrate radicals. Additionally, photochemical reactions driven by sunlight include NO4
+ Oz + hv — NO + Og3, where nitrogen dioxide photodissociates to form nitric oxide. The mechanism determines reaction
rates using reaction rate coefficients that depend on temperature, pressure, and solar radiation, alongside environmental inputs
like meteorological fields and species concentrations.

The average diurnal cycle of NOy chemical rate of change calculated from full-chemistry simulations is presented in Fig. Al

tAppendix-/Ad-for the four seasons of the year. The shape of the diurnal cycle in the NO, tendency varies seasonally, influenced
by changing sunlight intensity and atmospheric conditions. In winter, the net NOy loss peaks predominantly at night, when
photolytic regeneration ceases and reservoir species like HNO3 and PAN accumulate, removing NO, from the reactive pool.
During spring and autumn, while a nighttime peak loss remains, there is an additional peak of comparable magnitude in
the morning around 09001000 local solar time (LST). In summer, the maximum net loss shifts to the early morning hours
0700-0800 LST. likely driven by rapid photochemical activity as sunlight increases. Meanwhile, by the afternoon we find
episodes of net NO, production, reflecting stronger photolytic regeneration under high solar intensity. These seasonal and
diurnal variations reflect complex interactions between photochemistry, emission patterns, and atmospheric transport, resulting.
in shifts of NO sinks and sources throughout the day and year.

The NO, concentration, the NO chemical rates of change, and relevant meteorology were output at a temporal resolution
of one hour. The chosen meteorological parameters are shown in Table 1. These were selected as they were all found to have a
relationship with the net NOy chemical rate of change.

The model was run for the full year 2019 with baseline (unperturbed) NO, anthropogenic emissions taken from the CEDs
emission inventory. This data was used to train the regression models. To further validate the regression model’s performance
under varying emissions, additional model runs were conducted with random perturbations applied to anthropogenic NO
emissions on the order of +20%. We chose this size of perturbation because a 20% increase in emissions induces changes in

NO; columns on the same order of magnitude as the difference observed between GEOS-Chem and TROPOMI (as in Fig. 2a).
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These perturbed runs were performed for 10 days in January, April, July, and October. A model run for the year 2021 was also

performed in order to test the regression performance for an unseen meterological period.
2.2 Random Forest regression modelling

We trained two random forest regressor models to predict the NOy net chemical rate of change, and the NO2:NO partitioning
ratio. These models were built using the Sci-kit learn python package (Pedregosa et al., 2011). We performed-hyperparameter

Ad-Appendix-A)-evaluated model performance using the coefficient of determination (R?), which quantifies the proportion of
variance explained by the model; the mean absolute error (MAE), which measures the mean magnitude of prediction errors;
and the mean bias, which indicates the mean tendency of the model to overpredict or underpredict relative to observations.
These are defined by the following equations, where y; are true values, g; are predicted values, g is the mean of the true values,

and N is the number of datapoints:

2 Zivzl (i — ;) 1 . . 1 & .
Rr=1-=F—"3 MAEZNZHM—?M MeanBlaS:ﬁZ(yi—yi) (D
Zi:1 (yi — ) i=1 i=1

Parameter Description Units Rate predicition  Ratio predicition

NO« Species concentration molec cm ™3 v X

SZA Solar zenith angle at grid point degrees v v

Longitude Grid point coordinate degrees-East v v

Latitude Grid point coordinate degrees-North v v

Altitude Height above ground level m v v

Radiation Incident short wave radiation W m~2 v v

Temperature | Atmospheric temperature K v v

Humidity Water vapour mixing ratio vol vol =1 v v

Wind speed Wind speed magnitude ms~1! v v

Density kem”? X X
Dry air density

PBL height m X X
Planetary boundary layer height

Pressure hPa, X X
Alr pressure

<o volyol ™% X, X
Carbon monoxide dry mixing ratio

Os. volyol ™2 X X
Qzone dry mixing ratio

Table 1. Input parameters used-in-selected through forward feature selection for random forest regression anatysis-to-predietmodels predicting
the NOy chemical net rate of change [molec cm ™3 s_l] and the NO2:NO mratio.
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Figure 2. a) Sensitivity testing shows that the impact of 20% emission perturbations on modelled NO2 columns is on the same order as

the deviations between GEOS-Chem and TROPOMI. (b) The impact of emission perturbations on the NOyx chemistry rate becomes smalt

negligible (<1% change, or ANO, rate < 9x 10> molec/cm®/s) above 3km from the ground. Additionally, and-when—the_chemistry rate
change is negligible in all cases where ANOy concentration %&M molecules/cm‘i.

