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Abstract. Monitoring carbon cycle processes is key to understanding climate system science. As the second largest carbon

reservoir on Earth, the ocean regulates carbon balance through Particulate Organic Carbon (POC), which links surface biomass

production, the deep ocean, and sedimentation. The degradation of POC in the deep ocean notably impacts atmospheric CO2

levels. POC estimation is achieved by measuring proxies like the Particulate Backscattering Coefficient (bbp), obtained from

satellite observations and in situ sensors, such as the BioGeoChemical-Argo (BGC-Argo) floats. These floats provide global-5

scale profiles of ocean biogeochemical properties. Previous research has combined data from BGC-Argo floats and satellite

sensors, demonstrating the potential of machine learning models to infer vertical bio-optical properties in the water column. By

bridging the gap between surface optical properties and deep ocean processes, this approach enhances the estimation within the

top 250 meters of the water column. This study focuses on such estimations, including remote sensing data from the Sentinel-

3 Ocean and Land Colour Instrument (OLCI) sensor. The addition of optical information about absorption and scattering10

processes has improved the accuracy of the Random Forest models, which show promising results, especially within the first

50 meters in the Subtropical Gyres. However, in dynamic regions like the North Atlantic, results are less consistent, suggesting

further research is needed to understand how the complexity of the water column’s physical state modifies the bbp vertical

fluxes.

1 Introduction15

The ocean covers approximately 70% of Earth’s surface and plays a fundamental role in climate dynamics. It regulates and

redistributes energy and carbon through various physical and biogeochemical processes. In the regulation of atmospheric

carbon dioxide by the ocean, the so-called biological carbon pump is the process that enables the transfer of CO2 from the

atmosphere to the ocean floor. Photosynthetic organisms (phytoplankton) living in the upper layers where sunlight is available

require carbon compounds to survive and reproduce (Falkowski et al., 1998; Siegel et al., 2023). The presence and amount20

of these organisms heavily depend on the availability of light and nutrients in the environment (Behrenfeld et al., 2006).

The challenges of directly observing and quantifying POC at various depths, combined with the complex interaction between

key variables (usually non-linear) and the low-resolution measurements in a highly dynamic environment, contribute to gaps

in our understanding of specific marine processes, such as carbon sequestration, nutrient cycling, sedimentation, and ocean-
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atmosphere CO2 exchange. The carbon dioxide captured ends up forming ocean biomass, contributing to particulate organic25

carbon. Particulate carbon, both organic (POC) and inorganic (PIC), can also sink and become locked away in sediments.

In the current global warming context, a more accurate representation of POC distribution is key for estimating the ocean’s

contribution to the Earth’s carbon cycle.

Bio-optical sensors installed on autonomous platforms have become a reliable technology for acquiring in situ data about

water masses’ ecological and physical status. These sensors measure the scattering of light in water, which provides information30

about radiative transfer conditions and the nature and dynamics of suspended particulate matter. The particulate backscattering

coefficient (bbp), an inherent optical property (IOP) of water, has proven to be a reliable bio-optical proxy for POC (Cetinić

et al., 2012; Sullivan et al., 2013). IOPs are the intrinsic characteristics of water, determined solely by its composition and

independent of the external light field or the geometrical angle conditions during observation. These properties include absorp-

tion, scattering, and attenuation processes, which describe how light behaves and propagates through water. IOPs are essential35

in studying light interactions in aquatic environments, as they reflect the presence of dissolved organic matter, phytoplankton,

and suspended particles. On the contrary, Apparent Optical Properties (AOPs) are characteristics of light in water that depend

not only on the water’s Inherent Optical Properties (IOPs) but also on the geometric conditions of light, such as the azimuthal

and zenithal angles of the sun. AOPs include measurements like reflectance, attenuation, and the diffuse attenuation coeffi-

cient, which are influenced by the water’s composition (e.g., dissolved substances and particulates) as well as the surrounding40

environmental light conditions. The IOP bbp can be measured by autonomous platforms spread out across the ocean, such

as the Biogeochemical-Argo (BGC-Argo) profiling floats (Claustre et al., 2020); or estimated from onboard satellite sensors,

such as the Sentinel-3 Ocean and Land Colour Instrument (OLCI)1 (EUMETSAT, 2019; Jorge et al., 2021; Koestner et al.,

2024). Designing observational strategies based on combining the two approaches constitutes a fundamental tool for improving

knowledge of ocean processes (BGC, 2016).45

POC can be quantified from in situ filtered seawater samples. Conducting field campaigns is costly, and data availability

is often limited. When using satellite ocean colour data, POC is quantified at a global scale daily. Several approaches have

been developed to estimate POC from optical measurements of water leaving radiance (Lw), or by linking POC with remote

sensing derived IOPs (Bisson et al., 2019; Evers-King et al., 2017; Loisel et al., 2002; Stramski et al., 2008). However, these

methods are designed to estimate parameters at the sea surface, which does not fully capture the complexities of carbon export50

in the ocean, as numerous vertical processes within the water column significantly influence the carbon cycle. Fusing satellite

data with vertical profiles from BGC-Argo floats to extend the measurements of surface bio-optical properties (i.e. bbp) to

several depth layers is performed with the SOCA method in Sauzède et al. (2016, 2020). The initial SOCA2016 method

consists of a neural network combining satellite surface estimates of bbp and chlorophyll-a (chl-a) concentration, matched

up in space and time with depth-resolved physical properties derived from temperature-salinity profiles measured by BGC-55

