
Dear Reviewer, we sincerely appreciate your valuable review and feedback on our 
manuscript. We agree that it is important to emphasize the key contributions and 
innovations of our study. In response to your comments, we have rewritten the abstract 
and discussion sections to clearly summarize our findings. Additionally, we have 
explicitly highlighted the main contributions of our work at the end of the introduction to 
enhance clarity and impact. A new version will be uploaded into the system when 
permitted. Some excerpts from the text have been copied into the responses for clarity. 

The current manuscript builds upon existing research to explore the use of multi-output 
random forest models for retrieving backscattering coefficient (bbp) data at various 
depths using different input datasets. These inputs include enhancements in spatial 
resolution and a diversity of data types. However, the draft in its present form is 
somewhat rudimentary. The work presented is not effectively summarized in the 
abstract and discussion sections, and the highlights and innovations of the study are 
not prominently featured. I recommend that the authors address these issues by clearly 
outlining the study’s contributions and innovations at the end of the introduction.  

Below are specific suggestions for improvement: 

1.​ The introduction initially mentions Particulate Organic Carbon (POC) using its 
abbreviation without first presenting its full name and explaining its significance 
within the study’s context. This may confuse readers unfamiliar with the term.  

The full name and abbreviation were first introduced in the abstract but are now 
also included in the introduction of the new version.  

Additionally, the discussion on why profiling POC is challenging is insufficiently 
developed. A more detailed explanation of these measurement difficulties is 
necessary to establish the research problem’s significance and to clearly justify 
the study’s objectives. Providing a comprehensive background on POC and 
elaborating on the challenges in measuring it will better prepare readers for the 
research presented. 

Thanks for pointing this out. We have modified the introduction and added a 
more detailed description in the new version of the manuscript (see in question 
number 3). 

2.​ The second paragraph of the introduction discusses Apparent Optical 
Properties (AOP), which does not appear to be directly related to the paper’s 
main focus. This section may detract from the introduction’s clarity and 
coherence by introducing a topic that is not central to the study’s objectives. It is 
important to ensure that the introduction remains focused on the key themes 
and research questions. If AOP is not essential to the main argument, consider 
removing this section or significantly condensing it to maintain the introduction’s 
focus and engage readers with the paper’s central themes. 

One of the aims of the manuscript is to evaluate if the Inherent Optical 
Properties (IOP), which are provided as a derived product from the Sentinel-3 
OLCI-C2RCC data, can improve the retrieval of bpp. This product is directly 
related to AOP and a comprehensive background is provided in the introduction 
for this reason. However, we have rewritten this paragraph to highlight why it is 
important in this study.  



3.​ The logical flow between the introduction’s first two paragraphs is somewhat 
disjointed, potentially hindering the reader’s understanding of the paper’s 
overall direction. Furthermore, the latter paragraphs lack a detailed analysis of 
the current research landscape. The discussion of existing studies is limited and 
does not clearly identify the knowledge gaps this paper aims to address. To 
enhance the introduction, revise the first two paragraphs to improve their logical 
structure and coherence. Additionally, include a more comprehensive review of 
the current research, highlighting specific gaps in the literature and the 
problems this study seeks to solve. Incorporating more examples of relevant 
previous research will strengthen the context and rationale for the study, 
providing a clearer foundation for the paper’s contributions. 

Thank you for your comments. We have rewritten the introduction accordingly to 
clarify and highlight the objectives and novelties of this study. 