We separately trained both regression models for each month of the year, for which we report results from January,
April, July, and October 2019. The models were developed using the NO, concentration, the spatlal location and q/gavrlg/q
of meteorological variables as input parameters. i i
%mmwmwvmmwmw&

To identify the most relevant features for the models, we performed a comprehensive forward selection wrapper procedure,
which iteratively adds the feature that yields the largest improvement in mean absolute error until no further gain is observed.
Figs. A2a and A2b detail how the performance of the models changed as we added features for the prediction of chemistry rate
and the partitioning ratio, respectively. Based on this procedure, we selected a set of nine features (table-Hfor-both-prediction
models—for the chemistry rate model, and eight features for the partitioning ratio model (presented in Table 1). Five of the
parameters; air pressure, air density, height of the planetary boundary layer, and the mixing ratio of ozone (O3) and the mixing.
ratio of carbon monoxide (CQO), were consistently excluded from all models during feature selection. The respective importance
of each feature across both models for the four months studied are plotted in Fig. A2¢. For the chemistry rate prediction, the
NO, concentration and the solar zenith angle are consistently emerge as the most important predictorss, contributing around
70% of the total feature importance in the model. In the ratio prediction, solar zenith angle, altitude, and temperature are the
primary predictors during the colder months (January and October), while temperature alone serves as the dominant predictor

in the warmer months (April and July). Additionally, the impact on model performance of removing each of the 14 parameters

in turn is presented in Fig. A2d. The individual relationship between each-ef-the-ninefeatares-the nine selected predictors
and the NOy chemistry rate of change are shown in Fig. A3(AppendixA). We-also-considered-other parameters;-includingair
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To avoid unnecessarily complex models, we tuned the model hyperparameter values to optimise the trade-off between
computational efficiency and prediction accuracy. Specifically, we conducted a grid search across the four main hyperparameters
in_the random forest regression model: the number of trees (estimators), maximum tree depth, maximum number of leaf
nodes, and maximum number of features considered at each split, We selected each hyper-parameter as the value at which
performance plateaued, defined here as the point beyond which further increases in the parameter resulted in less than a
2% improvement in model performance. The results of the such tuning are presented in Fig. Ad. The final optimised model
achieved a prediction time of 6 ms per sample, providing a good balance between accuracy and computational cost. In addition
to reducing computational time, simplifying the random forest by limiting tree complexity and number also reduces the risk of
overfitting, thereby improving the generalisability of the model to new data.

We trained and tested our NOy chemistry regression models on model grid points in the first 3 km above the surface —
the region where changes to surface emissions were found to directly influence the atmospheric chemistry, see Fig. 2b. The
regression model for the NO5:NO ratio was predicted for each level in the troposphere, and trained on the subset of model

data that coincides with the TROPOMI swath (11:30 - 15:30 LST overpass). The NO2:NO ratio can be used to convert the

concentration of NOy to NOs:
N02 :NO
1+NO3;: NO ’

NOy = NOx 2

To evaluate model generalisability, we tested model performance using two complementary approaches. Primarily, we
assessed predictions on unseen emission perturbation scenarios while holding meteorology fixed. Specifically, we focused

on £20% emission perturbations similar to those used in an-ensemble Kalman filter (Feng-et-al5-2009,2023)-as-well-as-from
N . . . . 2

SN (yi—9:)°
ZzNzl (y71737>2

applications (Feng et al., 2009, 2023). This isolates the model’s responsiveness to emission changes under consistent atmospheric
conditions and reflects its intended use in inversion frameworks, where emissions are perturbed while meteorology remains

A6) an evaluation on an entirely independent simulation run for the year

rescribed. In addition, we include in the appendix (Fi

2021, representing unseen meteorological conditions due to its different temporal period. For both approaches, training and
testing datasets were constructed via random sampling across all spatial locations and time steps. The training set comprised
a random 10% subset of the unperturbed data, while the test set comprised 0.25% of the perturbed (or 2021) data, ensuring
minimal overlap in specific spatiotemporal conditions. Combined, this dual testing strategy rigorously evaluates the models’
ability to generalise across both emission changes and meteorological variability, providing confidence in their performance
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2.3 NOy chemical lifetime