Argo profiling floats. This method predicts bbp for 10 different depths in the productive layer. In 2020, the availability of a

larger database with new profiles -the under-sampling of many ocean regions in the SOCA2016 approach- and the opportunity

to increase the vertical resolution of model outputs, enabling improved characterization and quantification of export carbon

1https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/product-types/level-2-water

2

https://doi.org/10.5194/egusphere-2024-3942
Preprint. Discussion started: 7 January 2025
c© Author(s) 2025. CC BY 4.0 License.



fluxes, led to the development of the SOCA2020 method. This approach includes additional Sea Level Anomaly (SLA) inputs

with information about sub-mesoscale processes; it replaces satellite-derived products (bbp and chl-a) by simple reflectances60

at several wavelengths and explores machine learning-based techniques that are efficient at estimating retrievals, in addition

to quantifying the uncertainty associated with the outputs. A significant improvement in the bbp predictions was revealed,

especially near the surface layers.

Building on these results, this research proposes a more detailed analysis of estimating bbp in the upper layers of the ocean

surface using Sentinel-3 Ocean and Land Colour Instrument (S3OLCI) data. We enhance spatial resolution from the 4 km65

resolution of GlobColour level-3 merged products (1/24° at the equator) to the 300 m Full Resolution (FR) of Sentinel-3 OLCI.

Additionally, we evaluate model performance after incorporating OLCI spectral wavelengths as features for bbp estimation and

compare these results with those obtained using GlobColour. Another key aspect of this study is determining whether adding

IOPs derived from satellite data improves the accuracy of bbp estimation compared to using reflectances alone. These IOPs,

available from the Sentinel-3 OLCI processor, could significantly enhance regression models. The comparison is conducted70

between BGC-Argo data and the various satellite datasets for two depth layers: from the surface to either 50 m or 250 m.

2 Data and methods

Data from in situ measurements collected by BGC-Argo floats, along with satellite data from various projects and missions

(GlobColour and Sentinel-3 OLCI) are utilized as inputs for the machine learning models. We employ three datasets for two

different maximum depths—50 m and 250 m: 1) Level-3 multi-sensor products from GlobColour; 2) Level-2 single-sensor75

reflectances from Sentinel-3 OLCI processed with the Case 2 Regional Coast Colour (C2RCC) algorithm; and 3) The second

dataset (2) plus derived IOPs from OLCI using again the C2RCC processor.

2.1 Study Area

Two regions of the ocean are analyzed, the North Atlantic (NA), within latitudes 35º- 80ºN, and the Subtropical Gyres (STG),

within latitudes 15º- 40º North and South (see Figure 1). These two areas have very differentiated trophic states throughout80

the year, experiencing great differences in terms of nutrients, light availability, minimum and maximum temperature regimes,

mixed layer depth (MLD) variations, thermocline levels and mesoscale dynamics. One of the main differences between these

two regions is the variability in the stratification of the upper ocean layers. This phenomenon determines the resistance of the

water to overturning, thus conditioning the supply of nutrients from deeper waters (Lozier et al., 2011). NA waters are season-

ally high in chl-a (mg.m-3), which is a proxy of phytoplankton biomass. During winter, a weakly stratified upper ocean water85

column overturns or mixes, facilitating the upwelling of nutrients needed to sustain surface productivity. In the STG region

spanning thousands of kilometers across the oceans, nutrients are in short supply, and waters range from ultra-oligotrophic (chl-

a ≤0.04 mg.m-3) to oligotrophic (chl-a ≤0.07 mg.m-3) (Letelier et al., 2004). During the summer and winter cycles, there is

expansion and contraction of their spatial coverage, respectively (Leonelli et al., 2022). Feucher et al. (2019) showed that both

Northern Hemisphere subtropical gyres have a qualitatively very similar stratification structure, with permanent pycnoclines in90
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Figure 1. Spatial distribution of BGC-Argo and satellite data matchups.

the North Atlantic and North Pacific. The subtropical gyres of the South Atlantic and South Pacific Oceans are characterized

by two different modes in the density and stratification space. Vertically homogeneous waters prevent deep-ocean nutrients

from upwelling to the euphotic zone and control the biological pump, which plays an important role in carbon dioxide uptake.

Despite the global coverage of the STG sampled regions, there is much more heterogeneity in the NA observations, which are

more complex and challenging for the models as can be observed in the results.95

2.2 BGC-Argo Data

The international One-Argo program provides continuous ocean observations through an array of profiling floats, each equipped

with sensors tailored to specific objectives: Core-Argo (for temperature and salinity measurements); BGC-Argo (for biogeo-

chemical measurements); Deep-Argo (for measurements deeper than 2,000 m); and Polar-Argo (for measurements in polar

environments). Key bio-optical variables, such as chlorophyll-a, optical particulate backscattering, and irradiance, can be mea-100

sured using BGC-Argo profiling floats. These variables are essential for generating products that support biogeochemical and

ecosystem studies (Claustre et al., 2009, 2020). The BGC-Argo floats usually collect measurements from 1,000 m to the

surface, with a depth resolution of ∼1 meter, every 10 days.

