Reviewer 1

This paper presents a methodology for parameterizing NOx chemistry to enable the inversion of CO,,
combined with NOx, for constraining fossil fuel CO, (ffCO,) emission estimates at reduced
computational cost. The authors employ a machine learning-based random forest regression model
to predict the rate of change of NOx, thereby replacing the need for full-chemistry mechanism
simulations during inversion. Second model estimates the NO,:NO ratio to convert satellite-based NO,
column measurements into total NOx column density. It is trained using GEOS-Chem outputs from a
2019 model run and validated against simulations with randomly perturbed anthropogenic NOx
emissions, as well as a 2021 model run. Conceptually, this work on parameterizing NOx chemistry is
useful to constrain ffCO2 emissions, but requires more robust model design and validation to be
published.

General Comments:

1. Please provide a more detailed explanation of your machine learning model configuration process
to ensure that readers who are not familiar with machine learning can follow. For example, include
a description of the hyperparameter tuning and the forward feature selection procedures.

A more detailed explanation of both of these processes has been included in Section 2.2.

2. lbelieve the current design of the model training and testing has a significant limitation. Validating
the model on a simulation with perturbed emissions but under the same atmospheric conditions
as the training data may lead to overly optimistic validation results, as it does not sufficiently test
the model's generalizability to independent atmospheric states. The authors do evaluate the
model on a 2021 simulation; however, | recommend adopting a more rigorous validation
approach. Specifically, consider randomly selecting 75% of the full dataset across both grid cells
and time steps for training, and using the remaining 25% for evaluation. This would provide a more
robust assessment of the model's generalizability across spatial and temporal domains.

Thank you for the valuable suggestion. We agree that validating a model only under similar
atmospheric conditions as the training data could lead to optimistic results. However, in our current
setup, the primary aim is to assess the model's performance under emission perturbations, to isolate
the response of NOx chemistry to emissions alone. This design choice reflects our target application,
which is intended for use in inversion studies where the model is rerun for a large ensemble of
emission perturbation scalings. Therefore, assessing model performance under this constrained setup
provides a relevant test of its predictive capability in the intended use case.

That said, we would like to emphasise that our validation approach already incorporates several
elements of rigorous generalisability testing:

e We draw from a very large GEOS-Chem dataset: 117 x 114 = 13,338 horizontal grid cells,
across 15 vertical levels and 24 hourly time steps for every day in a given month. This
amounts to approximately 2.2 x 108 data points per month.

e For model training, we randomly sample 10% of the unperturbed dataset across all spatial
locations and time steps, which ensures a representative but compact training set.

e For testing, we sample 0.25% of the perturbed dataset (~570,000 points) across the same
spatial and temporal domain. These test points are drawn from a model run with different
emission inputs, meaning the model is evaluated on physically different conditions it was
not trained on.



e Due to the random selection of both training and testing points across time and space, the
overlap in specific spatiotemporal conditions between the training and testing sets is
minimal. An expected~0.025% of the test data may overlap with the training distribution in
space and time.

e Importantly, the emission conditions in the test set are entirely unseen by the model,
adding an orthogonal source of variability that the model must generalise across.

Thus, while we do not fully separate the training and test sets by atmospheric state (e.g., by using
entirely orthogonal temporal and spatial regions), the validation set still covers a broad range of
meteorological variability due to its random sampling and includes unseen combinations of space,
time, and emissions. We believe that this, along with our additional validation on a completely unseen
meteorological year (2021), demonstrate that these models are robust under both unseen emissions
and unseen meteorological conditions.

An additional final paragraph to Section 2.2 has been added to clearly explains this validation strategy.
We hope this convinces the reviewer that the validation approach is robust.

3. For model configuration, the authors tested the nine selected features along with pressure, air
density, planetary boundary layer height, and the relative mixing ratio of ozone to carbon
monoxide. Among these, please explain why the relative mixing ratio of ozone to carbon
monoxide is expected to help predict the rate of change of NOx.

Apologies. We now realise that the wording of this description was misleading. We have adjusted the
wording to be ‘the mixing ratio of ozone (03) and the mixing ratio of carbon monoxide (CO)’. As we
tested two separate parameters — ozone column mixing ratio, and CO column mixing ratio (not the
relative ratio between the two).