“The ocean covers approximately 70\% of Earth's surface and plays a 
fundamental role in regulating climate dynamics. It redistributes energy and 
carbon through a variety of physical and biogeochemical processes. Among 
these processes, the biological carbon pump facilitates the transfer of CO${_2}$ 
from the atmosphere to the ocean floor by enabling the production and sinking 
of particulate organic carbon (POC), which becomes sequestered in 
deep-ocean sediments. POC originates from living organic carbon, primarily 
produced by photosynthetic organisms such as phytoplankton, which thrive in 
the sunlit upper ocean layers. These organisms require carbon compounds, 
along with light and nutrients, to survive and reproduce(Falkowski et al., 1998; 
Siegel et al., 2014).Their presence and abundance reflects the interplay of 
resources and losses in the environment(Behrenfeld et al., 2006) with 
populations maintaining daily division cycles even in regions where nutrients 
appear to be depleted beyond detection limits (Ribalet et al., 2015; Vaulot and 
Marie, 1999). The observed populations represent a balance where new 
biomass produced each day is matched by consumption through grazing and 
other loss processes  (Landry and Hassett, 1982; Calbet and Landry, 2004) 
maintaining relatively stable populations despite continuous growth and 
turnover. Quantifying phytoplankton biomass and carbon content is crucial to 
understanding these ecosystem dynamics and their role in carbon cycling. 
Traditionally, chlorophyll-a (chl-a}) concentration has been used as a proxy for 
phytoplankton biomass, but its interpretation is complicated due to physiological 
photoacclimation, which affects intracellular pigment content without necessarily 
indicating changes in biomass. The Particulate Backscattering Coefficient (bbp) 
has been recognized as a stable optical proxy for phytoplankton biomass and 
carbon content as it is sensitive to the abundance, size distribution, and 
composition of suspended particles, rather than pigment concentration alone  
(Behrenfeld and Boss, 2006; Graff et al., 2015; Martinez-Vicente et al., 2013). 
Unlike chl-\textit{a}, which can underestimate biomass in stratified and 
oligotrophic waters, bbp remains relatively unaffected by photoacclimation 
effects, making it particularly useful for studying carbon fluxes across different 
oceanic regions and depth layers. The complex interaction between key 
variables (usually non-linear) and limited sampling resolution in dynamic 
environments, combined with the technical challenges of depth-resolved 
measurements, contribute to gaps in our understanding of specific marine 
processes, such as carbon sequestration, nutrient cycling, sedimentation and 
the ocean-atmosphere CO2 exchange (...)” 

 



 

4.​ The introduction should underscore the importance of bbp in POC 
measurement, as well as the deficiencies and areas for improvement in current 
bbp products. While the introduction currently highlights the significance of 
POC, it does not adequately stress the critical role of bbp. Clarify whether POC 
estimation relies solely on bbp and discuss its specific importance in this 
context. Additionally, expand upon the current state of bbp data by discussing 
the limitations of existing bbp products and the shortcomings of related 
algorithms. For instance, accurately deducing inherent optical properties (IOPs) 
from apparent optical properties (AOPs) is crucial for POC retrieval models 
based on IOPs, but this process can be challenging. Furthermore, the complex 
optical conditions in coastal areas can lead to significant spatial heterogeneity 
in POC distribution, introducing uncertainty in POC estimation even when using 
advanced methods. Addressing these points will provide a clearer context for 
the study’s objectives and the need for improved bbp products. 

We have added a paragraph in the Introduction where we tackle the following 
points:​ 

-​ Remark the bbp use as a proxy of POC 
-​ How we can derive bbp: from in situ data using the BGC-Argo floats 

(sensors of backscatter at 700 nm); from satellite, where several 
algorithms have been developed like NASA's OBG group bbp_sat 
product. 

-​ From satellites Rrs is used and an inversion model is applied to derive 
IOPs. The retrieval of bbp from satellites requires of a forward model 
that shows the relation between Rrs and bbp (i.e. GIOP, QAA and 
others). 

It now reads: 

“The bbp parameter is an inherent optical property (IOP) of water, and it has 
been widely recognized as a robust bio-optical proxy for POC (Cetini´c et al., 
2012; Sullivan et al., 2013). However,  b_bp measured by floats can have an 
uncertainty of the order of 10–15% (Bisson et al., 2019).  These uncertainties 
stem from the instrumental drift, the sensor calibration limitations, and the 
reliance on manufacturer calibration files rather than sensor-specific calibrations 
using dark counts. While autonomous platforms provide extensive spatial and 
temporal coverage, these factors must be considered when interpreting 
bio-optical datasets to ensure accuracy and reliability. IOPs are intrinsic 
characteristics of water, determined solely by its composition and are 
independent of the external light field or the geometrical angle conditions during 
observation. These properties include absorption, elastic scattering, inelastic 
processes (such as fluorescence and Raman scattering), and attenuation, 
which describe how light behaves and propagates through water. IOPs are 
essential in studying light interactions in aquatic environments, as they reflect 
the presence of dissolved organic matter, phytoplankton and suspended 
particles. The b_bp can be measured by autonomous platforms spread out 
across the ocean, such as the Biogeochemical-Argo (BGC-Argo) profiling 
floats(Claustre et al., 2020);  or estimated from onboard satellite sensors, such 
as the Sentinel-3 Ocean and Land Colour Instrument (EUMETSAT, 2019; Jorge 
et al., 2021; Koestner et al., 2024). Designing observational strategies based on 



combining the two approaches constitutes a fundamental tool for improving 
knowledge of ocean processes.”  