The lower boundary of the euphotic zone is defined as the depth where 1% of the Photosynthetically Available Radiation

(PAR) penetrates the water column. It varies in the global Ocean from ∼20 m to more than 120 m, depending on the region105

and season. The flux of sinking carbon that exits the euphotic zone due to gravity is a key component of the overall carbon

sequestration budget (Siegel et al., 2014). In the experiments, a depth limit extending beyond the lower boundary of the euphotic

zone (250 m depth) was selected. From 250 meters to the surface, measurements of temperature, salinity, density, and spiciness

were taken every 2 meters from the floats, along with information about the MLD -calculated as the depth at which density
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exceeds 0.03 kg m−3 relative to the density at 10 m (de Boyer Montégut et al., 2004). Vertical measurements of bbp at the110

same vertical resolution are also available in the datasets. For the designed experiments, Table 1 shows the different types of

variables used to train and validate the proposed models.

The bbp value (Mignot et al., 2014) used here is calculated following the work of Sullivan and Twardowski (2009). The

angular distribution of scattering relative to the direction of light propagation θ at the optical wavelength λ is known as the

volume scattering function (VSF), β(θ,λ) (m−1, sr−1). It is composed of the sum of pure sea water βsw and particles βp,115

where βsw depends on temperature and salinity and computed using a depolarization ratio of 0.039 (Zhang et al., 2009). The

contribution of βp to the VSF is calculated subtracting the contribution of βsw from β(124º,λ):

βp(124◦,λ) = β(124◦,λ)−βsw(124◦,λ) (1)

Then, a conversion factor χ with a value 1.076 for an angle of 124º relates bbp to βp, making it possible to extrapolate the

measurement from a single angle (124º) to the total coefficient as follows (Boss and Pegau, 2001; Sullivan and Twardowski,120

2009):

bbp(λ) = 2πχ(β(θ,λ)−βsw(θ,λ)) (2)

The backscattering sensor of the BGC-Argo floats measures β(124º,λ) with λ = 700nm. The quality control procedure

carried out is the one followed in the SOCA2016 method.

2.3 BGC-Argo and Satellite Match-up Databases125

The match-up database created for the SOCA2020 experiments, which links BGC-Argo floats with GlobColour and Glob-

alOcean data, was utilized in this study. The GlobColour data consists of normalized water-leaving reflectances (rho_wn)

at 5 wavelengths (412, 443, 490, 555 and 670 nm), as well as the Photosynthetically Active Radiation (PAR) product. This

rho_wn are derived from a combination of sensors that constitute the GlobColour product: SeaWiFS, MERIS, MODIS Aqua,

VIIRS NPP and OLCI (ACRI-ST, 2020). The GlobalOcean set provides Sea Level Anomaly (SLA) data, calculated relative130

to a 20-year mean of sea surface height, generated with altimeter data from various missions (HY-2A, Saral/Altika, Cryosat-2,

Jason-2, Jason-1 T/P, ENVISAT, GFO and ERS1/2) (CMEMS, 2022). In the cited work, the match-up with BGC-Argo floats

was performed using the values from the closest available pixels within a ± 5-day window and on a 5x5 pixel grid. Further

details about the procedure can be found in Sauzède et al. (2020).

The BGC-Argo measurements used here were matched with Sentinel-3 OLCI data using the Calvalus tool developed by135

Brockmann Consult GmbH (Fomferra, 2011). The spatio-temporal approach applied consists of a time window between the

BGC-Argo profiles and the satellite measurements of ± 24 hours, and the spatial satellite coverage around the profile is

3x3 macro pixel on full-resolution imagery (300 m pixel). Once the match-up between satellite and float is performed, a

baseline quality control is applied to guarantee that the geophysical parameters are under stable conditions and show certain
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Table 1. Summary of the variables used in the study

Data Description Variable Quantity Variables

processed

Type of pre-

processing

BGC-Argo In situ sen-

sors

Temperature

Salinity

Density

Spiciness

MLD

Lat/Lon

DOY

bbp

26 (51m)/126 (250m)

26 (51m)/126 (250m)

26 (51m)/126 (250m)

26 (51m)/126 (250m)

1

2

1

26 (51m)/126 (250m)

5

5

5

5

1

2

1

26/126

PCA

PCA

PCA

PCA

Standardisation

-

-

Stand.+log10

GlobColour Level-3 prod-

uct

rho_wn

PAR

5

1

5

1

Standardisation

Standardisation

GlobalOcean SLA 1 1 Standardisation

Sentinel-3

OLCI

C2RCC L2

reflectance

rho_wn 12 12 Standardisation

C2RCC L2

WQ products

IOPs 8 8 Standardisation

homogeneity around the measurement. First, a flag-based filter is applied, discarding pixels near or under probable cloudy140

conditions. This is followed by an outlier removal based on z score (z = (x−µ)/σ), applied at macro pixel level band by band.

Then, a coefficient of variation in the 560 nm band (cv = σ/µ) is applied (Bailey and Werdell, 2006). Coefficient values under

0.2 assure a good spatial homogeneity (Ahmed et al., 2013; Hlaing et al., 2013; Zibordi et al., 2009). Finally, the median of the

pixels left by macro-pixel is used (Hu et al., 2001), which is a standard procedure in studies focused on oceanic waters (Barnes

et al., 2019). These criteria reduced the data set from the original 4115 to 763 match-ups. Specifically, 411 and 352 data points145

are available for the NA and STG regions. We excluded data from two floats to be used exclusively for validation purposes:

in the NA, the float with unique WMO (for World Meteorological Organization Number) 6902545 -with 22 measurements-

and in the STG region the float WMO 3902125 -with 28 measurements- constitute the independent dataset in the validation

process.

