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Abstract. Ammonia has attracted significant attention due to its pivotal role in the ecosystem and its contribution to the

formation of secondary aerosols. Developing an accurate ammonia emission inventory is crucial for simulating atmospheric

ammonia levels and quantifying its impacts. However, current inventories are typically constructed in the bottom-up approach

and are associated with substantial uncertainties. To address this issue, assimilating observations from satellite instruments

for top-down emission inversion has emerged as an effective strategy for optimizing emission inventories. Despite the sever-5

ity of ammonia pollution in South Asia, research in this context remains very limited. This study aims to estimate ammonia

emissions in this region by integrating the prior emission inventory from the Community Emissions Data System (CEDS)

and the columned ammonia concentration retrievals from the Infrared Atmospheric Sounder Interferometer (IASI). We em-

ploy a newly-developed four-dimensional ensemble variational (4DEnVar)-based emission inversion system to conduct the

calculations, resulting in monthly ammonia emissions for 2019 at a resolution of 0.5◦×0.625◦. Our simulations, driven by the10

posterior emission inventory, demonstrate superior performance compared to those driven by the prior emission inventory. This

is validated through comparisons against the IASI observations, the independent column concentration measurements from the

advanced satellite instrument Crosstrack Infrared Sounder (CrIS), and the ground concentration observations of ammonia and

PM2.5. Additionally, the spatial and temporal characteristics of ammonia emissions in South Asia based on the posterior are an-

alyzed. Notably, emissions there exhibit a "double-peak" seasonal profile, with the maximum in July and the secondary peak in15

May. This differs from the "double-peak" trend suggested by the CEDS prior inventory, which identifies the maximum column

concentration in May and a second peak in September. The differences may be attributed to a more accurate representation of

regional agricultural practices, such as the timing of fertilizer application and meteorological influences like precipitation and

temperature.
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1 Introduction

Ammonia (NH3), an alkaline compound, has the capacity to react with acidic gases present in the atmosphere, thereby

contributing to the formation of secondary aerosols, notably ammonium sulfate and ammonium nitrate (Jimenez et al., 2009).

The genesis of fine atmospheric particulate matter poses significant threats to human health (Mukherjee and Agrawal, 2017).

Further, ammonia gas, along with its reaction products, plays a pivotal role in soil acidification and the eutrophication of water5

bodies through both dry and wet deposition (Krupa, 2003), and thereby affecting the balance of ecosystems (Asman et al.,

1998) and climate change (Ma et al., 2022; Gong et al., 2024). With an enormous livestock population and extensive use of

nitrogen fertilizers, South Asia has experienced the highest level of atmospheric NH3 globally (Pawar et al., 2021b; Luo et al.,

2022). Specifically, the annual average ammonia concentration across India is approximately 1.8–5.6 × 1016 mol/cm2, while

in the Indo-Gangetic Plain (IGP) of India, the concentration is double that of other regions, reaching a peak of 11.5 × 101610

mol/cm2 during the high season in July (Kuttippurath et al., 2020).

Over the past decade, scientists have predominantly employed the "bottom-up" approach to estimate NH3 emissions.

When combined with chemical transport models, atmospheric NH3 dynamics can be simulated, enabling the quantification

of environmental impacts. Substantial efforts have been made to quantify the spatiotemporal distribution of NH3 sources

and develop global/regional emission inventories, such as the global NH3 emission inventory (Bouwman et al., 1997), the15

anthropogenic emission inventory that includes NH3 estimates (e.g., Community Emissions Data System, CEDS) (Hoesly et al.,

2018), as well as regional NH3 inventories focusing on South Asia (Yan et al., 2003; Yamaji et al., 2004; Liu et al., 2022).

However, these bottom-up estimates of NH3 emissions are generally considered as uncertain (Xu et al., 2019), particularly

when compared emissions of other pollutants primarily originating from fossil fuel combustion such as NO2. One challenge

is that the intensity of agricultural NH3 emissions (i.e., emission factors), whether from livestock or fertilizer, depends heavily20

on management and farming practices, but this information is often not readily available (Zhang et al., 2017). As a result,

atmospheric chemistry transport models driven by these emission estimates inevitably struggle to reproduce atmospheric NH3

concentrations. Consequently, these discrepancies hinder our comprehensive understanding of the environmental implications

of NH3 emissions.

