Dear Reviewer, we sincerely appreciate your valuable review and feedback on our
manuscript. We agree that it is important to emphasize the key contributions and
innovations of our study. In response to your comments, we have rewritten the abstract
and discussion sections to clearly summarize our findings. Additionally, we have
explicitly highlighted the main contributions of our work at the end of the introduction to
enhance clarity and impact. A new version will be uploaded into the system when
permitted. Some excerpts from the text have been copied into the responses for clarity.

The current manuscript builds upon existing research to explore the use of multi-output
random forest models for retrieving backscattering coefficient (bbp) data at various
depths using different input datasets. These inputs include enhancements in spatial
resolution and a diversity of data types. However, the draft in its present form is
somewhat rudimentary. The work presented is not effectively summarized in the
abstract and discussion sections, and the highlights and innovations of the study are
not prominently featured. | recommend that the authors address these issues by clearly
outlining the study’s contributions and innovations at the end of the introduction.

Below are specific suggestions for improvement:

1. The introduction initially mentions Particulate Organic Carbon (POC) using its
abbreviation without first presenting its full name and explaining its significance
within the study’s context. This may confuse readers unfamiliar with the term.

The full name and abbreviation were first introduced in the abstract but are now
also included in the introduction of the new version.

Additionally, the discussion on why profiling POC is challenging is insufficiently
developed. A more detailed explanation of these measurement difficulties is
necessary to establish the research problem’s significance and to clearly justify
the study’s objectives. Providing a comprehensive background on POC and
elaborating on the challenges in measuring it will better prepare readers for the
research presented.

Thanks for pointing this out. We have modified the introduction and added a
more detailed description in the new version of the manuscript (see in question
number 3).

2. The second paragraph of the introduction discusses Apparent Optical
Properties (AOP), which does not appear to be directly related to the paper’s
main focus. This section may detract from the introduction’s clarity and
coherence by introducing a topic that is not central to the study’s objectives. It is
important to ensure that the introduction remains focused on the key themes
and research questions. If AOP is not essential to the main argument, consider
removing this section or significantly condensing it to maintain the introduction’s
focus and engage readers with the paper’s central themes.

One of the aims of the manuscript is to evaluate if the Inherent Optical
Properties (IOP), which are provided as a derived product from the Sentinel-3
OLCI-C2RCC data, can improve the retrieval of bpp. This product is directly
related to AOP and a comprehensive background is provided in the introduction
for this reason. However, we have rewritten this paragraph to highlight why it is
important in this study.



3. The logical flow between the introduction’s first two paragraphs is somewhat
disjointed, potentially hindering the reader’s understanding of the paper’s
overall direction. Furthermore, the latter paragraphs lack a detailed analysis of
the current research landscape. The discussion of existing studies is limited and
does not clearly identify the knowledge gaps this paper aims to address. To
enhance the introduction, revise the first two paragraphs to improve their logical
structure and coherence. Additionally, include a more comprehensive review of
the current research, highlighting specific gaps in the literature and the
problems this study seeks to solve. Incorporating more examples of relevant
previous research will strengthen the context and rationale for the study,
providing a clearer foundation for the paper’s contributions.

Thank you for your comments. We have rewritten the introduction accordingly to
clarify and highlight the objectives and novelties of this study.