The Sentinel-3 OLCI bands selected extend from 400 nm to 753 nm (bands 1 to 12) of normalized water-leaving reflectances150

(rho_wn). The extraction is done on level 2 data atmospherically corrected with the Case-2 Regional CoastColour (C2RCC)

Processor (Brockmann et al., 2016). C2RCC relies on an extensive database of simulated water-leaving reflectances and related

top-of-atmosphere radiances, with neural networks trained to perform inversions both for the atmospheric correction and the in-

water quality parameter estimation. C2RCC provides parameters like the absorption and scattering of the different constituents
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(IOPs) at 443 nm, that is: absorption of chlorophyll pigments (apig), yellow substances (agelb) and detritus (adet); scattering of155

particulate matter (bpart) and white scatterers (bwit), as well as the additive atot and btot. It also provides total suspended matter

concentration, chlorophyll-a concentration, and alternative AOPs like Kd (diffuse attenuation coefficient). Each parameter have

their associated error estimation. From the 25 parameters calculated by C2RCC, we selected the eight IOPs mentioned, plus

the reflectance for bands 400 to 753 nm.

2.4 Data Pre-processing160

Table 1 shows the number of parameters (measured or derived) available for the experiments. After excluding the measurements

for validation, the two areas have a total of 713 inputs. The maximum number of input variables is 46. The size of the matrices

can be seen in Table 2. Due to the different nature of the input variables (X) used to train the models and the high dimension

and covariance of the variables measured along the water column by BGC-Argo floats, the data was preprocessed to reduce

possible redundancy. The high-dimensional, non-independent variables (temperature, salinity, density, and spiciness) were the165

ones with the most significant number of features. Each variable had one measurement every 2 meters, which means 126

measurements in the first 250 m, or 26 measurements in the 50 m depth profiles.

To reduce the high dimensionality and simplify the regression models, a Principal Component Analysis (PCA) is applied to

some of the input features. After this feature reduction on the high-dimensional variables, the 250 m and 50 m measurements

with 126 and 26 inputs are reduced to 5 components for each variable, resulting in a total of 20 features. This method still retains170

99% of the information. In addition, satellite-derived variables and the MLD were normalized using zscore standardization,

i.e., removing the mean (µx) and dividing by the standard deviation (σx) of each feature.

A second preprocessing step consisted of a logarithmic transformation of the bbp values coming from the floats. This step re-

duces the spread of the values that result from the significant differences between the surface and deeper depths, thus obtaining

a Gaussian-like distribution that will help the model performance. Finally, variables that consider the spatio-temporal domain,175

like latitude, longitude and date (day of year) are also included.

Table 2. Matrix sizes for the different datasets depths. Dimensions specified as: samples× features× outputs

Depth Region GCGO+BGC S3OLCI+BGC S3OLCI+IOPs S3OLCI

50 m North Atlantic 389× 32× 26 389× 46× 26 389× 26× 26 389× 15× 26

Subtropical Gyres 324× 32× 26 324× 46× 26 324× 26× 26 324× 15× 26

250 m North Atlantic 389× 32× 126 389× 46× 126 389× 26× 126 389× 15× 126

Subtropical Gyres 324× 32× 126 324× 46× 126 324× 26× 126 324× 15× 126
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2.5 Multi-output machine learning models

There are two main approaches for dealing with multi-output regression problems. One way is to use univariate models,

also known as problem transformation methods (Schmid et al., 2022; Borchani et al., 2015). These methods decompose the

multi-output regression problem into multiple single-target problems, creating an independent model for each output. The180

predictions from these separate models are then combined. This approach ignores the relationships between the targets, which

can adversely affect the prediction’s overall accuracy. Alternatively, multivariate models are designed to capture dependencies

and interactions between the outputs, potentially leading to more accurate predictions (Borchani et al., 2015). When and how

to apply these two approaches depends on the nature of the data and the correlation between the targets. In our preprocessing

results, PCA decomposition indicates a high covariance among measurements at different depths in the water column. Since185

our regression models estimate bbp at different depths, it is logical to consider that nearby values in the water column are related

to each other.

Different algorithms have been tested in previous works (see Sauzède et al. (2016, 2020)) to estimate bbp at various depths.

Both works are based on a multivariate model applied to all possible outputs. In SOCA16, a Multi-Layer Perceptron is devel-

oped, while in SOCA2020 a comparison between a linear model (Ridge) and an ensemble model (Random Forest) is done.190

The latter showed higher performance. The Multivariate Random Forest used in this study offers higher accuracy than the

univariate Random Forest, especially when the outputs are highly correlated (Schmid et al., 2022) and when complex interac-

tions demand structured inference to be effectively managed (Xu et al., 2019). All the previously mentioned algorithms, along

with others such as Linear Regressor (LR), Ridge Linear Regressor (RLR), Random Forest Regressor (RFR), and Multi-Layer

Perceptron (MLP), were tested for estimating bbp during the dataset preparation phase. Based on these results, the Random195

Forest Regressor (RFR) was selected as the most suitable algorithm for this multi-input/multi-output problem.