The rapid advancement of satellite remote sensing technology has resulted in an expanding array of valuable NH3 prod-25

ucts, such as those from the first satellite NH3 observations using the Tropospheric Emission Spectrometer (TES) (Beer et al.,

2008), as well as higher-resolution retrievals from the Infrared Atmospheric Sounding Interferometer (IASI) (Pawar et al.,

2021b) and the Cross-track Infrared Sounder (CrIS) (Beale et al., 2022; Kharol et al., 2022). While these remote sensing mea-

surements play a pivotal role in characterizing atmospheric NH3 loading, limitations still remain. These primarily arise from

the fact that satellite observations can only measure column-integrated NH3 concentrations, which do not directly reflect emis-30

sion intensity or the three-dimensional concentration field. In addition to these satellite-based data, very limited ground-based

observations are publicly available over South Asia, and those that do exist are constrained by their inadequate representation

of atmospheric NH3 features (Pawar et al., 2021b).
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In the field of atmospheric pollutant modeling, an alternative method for calculating emission flux is the "top-down" ap-

proach, which is achieved through data assimilation. Over the past decade, emission inversion has gained widespread attention

globally and has been applied in various contexts, including the estimation of Volatile Organic Compounds (VOCs) (Bauwens

et al., 2016; Choi et al., 2022), sulfur dioxide (SO2) (Qu et al., 2019; Li et al., 2021), methane (CH4) (Wecht et al., 2014; Fujita

et al., 2020), and atmospheric NH3 emissions. For example, Kong et al. (2019) calculated the 2016 NH3 emission inventory5

in China by assimilating ground-based NH3 concentration observations from several dozen ground stations. Similarly, Chen

et al. (2021) optimized the prior NH3 emission estimates from the United States’ 2011 National Emissions Inventory (2011

NEI) by assimilating NH3 column concentrations from IASI instruments across the United States. Recently, we developed a

four-dimensional variational assimilation-based NH3 emission inversion system, which has been successfully tested in NH3

emission inversion by assimilating IASI products over China.10

However, there is a paucity of studies focusing on assimilation-based NH3 emission inversion specific to South Asia,

which has some of the highest NH3 loading hotspots compared to other continents. In this study, we aim to explore the spatial

and temporal features of NH3 emissions over South Asia. The NH3 emission inventory will be calculated using our newly

developed emission inversion system (Jin et al., 2023), by assimilating NH3 retrievals from the IASI instruments onboard

MetOp-A (operational from 2008 to 2018), MetOp-B (operational since 2012), and MetOp-C (operational since 2018) satel-15

lites. Instead of directly assimilating IASI measurements as previous studies have done, we incorporated the averaging kernel

information from the latest version of the IASI product. This approach allowed us to update the column concentration obser-

vations before assimilation. By doing so, we ensure a fairer comparison between the simulated and observed columnar NH3

concentrations, a point that has been emphasized in several studies (Eskes and Boersma, 2003; von Clarmann and Glatthor,

2019), but never implemented in the IASI-based emission inversion. We aim to provide a more accurate estimation of NH320

emission inventories and to explore their spatial and temporal characteristics across South Asia. Additionally, it serves as

a model for effectively calculating atmospheric pollution emissions in regions that have been less studied in the past. The

study focuses on NH3 emissions but also contributes to a broader understanding of atmospheric pollution in under-researched

regions.

The remaining sections of this paper are organized as follows: Section 2 describes the measurements assimilated in the25

NH3 emission inversion, as well as those used for independent validation. The assimilation methodology for the emission

inversion, along with the choice of the prior emission inventory and the chemical transport model, is also outlined. Section 3

presents the validation results of the emission inversion and highlights the key features of NH3 emissions over South Asia.

2 Data and method

2.1 IASI satellite measurements30

IASI (Infrared Atmospheric Sounding Interferometer) is a Fourier Transform Spectrometer that operates in the thermal

infrared spectral range. It is onboard the Meteorological Operational (MetOp) A/B/C satellites, a series of European polar-

orbiting meteorological satellites managed by the European Space Agency (ESA) and the European Organization for the
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Exploitation of Meteorological Satellites (EUMETSAT). The first MetOp-A satellite, equipped with IASI, was launched in

2008, followed by MetOp-B and MetOp-C in 2012 and 2018, respectively. The IASI instruments operate at an altitude of 817

km in a sun-synchronous orbit with an inclination of 98.7 ◦. Each instrument conducts measurements over a ground swath

width of 2200 km, with 30 fields of view (15 on each side of the nadir). Each field of view consists of four pixels, each with

a nadir diameter of 12 km. This observational strategy enables each IASI instrument to make two passes over every point on5

Earth daily, around 09:30 and 21:30 local time (Bouillon et al., 2020).

The assimilated observations for estimating the NH3 emissions were the monthly IASI column concentration means over

the 0.5 ◦× 0.625 ◦GEOS-Chem grid cell. These values were derived from the latest ANNI-NH3-v4R-ERA5 product. Despite

improvements in NH3 column retrievals from satellite observations, there remains substantial variability in measurement un-

certainty, ranging from 5% to over 1000%. (Van Damme et al., 2014; Whitburn et al., 2016; Van Damme et al., 2017). Data10

selection was performed by excluding nighttime observations, irrational values (<0), and only using data with a cloud fraction

< 0.1 (Van Damme et al., 2018) and skin temperature > 263 K (Van Damme et al., 2014) during the calculation of the monthly

mean. While negative values are not necessarily incorrect, they are considered unrealistic in the context of NH3 concentrations.