In an alternative formulation, we apply the assumption that the effective lifetime of atmospheric NO, remains constant under

stable meteorological conditions. Hence, if a full chemistry model run is available for a baseline emission scenario, the

chemistry rates for perturbed scenarios can be calculated by scaling the original rate according to the proportional change

in NOy concentration. This approach serves as an alternative to using regression models for predicting the chemistry rates.
The effective atmospheric lifetime, 7 of NOy is given by:

_ NO,
Rno,’

3)

T

where NOy denotes the combined NO and NO, species concentrations [molec cm—3] and Ry 0., is the instantaneous chemical
rate of ehangenet loss [molec cm™3s™!that-deseribes-the-nettoss, which accounts for the balance between its chemical
production (e.g., from reactions involving NO or NO, precursors) and its chemical loss processes (e.g., reactions forming

reservoirs like HNO3 or NOy species). Note that when NO, experiences an instantaneous net chemical production, the

this effective atmospheric lifetime becomes negative. We advise the reader that this effective lifetime does not represent an
intrinsic first-order decay timescale for NO,. Instead, it provides a practical framework to express net rates of change relative
to_the amount of NO, present, which we find to be an intrinsically stable metric. The benefit of looking at the effective

chemical lifetime, rather than the net rate of change, is that the quantity is largely independent of species concentration. This
independence allows for a more stable understanding of the NOy chemistry, irrespective of fluctuations in its concentration
caused by emission changes.

We found that while the influence of +20% emission perturbations cause clear changes to the NO, chemical net rate of
change, the resulting changes to atmospheric lifetime are considerably smaller (see Fig. AS:-Appendox-A). This result suggests
that the chemical lifetime is driven by the meteorology and location in the model but is less sensitive to changing concentrations
of NOy. The unperturbed model run provides NOy concentrations and rates of change at a 1-hour temporal resolution, allowing
the chemical rate of change to be updated every hour under the assumption of an unchanged chemical lifetime. The new rate
of change can be determined using the NOy lifetime, 7, and the local NOy concentration:
NOx(z,y, z,t)

(. 20) @

Ryo, (z,y,2,t) =

For this method, an initial unperturbed full-chemistry model run must be employed to determine the NO, chemical lifetime
7(z,y,z2,t) for each grid-point and time-point for the spatial and temporal region of interest. Then for any further perturbed
model runs, the chemistry rates can be determined without the need of an integrated chemistry scheme, thereby saving
considerable computational time. The updated chemistry rates are then simply scaled by the ratio of the new NOy concentration

to the original NO, concentration; so, if the concentration doubles then we assume a doubling in the net chemical rate of change.

This method for updating the NO, chemistry is referred to as the constant lifetime scaling-based method.



240

245

250

255

260

265

2.4 Regression-based atmospheric chemistry transport modelling

For this study, we added the NOy species to the GEOS-Chem tagged carbon model, CO5, CO, methane, and carbonyl sulphide,
in which individual tagged tracers track contributions of these trace gases from geographical regions and/or natural and human-
driven fluxes. This model does not include an integrated chemistry scheme and therefore the NO, species chemical rate of
change is determined using the NO, chemistry regression model. Going forward, we refer to this model as the regression-
based atmospheric chemistry transport model (shown in Fig. 1).

We performed a full-chemistry model run with emission perturbations to evaluate the impact of emission changes on NOy
chemistry, and later to assess the performance of our regression model in predicting the effects of emission changes. An
analysis of how the emission-driven changes in chemistry rate varied with the atmospheric altitude as well as the change in
NOy concentration is shown in Fig. 2b. The net rate of change in NO, chemistry showed minimal variability at altitudes below
above 3 km, where the chemistry change was less than 9x 10% molec/cm®/s. Additionally, minimal variability in atmospheric
chemistry was observed when the absolute change in NO, concentration was less than 5x 10* molec/cm?®, which corresponds
to a chemistry change of less than 2x 10% molec/cm?/s. Based on these findings, we set a condition to update the NO, net
chemical rate of change using the unperturbed full-chemistry outputs for altitudes above 3 km and for regions where the
change in NO, concentration is less than 5x 10* molec/cm?®. For all other regions, the chemistry regression model is used to
predict the new rate of change.