Random Forest Regressor (Breiman, 2001) has been widely applied in geosciences and marine environmental studies for

classification and regression tasks (Cutler et al., 2007; Ruescas et al., 2018). Regression trees are at the model’s core, which

effectively handles complex data when there are non-linear dependencies between a numerical response variable and a diverse

set of predictors, whether qualitative or quantitative (D’Ambrosio et al., 2017). RFR is an ensemble method that combines many200

weak decision tree learners, which are grown in parallel to reduce the bias and variance of the model simultaneously, enhancing

the model’s predictive performance. Furthermore, RFR provides insights into the importance of the training features, which

reveals the variables that have the most significant impact on the predictions. This capability makes the model’s mechanisms

and results easier to interpret and explain.

3 Performance of the Random Forest Regressor205

Several dataset combinations were used as inputs for the RFR. The naming conventions and the data used as features are

shown in Table 1. The dataset names in the table correspond to the specific features included: GCGO refers to the GlobColour-

GlobOcean L3 satellite reflectance, combined with the PAR and SLA products (7 features); BGC denotes the Argo-BGC data
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after pre-processing (27 features across 26 or 126 layers, depending on the depth of 50 or 250 m, respectively); S3OLCI

includes 12 reflectance bands (plus IOPs in the case of S3OLCI+BGC); and IOPs represent the eight C2RCC-derived IOPs.210

The RFR was trained on 80% of the data, with the remaining 20% set aside for testing. Experiments were conducted in the

NA and STG regions across two depth layers: 0-50 m and 0-250 m. The test dataset was exclusively used to evaluate model

performance and was never exposed to the regressor during training. For each regression model, we analyzed the key features

that contributed to improving the estimation of bbp in the different combinations. The final experiment validated the pre-trained

models using two independent floats in the NA and STG regions.215

3.1 S3OLCI+BGC: results with BGC-Argo and OLCI data

A subset of the dataset utilized in the SOCA2020 experiment (GCGO+BGC) was included in the statistical analysis to facilitate

a comparison between our findings and the previous approach. Tables 1 and 2 present the input features and matrix sizes for

the different experiments. In the following sections, we analyze the results of the RFR model applied to these datasets, starting

with the GCGO+BGC and S3OLCI+BGC datasets to establish a baseline. In the NA region, 311 data points were used for220

training and 78 for testing, while in the STG region, 259 data points were used for training and 65 for testing.

3.1.1 Shallow waters: from 0 to 50 meters depth

In Figure 2 (A), R2 value profiles represent 20% of the total NA (green lines) and STG (blue lines) dataset used for model

testing. The total R2 value for the NA region using the S3OLCI+BGC is 0.751, which is slightly higher than the 0.721 obtained

with the GCGO+BGC (Table 3). Changes in precision depend on the layer’s depth. The S3OLCI+BGC set performs better both225

at superficial and deeper layers. A weaker performance is observed below 20 meters depth, being coincident with the location

of the MLD, where more variations in bbp values can be found. This is due to the strong baroclinic component and the density

dependence on the high thermal gradient of these waters. Figure 2 (B) illustrates the corresponding error statistics, and Figure

2 (C) compares observed and predicted bbp profiles for this region. The predicted profiles exhibit greater homogeneity and

less variability compared to the observations. Note that spikes along the water column are difficult to predict by the models.230

Figure 3 (left) shows the feature importance for the RFR models in the NA region. The most relevant feature in Sentinel-3

OLCI is the reflectance at 560 nm wavelength (band 6), demonstrating that satellite data provide good quality information

for estimating bbp at both sea surface and, at least, the first 50 m depth. As demonstrated in previous studies, the relationship

between the reflectance at 555 nm and POC is well known. Stramski et al. (1999) and Oubelkheir et al. (2005) noted that

backscattering and absorption coefficients in the 510 to 555 nm spectral region seem to be well correlated with a broad range of235

particle concentrations and compositions. The Photosynthetically Active Radiation (PAR) feature shows relative importance,

as it describes the mean daily photon flux density that can be used for photosynthesis at the moment of the observation.

Other relevant features are the day-of-year (DOY) and the longitude (lon), which are related to the significant spatio-temporal

differences across the North Atlantic region and the differences in the physical and biogeochemical characteristics of water. The

feature DOY, which accounts for the temporal component, reflects the seasonality that affects the phytoplankton cycles and,240

thus, the POC dynamics on these regions. The importance of longitude indicates that several water types must be within the
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Figure 2. (A) R2 obtained for the 50 m depth models with BGC-Argo and satellite data (GCGO+BGC and S3OLCI+BGC).(B) Violin plots

with Mean Squared Error distribution by model. Observed and predicted bbp (700 nm, m-1) profiles with S3OLCI+BGC in the North Atlantic

(C) and Subtropical Gyres (D).

same region. Another feature of importance is the first principal component of temperature measurements (Temp_pc1), related

to the baroclinic dynamics and highlighting the importance of temperature in the POC cycle at high latitudes. The maximum

phytoplankton blooms usually occur from June to August, when the water temperature is higher (Yang et al., 2020). Particular

attention is needed for the feature iop_bwit, introduced by the C2RCC processor. Due to the broad range of particles in water,245
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Table 3. Statistics by region at 50 m and 250 m depth models with satellite and BGC-Argo data.