To improve the quality of the monthly average, we removed those negative values. It is also important to note that we used

daily observations from three satellites, each with a pixel resolution of approximately 12 km × 12 km, which provided us with15

sufficient observations to calculate the monthly average. We applied a selection criterion, using only grid averages that contain

a minimum of 80 observations. This ensures that the grid-averaged values are statistically representative and that the monthly

mean is of high quality. Notably, the time coverage of the available version 4 IASI product used was limited: Metop-A provided

data for the entire year of 2019, Metop-B provided data from January to July 2019, and Metop-C did not have data for 2019.

Therefore, only the data from Metop-A and Metop-B within the 2019 time frame were used in this study. To further improve20

the data quality and ensure consistency, we performed monthly and grid averaging of the observations. This approach not only

allows for a fair comparison between the observed and modeled NH3 concentrations but also reduces the computational cost

of the assimilation process. Using individual observations without averaging would result in an excessively large observational

vector, which would significantly increase the computational burden. For example, without averaging, the size of the observa-

tional vector could reach 1,000,000, while with monthly and grid averaging, it is reduced to a manageable size of around 1,000.25

This reduction in size helps to optimize the data assimilation process while maintaining the integrity of the emission estimates.

Compared to the previous version, one highlight of the lastest version 4 product is that it includes averaging kernel in-

formation. The benefit of using the averaging kernel is that it can consider the vertical distribution characteristics of satellite

observations, helping to correct the satellite retrieval results and making them more representative of the true distribution of

the target gas or variable in the atmosphere (Rodgers, 2000). The impact of averaging kernels (AVKs) are supposed to be30

considered in the data processing. The sensitivity of IASI NH3 observations varies with altitude, and AVKs enable the adjust-

ment of simulated or observed NH3 concentrations to align with the vertical distribution detected by IASI. This adjustment is
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particularly important for data comparison and validation against the model simulations (Clarisse et al., 2023). The formula

for calculating the column concentration, after accounting for the averaging kernels, in this paper follows:

X̂m =
X̂a−B∑
zA

a
zmz

+B. (1)

here, X̂m represents the IASI column concentration retrieved with model profile. X̂a denotes the initial IASI column concen-

tration, with the background concentration B. The Aa
z values are AVK for each vertical layer, with the model profile mz . More5

detailed information and the corresponding equations are provided in the supplementary materials equation S8 and S9.

The uncertainty assigned to the IASI measurements is also an essential. When calculating the uncertainty of gridded

monthly average NH3 measurements, both instrumental errors σinstrumental and representation error σrepresentation are considered.

The gridded average uncertainty derived directly from IASI products was designated as instrumental error σinstrumental, while

the standard deviation of the observed samples for the gridded average characterized representation error σrepresentation. The total10

uncertainty σintegrated for weighting the potential spread of the assimilated IASI NH3 measurements is finally expressed as:

σintegrated =
{(
σinstrument )2 + (σrepresenting )2}0.5

(2)

Four snapshots of the assimilated monthly IASI NH3 column concentration observations and their uncertainty in January,

April, July and November can be found in Fig. 1 (a) and Fig. S1. These four scenarios are selected to highlight the typical

seasonal profile of the NH3 loading over South Asia.15

2.2 Independent observations for validation

The Crosstrack Infrared Sounder (CrIS) NH3 column concentration and ground-based observations of NH3 and PM2.5

from the Central Pollution Control Board (CPCB) of India were also collected to validate our assimilation results.

The CrIS instrument was launched in 2011 on the Suomi National Polar-Orbiting Partnership (SNPP) satellite and in

2017 on the NOAA-20 satellite. The retrieval products from SNPP began in 2011 and ended in May 2021, with a data gap20

from April to August 2019. The NH3 retrieval products from NOAA-20 started in March 2019. Therefore, we used retrieval

products from both SNPP and NOAA-20 as independent observations for 2019. We utilized the Level 2 CrIS product from the

CFPR 1.6.4 version. Specifically, only the CrIS observations during daytime, under cloud-free conditions, and with a quality

flag ≥ 3 were selected. These original data were subsequently interpolated to achieve a spatial resolution of 0.5 ◦× 0.625 ◦,

which is consistent with our NH3 simulation. Similarly, we also considered the impact of the averaging kernels (AVKs) and25

applied the AVKs to the satellite profile data. We converted the logarithmic averaging kernels into linearized averaging kernels

based on the method proposed by Cao et al. (2022).