“The ocean covers approximately 70\% of Earth's surface and plays a
fundamental role in regulating climate dynamics. It redistributes energy and
carbon through a variety of physical and biogeochemical processes. Among
these processes, the biological carbon pump facilitates the transfer of CO${ 2}$
from the atmosphere to the ocean floor by enabling the production and sinking
of particulate organic carbon (POC), which becomes sequestered in
deep-ocean sediments. POC originates from living organic carbon, primarily
produced by photosynthetic organisms such as phytoplankton, which thrive in
the sunlit upper ocean layers. These organisms require carbon compounds,
along with light and nutrients, to survive and reproduce(Falkowski et al., 1998;
Siegel et al., 2014).Their presence and abundance reflects the interplay of
resources and losses in the environment(Behrenfeld et al., 2006) with
populations maintaining daily division cycles even in regions where nutrients
appear to be depleted beyond detection limits (Ribalet et al., 2015; Vaulot and
Marie, 1999). The observed populations represent a balance where new
biomass produced each day is matched by consumption through grazing and
other loss processes (Landry and Hassett, 1982; Calbet and Landry, 2004)
maintaining relatively stable populations despite continuous growth and
turnover. Quantifying phytoplankton biomass and carbon content is crucial to
understanding these ecosystem dynamics and their role in carbon cycling.
Traditionally, chlorophyll-a (chl-a}) concentration has been used as a proxy for
phytoplankton biomass, but its interpretation is complicated due to physiological
photoacclimation, which affects intracellular pigment content without necessarily
indicating changes in biomass. The Particulate Backscattering Coefficient (bbp)
has been recognized as a stable optical proxy for phytoplankton biomass and
carbon content as it is sensitive to the abundance, size distribution, and
composition of suspended particles, rather than pigment concentration alone
(Behrenfeld and Boss, 2006; Graff et al., 2015; Martinez-Vicente et al., 2013).
Unlike chl-\textit{a}, which can underestimate biomass in stratified and
oligotrophic waters, bbp remains relatively unaffected by photoacclimation
effects, making it particularly useful for studying carbon fluxes across different
oceanic regions and depth layers. The complex interaction between key
variables (usually non-linear) and limited sampling resolution in dynamic
environments, combined with the technical challenges of depth-resolved
measurements, contribute to gaps in our understanding of specific marine
processes, such as carbon sequestration, nutrient cycling, sedimentation and
the ocean-atmosphere COZ2 exchange {(...)"



4. The introduction should underscore the importance of bbp in POC

measurement, as well as the deficiencies and areas for improvement in current
bbp products. While the introduction currently highlights the significance of
POC, it does not adequately stress the critical role of bbp. Clarify whether POC
estimation relies solely on bbp and discuss its specific importance in this
context. Additionally, expand upon the current state of bbp data by discussing
the limitations of existing bbp products and the shortcomings of related
algorithms. For instance, accurately deducing inherent optical properties (IOPs)
from apparent optical properties (AOPs) is crucial for POC retrieval models
based on IOPs, but this process can be challenging. Furthermore, the complex
optical conditions in coastal areas can lead to significant spatial heterogeneity
in POC distribution, introducing uncertainty in POC estimation even when using
advanced methods. Addressing these points will provide a clearer context for
the study’s objectives and the need for improved bbp products.

We have added a paragraph in the Introduction where we tackle the following
points:

- Remark the bbp use as a proxy of POC

- How we can derive bbp: from in situ data using the BGC-Argo floats
(sensors of backscatter at 700 nm); from satellite, where several
algorithms have been developed like NASA's OBG group bbp_sat
product.

- From satellites Rrs is used and an inversion model is applied to derive
IOPs. The retrieval of bbp from satellites requires of a forward model
that shows the relation between Rrs and bbp (i.e. GIOP, QAA and
others).

It now reads:

“The bbp parameter is an inherent optical property (IOP) of water, and it has
been widely recognized as a robust bio-optical proxy for POC (Cetini'c et al.,
2012; Sullivan et al., 2013). However, b_bp measured by floats can have an
uncertainty of the order of 10-15% (Bisson et al., 2019). These uncertainties
stem from the instrumental drift, the sensor calibration limitations, and the
reliance on manufacturer calibration files rather than sensor-specific calibrations
using dark counts. While autonomous platforms provide extensive spatial and
temporal coverage, these factors must be considered when interpreting
bio-optical datasets to ensure accuracy and reliability. IOPs are intrinsic
characteristics of water, determined solely by its composition and are
independent of the external light field or the geometrical angle conditions during
observation. These properties include absorption, elastic scattering, inelastic
processes (such as fluorescence and Raman scattering), and attenuation,
which describe how light behaves and propagates through water. IOPs are
essential in studying light interactions in aquatic environments, as they reflect
the presence of dissolved organic matter, phytoplankton and suspended
particles. The b_bp can be measured by autonomous platforms spread out
across the ocean, such as the Biogeochemical-Argo (BGC-Argo) profiling
floats(Claustre et al., 2020); or estimated from onboard satellite sensors, such
as the Sentinel-3 Ocean and Land Colour Instrument (EUMETSAT, 2019; Jorge
et al., 2021; Koestner et al., 2024). Designing observational strategies based on
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combining the two approaches constitutes a fundamental tool for improving
knowledge of ocean processes.”