Depth Region GCGO+BGC S3OLCI+BGC S3OLCI+IOPs S3OLCI

50 m North Atlantic R2 0.721 0.751 0.732 0.753

MAE 0.075 0.074 0.081 0.076

MSE 0.017 0.015 0.016 0.015

Subtropical Gyres R2 0.868 0.849 0.881 0.848

MAE 0.035 0.038 0.034 0.035

MSE 0.0025 0.0028 0.0023 0.0029

250 m North Atlantic R2 0.844 0.813 0.794 0.805

MAE 0.039 0.046 0.052 0.049

MSE 0.0047 0.0055 0.0064 0.0061

Subtropical Gyres R2 0.904 0.893 0.881 0.884

MAE 0.030 0.031 0.035 0.034

MSE 0.0019 0.0021 0.0023 0.0023

particle scattering in this processor is parametrized by two components. One component (iop_bwit) represents white particles

(coccolithophorids, foam and air bubbles), while small particles (iop_bpart) represent the other. This distinction enables the

model to better characterize the scattering source. For instance, it can identify whether the measured parameter originates from

a source that produces bbp, like phytoplankton, or if it is produced by white caps or foam, which are very common in NA

waters. This characterization is responsible for the better accuracy in the most superficial layers, and it’s also noticeable in the250

validation results (see 3.3 Section), where the results with this data are better.

In the STG region, the model with GCGO+BGC performs slightly better (total R2 is 0.868) than the S3OLCI+BGC model

(see Table 3 and Figure 2 (A)). Accuracy at different depths does not show significant changes, remaining constant and even

improving as depth increases. There are no gradients along the water column, but bbp values are much lower than in the NA

case, which indicates a low presence of organic matter due to the scarcity of nutrients and high incidence of sunlight on this255

region. This homogeneity facilitates the model estimations and the results are significantly better than in the NA region. In

Figure 3 (right), we see the feature importance values for the STG RFR models. Latitude is the most relevant feature in this

case. This suggests that conditions in the STG are very similar throughout the year, the DOY is less important because of the low

seasonality in these areas (Mignot et al., 2014; Cornec et al., 2021). However, values vary according to their position relative to

the vortex around which the gyres revolve. The central areas of the subtropical gyres are under almost permanent atmospheric260

and geostrophic high pressure, making it difficult for different water masses to mix. A high stratification is expected to inhibit

productivity. However, at the edges of the gyres, close to the eastern, western, sub-polar and equatorial currents, there is usually

a greater influx of nutrient-laden due to the divergence of waters, upwelling, and therefore more favorable ecological conditions

for phytoplankton. In these areas, seasonality is also more noticeable, and winter mixing due to a weaker stratification is clearly
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Figure 3. Feature importance for the models with GCGO+BGC and S3OLCI+BGC Argo data for 50 m depth in the North Atlantic (left) and

in Subtropical Gyres (right).

associated with phytoplankton blooms and primary productivity (Lozier et al., 2011). However, this stratification variability265

may not be enough to lead to perceptible changes in large parts of the subtropical ocean. The importance of the density

and salinity features (Dens_pc1 and Sal_pc1) reflects the barotropic dynamics of these oceanic regions, where isobars and

isopycnals are stratified parallel to the ocean surface and vary together as depth is gained (Leonelli et al., 2022).

3.1.2 Deep waters: from 0 to 250 meters depth

Table 3 and Figure 4 (A) and (B) present the total and in-depth layer results for models trained with data up to 250 meters270

depth. Compared to the model trained on data up to 50 meters depth, the enhanced performance in the NA could be due to the

inherent complexity of the region’s shallow waters. Despite the valuable insights from in situ data, the upper 50 meters of the

NA are highly dynamic. However, as depth increases, the relevance of BGC-Argo measurements becomes more significant.

A decrease in accuracy is observed around 30 meters, coinciding with the MLD (Figure 4 (A)). However, as depth increases,

an upward trend in R2 values is noticeable until approximately 150 meters. In the observed-predicted profiles (Figure 4 (C)),275

high bbp values are occasionally observed at depths exceeding 100 meters. When predicting the NA results at 250 m, the model

relies on different features as compared to the 50 m depth model. The most relevant features are the PCA 1 of the density, the

DOY and the longitude (lon). These differences can be attributed to the variety of physical processes in this region, such as

the mixing of distinct water masses through ocean eddies or ventilation processes, which affect the physicochemical properties

of the water layers and, consequently, the bbp dynamics. The complexity and diversity of the region’s dynamics are further280

emphasized by the importance of variables like sea level anomaly (Sla) and the first PCA of spiciness ("Spy_pc1"), which

relate to vertical changes in the water column. Additionally, the variable "rhown6_nm" (at a 560 nm wavelength) remains a

key contributor, highlighting the continued relevance of satellite data in estimating bbp in the euphotic zone, even at depths as

great as 250 meters.
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Figure 4. (A) R2 obtained for the 250 m depth models with BGC-Argo and satellite data (GCGO+BGC and S3OLCI+BGC).(B) Violin

plots with Mean Squared Error distribution by model. (C) Observed and predicted bbp (700 nm, m-1) profiles with GCGO+BGC in the North

Atlantic and (D) Subtropical Gyres.