The calculation of inherent optical properties (IOPs) or concentrations of water 
constituents from reflectances always involves some degree of uncertainty 
(IOCCG, 2019). Two primary factors contribute to this: 1) The inverse 
relationship between IOPs and water reflectance spectra is an underdetermined 
system. This means that the information contained in reflectance spectra is 
significantly lower than the number of variables influencing those spectra. As a 
result, different combinations of IOPs can produce nearly identical reflectance 
spectra, leading to inherent ambiguity between IOPs and remote sensing 
reflectance (Rrs). 2) The natural variability of all components that determine 
reflectance spectra is extremely high. This includes the optical properties of the 
atmosphere and water, their vertical distribution, and the characteristics of the 
air-sea interface. Because of this complexity, any retrieval algorithm simplifies 
the natural system and is only effective within the scope defined by its 
underlying optical model assumptions. 

​The bbp from Argo floats is explained in detail in section 2.2. 
​Derivation of the satellite IOPs from C2RCC is later explained in section 2.3 

 

5.​ It is crucial to provide specific details about the data collected from each 
dataset, including the exact variables used, the time range of data collection, 
website links for accessing the data, and the dates when the data were 
accessed. Currently, Table 1 lacks sufficient information, and the time frames for 
the BGC-Argo data and other datasets are not clearly stated. To improve clarity 
and completeness, ensure that all necessary details are included in the data 
section, allowing readers to understand the scope and sources of the data used 
in this study. 

We have added the following text in the new version of the manuscript and 
changed figure 1. 

“The temporal distribution of the match-ups shows a clear seasonal bias, with 
most data concentrated between May and September, particularly during 2017. 
This uneven distribution is primarily due to the limited availability of cloud-free 
satellite observations required to match with BGC-Argo profiles, especially 
during winter months when cloud cover and low solar angles reduce the quality 
of remote sensing products.” 



 

Figure 1. Global map showing the geographic locations of the BGC-Argo floats 
and satellite data matchups. [Botttom row] Temporal coverage of matchups by 
year (left) and month (middle) for the North Atlantic (NA, green) and Subtropical 
Gyres (STG, blue). Vertical profiles (right) of bbp from floats, where solid lines 
show mean values, shaded areas ±1 standard deviation, and the dashed red 
line the average Mixed Layer Depth (MLD). 

6.​ In the methods section, the use of Principal Component Analysis (PCA) for 
dimensionality reduction of high-dimensional features is mentioned, stating that 
“After this feature reduction on the high-dimensional variables, the 250 m and 
50 m measurements with 126 and 26 inputs are reduced to 5 components for 
each variable, resulting in a total of 20 features. This method still retains 99% of 
the information.” However, this section lacks supporting data and visualizations 
to illustrate the PCA results. To enhance clarity and effectiveness, include data 
tables or figures that demonstrate the specific components selected and their 
contributions to the overall variance. This will help readers better understand 
the impact of PCA on the feature set and validate the claim that 99% of the 
information is retained. 

The application of PCA for dimensionality reduction is a well-established and 
widely used technique for reducing the dimensionality of large datasets while 
retaining the most important information. Given its common application in the 
field, we did not initially include a graphical representation of the PCA results in 
the manuscript. However, in response to your suggestion, we could include as 
supplementary material the PCA plot in the revised manuscript, although we 
consider that it does not add much to the analysis. PCA graph for all the 
variables and depth are shown below: 



 

Figure. Cumulative explained variance of the first six PCA components. 

7.​ In Section 2.5, the discussion is somewhat disorganized. The introduction of the 
Random Forest Regression model should precede the discussion of existing 
studies based on random forest models. Additionally, such content seems more 
appropriate for the introduction section, as it pertains to a review of existing 
research rather than the methods section. Moreover, the authors state, “All the 
previously mentioned algorithms, along with others such as Linear Regressor 
(LR), Ridge Linear Regressor (RLR), Random Forest Regressor (RFR), and 
Multi-Layer Perceptron (MLP), were tested for estimating bbp during the dataset 
preparation phase. Based on these results, the Random Forest Regressor 
(RFR) was selected as the most suitable algorithm for this 
multi-input/multi-output problem.” Comparative results should also be presented 
to illustrate the differences in inversion results and the stability of various 
models. This will help substantiate the choice of the Random Forest Regressor 
as the most suitable algorithm for the problem at hand. 