The calculation of inherent optical properties (IOPs) or concentrations of water
constituents from reflectances always involves some degree of uncertainty
(IOCCG, 2019). Two primary factors contribute to this: 1) The inverse
relationship between IOPs and water reflectance spectra is an underdetermined
system. This means that the information contained in reflectance spectra is
significantly lower than the number of variables influencing those spectra. As a
result, different combinations of IOPs can produce nearly identical reflectance
spectra, leading to inherent ambiguity between IOPs and remote sensing
reflectance (Rrs). 2) The natural variability of all components that determine
reflectance spectra is extremely high. This includes the optical properties of the
atmosphere and water, their vertical distribution, and the characteristics of the
air-sea interface. Because of this complexity, any retrieval algorithm simplifies
the natural system and is only effective within the scope defined by its
underlying optical model assumptions.

The bbp from Argo floats is explained in detail in section 2.2.
Derivation of the satellite IOPs from C2RCC is later explained in section 2.3

It is crucial to provide specific details about the data collected from each
dataset, including the exact variables used, the time range of data collection,
website links for accessing the data, and the dates when the data were
accessed. Currently, Table 1 lacks sufficient information, and the time frames for
the BGC-Argo data and other datasets are not clearly stated. To improve clarity
and completeness, ensure that all necessary details are included in the data
section, allowing readers to understand the scope and sources of the data used
in this study.

We have added the following text in the new version of the manuscript and
changed figure 1.

“The temporal distribution of the match-ups shows a clear seasonal bias, with
most data concentrated between May and September, particularly during 2017.
This uneven distribution is primarily due to the limited availability of cloud-free
satellite observations required to match with BGC-Argo profiles, especially
during winter months when cloud cover and low solar angles reduce the quality
of remote sensing products.”
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Figure 1. Global map showing the geographic locations of the BGC-Argo floats
and satellite data matchups. [Botttom row] Temporal coverage of matchups by
year (left) and month (middle) for the North Atlantic (NA, green) and Subtropical
Gyres (STG, blue). Vertical profiles (right) of bbp from floats, where solid lines
show mean values, shaded areas *1 standard deviation, and the dashed red
line the average Mixed Layer Depth (MLD).

In the methods section, the use of Principal Component Analysis (PCA) for
dimensionality reduction of high-dimensional features is mentioned, stating that
“After this feature reduction on the high-dimensional variables, the 250 m and
50 m measurements with 126 and 26 inputs are reduced to 5 components for
each variable, resulting in a total of 20 features. This method still retains 99% of
the information.” However, this section lacks supporting data and visualizations
to illustrate the PCA results. To enhance clarity and effectiveness, include data
tables or figures that demonstrate the specific components selected and their
contributions to the overall variance. This will help readers better understand
the impact of PCA on the feature set and validate the claim that 99% of the
information is retained.

The application of PCA for dimensionality reduction is a well-established and
widely used technique for reducing the dimensionality of large datasets while
retaining the most important information. Given its common application in the
field, we did not initially include a graphical representation of the PCA results in
the manuscript. However, in response to your suggestion, we could include as
supplementary material the PCA plot in the revised manuscript, although we
consider that it does not add much to the analysis. PCA graph for all the
variables and depth are shown below:
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Figure. Cumulative explained variance of the first six PCA components.

In Section 2.5, the discussion is somewhat disorganized. The introduction of the
Random Forest Regression model should precede the discussion of existing
studies based on random forest models. Additionally, such content seems more
appropriate for the introduction section, as it pertains to a review of existing
research rather than the methods section. Moreover, the authors state, “All the
previously mentioned algorithms, along with others such as Linear Regressor
(LR), Ridge Linear Regressor (RLR), Random Forest Regressor (RFR), and
Multi-Layer Perceptron (MLP), were tested for estimating bbp during the dataset
preparation phase. Based on these results, the Random Forest Regressor
(RFR) was selected as the most suitable algorithm for this
multi-input/multi-output problem.” Comparative results should also be presented
to illustrate the differences in inversion results and the stability of various
models. This will help substantiate the choice of the Random Forest Regressor
as the most suitable algorithm for the problem at hand.

