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Abstract. Ammonia has attracted significant attention due to its pivotal role in the ecosystem and its contribution to the forma-

tion of secondary aerosols. Developing an accurate ammonia emission inventory is crucial for simulating atmospheric ammonia

levels and quantifying its impacts. However, current inventories are typically constructed in the bottom-up approach and are as-

sociated with substantial uncertainties. To address this issue, assimilating observations from satellite instruments for top-down

emission inversion has emerged as an effective strategy for optimizing emission inventories. Despite the severity of ammonia5

pollution in South Asia, research in this context remains very limited. This study aims to estimate ammonia emissions in this

region by integrating the prior emission inventory from the Community Emissions Data System (CEDS) and the columned am-

monia concentration retrievals from the Infrared Atmospheric Sounder Interferometer (IASI). We employ a newly-developed

four-dimensional ensemble variational (4DEnVar)-based emission inversion system to conduct the calculations, resulting in

monthly ammonia emissions for 2019 at a resolution of 0.5◦×0.625◦. Our simulations, driven by the posterior emission in-10

ventory, demonstrate superior performance compared to those driven by the prior emission inventory. This is validated through

comparisons against the IASI observations, the independent column concentration measurements from the advanced satellite

instrument Crosstrack Infrared Sounder (CrIS), and the ground concentration observations of ammonia and PM2.5. Addition-

ally, the spatial and temporal characteristics of ammonia emissions in South Asia based on the posterior are analyzed. Notably,

emissions there exhibit a "double-peak" seasonal profile, with the maximum in July and the secondary peak in May. This differs15

from the "double-peak" trend suggested by the CEDS prior inventory, which identifies the maximum in May and a second peak

in September.

1 Introduction

Ammonia (NH3), an alkaline compound, has the capacity to react with acidic gases present in the atmosphere, thereby

contributing to the formation of secondary aerosols, notably ammonium sulfate and ammonium nitrate (Jimenez et al., 2009).20
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The genesis of fine atmospheric particulate matter poses significant threats to human health (Mukherjee and Agrawal, 2017).

Further, ammonia gas, along with its reaction products, plays a pivotal role in soil acidification and the eutrophication of

water bodies through both dry and wet deposition (Krupa, 2003), and thereby affecting the balance of ecosystems (Asman

et al., 1998) and climate change (Sanderson et al., 2006). With an enormous livestock population and extensive use of nitrogen

fertilizers, South Asia has experienced the highest level of atmospheric NH3 globally (Pawar et al., 2021b; Luo et al., 2022).5

Over the past decade, scientists have predominantly employed the "bottom-up" approach to estimate ammonia emissions.

When combined with chemical transport models, atmospheric ammonia dynamics can be simulated, and the environmental

impacts can be quantified. Substantial efforts have been made to quantify the spatiotemporal distribution of ammonia sources

and develop global/regional emission inventories, such as the global ammonia emission inventory (Bouwman et al., 1997), the

anthropogenic emission inventory that includes ammonia estimates (e.g., Community Emissions Data System, CEDS) (Hoesly10

et al., 2018), as well as regional NH3 inventories focusing on South Asia (Yan et al., 2003; Yamaji et al., 2004; Liu et al.,

2022). However, these bottom-up estimates of NH3 emissions are generally considered uncertain (Xu et al., 2019), especially

compared to other pollutants mainly derived from fossil fuel combustion (e.g., NO2). One challenge is that the intensity of

agricultural NH3 emissions (i.e., emission factors), whether from livestock or fertilizer, depends heavily on management and

farming practices, but this information is often not readily available (Zhang et al., 2017). As a result, atmospheric chemistry15

transport models driven by these emission estimates inevitably struggle to reproduce atmospheric ammonia concentrations.

Consequently, these discrepancies hinder our comprehensive understanding of the environmental implications of ammonia

emissions.

The rapid advancement of satellite remote sensing technology has resulted in an expanding array of valuable ammonia

products, such as those from the first satellite ammonia observations using the Tropospheric Emission Spectrometer (TES)20

(Beer et al., 2008), as well as higher-resolution retrievals from the Infrared Atmospheric Sounding Interferometer (IASI) (Pawar

et al., 2021b) and the Cross-track Infrared Sounder (CrIS) (Beale et al., 2022; Kharol et al., 2022). While these remote sensing

measurements play a pivotal role in characterizing atmospheric ammonia loading, limitations still remain. These primarily arise

from the fact that satellite observations can only measure column-integrated ammonia concentrations, which do not directly

reflect emission intensity or the three-dimensional concentration field. In addition to these satellite-based data, very limited25

ground-based observations are publicly available over South Asia, and those that do exist are constrained by their inadequate

representation of atmospheric ammonia features (Pawar et al., 2021b).