Ground observations of NH3 in South Asia are mainly provided by the Central Pollution Control Board (CPCB, https:

//cpcb.nic.in/), which is the official portal of Government of India. NH3 is measured by the chemiluminescence method as NOx

following the oxidation of NH3 to NOx. In that approach, NH3 is determined from the difference between NOx concentration30

with and without inclusion of NH3 oxidation (Pawar et al., 2021b). The ground level NH3 concentration data from CPCB

5
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Figure 1. Spatial distribution of the total column NH3 concentration from IASI (a) or CrIS (b) instruments, and from the GEOS-Chem

simulation either using the prior (c) or using the posterior (d) NH3 emission flex in 2019 January (a.1)–(d.1), April (a.2)–(d.2) , July (a.3)-

(d.3) and November (a.4)–(d.4).
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Figure 2. The GEOS-Chem model simulation domain, with dots indicating the locations of ground observation stations from the Central

Pollution Control Board (CPCB), India. The three different colored dots represent stations with only PM2.5 observations, stations with both

PM2.5 and NH3 observations, and stations with only NH3 observations, respectively.

was successfully collected. There were NH3 surface concentration observations from 33 stations available in 2019, and the

distribution are shown in Fig. 2.

PM2.5 observations from CPCB were also used in the assimilation validation. The PM2.5 observations were selected

before they were used, which follows (Spandana et al., 2021): First, select the hourly PM2.5 data greater than PM10, then

filter out the hourly PM2.5 data that falls outside the range of daymean - 3 × standard deviation and daymean + 3 × standard5

deviation. Additionally, ensure that each day contains at least 20 hours of data. Finally, the data is processed into monthly

averages for subsequent validation. The distribution of the ground stations where the PM2.5 were used in this paper can be

found in Fig. 2 and detailed information about the stations is also provided in Table S1-S3.

2.3 Emission inversion system

This study employs the four-dimensional ensemble variational (4DEnVar) data assimilation -based NH3 emission inver-10

sion system that was developed by Jin et al. (2023). The general idea of assimilation-based emission inversion is to find the

most likely estimate, which in this case is the monthly NH3 emission field, given the prior NH3 emissions and the observations.
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The calculation is conducted through minimizing the cost function J :

J (f) =
1

2
(f −f b)

T
B−1 (f −f b) +

1

2
{y−HM(f)}TO−1{y−HM(f)} (3)

Here, f denotes the vector of the NH3 estimated emission field, with its units typically expressed in kg/m2/s. Additionally, f b

denotes the prior monthly NH3 emission vector from CEDS as will be described in Section 2.4. B represents the background

error covariance matrix associated with the prior emission estimate. Here we assumed that the uncertainty in the NH3 emission5

can be compensated by a spatially varying tuning factor α. The α values are defined to be random variables with a mean of

1.0 and a standard deviation σ = 0.2. In addition, a correlation matrix C is introduced for quantifying the spatial correlation

between two αs in the grid i and j as:

C(i, j) = e−(di,j/l)
2/2 (4)

where di,j represents the distance between two grid cells i and j. l here denotes the correlation length scale which controls10

the spatially variability freedom of the αs. An empirical parameter l = 300 km which is used in the NH3 emission inversion

in China (Jin et al., 2023) is also used in this study. With the spatial correlation matrix and the emission uncertainty, the

background error covariance matrix could then be constructed as:

B(i, j) = σ2 ·fb(i) ·fb(j) ·C(i, j) (5)

M here represents the GEOS-Chem model (as will be illustrated in Section 2.4) driven by the emission f , H here is the15

observational operator that transfer the simulated NH3 3D concentration result into the observational space. y represents the

monthly IASI NH3 column concentration observations, while O is the observation error covariance matrix. Here we assume

IASI observation representation errors are independent from each other. O therefore is a diagonal matrix filled with the square

of the integrated uncertainty as described in Section 2.1. Meanwhile, a minimum measurement error is used to prevent the

posterior from being too close to low-value observations, thereby avoiding model divergence:20

Oi,i = min
(
1.0× 1016 molec cm −2,σintegrated )2 (6)

More information about how we minimizing the cost function Eq. 3 could be fund in Jin et al. (2023).

2.4 GEOS-Chem model and emission inventory

GEOS-Chem, a three-dimensional (3-D) global tropospheric chemistry model, is driven by assimilated meteorological

data obtained from the Goddard Earth Observing System (GEOS) at the NASA Data Assimilation Office (DAO) (Bey et al.,25

2001). GEOS-Chem incorporates a fully integrated chemistry system involving aerosol, ozone, NOx, and hydrocarbons, as

described by Park et al. (2004).The wet deposition scheme is explained by Liu et al. (2001) for water-soluble aerosols and

by Amos et al. (2012) for gaseous components. Dry deposition is modeled using the resistance-in-series scheme proposed by

Wesely and Lesht (1989), as applied by Wang and Jacob (1998). Size-specific aerosol dry deposition follows the approach

outlined by Emerson et al. (2020). A nested grid simulation within the GEOS-Chem model v13.4.1 is conducted to simulate30
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Data Period Use