We have restructured this section according to the comments. Thank you for
pointing it out. Now it reads like this:

“There are two main approaches for dealing with multi-output regression
problems. One way is to use univariate models, also known as problem
transformation methods (Schmid et al., 2022, Borchani et al., 2015). These
methods decompose the multi-output regression problem into multiple
single-target problems, creating an independent model for each output. The
predictions from these separate models are then combined. This approach
ignores the relationships between the targets, which can adversely affect the
prediction's overall accuracy. Alternatively, multivariate models are designed to
capture dependencies and interactions between the outputs, potentially leading



to more accurate predictions (Borchani et al., 2015). When and how to apply
these two approaches depends on the nature of the data and the correlation
between the targets. In our preprocessing results, PCA decomposition indicates
a high covariance among measurements at different depths in the water
column. Since our regression models estimate bbp at different depths, it is
logical to consider that nearby values in the water column are related to each
other.

Random Forest Regressor (Breiman, 2001) has been widely applied in
geosciences and marine environmental studies for classification and regression
tasks (Cutler et al., 2007; Ruescas et al., 2018). Regression trees are at the
model's core, which effectively handles complex data when there are non-linear
dependencies between a numerical response variable and a diverse set of
predictors, whether qualitative or quantitative (D’Ambrosio et al., 2017). RFR is
an ensemble method that combines many weak decision tree learners, which
are grown in parallel to reduce the bias and variance of the model
simultaneously, enhancing the model's predictive performance. Furthermore,
RFR provides insights into the importance of the training features, which
reveals the variables that have the most significant impact on the predictions.
This capability makes the model's mechanisms and results easier to interpret
and explain.

Different algorithms have been tested in previous works (see Sauzede et al.
(2016, 2020)) to estimate bbp at various depths. Both works are based on a
multivariate model applied to all possible outputs. In SOCA16, a Multi-Layer
Perceptron is developed, while in SOCA2020 a comparison between a linear
model (Ridge) and an ensemble model (Random Forest) is done. The latter
showed higher performance. The Multivariate Random Forest used in this study
offers higher accuracy than the univariate Random Forest, especially when the
outputs are highly correlated (Schmid et al., 2022) and when complex
interactions demand structured inference to be effectively managed d (Xu et al.,
2019). All the previously mentioned algorithms, including Linear Regressor
(LR), Ridge Linear Regressor (RLR), Random Forest Regressor (RFR), and
Multi-Layer Perceptron (MLP), were tested at both 50 and 250 m depth during
the dataset preparation phase. Results for 2560 m are shown in Figure 2. Based
on these results, the Random Forest Regressor (RFR) was selected as the
most suitable algorithm for this multi-input/multi-output problem.”
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Figure 2. Comparison of different multi-output regression models for estimating vertical profiles of bbp up to
250 meters depth. Left: Depth-resolved R2 values for four regression models: Random Forest, Multi-Layer
Perceptron, Ridge Regressor, and Linear Regressor. Right: Violin plots of the Mean Squared Error (MSE,
log10-transformed) distributions for each model
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In the initial paragraphs of Section 3, “Performance of the Random Forest
Regressor,” the authors refer to the content of Table 1, including the specific
datasets corresponding to each abbreviation. However, this information should
have been presented in the data introduction section. Instead, this section
should provide details on the data volume obtained after feature engineering
and data filtering, specifically how much data is used for training and how much
for the independent validation set. This will give readers a clearer
understanding of the data used in the study and its distribution between training
and validation.

We have moved this information to the data introduction section in the new
version as suggested.

In the section “3 Performance of the Random Forest Regressor,” the authors
discuss the differential contribution of various features within the model. It would
be beneficial to clarify the source of this feature importance data. Is it derived
from the inherent parameters of the random forest model, or does it rely on
additional algorithms? While the random forest, as an ensemble learning
method, can assess feature importance through multiple decision trees,
providing a measure of each feature’s contribution to the predictive outcome,
employing SHAP (SHapley Additive exPlanations) values could offer a more
detailed and accurate attribution of feature importance. SHAP values provide a
robust approach to explaining machine learning model outputs by assigning
each feature an importance value for a particular prediction. Incorporating
SHAP could enhance the transparency and depth of the analysis regarding
each feature’s influence on the model’s performance.