In the field of atmospheric pollutant modeling, an alternative method for calculating emission flux is the "top-down" ap-

proach, which is achieved through data assimilation. Over the past decade, emission inversion has gained widespread attention

globally and has been applied in various contexts, including the estimation of Volatile Organic Compounds (VOCs) (Bauwens30

et al., 2016; Choi et al., 2022), sulfur dioxide (SO2) (Qu et al., 2019; Li et al., 2021), methane (CH4) (Wecht et al., 2014; Fujita

et al., 2020), and atmospheric ammonia emissions. For example, Kong et al. (2019) calculated the 2016 ammonia emission in-

ventory in China by assimilating ground-based NH3 concentration observations from several dozen ground stations. Similarly,

Chen et al. (2021) optimized the prior NH3 emission estimates from the United States’ 2011 National Emissions Inventory

(2011 NEI) by assimilating ammonia column concentrations from IASI instruments across the United States. Recently, we35
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developed a four-dimensional variational assimilation-based ammonia emission inversion system, which has been successfully

tested in ammonia emission inversion by assimilating IASI products over China.

However, there is a paucity of studies focusing on assimilation-based ammonia emission inversion specific to South Asia,

which has some of the highest ammonia loading hotspots compared to other continents. In this study, we aim to explore the

spatial and temporal features of ammonia emissions over South Asia. The ammonia emission inventory will be calculated5

using our newly developed emission inversion system (Jin et al., 2023), by assimilating ammonia retrievals from the IASI in-

struments onboard MetOp-A (operational from 2008 to 2018), MetOp-B (operational since 2012), and MetOp-C (operational

since 2018) satellites. Instead of directly assimilating IASI measurements as previous studies have done, we incorporated the

averaging kernel information from the latest version of the IASI product. This approach allowed us to update the column con-

centration observations before assimilation. By doing so, we ensure a fairer comparison between the simulated and observed10

columnar ammonia concentrations, a point that has been emphasized in several studies (Eskes and Boersma, 2003; von Clar-

mann and Glatthor, 2019), but never implemented in the IASI-based emission inversion. The posterior ammonia emissions will

be validated by comparing them with high-quality ammonia observations from the advanced CrIS product, as well as ground-

based measurements of ammonia and PM2.5. This study not only provides a more accurate estimation of ammonia emission

inventories and explores their characteristics over South Asia, but also serves as an example of effectively calculating other15

atmospheric pollution emissions in regions that have received less attention in the past.

The remaining sections of this paper are organized as follows: Section 2 describes the measurements assimilated in the

ammonia emission inversion, as well as those used for independent validation. The assimilation methodology for the emission

inversion, along with the choice of the prior emission inventory and the chemical transport model, is also outlined. Section 3

presents the validation results of the emission inversion and highlights the key features of ammonia emissions over South Asia.20

2 Data and method

2.1 IASI satellite measurements

IASI (Infrared Atmospheric Sounding Interferometer) is a Fourier Transform Spectrometer that operates in the thermal

infrared spectral range. It is onboard the Meteorological Operational (MetOp) A/B/C satellites, a series of European polar-

orbiting meteorological satellites managed by the European Space Agency (ESA) and the European Organization for the25

Exploitation of Meteorological Satellites (EUMETSAT). The first MetOp-A satellite, equipped with IASI, was launched in

2008, followed by MetOp-B and MetOp-C in 2012 and 2018, respectively. The IASI instruments operate at an altitude of 817

km in a sun-synchronous orbit with an inclination of 98.7 ◦. Each instrument conducts measurements over a ground swath

width of 2200 km, with 30 fields of view (15 on each side of the nadir). Each field of view consists of four pixels, each with

a nadir diameter of 12 km. This observational strategy enables each IASI instrument to make two passes over every point on30

Earth daily, around 09:30 and 21:30 local time (Bouillon et al., 2020).