We also used the constant lifetime scaling method (see above) to predict the new rate of change. Looking to Fig. 1 we can
see that this methodology provides an alternative approach to the regression-based atmospheric chemistry model for modelling
NOy columns. Throughout this paper we will compare the results of the regression-based chemistry scheme and the constant
lifetime sealing-based-scaling-based approach.

We ran the model for 10 days in January, April, July, and October which provided contrasting seasonal conditions to test the
model. For each run, we use the +20% perturbed anthropogenic NOy emission sets. To evaluate the veracity of the NOy column
model outputs for the regression-based chemistry model and for the constant lifetime scaling model, we compare them with
the full-chemistry model outputs. We use our NO2:NO ratio regression model to convert NO, results from our atmospheric
chemistry regression model to NOy columns, sampled at the time and location of TROPOMI data, so they can be compared

with TROPOMI NO, column data.
2.5 TROPOMI satellite column observations of NO5

We use TROPOMI NO,, tropospheric columns (S5P Level 2, product version 2.2.0, processing version 1.6.0.) to compare with
the GEOSChem-GEOS-Chem model output (see Fig. 1). TROPOMI was launched in 2017 in a Sun-synchronous orbit with a
local equatorial overpass time of 13:30. It has a swath width of 2600 km and a ground pixel of 7x7 km? in the nadir. Due to the
width of the swath, the 13:30 overpass time corresponds to data captured with local solar time (LST) ranging from 11:30 and

15:30 in the highest latitude regions of the European domain. We only used data with a quality flag > 0.75, filtering out data

10



270 affected by elevated cloud cover, aerosol loading, and larger solar and viewing zenith angles. We analysed TROPOMI data for
10 days in January, April, July, and October 2019.

For our study, we regridded TROPOMI data to our 0.25°x0.3125° GEOS-Chem model grid. To enable a comparison

between TROPOMI and GEOS-Chem, we sampled the model at the location and time of each TROPOMI observation. We

applied scene-dependent TROPOMI averaging kernels, describing the instrument sensitivity to changes in atmospheric NO,

275 to the corresponding model NO; profiles.

3 Results and discussion

Here, we report the model performance of our atmospheric chemistry prediction models for NOy and the accompanying
regression model for the NO2:NO ratio that enables us to convert NO, columns to NO5y columns observed by satellites. We
assess the fidelity of our results from these models using the full-chemistry version of GEOS-Chem and evaluate our results

280 using TROPOMI NO; column data.
3.1 Performance of atmospheric chemistry regression models for NO
3.1.1 NOy chemistry random forest

Fig. 3a shows that the NO, chemistry random forest model has an impressive performance at reproducing results from the full-
chemistry version of GEOS-Chem for the four months we study in 2019. The model performance R? values are 0.97, 0.97, 0.96
285 and, 0.95 for January, April, July, and October 2019, respectively. The MAE values are largest in July (4x 10* molec/cm?/s)
and smallest in January (2.3 x 10* molec/cm?®/s), reflecting the increase in magnitude of chemistry rates during summer months
over Europe.
We also tested our regression-based atmospheric chemistry model with model data from 2021 (Fig. A6;-Appendix£A). As
expected, the regression model performance has less skill in reproducing data that has not been used for training. In this
290 case, the MAE values are higher by a factor of 1.3-1.8 compared with the overall performance comparison shown in Fig.
4). Nevertheless, the model still shows substantial skill despite substantial differences in anthropogenic emissions between
2019 and 2021 due to COVID-19. Specifically, NO, emissions were found to decrease by 18-24% during lockdown periods
(Miyazaki et al., 2021) leading to a mean observed reduction in NOy of 29% (Cooper et al., 2022).

3.1.2 NOy chemistry prediction using constant lifetime scaling

295 Fig. 3b shows results from using our alternative atmospheric chemistry regression NO, model that employs a constant atmospheric
lifetime scaling approach (eq. 4). The resulting model performance is a significant improvement above the other regression
model for all four study months. Using our scaling approach, we found consistent values of R? = 1.0 and MAE values that are
approximately 2-3 times smaller than the other regression model. As with the other regression model, the size of the error is

scaled by the seasonal changes in chemistry rates.
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Figure 3. Actual versus predicted scatter plots for models tested on simulations with unseen emission perturbations. (a) the-The random
forest regression model for predicting the NOy chemistry rate, (b) the constant lifetime scaling for reconstructing the NOy chemistry rate
using an unperturbed chemistry dataset, (c) the reconstruction of NO» from NOx using the random forest regression model for predicting the

NO3:NO ratio.