Ozone concentration affects NOx concentrations by reaction with NO to form NO,, shifting the
NO/NO, balance through rapid photochemical cycling. Additionally, higher ozone increases the
production of hydroxyl radicals (OH), which accelerates the irreversible removal of NOx via the
formation of nitric acid (HNOs). Additionally, CO affects NOx concentrations by reacting with OH
radicals, reducing the OH available to oxidise NO; into nitric acid (HNO3s), thereby slowing NOx loss. As
a result, higher CO can increase NOx lifetime by competing for the atmosphere’s oxidative capacity.

We decided to examine these input parameters because satellite retrievals for both metrics are
available, making it possible to use this data to inform our model runs. However, we found that while
each of these parameters had some predictive power on its own, they were not essential for the
models. Including them did not improve the predictive performance when combined with other
parameters, which is why they were not included in the final models. A more detailed analysis of the
feature selection and performance impact of each predictor is now included in the appendix Fig. A2.

4. | would also suggest exploring additional input parameters based on our understanding of NOx
chemistry. For example, incorporating time of day could help distinguish between daytime and
nighttime chemical processes. Including satellite-derived variables such asOs; column
density and HCHO column density could provide insight into VOC levels, allowing the model to
better account for variations in NOx chemistry under different VOC conditions. Variables such
as J(0'D) and H,0 concentrations could help to better represent hydroxyl radical (OH) levels,
which play a key role in NOx chemistry.

Thank you for the suggestions. We agree that the proposed variables are highly relevant to NOx
chemistry rates and could serve as informative predictors. In our current setup, we included water
vapor (H20) as a volume mixing ratio and solar zenith angle (SZA), which served as proxies for



photochemical activity and time of day. These were selected to help capture aspects of OH variability
in the absence of explicit radical chemistry.

As noted in response to Comment 3, we tested the O3 column mixing ratio was tested but we found
that it did not improve model performance during feature selection and was thus excluded for
parsimony. While HCHO column density is often a useful proxy for VOC reactivity, our initial tests
found it to be weakly correlated with NOx chemistry rates in this setup (for example, much lower
correlation compared to Oz and CO columns). Regarding J(O'D), we agree it is an important driver of
OH production. However, because our models are designed to operate on simulations with chemistry
mechanisms disabled—including OH and related photolysis reactions—J(O'D) is not available. Our
overarching goal is to develop a machine learning parameterisation for NOx chemistry that relies only
on variables accessible in offline model configurations, primarily meteorological and spatiotemporal
features.

We hope the reviewer agrees that the selected input parameters strike a balance between physical
relevance and practical availability and that the resulting model performance demonstrates the
viability of this approach for approximating full-chemistry outputs in a computationally efficient way.

| also recommend providing a more detailed description of the parameter selection criteria,
starting with an analysis of the impact of individual parameters on model performance. It would
be helpful to show how the inclusion of each parameter incrementally improves the model's
accuracy.

A more detailed description of the parameter selection criteria has been included in Section 2.2,
specifically the method is a forward selection wrapper based on MAE. We have included plots showing
how incrementally adding the parameters improved model performance for the chemistry rate
prediction model (A2a) and the partitioning ratio prediction model (A2b). In addition, the feature
importances, and the change in model performance when each feature is removed are presented in
A2c and A2d, respectively. We hope this additional analysis helps the reviewer understand the feature
selection process and the importance of the different predictors.

Minor Comments:

- Line 35: correct to methodology

This has been corrected

- Line 107-108: please use NO2+020NO+03

Thank you for pointing this out, the equation has been corrected.



Reviewer 2

The authors report on a method to derive NOx concentrations and NO2:NO ratios, from a machine-
learning method which uses as input variables apart from NOx concentrations the meteorological
factors and location, as well as a reaction rate scaling method.

They describe their approach, and validate this against simulations done with the parent CTM (GEOS-
Chem), both for the same year but perturbed emissions, and for an alternative year (with alternative
meteorology).

Overall, both methods were shown to successfully capture the simulated NOx, as well as simulated
NO2 columns when compared to the full-chemistry solution. The errors in NO2 columns were reported
typically an order of magnitude smaller than the differences between GEOS-Chem and TROPOMI, and
the TROPOMI column precision.

| recommend publication in ACP after addressing the comments given below.