The assimilated observations for estimating the ammonia emissions were the monthly IASI column concentration means

over the 0.5 ◦×0.625 ◦GEOS-Chem grid cell. These values were derived from the latest ANNI-NH3-v4R-ERA5 product. De-
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spite improvements in NH3 column retrievals from satellite observations, there remains substantial variability in measurement

uncertainty, ranging from 5 % to over 1000 %. (Van Damme et al., 2014; Whitburn et al., 2016; Van Damme et al., 2017). Data

selection was performed by excluding nighttime observations and irrational values (<0) during the calculation of the monthly

mean.

Compared to the previous version, one highlight of the lastest version 4 product is that it includes averaging kernel in-5

formation. The benefit of using the averaging kernel is that it can consider the vertical distribution characteristics of satellite

observations, helping to correct the satellite retrieval results and making them more representative of the true distribution of

the target gas or variable in the atmosphere (Rodgers, 2000). The impact of averaging kernels (AVKs) are supposed to be

considered in the data processing. The sensitivity of IASI NH3 observations varies with altitude, and AVKs enable the adjust-

ment of simulated or observed NH3 concentrations to align with the vertical distribution detected by IASI. This adjustment is10

particularly important for data comparison and validation against the model simulations (Clarisse et al., 2023). The formula

for calculating the column concentration, after accounting for the averaging kernels, in this paper follows:

X̂m =
X̂a−B∑

zA
a
zmz

+B. (1)

here, X̂m represents the IASI column concentration retrieved with model profile. X̂a denotes the initial IASI column concen-

tration, with the background concentration B. The Aa
z values are AVK for each vertical layer, with the model profile mz .15

The uncertainties of the IASI measurements is also the essential part in the assimilation. When calculating the uncertainty

of gridded monthly average ammonia measurements, both instrumental errors σinstrumental and representation error σrepresentation

are considered. The gridded average uncertainty derived directly from IASI products was designated as instrumental error

σinstrumental, while the standard deviation of the observed samples for the gridded average characterized representation error

σrepresentation. The total uncertainty σtotal for weighting the potential spread of the assimilated IASI ammonia measurements is20

finally expressed as:

σtotal =
{(
σinstrument )2 +

(
σrepresenting )2}0.5

(2)

Four snapshots of the assimilated monthly IASI ammonia column concentration observations and their uncertainty in January,

April, July and November can be found in Fig. 2 (a)-(b). These four scenarios are selected to highlight the typical seasonal

profile of the ammonia loading over South Asia.25

2.2 Independent observations for validation

The Crosstrack Infrared Sounder (CrIS) ammonia column concentration and ground-based observations of ammonia and

PM2.5 from the Central Pollution Control Board (CPCB) of India were also collected to validate our assimilation results.

The CrIS instrument was launched in 2011 on the Suomi National Polar-Orbiting Partnership (SNPP) satellite and in

2017 on the NOAA-20 satellite. The retrieval products from SNPP began in 2011 and ended in May 2021, with a data gap30

from April to August 2019. The NH3 retrieval products from NOAA-20 started in March 2019. Therefore, we used retrieval
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products from both SNPP and NOAA-20 as independent observations for 2019. We utilized the Level 2 CrIS product from the

CFPR 1.6.4 version. Specifically, only the CrIS observations during daytime, under cloud-free conditions, and with a quality

flag ≥ 3 were selected. These original data were subsequently interpolated to achieve a spatial resolution of 0.5 ◦× 0.625 ◦,

which is consistent with our ammonia simulation. Similarly, we also considered the impact of the averaging kernels (AVKs)

and applied the AVKs to the satellite profile data. We converted the logarithmic averaging kernels into linearized averaging5

kernels based on the method proposed by Cao et al. (2022).

Ground observations of ammonia in South Asia are mainly provided by the Central Pollution Control Board (CPCB,

https://cpcb.nic.in/), which is the official portal of Government of India. NH3 is measured by the chemiluminescence method

as NOx following the oxidation of NH3 to NOx. In that approach, NH3 is determined from the difference between NOx

concentration with and without inclusion of NH3 oxidation (Pawar et al., 2021b). The ground level ammonia concentration10

data from CPCB was successfully collected. There were ammonia surface concentration observations from 33 stations available

in 2019, and the distribution are shown in Fig. 1.