In the STG region, the results are better than in the NA region, likely due to the more homogeneous water conditions.285

Although the MLD is typically around 50 m depth, in this case, no significant increase in error is observed until the 120-meter

layer. This zone corresponds to the region of effective biomass accumulation, known as the deep biomass maxima. It marks the

interface between two distinct water masses: the nutrient-limited upper layer and the light-limited lower layer (Cornec et al.,
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2021). This interface is typically found in oligotrophic waters at depths between 150 and 200 meters (Mignot et al., 2014).

Despite the lower productivity of these waters, their vast expanse makes them a significant contributor at the planetary scale290

(Jenkins and Doney, 2003). As noted in the results for the 50-meter model, latitude remains the most important feature for the

Random Forest Regression (RFR) model.

3.2 S3OLCI: results of Sentinel-3 OLCI without BGC-ARGO data

As demonstrated in the previous experiments, satellite-derived features play a significant role in the models when profile depths

reach 50 meters, thus answering the initial hypothesis of this study. It is clear that sea surface signals aid in estimating bbp at295

subsurface levels. However, the extent of this contribution across different depth layers became evident only when comparing

models trained with different depth limits. The feature importance of the 50 m depth models shows that, at least in the NA

region, the importance of the features measured by satellite sensors are just as relevant as the inputs from the floats. For this

reason, we designed one last experiment with only satellite data (S3OLCI) to check how the models perform in-depth with the

normalized water-leaving reflectance bands. Additionally, we investigated the contribution of the satellite-derived IOPs from300

the C2RCC processor, that is, adding the absorption and scattering variables as input features (S3OLCI+IOPs).

In the NA region, the model using only reflectance data (S3OLCI) outperforms the model that includes both reflectance and

the absorption and scattering products derived from the C2RCC processor (S3OLCI+IOPs) (see Table 3 and Figure 5 (A, B)).

While the MLD is still a barrier, accuracy improves beyond this depth for approximately another 10 meters. In the bbp profiles

(Figure 5 (C)), despite the noted errors in deeper estimations, the model is capable of predicting significant contrast events305

using only surface data from 36 meters onward, except an extreme case (profile 59). In the feature importance ranking, the

620 nm band is the most relevant of the spectrum. However, the spatio-temporal features (day of year, longitude and latitude)

seem to have greater weight than the results obtained with the data sets that include BGC-Argo data at the same depth (see

Section 3.2.1).

In the STG region, the S3OLCI+IOPs model achieves better results (Table 3). However, it is possible to see how the model310

is not able to predict some spikes along the water column (Figure5 (D)). In the feature importance ranking (not shown here),

latitude remains the most relevant feature. The improved performance of the S3OLCI+IOPs model, compared to the S3OLCI

(reflectance-only) model, could be attributed to the contribution of marine particle scattering at 443 nm (iop_bpart) provided

by the C2RCC processor.

3.3 Validation with independent floats315

The previously trained RFR models were applied to predict bbp values using independent float data that was not included in the

training or testing sets. Statistical metrics and corresponding scatter plots are provided in Table 4 and Figure 6.

In the NA region, the float identified as WMO 6902545 (see location in Figure 1) yields better estimates with the S3OLCI

models (R2 ranging from 0.475 to 0.534) compared to the reference GCGO+BGC model, where the R2 value drops to 0.266.

Figure 6(A) reveals the higher bbp variability along the water depth in the NA region, as indicated by the colour scale. There is320

an overestimation in the surface measurements (less than 30 m) and a slight underestimation at deeper depths. This validation
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Figure 5. (A) R2 obtained for the 50 m depth models using only satellite data.(B) Violin plots with Mean Squared Error distribution by

model. (C) Observed and predicted bbp (700 nm, m-1) profiles with S3OLCI data in the North Atlantic and (D) with S3OLCI+IOPs in the

Subtropical Gyres.

set includes data from several dates in 2017 and 2018, spanning from April to August. These temporal variations explain some

of the observed drifts in the plots, where different float cycles (water depth profiles) are also evident.

The STG region’s statistics and plots for the float with identifier 3902125 show better correlation coefficients and lower

errors. The datasets incorporating S3OLCI data yielded better results. In Figure 6(B), two clusters of data are visible: one325
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Figure 6. (A) Scatter plots with marginal histograms with the validation of the 50 m model performance on an independent float on the NA

region (ID 6902545) and (B) on the STG region (ID 3902125). The color scales shows the depth of the measurements and bbp values are in

log10.

associated with low bbp values and the other clustering around slightly higher values. The models tend to underestimate the

lower bbp values, while the higher values show a closer fit to the 1:1 line. However, in the model that uses only reflectance data

(S3OLCI), a clear overestimation of higher values occurs. Unlike in the North Atlantic region, depth separation is not evident

here, but the lower values correspond to measurements taken during the winter months in the South Atlantic Gyre, while the

higher values were recorded during the summer months in the Southern Hemisphere, where the float was located.330

These results reinforce the observations made in previous sections: models provide more accurate bbp estimations in the STG

region than in the NA, confirming the effectiveness of using the S3OLCI bands and derived C2RCC IOPs at shallow water

depths.
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Table 4. Validation with independent floats by region at 50 m and 250 m depth models with satellite and BGC-Argo data.