We have restructured this section according to the comments. Thank you for 
pointing it out. Now it reads like this: 

“There are two main approaches for dealing with multi-output regression 
problems. One way is to use univariate models, also known as problem 
transformation methods (Schmid et al., 2022; Borchani et al., 2015).  These 
methods decompose the multi-output regression problem into multiple 
single-target problems, creating an independent model for each output. The 
predictions from these separate models are then combined. This approach 
ignores the relationships between the targets, which can adversely affect the 
prediction's overall accuracy. Alternatively, multivariate models are designed to 
capture dependencies and interactions between the outputs, potentially leading 



to more accurate predictions  (Borchani et al., 2015). When and how to apply 
these two approaches depends on the nature of the data and the correlation 
between the targets. In our preprocessing results, PCA decomposition indicates 
a high covariance among measurements at different depths in the water 
column. Since our regression models estimate bbp at different depths, it is 
logical to consider that nearby values in the water column are related to each 
other. 

Random Forest Regressor (Breiman, 2001) has been widely applied in 
geosciences and marine environmental studies for classification and regression 
tasks (Cutler et al., 2007; Ruescas et al., 2018). Regression trees are at the 
model's core, which effectively handles complex data when there are non-linear 
dependencies between a numerical response variable and a diverse set of 
predictors, whether qualitative or quantitative (D’Ambrosio et al., 2017). RFR is 
an ensemble method that combines many weak decision tree learners, which 
are grown in parallel to reduce the bias and variance of the model 
simultaneously, enhancing the model's predictive performance. Furthermore, 
RFR provides insights into the importance of the training features, which 
reveals the variables that have the most significant impact on the predictions. 
This capability makes the model's mechanisms and results easier to interpret 
and explain. 

Different algorithms have been tested in previous works (see Sauzède et al. 
(2016, 2020)) to estimate bbp at various depths. Both works are based on a 
multivariate model applied to all possible outputs. In SOCA16, a Multi-Layer 
Perceptron is developed, while in SOCA2020 a comparison between a linear 
model (Ridge) and an ensemble model (Random Forest) is done. The latter 
showed higher performance. The Multivariate Random Forest used in this study 
offers higher accuracy than the univariate Random Forest, especially when the 
outputs are highly correlated (Schmid et al., 2022) and when complex 
interactions demand structured inference to be effectively managed d (Xu et al., 
2019). All the previously mentioned algorithms, including Linear Regressor 
(LR), Ridge Linear Regressor (RLR), Random Forest Regressor (RFR), and 
Multi-Layer Perceptron (MLP), were tested at both 50 and 250 m depth during 
the dataset preparation phase. Results for 250 m are shown in Figure 2. Based 
on these results, the Random Forest Regressor (RFR) was selected as the 
most suitable algorithm for this multi-input/multi-output problem.” 

 

Figure 2. Comparison of different multi-output regression models for estimating vertical profiles of bbp up to 
250 meters depth. Left: Depth-resolved R2 values for four regression models: Random Forest, Multi-Layer 
Perceptron, Ridge Regressor, and Linear Regressor. Right: Violin plots of the Mean Squared Error (MSE, 
log10-transformed) distributions for each model 



8.​ In the initial paragraphs of Section 3, “Performance of the Random Forest 
Regressor,” the authors refer to the content of Table 1, including the specific 
datasets corresponding to each abbreviation. However, this information should 
have been presented in the data introduction section. Instead, this section 
should provide details on the data volume obtained after feature engineering 
and data filtering, specifically how much data is used for training and how much 
for the independent validation set. This will give readers a clearer 
understanding of the data used in the study and its distribution between training 
and validation. 

We have moved this information to the data introduction section in the new 
version as suggested.   

9.​ In the section “3 Performance of the Random Forest Regressor,” the authors 
discuss the differential contribution of various features within the model. It would 
be beneficial to clarify the source of this feature importance data. Is it derived 
from the inherent parameters of the random forest model, or does it rely on 
additional algorithms? While the random forest, as an ensemble learning 
method, can assess feature importance through multiple decision trees, 
providing a measure of each feature’s contribution to the predictive outcome, 
employing SHAP (SHapley Additive exPlanations) values could offer a more 
detailed and accurate attribution of feature importance. SHAP values provide a 
robust approach to explaining machine learning model outputs by assigning 
each feature an importance value for a particular prediction. Incorporating 
SHAP could enhance the transparency and depth of the analysis regarding 
each feature’s influence on the model’s performance. 