The feature importance (FI) for each model was obtained from the built-in
feature importance algorithm. In this section we show the built-in FI of the
different models in order to compare if the same variables are selected from the
two satellite-derived products for the same training dataset (match-ups). A
comparative of different feature importance algorithms, such as permutation
importance and SHAP could be done, but we think that it is out of the scope of
this manuscript. In the manuscript, we have clarified that it is calculated using
the in-built feature importance of the random forest model.

In the same section, the authors depict the contribution of various features
within the model. However, there are concerns regarding the clarity and utility of
the presented feature importance data. Specifically, it should be clarified
whether features with low contribution are consistently negligible across all
depths. If these features do not significantly contribute to the model’s
performance at any depth, it might be beneficial to consider their removal to
further reduce dimensionality and enhance the model’s efficiency.

We understand the concern regarding feature importance and dimensionality
reduction. However, we have chosen to retain all features in our analysis to
ensure consistency and comparability between both areas. The random forest
model with fewer features is simpler, but usually similar results are yielded.
Additionally, keeping all features allows for a more standardized evaluation and
interpretation of results. We appreciate your suggestion and will consider
discussing this point further in the manuscript to clarify our approach.

Additionally, some features are derived from PCA processing, and with the
multitude of features used, it is challenging to distinguish between those
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originating from different datasets or subjected to various treatments in the bar
chart. To enhance the richness and readability of the visual information, it is
suggested that the authors use distinct colors to represent bars corresponding
to different types of features. This would allow for a clearer distinction between
features from different datasets or processing methods, thereby providing a
more informative and accessible visualization of the data. It is also worth noting
that while random forest models can provide feature importances based on the
model’s internal assessment, these may not always reflect the true importance
of features. The authors might also consider using alternative methods such as
SHAP (SHapley Additive exPlanations) to calculate feature importances, which
could offer a more nuanced understanding of each feature’s contribution to the
model’s predictions.

Thank you for the suggestion. We have changed the figures using distinct
colors for the different types of features in the new version.
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Figure 4. Feature importance for the models with S30LCIBGC and GCGOBGC data for 50 m depth in the
North Atlantic (NA) and in Subtropical Gyres (STG). Features are grouped by category according to color: (1)
blue tones represent spatial and temporal descriptors, including day of year (doy), latitude, and longitude; (2)
dark blue represents sea level anomaly (SLA); (3) purple indicates Mixed Layer Depth (MLD); (4) green
corresponds to satellite reflectance bands from either Sentinel-3 OLCI or GlobColour with their central
wavelengths; and (5) pink, red, orange, and light purple correspond to the first five principal components
(PCs) derived from BGC-Argo profiles of density, temperature, salinity, and spiciness, respectively.

In the concluding part of the introduction, the authors outline the main content of
the research, focusing on a detailed analysis of estimating bbp in the upper
layers of the ocean surface using Sentinel-3 Ocean and Land Colour Instrument
(S30OLCI) data. The study aims to enhance spatial resolution from the 4 km
resolution of GlobColour level-3 merged products to the 300 m Full Resolution
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(FR) of Sentinel-3 OLCI. Additionally, the research evaluates model
performance after incorporating OLCI spectral wavelengths as features for bbp
estimation and compares these results with those obtained using GlobColour.
The study also explores whether the inclusion of Inherent Optical Properties
(IOPs) derived from satellite data can improve the accuracy of bbp estimation
compared to using reflectances alone. These IOPs, provided by the Sentinel-3
OLCI processor, are hypothesized to significantly enhance regression models.
The comparison is made between BGC-Argo data and various satellite datasets
for two depth layers: from the surface to either 50 m or 250 m. However, the
abstract does not provide a comprehensive and concise summary of the work
and its innovative aspects. After reading the abstract, it remains unclear what
the specific contributions and novelties of this research are. | recommend that
the authors revise the abstract to include a brief but complete overview of the
study’s objectives, methods, and key findings. The abstract should clearly
communicate the innovative aspects of the research, such as the use of higher
resolution data, the incorporation of I0Ps, and the comparison of model
performances, to give readers a clear understanding of the study’s significance
and contributions to the field.

We have changed the abstract to highlight the main contributions and
innovations of this study.