PM2.5 observations from CPCB were also used in the assimilation validation. The PM2.5 observations were selected

before they were used, which follows (Spandana et al., 2021): First, select the hourly PM2.5 data greater than PM10, then

filter out the hourly PM2.5 data that falls outside the range of daymean - 3 × standard deviation and daymean + 3 × standard15

deviation. Additionally, ensure that each day contains at least 20 hours of data. Finally, the data is processed into monthly

averages for subsequent validation. The distribution of the ground stations where the PM2.5 were used in this paper can be

found in Fig. 1.

2.3 Emission inversion system

This study employs the four-dimensional ensemble variational (4DEnVar) data assimilation -based ammonia emission20

inversion system that was developed by Jin et al. (2023). The general idea of assimilation-based emission inversion is to find

the most likely estimate, which in this case is the monthly ammonia emission field, given the prior ammonia emissions and the

observations. The calculation is conducted through minimizing the cost function J :

J (f) =
1
2

(f −f b)
TB−1 (f −f b) +

1
2
{y−HM(f)}TO−1{y−HM(f)} (3)

here, f b denotes the prior monthly ammonia emission vector from CEDS as will be described in Section 2.3.2. B represents25

the background error covariance matrix associated with the prior emission estimate. Here we assumed that the uncertainty in

the ammonia emission can be compensated by a spatially varying tuning factor α. The α values are defined to be random

variables with a mean of 1.0 and a standard deviation σ = 0.2. In addition, a correlation matrix C is introduced for quantifying

the spatial correlation between two αs in the grid i and j as:

C(i, j) = e−(di,j/l)2/2 (4)30

where di,j represents the distance between two grid cells i and j. l here denotes the correlation length scale which controls the

spatially variability freedom of the αs. An empirical parameter l = 300 km which is used in the ammonia emission inversion
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Figure 1. The GEOS-Chem model simulation domain, with dots indicating the locations of ground observation stations from the Central

Pollution Control Board (CPCB), India. The three different colored dots represent stations with only PM2.5 observations, stations with both

PM2.5 and NH3 observations, and stations with only NH3 observations, respectively.

in China (Jin et al., 2023) is also used in this study. With the spatial correlation matrix and the emission uncertainty, the

background error covariance matrix could then be constructed as:

B(i, j) = σ2 ·f(i) ·f(j) ·C(i, j) (5)

M here represents the GEOS-Chem model (as will be illustrated in Section 2.3.1 ) driven by the emission f , H here is

the observational operator that transfer the simulated NH3 3D concentration result into the observational space. y represents5

the monthly IASI ammonia column concentration observations, while O is the observation error covariance matrix. Here we

assume IASI observations are independent on each other. O therefore is a diagonal matrix filled with the square of the integrated

uncertainty as illustrated in Section 2.1. Meanwhile, a minimum measurement error is used to prevent the posterior from being

too close to low-value observations, thereby avoiding model divergence:

Oi,i = min
(
1.0× 1016 molec cm −2,σintegrated )2 (6)10

More information about how we minimizing the cost function Eq. 3 could be fund in Jin et al. (2023).
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Figure 2. Spatial distribution of the total column ammonia concentration from IASI instruments (a) and its uncertainty (b), and from the

GEOS-Chem simulation either using the prior (c) or using the posterior (d) NH3 emission flux in 2019 January (a.1)–(d.1), April (a.2)–(d.2)

, July (a.3)-(d.3) and November (a.4)–(d.4).
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2.3.1 GEOS-Chem model

GEOS-Chem, a three-dimensional (3-D) global tropospheric chemistry model, is driven by assimilated meteorological

data obtained from the Goddard Earth Observing System (GEOS) at the NASA Data Assimilation Office (DAO) (Bey et al.,

2001). GEOS-Chem incorporates a fully integrated chemistry system involving aerosol, ozone, NOx, and hydrocarbons, as

described by Park et al. (2004).The wet deposition scheme is explained by Liu et al. (2001) for water-soluble aerosols and5

by Amos et al. (2012) for gaseous components. Dry deposition is modeled using the resistance-in-series scheme proposed by

Wesely and Lesht (1989), as applied by Wang and Jacob (1998). Size-specific aerosol dry deposition follows the approach

outlined by Emerson et al. (2020).

A nested grid simulation within the GEOS-Chem model v13.4.1 is conducted to simulate the atmospheric environment

over South Asia. The nested domain (60 ◦–98 ◦E, 4 ◦–40 ◦N), shown in Fig. 1, has a horizontal resolution of 0.5 ◦latitude by10

0.625 ◦longitude, accompanied by 47 vertical layers, with boundary conditions updated every 3 hours.