IASI v3 2015-2023 Annual variation of NH3 concentration

IASI v4 entire 2019 Inversion and Validation

Level 2 CrIS entire 2019 Independent validation

CPCB entire 2019 Independent validation

GEOS-Chem entire 2019 Similation

Table 1. The use of observations and simulations

the atmospheric environment over South Asia. The nested domain (60 ◦–98 ◦E, 4 ◦–40 ◦N), shown in Fig. 2, has a horizontal

resolution of 0.5 ◦latitude by 0.625 ◦longitude, accompanied by 47 vertical layers. The model is driven by meteorological

fields from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis dataset

provided by the Global Modeling and Assimilation Office (GMAO) at NASA. The model employs a three-month spin-up

period to minimize the influence of initial conditions. Lateral boundary conditions for the nested domain are updated every5

3 hours using output from the global GEOS-Chem simulation at 2 ◦× 2.5 ◦resolution. Chemical initial conditions are also

obtained from the global simulation to ensure consistency.

The NH3 emissions inventory employed to drive GEOS-Chem originated from the Community Emissions Data System

(CEDS, https://doi.org/10.25584/PNNLDH/1854347) inventory, which was widely used for modeling the South Asia atmo-

spheric pollutants, e.g., VOCs (Chaliyakunnel et al., 2019), PM2.5 pollution (Guttikunda and Nishadh, 2022; Xue et al., 2021).10

CEDS inventory includes various sources encompassing agricultural, energy production, industrial, residential and commercial

activities, ships, solvent use, surface transportation, and waste processing (McDuffie et al., 2020), the bulk of NH3 emissions

originate from agricultural practices. Specifically, these emissions stem predominantly from farmlands, including crops such

as wheat, maize, and rice, as well as manure from livestock, including cattle, chicken, goats, and pigs (Liu et al., 2022).

The CEDS emission estimates were coarse-grained into the model resolution 0.5◦× 0.625◦before being utilized to drive15

the GEOS-Chem simulations. Examples of the CEDS emission over the South Asia are presented in Fig. 3, which plot the total

NH3 emission fluxes for January, April, July, November of the year 2019.

3 Results and discussion

With the assimilation system described above, the monthly NH3 emission inversion for 2019 over South Asia is conducted.

The Spatial of prior and posterior results are in Section 3.1.1. The long-term varying trend of South Asia NH3 emission is20

illustrated in Section 3.1.2, followed by an analysis and discussion of its spatial distribution and seasonal profile based on the

inversion results in Section 3.2. Then the posterior result is evaluated in Section 3.3.

9
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Figure 3. Spatial distribution of the prior (a), the posterior (b) and the posterior minus prior increments (c) monthly NH3 emission in 2019

January (a.1)–(c.1), April (a.2)–(c.2) , July (a.3)-(c.3) and November (a.4)–(c.4).

3.1 Observed NH3 concentrations

We first present the spatial distribution of NH3 column concentrations from satellite observations and model results driven

by either the prior or posterior inventories. Then, we examine their seasonal variation in 2019 and the long-term trends from

2015 to 2023.

3.1.1 Spatial NH3 total column concentration5

The prior and posterior snapshot of NH3 column concentration simulations for four months (January, April, July, and

November) are presented in Fig. 1 (c)-(d), alongside the IASI measurements shown in panel (a). These months were selected

as typical examples representing four different seasons. The column concentration distributions for the rest months from the

model and satellite observations could be found in Fig. S2 and S3, respectively. While the prior simulation generally captured
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the distribution of NH3, with hot spots in North India, Pakistan, and Bengal—consistent with the IASI retrievals—it failed to

capture the correct seasonal profile. According to the IASI measurements, NH3 concentrations peak in July, a pattern clearly

visible in the monthly variation of the IASI-observed NH3 column concentrations from 2015 to 2023 as will be discussed in

Section 3.1.2. However, the prior model incorrectly indicated that the highest NH3 loading occurred in the Spring and Autumn

seasons. As a result, NH3 loading was severely overestimated in Winter and Spring (particularly in May) but significantly5

underestimated in Summer.

Note that there are still some discrepancies in the posterior simulation vs IASI column measurements. In particular, as

shown in panel a.3 vs. d.3 of Fig. 1, the posterior simulation did not fully reproduce the extremely high NH3 loading observed

by IASI in July (with column-integrated concentrations exceeding 10 × 1016 molec cm−2). This occurs because the goal of the

assimilation is to achieve the best fit between the posterior, the observations, and the prior emissions, rather than just fitting the10

observations alone. The extremely high NH3 concentrations are less likely given the relatively low prior NH3 emissions and

the background error covariance matrix described in Section 2.3. Additionally, the 4DEnVar assimilation algorithm inherently

accounts for potential model variations through ensemble simulations. However, the response of GEOS-Chem NH3 simulations

to emission variations is nonlinear, making it difficult to accurately resolve these discrepancies through the 4DEnVar data

assimilation algorithm without implementing outer-loop optimization strategies. Additionally, the spatial distribution of the15

NH3 column concentrations observed by CrIS, as shown in panel (b) of Fig. 1, demonstrate good consistency with both the

IASI observations and the posterior simulation results presented in Fig. 1.