Depth Region GCGO+BGC S3OLCI+BGC S3OLCI+IOPs S3OLCI

50 m North Atlantic R2 0.266 0.534 0.525 0.475

MAE 0.188 0.145 0.143 0.150

MSE 0.0467 0.0293 0.0298 0.0329

Subtropical Gyres R2 0.641 0.670 0.662 0.660

MAE 0.026 0.025 0.026 0.026

MSE 0.0054 0.0057 0.0054 0.0055

250 m North Atlantic R2 0.331 0.315 0.290 0.276

MAE 0.046 0.047 0.045 0.046

MSE 0.0013 0.0010 0.0010 0.0010

Subtropical Gyres R2 0.552 0.564 0.545 0.596

MAE 0.041 0.040 0.042 0.039

MSE 0.0028 0.0027 0.0026 0.0026

4 Discussion and Conclusion

Vertical estimates of the particulate backscattering coefficient (bbp), used as a proxy for particulate organic carbon, were335

calculated along the water column. Estimations were performed in two distinct regions and across several layers within two

maximum depth limits. Data from BGC-Argo profiles and ocean color satellite data (OLCI) were used. The Random Forest

model was applied with different sets of variables for the bbp estimations, following methodologies from previous works by

Sauzède et al. (2016, 2020).

Previous studies estimating bbp from satellite-derived remote sensing reflectance (Rrs) have typically employed empirical340

or semi-analytical models, with most focused on surface layers. In Bisson et al. (2019), bbp profiles from floats were processed

by averaging bbp values within the surface mixed layer, followed by a comparison between different sensors and bbp retrieval

inversion products by NASA. In that case, OLCI -with data from Reduced Resolution mode at 1.2 km pixel resolution- under-

performed compared to MODIS (Moderate Resolution Imaging Spectroradiometer) with 1 km at nadir (r= 0.32 to 0.47 and r =

0.60 to 0.79 respectively). This difference was attributed to higher coefficients of variation (30% for OLCI and 5% for MODIS)345

across bands between 412 and 555 nm and aerosol optical thickness at 865 nm. In the present work, OLCI Full Resolution

(FR) data, with a spatial resolution of 300 m, was used. Additionally, the most relevant wavelength in some of our models (620

nm) was not considered in Bisson et al. (2019).

Additional considerations regarding our work include the time criteria for match-ups, the higher spatial resolution, and the

macro pixel sizes (e.g., 3× 3, 5× 5), which differ significantly from those in other published studies. Sauzède et al. (2020)350

used profiles that reach up to 1000 m depth, where the contribution of surface satellite data was overshadowed by the valuable

17

https://doi.org/10.5194/egusphere-2024-3942
Preprint. Discussion started: 7 January 2025
c© Author(s) 2025. CC BY 4.0 License.



information from BGC-Argo profiles. In this study, the focus was on the possible contribution of satellite-derived water-leaving

reflectance to bbp estimation within the first 250 meters, situated in the twilight zone. Satellite features have proved to be indeed

relevant for the bbp estimations, especially in the Subtropical Gyres region. These oligotrophic waters, characterized by high

stratification, rely heavily on nutrient injection from deeper zones, as the upper euphotic zone is typically nutrient-limited. In355

fact, Letelier et al. (2004) and Mignot et al. (2014) describe these gyres as a two-layer system: an upper layer nutrient limited

but not light-limited, and a deeper layer that is light-limited but has greater nutrient access. These authors also highlight a

seasonal distinction, with winter bringing greater water mixing than summer. During winter, average light intensity for PAR in

the mixed layer decreases while turbulence increases. This seasonal variation may explain the two distinct clusters observed

in the validation exercise for the STG region. The inclusion of satellite surface data, along with derived parameters such360

as inherent optical properties (IOPs), in combination with in situ profile data, should be considered for estimating bbp, and

by extension, approximating particulate organic carbon (POC), at least for layers up to 250 meters depth. It is important to

note that organic carbon fixation primarily occurs in the upper ocean layers. This organic matter is subsequently transformed

through respiration, particle aggregation, zooplankton grazing, feces production, and microbial decomposition (Siegel et al.,

2014), before eventually sinking to deeper layers.365

Concerning the results, the models that relied exclusively on satellite data (S3OLCI and S3OLCI+IOPs) produced reasonable

estimations for the upper layers in both the North Atlantic and Subtropical Gyres regions. This is encouraging, as satellite data,

with its synoptic spatial coverage and broad temporal scope, can efficiently complement Argo float measurements. Satellite

observations provide valuable insights into mesoscale ocean processes over various temporal ranges, extending at least the

past three decades. However, remote sensing products are limited—only about 20% of the euphotic zone is directly observable370

by satellite sensors. This highlights the critical importance of extending surface observations to deeper layers (Claustre et al.,

2010).

Future work should be focused on enlarging the database with new BGC-Argo profiles and satellite data; and extending the

data to new areas of the global ocean. The role of the MLD on the different regions is also an issue that deserves attention

in order to further understand the effect that it has on biochemical parameter estimations. Planned sensors with extended375

capabilities, like the hyperspectral NASA PACE, might be also a path of research to follow, since we have seen that adding

new wavelengths had a positive effect on the results of our models compared with previous works. Possible improvements in

the detection of CDOM with the UV bands can be an important contribution to better estimating particulate organic material

(POM) and, consequently, to POC.

Data availability. Both BGC-Argo measurements and OLCI data are open and freely available for the scientific and public community.380
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