2.3.2 Prior ammonia emission inventory

The ammonia emissions inventory employed to drive GEOS-Chem originated from the Community Emissions Data Sys-

tem (CEDS, https://doi.org/10.25584/PNNLDH/1854347) inventory, which was widely used for modeling the South Asia

atmospheric pollutants, e.g., VOCs (Chaliyakunnel et al., 2019), PM2.5 pollution (Guttikunda and Nishadh, 2022; Xue et al.,15

2021). CEDS inventory includes various sources encompassing agricultural, energy production, industrial, residential and com-

mercial activities, ships, solvent use, surface transportation, and waste processing (McDuffie et al., 2020), the bulk of ammonia

emissions originate from agricultural practices. Specifically, these emissions stem predominantly from farmlands, including

crops such as wheat, maize, and rice, as well as livestock waste, spanning cattle, chicken, goats, and pigs (Liu et al., 2022).

The CEDS emission estimates were coarse-grained into the model resolution 0.5◦× 0.625◦before being utilized to drive20

the GEOS-Chem simulations. Examples of the CEDS emission over the South Asia are presented in Fig. 3, which plot the total

ammonia emission fluxes for January, April, July, November of the year 2019.

3 Results and discussion

With the assimilation system described above, the monthly ammonia emission inversion for 2019 over South Asia is

conducted. The posterior is evaluated in Section 3.1. The spatial distribution and the seasonal profile of the South Asia ammonia25

emission are analyzed and discussed based on the inversion results in Section 3.3, while Section 3.2 illustrated the long term

varying trend.
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Figure 3. Spatial distribution of the prior (a), the posterior (b) and the posterior minus prior increments (c) monthly NH3 emission in 2019

January (a.1)–(c.1), April (a.2)–(c.2) , July (a.3)-(c.3) and November (a.4)–(c.4).

3.1 Validation

To evaluate our inversion results, we here compared the atmospheric ammonia simulation either driven by the posterior

emission (refer to as the posterior simulation), or driven by the prior one against the observations, including the assimilated

IASI column data, the independent CrIS retrieval and ground-based ammonia and PM2.5 concentration measurements.

3.1.1 NH3 total column concentration5

The prior and posterior ammonia column concentration simulations for four months (January, April, July, and November)

are presented in Fig. 2 (c)-(d), alongside the IASI measurements shown in panel (a). These months were selected as typical

examples representing four different seasons. The column concentration distributions for the rest months from the model

and satellite observations could be found in Figs. S1 and S2, respectively. While the prior simulation generally captured the
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distribution of ammonia, with hot spots in North India, Pakistan, and Bengal—consistent with the IASI retrievals—it failed

to capture the correct seasonal profile. According to the IASI measurements, ammonia concentrations peak in July, a pattern

clearly visible in the monthly variation of the IASI-observed ammonia column concentrations from 2015 to 2023 as will be

discussed in Section 3.2. However, the prior model incorrectly indicated that the highest ammonia loading occurred in the

Spring and Autumn seasons. As a result, ammonia loading was severely overestimated in Winter and Spring (particularly in5

May) but significantly underestimated in Summer. The difference between the model and IASI observations for the entire year

of 2019 is shown in Fig. 4 (a). The overestimation by the prior model is particularly evident in Spring (especially May), while

the underestimation is most prominent in Summer (especially July). These discrepancies contributed to a relatively high model

error, with the correlation coefficient (R) as low as 0.33 and the root mean square error (RMSE) as high as 4.64 × 1016 molec

cm−2. In contrast, the posterior emission-driven GEOS-Chem simulations showed good consistency with the IASI retrievals,10

capturing both the spatial and temporal variations, as shown in panel (d) of Fig. 2. This resulted in significantly improved

performance, with R increasing to 0.76 and RMSE reducing to 2.48 × 1016 molec cm−2, as shown in panel (b) of Fig. 4.