The Introduction could be strengthened, by checking and adding a few more references, as it appears
that the authors make quite a few statements that are not well backed up with the given references,
and in cases the formulation is a bit sloppy.

We agree that the Introduction had been lacking some references to support key statements. We have
carefully reviewed the section to identify unsupported claims and included a number of additional
references to support these. Additionally, we have reformulated a few sentences and reordered some
paragraphs to improve the clarity and flow. We hope these revisions ensure that the motivation for
our study is clearly presented.

In my view a further discussion on the selection of input parameters (Table 1) is welcome. e.g. What
happens if the longitude/latitude is excluded from the parameter list? the thing is that by including
this you make implicit assumptions on local conditions in the model, including local emissions, which
is actually exactly what you want to derive from the model. This location dependence makes the
model implicitly to account for local conditions, but also suggests that the method cannot directly be
adopted for other places in the world, as | understand?

The reviewer is correct that the location dependence of our models is a limiting factor, implying that
the models are influenced by local conditions, potentially capturing local emission patterns and
atmospheric characteristics specific to the training domain. This dependence means that the model’s
direct applicability outside the trained region is limited without retraining or adaptation.

To address this, we have now included an assessment of the impact on model performance when each
predictor is removed (Fig. A2d), this includes longitude and latitude. Our results show that, although
removing either coordinate leads to a measurable increase in the mean absolute error (MAE), their
overall importance is relatively small compared to other predictors. Specifically, for the chemistry rate
model, excluding longitude results in a minor performance degradation across all months, while
latitude removal has a more noticeable impact, particularly during colder months (January and
October). For the partitioning ratio model, both longitude and latitude contribute minimally to the
model’s predictive skill.

We argue that the inclusion of location variables is justified and beneficial because local geographic
coordinates implicitly capture spatial gradients in land cover, and regional meteorological patterns
that affect chemical processes. For example, latitude often correlates with solar zenith angle,
temperature gradients, and seasonality—factors that strongly influence photochemistry and reaction



rates. Longitude can capture east—west variations in emission sources or regional transport patterns
that are otherwise difficult to parameterize explicitly.

Importantly, despite this location dependence, we demonstrate that the models maintain strong
predictive performance when tested on substantially perturbed emission scenarios (as in Fig. 3 where
the emission pattern with location changes from training to testing), and on an independent temporal
period (as in A6, for 2021) which inherently uses unseen meteorology relative to location. This
indicates that the model generalises well within the spatial domain and across varying atmospheric
conditions relevant to the studied region.

For future work, expanding these models to application outside the European domain we will explore
whether removal of the location dependence would be beneficial.

Also can you provide a metric that actually describes the importance of each of the physical input
quantities. You briefly describe also other parameters (line 131-133) for the training, but exclude
them. I'd be interested in a more detailed description / quantitative assessment to underline the
arguments why the current selection of training parameters was made.

We have now included a plot showing the relative importance of each predictor in each of our ML
models (Fig. A2c). Additionally, as described above in response to reviewer 1 we have added a more
detailed description of how we performed feature selection in section 2.2, and shown the impact of
feature selection plotting how incrementally adding the parameters improves model performance for
the chemistry rate prediction model (A2a) and the partitioning ratio prediction model (A2b).

In figure 3 the authors present the skill of the trained model against the actual rates, i.e. from quick
reading it appeared that the same data that was used for the training, while in Figure A5 in the
Appendix they present the same results, but on more independent data (i.e. data for another year). |
would argue to swap the figures, i.e. to show Figure A5 in the main body (which is the more important
independent evaluation) while moving the intermediate result, which shows the minimal validity of
the regression model to be functional) towards the appendix. Then this allows to report on the
correlation performance using the more independent evaluation with a bit more emphasis. This then
also allows to trace back the number reported in the Abstract (R2>0.79) in the main body of the text.

Re-reading, | Realize that Figure 3 was created with the perturbed emissions experiments, so there is
some modification compared to the training dataset, if | understand well. Please update the figure
legend to point this out, for the reader.

We have revised the caption of Fig. 3 to make it clear that this analysis is performed on unseen
perturbed emission experiments. We have also included an additional paragraph at the end of section
2.2, which outlines our training / testing process. We hope that our response to reviewer 1 point 2
helps explain the motivation of using the perturbed emissions experiments as the main analysis for
this paper, with inversion analysis being the primary planned application of this work.