“Abstract. As the second largest carbon reservoir on Earth, the ocean regulates
the carbon balance through dissolved and particulate organic carbon forms.
Monitoring carbon cycle processes is key to understanding climate system
science. While most organic carbon in the ocean is dissolved, Particulate
Organic Carbon (POC) plays a crucial role despite its smaller proportion, as it
links surface biomass production, the deep ocean, and sedimentation. POC
estimation is achieved by measuring proxies like the Particulate Backscattering
Coefficient (bbp), obtained from satellite observations and in situ sensors, such
as the BioGeoChemical-Argo (BGC-Argo) floats. Previous research has
combined data from BGC-Argo floats and satellite sensors, demonstrating the
potential of machine learning models to infer vertical bio-optical properties in the
water column. By bridging the gap between surface optical properties and deep
ocean processes, this approach enhances the estimation within the top 250
meters of the water column. This study focuses on such estimations with the
inclusion of remote sensing data from the Sentinel-3 Ocean and Land Colour
Instrument (OLCI) sensor at full resolution (300 m). The addition of optical
information about absorption and scattering processes has improved the
accuracy of the multi-output Random Forest models, which show promising
results, especially within the first 50 meters in the Subtropical Gyres. However,
in dynamic regions such as the North Atlantic, the results are less consistent,
suggesting that further research is needed to understand how the complexity of
the physical state of the water column modifies the bbp vertical fluxes.”

End of the introduction section:

“Building on these results, this research proposes a more detailed analysis of
estimating bbp in the upper layers of the ocean surface using the Sentinel-3
Ocean and Land Colour Instrument (S30OLCI). We enhance the spatial
resolution from the 4 km resolution of GlobColour level-3 merged products
(1/24° at the equator), used in previous studies, to the 300 m Full Resolution
(FR) of Sentinel-3 OLCI. Additionally, we evaluate the model performance after
incorporating OLCI spectral wavelengths as features for bbp estimation and



compare these results with those obtained using GlobColour. Another key
aspect of this study is determining whether adding IOPs derived from satellite
data (absorption and scattering) improves the accuracy of the bbp estimations
compared to using reflectances alone. These IOPs, calculated from the OLCI
processor, could significantly enhance regression models. Furthermore, bbp at
different depths of the water column is estimated using multi-output models.
These multi-output random forest models account for the high correlation
between measurements at nearby depths. The comparison is conducted
between BGC-Argo data and the satellite datasets for two depth layers: from
the surface to either 50 m and 250 m.”

13. The section “2.5 Multi-output Machine Learning Models” in the methods part of
the paper should be clarified to determine whether it represents one of the
study’s innovative aspects. If this section indeed constitutes an innovation, it is
essential to highlight it appropriately throughout the paper to ensure that
readers recognize its significance. In the abstract, include a brief mention of the
multi-output machine learning approach and its novelty to pique the interest of
potential readers and set the stage for the detailed methodology presented
later. In the introduction, provide a clear and concise explanation of what
multi-output machine learning models are and how they are applied in this
study. Emphasize the innovative nature of using these models, perhaps by
comparing them to traditional single-output models or by discussing the
advantages they offer in the research context. During the discussion, reflect on
the implications of using multi-output machine learning models, including a
comparison of their performance with other models, the benefits they provide in
terms of accuracy or efficiency, and their potential applications in similar
research endeavors. To ensure consistency and clarity, make sure that the term
“multi-output” is consistently defined and used throughout the paper, and that its
implications for the research are clearly articulated. If the multi-output approach
is a key innovation, it should be a central theme in the narrative of the paper,
guiding the reader through the methodology, results, and implications of the
study.

Multi-output models are commonly used in the machine learning field as they
provide a better estimation of the output variables when they are related. In this
case, we are estimating the bpp at different depths of the water column. Since
measurements of bpp at nearby depths are highly correlated, using a
multi-output model allows us to account for this correlation effectively. We have
clarified and emphasized this in the new version of the manuscript. Thank you
for the comment.

Overall, addressing these suggestions will significantly enhance the manuscript’s
clarity, coherence, and professionalism, thereby strengthening its contribution to the
field of ocean physical remote sensing.

Citation: https://doi.org/10.5194/egusphere-2024-3942-RC1

Finally, we would like to thank the reviewer for their valuable comments and the time
and effort dedicated to reviewing our work. Your valuable suggestions have contributed
to enhancing the quality and clarity of our manuscript. We sincerely appreciate your
effort and expertise.