Note that there are still some discrepancies in the posterior simulation vs IASI column measurements. In particular, as

shown in panel a.3 vs. d.3 of Fig. 2, the posterior simulation did not fully reproduce the extremely high ammonia loading

observed by IASI in July (with column-integrated concentrations exceeding 10 × 1016 molec cm−2). This discrepancy is also15

evident in the scatter plot of the posterior column simulation against the IASI measurements in panel (b) of Fig. 4. This

occurs because the goal of the assimilation is to achieve the best fit between the posterior, the observations, and the prior

emissions, rather than just fitting the observations alone. The extremely high ammonia concentrations are less likely given the

relatively low prior ammonia emissions and the background error covariance matrix described in Section 2.3. Additionally, the

4DEnVar assimilation algorithm inherently accounts for potential model variations through ensemble simulations. However,20

the response of GEOS-Chem ammonia simulations to emission variations is nonlinear, making it difficult to accurately resolve

these discrepancies through the 4DEnVar data assimilation algorithm without implementing outer-loop optimization strategies.

In addition, we further evaluated our posterior simulations using the other advanced satellite ammonia product from the CrIS

instruments. The scatter plots of the CrIS monthly ammonia column concentrations vs. the prior/posterior simulations in 2019

are presented in panels (a) and (b) of Fig. 5. Steady improvements were observed in the comparison against the independent25

CrIS retrievals, with the correlation coefficient (R) increasing from 0.42 to 0.71, and the root mean square error (RMSE)

decreasing from 3.96 to 2.06 × 1016 molec cm−2. The spatial distribution of the ammonia column concentrations observed by

CrIS, as shown in Fig. 6, demonstrate good consistency with both the IASI observations and the posterior simulation results

presented in Fig. 2. These evaluations give us confidence that our emission inversion has successfully calculated the most likely

posterior, given both the prior and the IASI measurements.30

3.1.2 NH3 and PM2.5 ground concentration validation

The few surface ammonia concentration observations from ground stations, shown in Fig. 1, were also utilized to evaluate

our ammonia emission inversion results. Fig. 7 presents the scatter plot of monthly surface ammonia concentrations against the

prior/posterior simulations. Our posterior results are in better agreement with these independent surface ammonia concentration
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Figure 4. Scatter plot of the IASI-observed against the NH3 simulation over South Asia either using the prior (a) or using the posterior (b)

NH3 emission inventory from January to December.

Figure 5. Scatter plot of the CrIS-observed against the NH3 simulation over South Asia either using the prior (a) or using the posterior (b)

NH3 emission inventory from January to December.
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Figure 6. Spatial distribution of the CrIS-observed monthly NH3 column in 2019 January (a), April (b), July (c) and November (d).

Figure 7. Scatter plot of the ground-observed against the NH3 simulation over South Asia either using the prior (a) or using the posterior (b)

NH3 emission inventory in 2019.
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Figure 8. Scatter plot of the ground-observed against the PM2.5 simulation over South Asia either using the prior (a) or using the posterior

(b) emission inventory in 2019.

measurements. This is evident from the higher correlation coefficient (R = 0.39) in the posterior compared to R = 0.28 in the

prior simulation. The RMSE values remained almost the same, changing slightly from 22.18 µg/m3 in the prior to 22.73 µg/m3

in the posterior. The large remaining error is due to several instances where ground ammonia concentration measurements

indicated values several times higher than our simulations. This was also reported by Pawar et al. (2021b), which suggest

that ground ammonia observations are likely to overestimate ammonia levels. The mismatch between ground observations and5

simulations may be attributed to the fact that most monitoring stations are located in urban regions of India, where ammonia

concentrations are higher due to traffic and human activities (Sharma et al., 2014). Simulations with an extremely fine resolution

could provide a more accurate representation of ammonia characteristics at these surface sites. However, such simulations

would significantly increase the computational burden on the emission inversion system, which is beyond the scope of this

study.10

Ammonia is the key precursor of the inorganic aerosol. The estimated ammonia emission inventory is supposed to improve

the aerosol simulation as well, under the assumption that aerosols from other sources are accurately represented. The monthly

averaged PM2.5 concentrations against the simulations either using our prior or using the posterior ammonia inventory, as

shown in Fig. 8 (a-b). It is evident that both RMSE and Bias have been reduced to varying degrees: RMSE decreased from

29.15 µg/m3 in the prior to 22.75 µg/m3 in the posterior, and bias decreased from 24.8 µg/m3 in the prior to 18.37 µg/m3 in15

the posterior. These results indicate that the emission inventory optimized by our inversion system has improved the model’s

performance in simulating PM2.5, reducing both systematic biases and model underestimation effectively.
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3.2 Seasonal and annual variation of ammonia concentration

We examined the monthly average of the total ammonia column concentrations simulated by the model over the South