3.1.2 Seasonal and annual variation of NH3 concentration

We examined the monthly average of the total NH3 column concentrations simulated by the model over the South Asia

region, along with IASI and CrIS observations, in Fig. 4 (a). The prior model results demonstrate significant seasonal variability20

in NH3 column concentrations, characterized by peaks in May and September and comparatively low levels during the summer

months. This has been corrected through assimilating the IASI measurements in this study. Conversely, the posterior results

reveal a distinct temporal pattern, featuring a pronounced peak in May and a negligible peak in July. The high value in May is

attributed to huge amount of biomass burning in South Asia during the spring in Fig. S4 (c).We have identified the planting and

harvesting times of crops in the South Asia region from USDA(U.S.DEPARTMENT OF ARGRICULTURE, https://ipad.fas.25

usda.gov/rssiws/al/crop_calendar/sasia.aspx). The heavy use of fertilizers in agricultural activities has resulted in the highest

emission throughout the year, as will be illustrated in Fig. 4 (b) in Section 3.2. This has lead to the second NH3 concentration

peak in July. The reasons for higher emissions in July but lower concentration levels compared to May could be attributed to

meteorological factors. The monsoon season in South Asia results in increased wet deposition, and notably, 2019 experienced

the most intense monsoon since 1994 (NASA, 2020). As shown in the Fig. S4 (a) and (b), precipitation and temperature in July30

are the highest of the year. High temperatures increase ammonia volatilization, and the high precipitation increases the wet

deposition of ammonia. These combined factors lead to July having a smaller concentration peak compared to May, despite

being another peak month. Additionally, CrIS also exhibits minor peaks in May and July, consistent with our posterior results.
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Figure 4. The monthly average total NH3 column concentrations from the prior and posterior, IASI-observed, and CrIS-observed from

January to December (a). The monthly average values of prior and posterior emissions from January to December (b).

Fig. 5 (a-i) illustrates the annual average NH3 column concentrations observed by the IASI satellite instruments from 2015

to 2023. The data clearly show that Pakistan and northern India consistently experience the highest NH3 concentrations, with

values exceeding 5 × 1016 molec cm−2. Furthermore, the spatial distribution of annual average NH3 column concentrations

has remained relatively stable over the past decade.

Fig. 5 (j) depicts the monthly mean NH3 column concentrations derived from the IASI satellite. The time series reveals a5

clear seasonal pattern, with peaks occurring in summer and lower levels in winter, and the highest concentrations consistently

observed in July. Additionally, the inter-annual variation in NH3 column concentrations from 2013 to 2019 exhibits a modest

upward trend, ranging from 2.17 to 2.6 (× 1016 molec cm−2), corresponding to an average growth rate of approximately

6.32%. Subsequent to 2019, NH3 concentrations stabilize within the range of 2.6 to 2.8 (× 1016 molec cm−2). Given the

relatively stable NH3 levels after 2019, we restricted our analysis to conducting an assimilation-based emission inversion for10

the year 2019. Extending emission inversion over a longer period would require substantial computational resources.
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Figure 5. The spatial distribution of the annual averaged IASI column concentrations in South Asia from 2015 to 2023 is shown in panels

(a) to (i). Panel (j) presents a time series depicting the monthly variation in IASI-observed NH3 column concentrations from 2015 to 2023,

with the box plots representing the yearly averages showing interannual changes.
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3.2 Spatial and Seasonal variation of NH3 emission

By assimilating IASI NH3 column concentrations, the posterior monthly NH3 emission inventories for 2019 were updated.

Scenarios of the posterior emission inventories, along with the increments (posterior minus prior), for January, April, July, and

November are shown in Fig. 3 (b)-(c). The prior, posterior, and increment data for the remaining months of 2019 are provided

in Fig. S5-S7 in the Supplementary Material. Our posterior inventory demonstrated that the primary sources of NH3 originated5

from North India, Pakistan, and Bengal in general. This finding is consistent with the CEDS inventory, as well as with other

studies (Pawar et al., 2021a). However, huge discrepancy are presented when we compared the posterior and prior result,

particular in April in Fig. 3(b) and July in Fig. S1 (c). The posterior results reveal a distinct seasonal emission profile compared

to the prior. Specifically, emissions during the spring are significantly overestimated in the prior model, whereas summer

emissions are underestimated by up to threefold.10

To better illustrate the differences in timing profiles throughout the year, the monthly average emission intensity over

South Asia was calculated and is shown in Fig. 4 (b). The prior emission inventory exhibits a "double-peak" pattern, mirroring

the profile of the average NH3 concentration displayed in Fig. 4 (a). The emission flux reaches its maximum in May, peaking

at approximately 0.6 g/m2, with a secondary peak occurring in September around 0.25 g/m2. In contrast, the assimilation

that integrates prior CEDS emissions with IASI measurements shows much lower intensities from January to May, with the15

largest negative differences (> 0.3 g/m2) observed in May. While the prior emissions remain relatively low during the summer,

the emission inversion reveals positive increments, with the posterior inventory indicating the maximum emission flux in July,

peaking at approximately 0.4 g/m2. In general, the posterior emissions also display a "double-peak" pattern; however, the peaks

occur in May and July, in contrast to the May and September peaks observed in the prior emissions.