While this approach shows extremely encouraging abilities to determine NOy chemistry rates, its effectiveness relies on

having a full-chemistry model run available for at least one set of emission inputs. Consequently, this approach is particularly
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useful for emission perturbation studies, for which numerous emission distribution scenarios might be needed for model
inversion work. In this case, the full-chemistry model would only need to be run once for the given time period of interest.

However, we cannot predict the NO, chemistry using this method for a previously unmodelled meterological period.
3.1.3 NO2:NO ratio regression model

We find the random forest regression model to predict NO2:NO ratios also demonstrates significant performance. The predicted
ratio is used to convert NOy concentrations to NOy concentrations (eq. 2). Figure 3c shows that the regression model can
reproduce “true” NOy values from the full-chemistry of the GEOS-Chem model, with values of R? of 1.0; the exception is
January when R? = 0.99.

Generally, the model performance is better during summer months and worse in winter months, with MAE values an order
of magnitude smaller in July compared to January. This is partly due to NO, concentrations increasing during colder months
due to increased combustion and longer nights, and because we find that NO5:NO ratios become increasingly hard to determine
at higher solar zenith angles, typically experienced over Europe during daytime through winter months. We also examine the
performance of this regression model using data from the unseen year 2021. As with the atmospheric chemistry regression
model, described above, the performance was good but worse than for 2019 in which data was used to train the model. The
MAE increased by a factor of 3.25, 3.52, 3.04, and 3.14 for January, April, July, and October respectively. We found the R?
performance reduced most for January from 0.99 to 0.92, During April and October R? reduced from 1.0 to 0.99, while R?=1.0

was maintained in July.
3.2 NOy atmospheric modelling

Fig. 5 shows the NO, column reconstruction for the two regression models used to describe the NO, chemistry rates from
the full-chemistry version of the GEOS-Chem model. From a visual inspection, there are no obvious differences in the spatial
distribution of the NO, columns reconstructed using both the regression-based chemistry model and the constant lifetime
scaling model. However, when mapping the differences, there are areas of deviation from the full-chemistry model. Broadly,
this deviation is significantly smaller when we use the scaling-based model compared to the regression-based. In addition, the
error accumulation in January is notably smaller than in other months.

Fig. 6 shows the temporal variation in the reconstruction error. The range, IQR, and median values are shown in 6a and the
mean absolute percentage error (MAPE) is shown in 6b. For the regression-based chemistry method the range in deviation
peaks at up to 3x10'* molec/cm? in January, 5x10'* molec/cm? in April and 6x10'* molec/cm? in July and October. This
is reflected in maximum MAPE values of 2.8%, 9.7%, 8.9%, and 9.3% for the four months, respectively. On the whole, the
MAPE reduces through time, with final deviation values of 1.7%, 3.4%, 2.0%, and 4.8% after the full 10-day run.

Reconstruction errors for the constant lifetime scaling model show much smaller errors, particularly in January, with MAPE
< 0.2% throughout the 10-day run. This is driven by the smaller impact that emission perturbations have on the NOy chemistry
in January as shown by Fig. AS5. In particular, the lifetime of NOy is relatively unchanged between the unperturbed and

perturbed model runs. This reduced impact in January is likely due to the slower rate of photochemical reactions in the winter
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Figure 4. Regression model prediction performance compared when tested on a 20% perturbed model run for 2019 and an unseen year,
2021. (a) Shows the NOx chemistry regression model performance comparisons and (b) shows the NO2 prediction performance using the

NO2:NO regression model.

months and increased atmospheric stability at lower temperatures. The other months do see a more prominent deviation of
up to a maximum of 4x10'* molec/cm?, with peak MAPE values of 6.6%, 5.7%, and 4.5%, for April, July, and October,
respectively. As with the regression-based model outputs, here the MAPE also generally decreases through time with final
deviation values of 0.1%, 1.1%, 0.2%, and 0.3% for each month, respectively. Interestingly, while the range and IQR are
relatively stable throughout the run when using the regression-based reconstruction, these quantities decrease considerably
with time when we use the scaling-based reconstruction.