Line 171: ” so, if the concentration doubles then we assume a doubling in the net chemical rate of
change”. . Here the authors discuss the characteristics of the lifetime / reaction rate scaling method.
I'm a bit puzzled by the use of negative lifetimes. Especially small negative lifetimes, which likely
happen to occur now and again in the results, sounds like a recipe of blowing up the model, in case
the rate of change is positive (i.e. a net increase in NOx). Could you please elaborate?

We understand why this may be confusing. In our framework, a negative atmospheric lifetime does
not represent a physical lifetime in the conventional sense but rather an apparent or effective



lifetime derived from the instantaneous net chemical tendency. Specifically, a negative chemical
lifetime just reflects an instantaneous net production of NOx rather than a loss. This occurs when the
chemical production rate exceeds the loss rate at a given grid point in space and time, resulting in a
positive net rate of change and therefore a negative calculated lifetime (since lifetime =[NOx]/(-
d[NOx]/dt)). Using these negative lifetime values in the scaling method does not destabilise the model
or cause it to “blow up.” Instead, it leads to a scaled net chemical increase in NOx when the new
concentration is higher than the original, consistent with what the local chemical tendency already
indicates. Furthermore, these cases are typically much less frequent than cases of net loss and
associated with specific chemical or meteorological conditions. The magnitude and frequency of these
negative lifetimes are small enough that they do not dominate the overall behaviour (e.g. we do not
see a dominant net production of NOx in our lifetime-scaled approach). We hope this reassures the
reviewer that this lifetime scaling-based method does not lead to blowing up of NOx concentrations
even when some negative effective lifetimes do occur.

We have added a clearer narrative within section 2.3 that what we calculate here is an effective
lifetime, and therefore should not be interpreted as the intrinsic first-order decay timescale for NOx.

Smaller comments:

Lines 21 - 29: Many statements made by the authors, but | miss proper referencing here, e.g. wrt the
availability of bottom-up inventories.

References added
line 21 “reaching net zero” : net zero what? please use more explicit description.
Clarified ‘net zero greenhouse gas emissions’

line 23 “ how does a country know” this is also a bit sloppy formulation of the question, to my taste.
please reformulate

Reworded: ‘how can a country assess whether’

line 25 uncertainty -> “uncertain”

Changed

line 29: “subject to uncertainties”: can you add references here of key uncertainties?
Added

line 33: you jump directly to your method, without proper introduction of the link between NOx and
CO2. | would expect such a more expicit introduction, + references to past studies who have made
attempts in this direction.

We agree with this point that there is a feeling of jumping straight to the method before an explicit
introduction of the link between NOx and CO2. In the first paragraph we think it is useful to introduce
an overview of the main underlying aims of this paper (developing computationally efficient models
of NOx chemistry), but we have adjusted wording prior to this so it should be clearer to the reader
why we use NOx and how it relates to CO2 emissions. We have then added more detail and references
to the second paragraph of the introduction which describes the use of NOx as a proxy and discusses



previous NOx:CO2 work. The third paragraph then goes on to introduce our specific methodology in
more detail.

line 35 "methodlogy”

Fixed

line 41, please check sentence.
Restructured for clarity.

line 45 “to facilitate the production of NO (..)”, suggest to add the phrase something like “.. which is
therefore co-emitted with the CO2 emissions”.

Added

line 47 “parent emissions” please change to “parent NOx emissions”. the linking to CO2 is yet another
step that deserves its own discussion, to my taste

Changed

line 50 “becomes a widely used approach”, but please also give an overview of the main issues, apart
from the computational costs. This is missing so far.

We have included a couple of sentences on the main issues and sources of error for these methods,
largely driven by the uncertainty in NOx:CO2 emission ratios.

Figure 1 - this figure is introduced at the end of the introduction - but the steps are difficult to follow.
Please expand the description of this figure on line 64, or refer more specifically to the various steps
in this figure in the consecutive subsections.

We have expanded on the explanation of this figure where it is introduced.

line 75 “or a scaling-based method” is this method described further down the text? If not, remove
reference to this..

This is described below (see section 2.3), but we have now explicitly introduced the name ‘constant
lifetime scaling-based’ to describe this method.

line 78 “for data assimilation” : add “on a high horizontal resolution” ?