The substantial emissions in July, as indicated by the posterior inventory, can be attributed to the increased fertilizer20

application for rice crops during the summer season (Tanvir et al., 2019). Although biomass burning emissions are generally

higher in spring in Fig. S4 (c), agricultural activities remain the primary contributors to NH3 emissions (Huang et al., 2016),

resulting in July surpassing May in emission intensity. From July to September, as rice and other crops progress through

their growth stages, fertilizer application typically decreases, leading to a gradual reduction in NH3 emissions. Additionally,

temperatures decline from August to September Fig. S4 (b), reducing the volatilization rate of NH3. This pattern occurs because25

NH3 volatilization is strongly influenced by temperature (Fan et al., 2011).

The convergence of prior and posterior emission intensities in June is attributed to the overall offsetting of negative and

positive increments in the region, as shown in Fig. S7 (f). As depicted in panel (c) of Fig. 3, the negative increments observed

in January and April primarily originate from the Indian region, while the positive increments in July and September are

predominantly observed in the same area. Additionally, the posterior emission estimates, which are based on CrIS, have now30

been included as supplementary material.
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3.3 Validation

To evaluate our inversion results, we here compared the atmospheric NH3 simulation either driven by the posterior emis-

sion (refer to as the posterior simulation), or driven by the prior one against the observations, including the assimilated IASI

column data, the independent CrIS retrieval and ground-based NH3 and PM2.5 concentration measurements.

3.3.1 NH3 total column concentration validation5

The difference between the model and IASI observations for the entire year of 2019 is shown in Fig. 6 (a). The overes-

timation by the prior model is particularly evident in Spring (especially May), while the underestimation is most prominent

in Summer (especially July). These discrepancies contributed to a relatively high model error, with the correlation coefficient

(R) as low as 0.33 and the root mean square error (RMSE) as high as 4.64 × 1016 molec cm−2. In contrast, the posterior

emission-driven GEOS-Chem simulations showed good consistency with the IASI retrievals, capturing both the spatial and10

temporal variations, as shown in panel (d) of Fig. 1. This resulted in significantly improved performance, with R increasing

to 0.76 and RMSE reducing to 2.48 × 1016 molec cm−2, as shown in panel (b) of Fig. 6. The discrepancy between the model

and the posterior results mentioned in Section 3.1.1 in July is also evident in the scatter plot of the posterior column simulation

against the IASI measurements in panel (b) of Fig. 6.

In addition, we further evaluated our posterior simulations using the other advanced satellite NH3 product from the CrIS15

instruments. The scatter plots of the CrIS monthly NH3 column concentrations vs. the prior/posterior simulations in 2019 are

presented in panels (c) and (d) of Fig. 6. Steady improvements were observed in the comparison against the independent CrIS

retrievals, with the correlation coefficient (R) increasing from 0.42 to 0.71, and the root mean square error (RMSE) decreasing

from 3.96 to 2.06 × 1016 molec cm−2. These evaluations give us confidence that our emission inversion has successfully

calculated the most likely posterior, given both the prior and the IASI measurements.20

3.3.2 NH3 and PM2.5 ground concentration validation

The few surface NH3 concentration observations from ground stations, shown in Fig. 2, were also utilized to evalu-

ate our NH3 emission inversion results. Fig. 7 presents the scatter plot of monthly surface NH3 concentrations against the

prior/posterior simulations. Our posterior results are in better agreement with these independent surface NH3 concentration

measurements. This is evident from the higher correlation coefficient (R = 0.39) in the posterior compared to R = 0.28 in the25

prior simulation. The RMSE values remained almost the same, changing slightly from 22.18 µg/m3 in the prior to 22.73 µg/m3

in the posterior. The large remaining error is due to several instances where ground NH3 concentration measurements indicated

values several times higher than our simulations. This was also reported by Pawar et al. (2021b), which suggest that ground

NH3 observations are likely to overestimate NH3 levels. The mismatch between ground observations and simulations may be

attributed to the fact that most monitoring stations are located in urban regions of India, where NH3 concentrations are higher30

due to traffic and human activities (Sharma et al., 2014). Simulations with an extremely fine resolution could provide a more

15



Figure 6. Scatter plot of the IASI (a-b) and CrIS (c-d) observed NH3 concentrations against the NH3 simulation over South Asia, either

using the prior or the posterior NH3 emission inventory, from January to December.
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Figure 7. Scatter plot of the ground-observed against the NH3 simulation over South Asia either using the prior (a) or using the posterior (b)

NH3 emission inventory in 2019.