The reconstruction error has a small diurnal cycle, peaking in the morning and to a lesser extent in the evening, reflecting
the diurnal cycle of NOy chemistry (Fig A1). Overall the absolute model error for both the regression-based and scaling-based
methods peaks after the first day and then gradually reduce, plateauing by ~day 6. This early peak in error followed by a
reduction and eventual plateau is likely due to compensating errors, where the regression model’s over- and under-predictions
balance each other out over time, leading to a stabilisation of the overall error. It is encouraging that there is no accumulation

of error through time, suggesting this approach would be suitable for studies longer than for ten days. It is clear that the optimal
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Figure 5. The modelled NOx columns sampled at 12:00 UTC after a 10-day model run with £20% emission perturbations. NOx columns
are compared for the GEOS-Chem full-chemistry model and (a) NOx columns are simulated using the regression-based chemistry method

and (b) using the constant lifetime scaling method.

reconstruction performance is found when using the scaling-based method, but as we already note there are limitations to this
method. The regression-based approach still provides excellent reconstruction performance for our purposes.

To evaluate the performance of the regression-based chemistry modelling approach with regression models trained on a
different meteorological time period, the same models were applied to simulate atmospheric NOy over Europe for 2021.
Figure 7a shows the reconstructed NOy columns after a 10 day model run. As expected, the reconstruction performance is
clearly worse than when the regression-based chemistry is just applied in 2019 with emission perturbations (Fig 5a). However,
from a visual inspection, there are no obvious changes to the spatial distribution of the NO, columns reconstructed using
regression-based chemistry in comparison to the full-chemistry model output. Additionally, the temporal variation in error is
shown through plots of the MAPE (Fig 7b). We see maximum MAPE values of 11.0%, 10.0%, 16.7%, and for January, April,
July, and October 2021 respectively. For all months this is an increase in the maximum deviation observed when applying
this methodology to a perturbed 2019 run. Overall, this is reflective of the reduction in prediction power of the regression
models when we apply to 2021, which has unseen meteorology. Overall, the same pattern of the absolute error gradually
reducing and plateauing by ~ day 6 is also observed here. However, the diurnal cycle of variation in the reconstruction error

is more pronounced in the 2021 case, likely due to the fact that the regression model is worse performing during the night for
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Figure 6. Comparison of the temporal variation in NOx column reconstruction for the regression-based and scaling-based model. (a) The
median (dashed line), IQR (light-shaded region) and range (dark-shaded region) of the NOyx column reconstruction error over the 10-day runs.
(b) The mean absolute percentage error over the 10-day runs. (c) Shows the reduction in computational time when modelling atmospheric

NOy using each of our chemistry prediction methods compared to running with the full-chemistry model.

unseen meteorology. The error tends to reduce dramatically towards the middle of the day, which is helpful if we consider the
application of model comparison with satellite data such as a TROPOMI, which has a 13.30 overpass time.

Substantial computational time is saved when we employ these regression methods to model atmospheric NO. Figure 6¢
shows the time taken for each model to perform a 1-day model run. This was calculated as the mean average for the model to
run for a single day out of the 10 days run for each of the four months, repeated for 3 model runs. Clearly, the full-chemistry
model takes the longest, with a mean of 52 minutes per day for our nested model over Europe. The regression-based chemistry

model is significantly faster with a mean of 16 minutes (3.25 times improvement), while the constant lifetime scaling method
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Figure 7. (a) The modelled NOy columns sampled at 12:00 UTC after a 10-day model run in 2021 using the regression models trained on

2019 compared with full-chemistry. (b) The mean absolute percentage error for the 10-day runs.

is even faster, with a mean of 12 minutes (4.3 times improvement). It is important to note that the model run times reported

here are subject to variability due to fluctuations in the relative loading experienced by the computer system used.
3.3 NO; column reconstruction

Finally, we assess the capability of our NO5:NO regression model, convolved with TROPOMI instrument averaging kernels,
to reproduce observation column distributions of NO3; from TROPOMI. The absolute differences in NOy columns between
GEOS-Chem full-chemistry and the GEOS-Chem regression-based and scaling-based models are compared to the absolute
difference in TROPOMI NO5 and GEOS-Chem full-chemistry, as well as to the magnitude of the TROPOMI NOy column
precision data. This is presented in Fig. 8a, compared for 8 days in January, April, July, and October. We apply the regression-
based method to a 2019 perturbed model run, and to a 2021 model run.