The feature importance (FI) for each model was obtained from the built-in 
feature importance algorithm. In this section we show the built-in FI of the 
different models in order to compare if the same variables are selected from the 
two satellite-derived products for the same training dataset (match-ups). A 
comparative of different feature importance algorithms, such as permutation 
importance and SHAP could be done, but we think that it is out of the scope of 
this manuscript. In the manuscript, we have clarified that it is calculated using 
the in-built feature importance of the random forest model. 

10.​In the same section, the authors depict the contribution of various features 
within the model. However, there are concerns regarding the clarity and utility of 
the presented feature importance data. Specifically, it should be clarified 
whether features with low contribution are consistently negligible across all 
depths. If these features do not significantly contribute to the model’s 
performance at any depth, it might be beneficial to consider their removal to 
further reduce dimensionality and enhance the model’s efficiency. 

We understand the concern regarding feature importance and dimensionality 
reduction. However, we have chosen to retain all features in our analysis to 
ensure consistency and comparability between both areas. The random forest 
model with fewer features is simpler, but usually similar results are yielded.  
Additionally, keeping all features allows for a more standardized evaluation and 
interpretation of results. We appreciate your suggestion and will consider 
discussing this point further in the manuscript to clarify our approach. 

11.​Additionally, some features are derived from PCA processing, and with the 
multitude of features used, it is challenging to distinguish between those 



originating from different datasets or subjected to various treatments in the bar 
chart. To enhance the richness and readability of the visual information, it is 
suggested that the authors use distinct colors to represent bars corresponding 
to different types of features. This would allow for a clearer distinction between 
features from different datasets or processing methods, thereby providing a 
more informative and accessible visualization of the data. It is also worth noting 
that while random forest models can provide feature importances based on the 
model’s internal assessment, these may not always reflect the true importance 
of features. The authors might also consider using alternative methods such as 
SHAP (SHapley Additive exPlanations) to calculate feature importances, which 
could offer a more nuanced understanding of each feature’s contribution to the 
model’s predictions. 

Thank you for the suggestion. We have changed the figures using distinct 
colors for the different types of features in the new version. 

 

Figure 4. Feature importance for the models with S3OLCIBGC and GCGOBGC data for 50 m depth in the 
North Atlantic (NA) and in Subtropical Gyres (STG). Features are grouped by category according to color: (1) 
blue tones represent spatial and temporal descriptors, including day of year (doy), latitude, and longitude; (2) 
dark blue represents sea level anomaly (SLA); (3) purple indicates Mixed Layer Depth (MLD); (4) green 
corresponds to satellite reflectance bands from either Sentinel-3 OLCI or GlobColour with their central 
wavelengths; and (5) pink, red, orange, and light purple correspond to the first five principal components 
(PCs) derived from BGC-Argo profiles of density, temperature, salinity, and spiciness, respectively. 

 

12.​In the concluding part of the introduction, the authors outline the main content of 
the research, focusing on a detailed analysis of estimating bbp in the upper 
layers of the ocean surface using Sentinel-3 Ocean and Land Colour Instrument 
(S3OLCI) data. The study aims to enhance spatial resolution from the 4 km 
resolution of GlobColour level-3 merged products to the 300 m Full Resolution 



(FR) of Sentinel-3 OLCI. Additionally, the research evaluates model 
performance after incorporating OLCI spectral wavelengths as features for bbp 
estimation and compares these results with those obtained using GlobColour. 
The study also explores whether the inclusion of Inherent Optical Properties 
(IOPs) derived from satellite data can improve the accuracy of bbp estimation 
compared to using reflectances alone. These IOPs, provided by the Sentinel-3 
OLCI processor, are hypothesized to significantly enhance regression models. 
The comparison is made between BGC-Argo data and various satellite datasets 
for two depth layers: from the surface to either 50 m or 250 m. However, the 
abstract does not provide a comprehensive and concise summary of the work 
and its innovative aspects. After reading the abstract, it remains unclear what 
the specific contributions and novelties of this research are. I recommend that 
the authors revise the abstract to include a brief but complete overview of the 
study’s objectives, methods, and key findings. The abstract should clearly 
communicate the innovative aspects of the research, such as the use of higher 
resolution data, the incorporation of IOPs, and the comparison of model 
performances, to give readers a clear understanding of the study’s significance 
and contributions to the field. 

We have changed the abstract to highlight the main contributions and 
innovations of this study. 