We have re-worded as high resolution data assimilation

line 81: add a reference to a default description of GEOS-Chem (paper? Website? other?)

Added

line 84: “30 models below tropopause” given the importance of near-surface processes, can you

specify the depth of the first model layer? | think this is larger than the one used operationally in IFS
in its default vertical resolution (10 m, see, .e.g. https://confluence.ecmwf.int/display/UDOC/L137



+model+level+definitions) - would that have implications on the accuracy of simulating NOx chemistry,
surface fluxes, and dynamics?

The depth of the first model layer for GEOS-Chem is 130-180m depending on the local surface
pressure, as the reviewer states this is larger than that for IFS. The coarse first layer in GEOS-Chem will
reduce the ability to resolve steep gradients near the surface, potentially smoothing NOx
concentrations and affecting flux coupling. However, the impact on our results is expected to be
minimal because we compare model output with satellite observations of NO2 total tropospheric
columns (TROPOMI), which are primarily sensitive to integrated vertical amounts rather than fine-
scale near-surface gradients. Model comparison with other atmospheric models such as IFS is certainly
of interest, and we do have ongoing work comparing NOx chemistry parametrisation between the
GEOS-Chem and IFS models.

line 110: can you discuss, and explain the shape of the diurnal cycle in the NOx tendency over the
season? e.g. what explains the large sink in NOx during night-time?

A description of this has been added.
Figure A3: please check the x-axis for the temperature plot.
Thank you, there was an error in what we were plotting here and this has been fixed.

Line 156 “the atmospheric lifetime becomes negative”: it is unclear to me what is the physical meaning
of a negative lifetime, as well as any possible implications on the model results. Could you please
elaborate, especially in the case of small negative lifetimes?

The above response to question regarding line 171 should hopefully help answer this for the reviewer.
Overall, it is important to understand that the effective lifetime we calculate is derived from the
instantaneous net chemical rate of change and therefore does not correspond to an intrinsic first-
order decay timescale for NOx. Instead, it reflects the net tendency at that moment, incorporating the
combined effects of production and loss pathways under the prevailing chemical and meteorological
conditions. As such, while useful for scaling purposes, it should not be interpreted as a purely physical
or mechanistic lifetime. We have added a couple of sentences in section 2.3 to make this clear.

Figure 2b: as many the points are plotted on top of one another, it might be better to present this
information in terms of a scatter density plot. Also, the judgement when delta-NOx changes are
considered irrelevant appears a bit ‘ad hoc’

We thank the reviewer for their suggestion of this, we have remade these figures as scatter density
plots, which definitely show the overall trends more clearly. We have also added the definition of
irrelevant or negligible delta-NOx changes, which we defined as being the point where the percentage
change to chemistry rate was within 1%. Specifically, this looks like the absolute change in chemistry
rates being <9E3 molec/cm3/s.

line 182 “below” => Above ?

Changed



List of relevant changes
Introduction

- More references have been included to support statements.

- The general background on using NOx to constrain ffCO2 has been expanded, with additional
references and a description of its limitations.

- Astep-by-step methodology presented in Figure 1 is now described in greater detail.

Data and methods

- Included the depth of the first model layer in the description of the GEOS-Chem setup.

- Corrected an error in the equation describing the photochemical decay of NO2.

- Added a description of the diurnal cycle of NOx (with reference to Fig. Al).

- Expanded Table 1 to include all 14 parameters tested for model development, along with the
outcomes of feature selection indicating which parameters were used for each model.

- Changed Fig. 2b to density scatter plots and expanded the caption to explain the definition
used for negligible changes to chemistry rates (<1%).

- Added more details on the feature selection procedure and hyperparameter tuning (with
reference to additional Fig. A2).

- Added more details on the training and testing setup used for validation with unseen
emissions and unseen meteorology.

- Expanded the description of the NOx effective lifetime, clarifying how it differs from a physical
decay timescale for NOx.

Results and Discussion

- Anintroductory sentence has been added to the caption of Fig. 3 to make it clear that it shows
model tests on unseen emission perturbation outputs.

Appendix

- Fig. A2 has been added, showing: a) plots demonstrating how feature selection optimised
model performance; b) the distribution of feature importance for each of the seasonal models
under both prediction schemes; and c) the effect on model performance of removing each
parameter in turn from the models.

- The temperature plot in Fig. A3 has been corrected.