We find comparable NO, reconstruction errors for the four months we study. Earlier, with the NOy reconstruction, we found
that the error was smaller for January than the other months (Fig. 3a and 3b), however, the higher error from the January
NO32:NO regression model (Fig. 3c) offsets this advantage, ultimately bringing the overall reconstruction error for all months
to a comparable level. We observe comparable magnitudes of reconstruction error when we compare our NO5 reconstructions
based on the scaling-based and regression-based methods applied to the 2019 model run. However, the reconstruction error

tends to be consistently larger when we apply our regression-based method to the year 2021. This is particularly notable in
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January and July, which can be attributed to the greatest deterioration in NOy chemistry regression performance in July 2021,
and the greatest deterioration in the NO» prediction performance in January 2021 (see Fig 4).

When we compare the difference between GEOS-Chem and TROPOMI NOy columns, we find that the NO5 reconstruction
errors are much smaller and much smaller than the estimated precision values for the data. This is the case for the scaling-
based approach and the regression-based approach applied to both 2019 and 2021. This provides confidence that our model
reconstruction performance is robust enough for use in inversion work, even in the case of using regression models that
have been trained on unseen meteorological periods. See Appendix B for a more detailed analysis on the difference between
modelled column NO5 and observed TROPOMI data.

Fig. 8b, shows that the median NO2 column model reconstruction errors are 2.8% of the actual deviation from TROPOMI in
the scaling-based approach, compared to 6.5% and 7.3% in the regression-based approach for 2019 and 2021, respectively.
Similarly, these construction errors represent a median value of 1.3% of the TROPOMI precision value for the scaling-
based approach, compared to 2.9% and 3.2% for the regression-based approach for 2019 and 2021, respectively. Across all
reconstructed data points, we found that over 99.9% of the data had reconstruction errors smaller than the corresponding
TROPOMI column precision for both reconstruction methods in 2019. For the regression-based method applied in 2021, this

was true for over 99.7% of the data.

4 Concluding remarks

We have demonstrated that the NO, chemistry rates and NOy:NO ratio described by a leading 3-D atmospheric chemistry
model can be reproduced using random forest-based regression models using NOy concentrations, the spatial location, and
meteorological variables as input parameters. The models perform successfully on perturbed testing data through all months of
2019 with R? > 0.95 for predicting NO, chemistry rates and R? > 0.99 for predicting the corresponding NO2:NO concentration
ratios. We also show that these models maintain their prediction capability when tested on model outputs from an unseen year
(2021) with contrasting environment conditions.

We have also demonstrated that the atmospheric lifetime of NOy is stable against varying emissions, particularly in winter
months. From this, we have demonstrated that it is also possible to predict updated NO, chemistry rates of change as a result of
emission perturbations, with knowledge of NO, chemistry from an initial unperturbed model run. This scaling-based approach
has impressive prediction performance with R2=1.0.

We have developed two viable methodologies to model atmospheric NOy in a more computationally efficient way than using
the GEOS-Chem 3-D model. The regression-based chemistry method has the advantage of not requiring prior knowledge of
the NOy, lifetimes for a baseline model run, and reduces the computational time by a factor of 3.25. The lifetime scaling-based
approach reduces the model run time slightly further by a factor of 4.3, but a baseline full-chemistry model run is required.
This scaling-based approach has smaller model reconstruction errors, but generally both approaches have reconstruction errors

smaller than the TROPOMI precision values for over 99.9% of the reconstructed data (399,502 points).
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Our study provides confidence in random forest models being used to describe NO, chemistry to a sufficient accuracy for
them to play an important role in inversion methods. Previous work has already found that NO, can be used to help constrain
ffCO4 (Berezin et al., 2013; Lopez et al., 2013; Goldberg et al., 2019; Super et al., 2020), and this work develops a new
methodology to more efficiently infer NO2 column enhancements from changes to NOz— emission inputs. The methodologies
developed here will be used within a joint NO4:CO; model inversion to constrain geographically resolved ffCO5. This will
be explored using an ensemble Kalman filter within the GEOS-Chem model framework, as well as within the Integrated
Forecasting System (IFS) using an incremental 4D-Var algorithm (Inness et al., 2013). Results from our study are particularly
timely with the launch in the next few years of the Copernicus Anthropogenic Carbon Dioxide Monitoring constellation
(CO2M) that include column measurements of CO5 and NOs. Overall this work will support the development and employment