“Abstract. As the second largest carbon reservoir on Earth, the ocean regulates 
the carbon balance through dissolved and particulate organic carbon forms. 
Monitoring carbon cycle processes is key to understanding climate system 
science. While most organic carbon in the ocean is dissolved, Particulate 
Organic Carbon (POC) plays a crucial role despite its smaller proportion, as it 
links surface biomass production, the deep ocean, and sedimentation. POC 
estimation is achieved by measuring proxies like the Particulate Backscattering 
Coefficient (bbp), obtained from satellite observations and in situ sensors, such 
as the BioGeoChemical-Argo (BGC-Argo) floats. Previous research has 
combined data from BGC-Argo floats and satellite sensors, demonstrating the 
potential of machine learning models to infer vertical bio-optical properties in the 
water column. By bridging the gap between surface optical properties and deep 
ocean processes, this approach enhances the estimation within the top 250 
meters of the water column. This study focuses on such estimations with the 
inclusion of remote sensing data from the Sentinel-3 Ocean and Land Colour 
Instrument (OLCI) sensor at full resolution (300 m). The addition of optical 
information about absorption and scattering processes has improved the 
accuracy of the multi-output Random Forest models, which show promising 
results, especially within the first 50 meters in the Subtropical Gyres. However, 
in dynamic regions such as the North Atlantic, the results are less consistent, 
suggesting that further research is needed to understand how the complexity of 
the physical state of the water column modifies the bbp vertical fluxes.” 

End of the introduction section: 

“Building on these results, this research proposes a more detailed analysis of 
estimating bbp in the upper layers of the ocean surface using the Sentinel-3 
Ocean and Land Colour Instrument (S3OLCI). We enhance the spatial 
resolution from the 4 km resolution of GlobColour level-3 merged products 
(1/24° at the equator), used in previous studies, to the 300 m Full Resolution 
(FR) of Sentinel-3 OLCI. Additionally, we evaluate the model performance after 
incorporating OLCI spectral wavelengths as features for bbp estimation and 



compare these results with those obtained using GlobColour. Another key 
aspect of this study is determining whether adding IOPs derived from satellite 
data (absorption and scattering) improves the accuracy of the bbp estimations 
compared to using reflectances alone. These IOPs, calculated from the OLCI 
processor, could significantly enhance regression models. Furthermore, bbp at 
different depths of the water column is estimated using multi-output models. 
These multi-output random forest models account for the high correlation 
between measurements at nearby depths. The comparison is conducted 
between BGC-Argo data and the satellite datasets for two depth layers: from 
the surface to either 50 m and 250 m.” 

13.​The section “2.5 Multi-output Machine Learning Models” in the methods part of 
the paper should be clarified to determine whether it represents one of the 
study’s innovative aspects. If this section indeed constitutes an innovation, it is 
essential to highlight it appropriately throughout the paper to ensure that 
readers recognize its significance. In the abstract, include a brief mention of the 
multi-output machine learning approach and its novelty to pique the interest of 
potential readers and set the stage for the detailed methodology presented 
later. In the introduction, provide a clear and concise explanation of what 
multi-output machine learning models are and how they are applied in this 
study. Emphasize the innovative nature of using these models, perhaps by 
comparing them to traditional single-output models or by discussing the 
advantages they offer in the research context. During the discussion, reflect on 
the implications of using multi-output machine learning models, including a 
comparison of their performance with other models, the benefits they provide in 
terms of accuracy or efficiency, and their potential applications in similar 
research endeavors. To ensure consistency and clarity, make sure that the term 
“multi-output” is consistently defined and used throughout the paper, and that its 
implications for the research are clearly articulated. If the multi-output approach 
is a key innovation, it should be a central theme in the narrative of the paper, 
guiding the reader through the methodology, results, and implications of the 
study. 

Multi-output models are commonly used in the machine learning field as they 
provide a better estimation of the output variables when they are related. In this 
case, we are estimating the bpp at different depths of the water column. Since 
measurements of bpp at nearby depths are highly correlated, using a 
multi-output model allows us to account for this correlation effectively. We have 
clarified and emphasized this in the new version of the manuscript. Thank you 
for the comment. 

Overall, addressing these suggestions will significantly enhance the manuscript’s 
clarity, coherence, and professionalism, thereby strengthening its contribution to the 
field of ocean physical remote sensing. 

Citation: https://doi.org/10.5194/egusphere-2024-3942-RC1  
 
Finally, we would like to thank the reviewer for their valuable comments and the time 
and effort dedicated to reviewing our work. Your valuable suggestions have contributed 
to enhancing the quality and clarity of our manuscript. We sincerely appreciate your 
effort and expertise. 
 
 
 