Asia region, along with IASI and CrIS observations, in Fig. 9 (a). The prior model results demonstrate significant seasonal

variability in ammonia column concentrations, characterized by peaks in May and September and comparatively low levels

during the summer months. This has been corrected through assimilating the IASI measurements in this study. Conversely, the5

posterior results reveal a distinct temporal pattern, featuring a pronounced peak in May and a negligible peak in July. The high

value in May is attributed to huge amount of biomass burning in South Asia during the spring. The heavy use of fertilizers in

agricultural activities, combined with higher temperatures, has resulted in the highest emission throughout the year, as will be

illustrated in Fig. 9 (b) in Section 3.3. This has lead to the second ammonia concentration peak in July. The reasons for higher

emissions in July but lower concentration levels compared to May could be attributed to meteorological factors. The monsoon10

season in South Asia results in increased wet deposition, and notably, 2019 experienced the most intense monsoon since 1994

(NASA, 2020). Additionally, CrIS also exhibits minor peaks in May and July, consistent with our posterior results.

Fig. 10 (a-i) illustrates the annual average NH3 column concentrations observed by the IASI satellite instruments from

2015 to 2023. The data clearly show that Pakistan and northern India consistently experience the highest ammonia concentra-

tions, with values exceeding 5 × 1016 molec cm−2. Furthermore, the spatial distribution of annual average ammonia column15

concentrations has remained relatively stable over the past decade.

Fig. 10 (j) depicts the monthly mean ammonia column concentrations derived from the IASI satellite. The time series

reveals a clear seasonal pattern, with peaks occurring in summer and lower levels in winter, and the highest concentrations

consistently observed in July. Additionally, the inter-annual variation in ammonia column concentrations from 2013 to 2019

exhibits a modest upward trend, ranging from 2.17 to 2.6 (× 1016 molec cm−2), corresponding to an average growth rate of20

approximately 6.32%. Subsequent to 2019, ammonia concentrations stabilize within the range of 2.6 to 2.8 (× 1016 molec

cm−2). Given the relatively stable ammonia levels after 2019, we restricted our analysis to conducting an assimilation-based

emission inversion for the year 2019. Extending emission inversion over a longer period would require substantial computa-

tional resources.

3.3 Spatial and Seasonal variation of ammonia emission25

By assimilating IASI ammonia column concentrations, the posterior monthly ammonia emission inventories for 2019

were updated. Scenarios of the posterior emission inventories, along with the increments (posterior minus prior), for January,

April, July, and November are shown in Fig. 3 (b)-(c). The prior, posterior, and increment data for the remaining months of

2019 are provided in Figure S3 and S4 in the Supplementary Material. Our posterior inventory demonstrated that the primary

sources of ammonia originated from North India, Pakistan, and Bengal in general. This finding is consistent with the CEDS30

inventory, as well as with other studies (Pawar et al., 2021a). However, huge discrepancy are presented when we compared the

posterior and prior result, particular in April in Fig. 3(b) and July in Fig. 2(c). The posterior results reveal a distinct seasonal
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Figure 9. The monthly average total ammonia column concentrations from the prior and posterior, IASI-observed, and CrIS-observed from

January to December (a). The monthly average values of prior and posterior emissions from January to December (b).

emission profile compared to the prior. Specifically, emissions during the spring are significantly overestimated in the prior

model, whereas summer emissions are underestimated by up to threefold.

To better illustrate the differences in timing profiles throughout the year, the monthly average emission intensity over South

Asia was calculated and is shown in Fig. 9 (b). The prior emission inventory exhibits a "double-peak" pattern, mirroring the

profile of the average ammonia concentration displayed in Fig. 9 (a). The emission flux reaches its maximum in May, peaking5

at approximately 0.6 g/m2, with a secondary peak occurring in September around 0.25 g/m2. In contrast, the assimilation

that integrates prior CEDS emissions with IASI measurements shows much lower intensities from January to May, with the

largest negative differences (> 0.3 g/m2) observed in May. While the prior emissions remain relatively low during the summer,

the emission inversion reveals positive increments, with the posterior inventory indicating the maximum emission flux in July,

peaking at approximately 0.4 g/m2. In general, the posterior emissions also display a "double-peak" pattern; however, the peaks10

occur in May and July, in contrast to the May and September peaks observed in the prior emissions.
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Figure 10. Spatial distribution of the annual averaged IASI column concentrations in South Asia ranging from 2015 to 2023, (a) to (i).