Figure 8. Scatter plot of the ground-observed against the PM2.5 simulation over South Asia either using the prior (a) or using the posterior

(b) emission inventory in 2019.
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accurate representation of NH3 characteristics at these surface sites. However, such simulations would significantly increase

the computational burden on the emission inversion system, which is beyond the scope of this study.

NH3 is the key precursor of the inorganic aerosol. The estimated NH3 emission inventory is supposed to improve the

aerosol simulation as well, under the assumption that aerosols from other sources are accurately represented. The monthly

averaged PM2.5 concentrations against the simulations either using our prior or using the posterior NH3 inventory, as shown in5

Fig. 8 (a-b). It is evident that both RMSE and Bias have been reduced to varying degrees: RMSE decreased from 29.15 µg/m3

in the prior to 22.75 µg/m3 in the posterior, and bias decreased from 24.8 µg/m3 in the prior to 18.37 µg/m3 in the posterior.

These results indicate that the emission inventory optimized by our inversion system has improved the model’s performance in

simulating PM2.5, reducing both systematic biases and model underestimation effectively.

4 Summary and conclusion10

South Asia has been severely affected by NH3, which has significant impacts on both human health and the ecological en-

vironment. The current emission inventories, primarily based on bottom-up approaches, are subject to substantial uncertainties.

This is due to the fact that the intensity of NH3 emissions from livestock and fertilizers is heavily influenced by management

and farming practices, yet this information is often not widely available. As a result, accurately simulating the spatiotemporal

characteristics of atmospheric NH3 and evaluating its impacts remains challenging. The use of satellite observations, such as15

those from IASI, for top-down emission inversion has emerged as an effective method to develop more accurate inventories.

However, research in this area remains limited in South Asia.

This study employed a 4DEnVar-based emission inversion system to optimize NH3 emissions in South Asia. The most

likely posterior monthly NH3 emission inventories were calculated given the the CEDS prior inventory and the NH3 column

concentration observations from the polar-orbiting IASI satellite instrument. Validation against satellite and ground-based20

observations shows that NH3 concentration simulations driven by the posterior emissions perform significantly better than

those driven by the prior inventory. In the comparison against the IASI measurments. the correlation coefficient (r) increased

from 0.33 (for the prior) to 0.76, and the root mean square error (RMSE) was reduced from 4.64 × 1016 molec cm−2 (prior)

to 2.48 × 1016 molec cm−2 (posterior). The posterior results also show improvements when compared to independent CrIS

satellite measurements, with the correlation coefficient (r) rising from 0.42 (prior) to 0.71, and RMSE reducing from 3.96 ×25

1016 molec cm−2 (prior) to 2.06 × 1016 molec cm−2 (posterior). Additionally, validation with ground-level NH3 and PM2.5

concentrations further supports the findings, demonstrating that our emission inversion system effectively reduces systematic

biases and underestimation in ground-level simulations.

The spatial and temporal characteristics of NH3 emissions over South Asia were then analyzed based on the inversion.

While the prior CEDS inventory generally captured the NH3 emission hotspots, such as in Pakistan, North India, and Bengal,30

it failed to accurately represent the seasonal trend. Specifically, the prior inventory showed a "double-peak" pattern throughout

the year, with peaks in May and September. In contrast, the posterior results revealed the correct seasonal pattern with the

"double-peak" profile occurring in May and July.

18



The top-down NH3 emission inversion system driven by IASI observations has demonstrated superior performance in

enhancing the NH3 emission estimates. Nevertheless, several challenges persist, such as the requirement for simulations at

finer resolutions to precisely capture very local emission dynamics. Furthermore, observations from stationary satellites, such

as FY-4B, also deserve attention for exploring the diurnal variations of the NH3 emission. Our next steps will focus on further

refining the spatiotemporal patterns at the daily or weekly scale, building on the current posterior results."5

Code and data availability

The NH3 emission inversion system is in the Python environment and is archived on Zenodo (https://doi.org/10.5281/

zenodo.7015397). The NH3 prior and posterior emission inventories are archived on Zenodo (https://doi.org/10.5281/zenodo.

14979151). The IASI ANNI-NH3-v4R-ERA5 data suites are available at https://iasi.aeris-data.fr/. The CrIS v1.6.4 data are

available at https://hpfx.collab.science.gc.ca/~mas001/satellite_ext/cris/. The observed NH3 and PM2.5 concentrations data10

is available at https://www.kaggle.com/datasets/abhisheksjha/time-series-air-quality-data-of-india-2010-2023?select=AP001.

csv.
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