of European CO5 measurement, reporting and verification systems.
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Figure Al. Diurnal cycle of NOy chemistry for four months of the year. Median and interquartile range net rates of change at the surface of

the atmosphere averaged across the European domain.
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Figure A2. a) Feature selection results for the rate prediction models, obtained using a forward selection wrapper method. Plotted are the
coefficient of determination R2) and mean absolute error (MAE) as functions of the number of features included, for each of the four

seasonal models (January, April, July, October). (b) Same as (a), but for the partitioning ratio prediction models. (c) Feature importance

distributions for each of the four monthly models, showing the relative contributions of each predictor variable to the rate prediction models

using nine features) and the partitioning ratio prediction models (using eight features). (d) Change in MAE resulting from the removal of
each of the 14 features in turn, demonstrating the individual impact of each feature on model performance and highlighting the importance

of specific predictors for accurate rate and ratio estimates.
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Figure A3. Individual relationships between the nine regression input parameters and the NOx net rate of change. A LOWESS fit (red
line) illustrates smoothed trends in the data, with R? values reported for each fit. Among the parameters, NO concentration, altitude, and

temperature exhibit noticeable trends with chemistry rates, while the remaining parameters show little to no clear trends individually.
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Figure A4. Impact of hyperparameter changes on random forest regression model performance for predicting NOx chemistry rates. Plots
show the effect of varying the number of trees, maximum tree depth, maximum leaf nodes, and maximum features per decision on mean R?,
MAE, and prediction time (shaded regions represent performance ranges across monthly models). Increased algorithm complexity improves
R? and reduces MAE but increases prediction time. Optimal hyperparameters—40 trees, depth of 30, 300,000 leaf nodes, and 4 features per

decision—achieve balanced performance with a prediction time of 6 ms.
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Figure AS. The spatial distribution of the impact of £20% emission perturbations on (a) the NOy net rate of change, and (b) the atmospheric
lifetime of NOx. Overall, it is clear that the impact on the atmospheric lifetime is much smaller, due to its independence from the NOy species

concentration. Note that a negative lifetime of NOy arises in areas where we have a net chemical production of NOy.
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Figure A6. Testing the regression models on 2021. (a) The random forest regression model for predicting the NOx chemistry rate, (b) The

reconstruction of NO> from NOy using the random forest regression model for predicting the NO2:NO ratio.
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Appendix B: Comparison with TROPOMI

The NO; columns modelled by GEOS-Chem was compared directly with the TROPOMI data for assessment of agreement.
Scatter plots between the two are shown in Fig. B1, where we found significant Pearson correlations (p<0.001) in all months.
In January we observe a general positive bias, where the model is overestimating NOo, while in July and October, a negative
bias is seen.

The spatial distribution of the deviation between GEOS-Chem and TROPOMI is shown in Fig. B2. While there are clear
areas of difference, it is notable that the general regions where we observe elevated levels of NO, are in alignment. In general,
the spatial distribution of high-emission regions throughout Europe is fairly well understood. However, there is likely some
error on the magnitudes of the emissions in the inventories used. This is likely to explain the majority of the areas of large
bias between the model and the observations. However, it must be noted that other sources of error are present, which
include model errors in transport processes, potential inaccuracies in the model meteorology used, errors in parameterising
deposition processes, and the limiting factor of the model spatial resolution. Furthermore, there is also error on the TROPOMI
measurements (largely characterised by the TROPOMI column precision value) including from instrument noise, cloud and
aerosol interference, and vertical profile and sensitivity assumptions. Looking to Fig. 8 it is clear that there are many regions
where the error between the model and observations is significantly smaller than the satellite precision, and for such areas the
contribution of NO, emissions is likely to be accurate.

On the whole, it is promising to the performance of the model that there is a general correlation of agreement between the
model and satellite data. However, there is room for improvement in model agreement, and model inversions would be one

approach to achieve this.
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Figure B1. Correlation between modelled GEOS-Chem NOs columns and observed TROPOMI NO; for the four months of interest. The

Pearson rank and mean absolute area are shown in the legend. The best-fit line (red-dashed) can be compared to the y=x line (black).
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Figure B2. Comparison between GEOS-Chem and TROPOMI for 5 days in January, April, July, and October.
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