The scatter plot (j) depicts the monthly variation in IASI-observed ammonia column concentrations from 2015 to 2023, with the box plot

representing interannual changes.
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The substantial emissions in July, as indicated by the posterior inventory, can be attributed to the increased fertilizer ap-

plication for rice crops during the summer season (Tanvir et al., 2019). While biomass burning emissions are generally higher

in spring, agricultural activities remain the primary contributors to ammonia emissions (Huang et al., 2016), resulting in July

surpassing May in emission intensity. From July to September, as rice and other crops progress through their growth stages, fer-

tilizer application typically decreases, leading to a gradual reduction in ammonia emissions. Additionally, temperatures decline5

from August to September, reducing the volatilization rate of ammonia. This pattern occurs because ammonia volatilization is

strongly influenced by temperature (Fan et al., 2011).

The convergence of prior and posterior emission intensities in June is attributed to the overall offsetting of negative

and positive increments in the region, as shown in Figure S4 (f). As depicted in panel (c) of Fig. 3, the negative increments

observed in January and April primarily originate from the Indian region, while the positive increments in July and September10

are predominantly observed in the same area.

4 Summary and conclusion

South Asia has been severely affected by ammonia, which has significant impacts on both human health and the eco-

logical environment. The current emission inventories, primarily based on bottom-up approaches, are subject to substantial

uncertainties. This is due to the fact that the intensity of NH3 emissions from livestock and fertilizers is heavily influenced15

by management and farming practices, yet this information is often not widely available. As a result, accurately simulating

the spatiotemporal characteristics of atmospheric ammonia and evaluating its impacts remains challenging. The use of satellite

observations, such as those from IASI, for top-down emission inversion has emerged as an effective method to develop more

accurate inventories. However, research in this area remains limited in South Asia.

This study employed a 4DEnVar-based emission inversion system to optimize ammonia emissions in South Asia. The most20

likely posterior monthly ammonia emission inventories were calculated given the the CEDS prior inventory and the ammonia

column concentration observations from the polar-orbiting IASI satellite instrument. Validation against satellite and ground-

based observations shows that ammonia concentration simulations driven by the posterior emissions perform significantly

better than those driven by the prior inventory. In the comparison against the IASI measurments. the correlation coefficient (r)

increased from 0.33 (for the prior) to 0.76, and the root mean square error (RMSE) was reduced from 4.64 × 1016 molec cm−225

(prior) to 2.48 × 1016 molec cm−2 (posterior). The posterior results also show improvements when compared to independent

CrIS satellite measurements, with the correlation coefficient (r) rising from 0.42 (prior) to 0.71, and RMSE reducing from

3.96 × 1016 molec cm−2 (prior) to 2.06 × 1016 molec cm−2 (posterior). Additionally, validation with ground-level ammonia

and PM2.5 concentrations further supports the findings, demonstrating that our emission inversion system effectively reduces

systematic biases and underestimation in ground-level simulations.30

The spatial and temporal characteristics of ammonia emissions over South Asia were then analyzed based on the inversion.

While the prior CEDS inventory generally captured the ammonia emission hotspots, such as in Pakistan, North India, and

Bengal, it failed to accurately represent the seasonal trend. Specifically, the prior inventory showed a "double-peak" pattern
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throughout the year, with peaks in May and September. In contrast, the posterior results revealed the correct seasonal pattern

with the "double-peak" profile occurring in May and July.

The top-down ammonia emission inversion system driven by IASI observations has demonstrated superior performance in

enhancing the ammonia emission estimates. Nevertheless, several challenges persist, such as the requirement for simulations at

finer resolutions to precisely capture very local emission dynamics. Furthermore, observations from stationary satellites, such5

as FY-4B, also deserve attention for exploring the diurnal variations of the ammonia emission.

Code and data availability

The ammonia emission inversion system is in the Python environment and is archived on Zenodo (https://doi.org/10.5281/

zenodo.7015397). The IASI ANNI-NH3-v4R-ERA5 data suites are available at https://iasi.aeris-data.fr/. The CrIS v1.6.4 data

are available at https://hpfx.collab.science.gc.ca/~mas001/satellite_ext/cris/. The observed NH3 and PM2.5 concentrations data10

is available at https://www.kaggle.com/datasets/abhisheksjha/time-series-air-quality-data-of-india-2010-2023?select=AP001.

csv.
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