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Abstract. Snowpack characteristics such as snow depth and snow water equivalent (SWE) are widely studied in regions prone 10 

to heavy snowfall and long winters. These features are measured in the field via manual or automated observations and over 11 

larger spatial scales with stand-alone remote sensing methods. However, individually these methods may struggle with 12 

accurately assessing snow depth and SWE in local spatial scales of several square kilometers. One method for leveraging the 13 

benefits of each individual dataset is to link field-based observations with high-resolution remote sensing imagery and then 14 

employ machine learning techniques to estimate snow depth and SWE across a broader geographic region. Here, we combined 15 

field-based repeat snow depth and SWE measurements over six instances from December 2022 to April 2023 in Sodankylä, 16 

Finland with Light Detection and Ranging (LiDAR) and WorldView-2 (WV-2) data to estimate snow depth, SWE, and snow 17 

density over a 10 km2 local scale study area. This was achieved with an object-based machine learning ensemble approach by 18 

first upscaling more numerous snow depth field data and then utilizing the estimated local scale snow depth to aid in estimating 19 

SWE over the study area. Snow density was then calculated from snow depth and SWE estimates. Snow depth peaked in 20 

March, SWE shortly after in early April, and snow density at the end of April. The ensemble-based approach had encouraging 21 

success with upscaling snow depth and SWE. Associations were also identified with carbon- and mineral-based forest surface 22 

soils, alongside dry and wet peatbogs. 23 

1 Introduction 24 

Seasonal snow is found in regions of the globe that experience freezing temperatures and is widely studied to monitor 25 

changes in climate and hydrology. Snow is a component of the cryosphere that is heterogeneous over space and time. Snowmelt 26 

provides drinking and irrigation water to approximately one sixth of the world’s population (Barnett et al., 2005). The initial 27 

layering of the snowpack is impacted by the deposition of falling snow, windblown snow redistribution, or a combination of 28 

the two (Nienow and Campbell, 2011). Further densification can occur due to compaction and metamorphic mechanisms, 29 

alongside meltwater, percolation, and refreeze events (Prowse and Owens, 1984; Tuttle and Jacobs, 2019; El Oufir et al., 2021; 30 
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Colliander et al., 2023). Given these factors, key elements of snow density are the age of the snowpack, snow depth, and water 31 

content. Fresh snow can have a snow density of 0.05 – 0.07 g/cm3 while fresh damp snow can range from 0.10 – 0.20 g/cm3 32 

(Muskett, 2012). In contrast, the snow density of older dry snow is roughly 0.35 – 0.40 g/cm3 and for older wet snow is up to 33 

0.50 g/cm3 (Seibert et al., 2015). Very wet snow and firn, which is snow that failed to melt in the previous summer and did not 34 

turn into ice, can contain a snow density ranging from 0.40 – 0.80 g/cm3 (Muskett, 2012; Arenson et al., 2021). Within the 35 

northern hemisphere, there is an immense variation in average snow density which ranges from 0.05 – 0.59 g/cm3 with an 36 

overall long-term average snow density of 0.25±0.07 g/cm3 (Zhao et al., 2023). 37 

Despite the attainability of snow density classification, there are significant complexities with generating the 38 

estimated snow density alongside the related snow depth and snow water equivalent (SWE) over large areas and in challenging 39 

environments such as thick forests and mountainous terrain. Snow depth is simply the total depth of snow on the ground while 40 

SWE can be defined as the resulting depth of water produced from the complete melt of a mass of snow (Henkel et al., 2018). 41 

The quantity of SWE is determined by the amount of snow accumulation alongside the amount of snow melt and sublimation 42 

(Xu et al., 2019). Field-based SWE datasets are both spatially and temporally scarce and can be expensive and labor intensive 43 

to acquire (Henkel et al., 2018; Fontrodona-Bach et al., 2023). In contrast, field-acquired snow depth measurements are more 44 

common, and are both easier and faster to obtain, though their spatial extent is also limited and can be challenging to obtain in 45 

difficult or remote areas (Collados-Lara et al., 2020; Tanniru and Ramsankaran, 2023). Automated stations can be utilized to 46 

collect snow measurements, which are rapidly becoming more commonplace, such as accounting for over 80% of the snow 47 

depth observing network north of 55° N in Canada (Brown et al., 2021). However, such stations may sometimes be primarily 48 

intended for non-climatic purposes such as for avalanche warnings and thus not be verified nor corrected for climatic trends 49 

(Salzmann et al., 2014). 50 

Alternatives to field-based methods of snow observations are the use of airborne and spaceborne sensors to estimate 51 

snow properties which have achieved great success in recent decades (Nagler and Rott, 2000; Kelly et al., 2003; Marti et al., 52 

2016; Cimoli et al., 2017; Tsai et al., 2019). Such sensors achieve large spatial coverage and the ability to clearly differentiate 53 

between snow and non-snow features (Nolin, 2010; Raghubanshi et al., 2023). However, many commonly used spaceborne 54 

sensors such as with the Landsat series, the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very 55 

High Resolution Radiometer (AVHRR), and the Advanced Microwave Scanning Radiometer (AMSR-E/AMSR2) have 56 

limitations. These are either not capable of directly estimating snow depth or SWE, or, if able, have limited penetration or 57 

contain very coarse resolutions that make local scale estimation unattainable, in addition to potential cloud cover contamination 58 

(Rodell and Houser, 2004; Green et al., 2012; Lu et al., 2022; Stillinger et al., 2023). Repeat images captured via airborne 59 

Light Detection and Ranging (LiDAR) can serve to successfully estimate changes in snow depth (Deems et al., 2013; King et 60 

al., 2023); however the flights needed for these are costly, weather dependent, and require trained pilots and LiDAR specialists 61 

(Jacobs et al., 2021; Yu et al., 2022). While issues are present in relying solely on remote sensing for snow depth and SWE 62 

estimation, a blending of remote sensing imagery and field-based snow data can serve to significantly improve snow depth 63 

and SWE estimations (Kongoli et al., 2019; Pulliainen et al., 2020; Cammalleri et al., 2022; Venäläinen et al., 2023). 64 
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In addition to this, the inclusion of machine learning can expand the potential to estimate snow depth and SWE over 65 

spatial and temporal scales. Machine learning techniques have been successfully applied to predict such features across Earth, 66 

including high altitude and high latitude environments (Jonas et al., 2009; Zhang et al., 2021; Hu et al., 2023). Commonly 67 

employed algorithms including Artificial Neural Network (ANN), K-Nearest Neighbor (KNN), Multiple Linear Regression 68 

(MLR), Random Forest (RF), and Support Vector Machine (SVM) have achieved success in snow depth, SWE, and snow-69 

liquid ratio estimations (Broxton et al., 2019; Douglas and Zhang, 2021; Ntokas et al., 2021; Hoopes et al., 2023). Individually 70 

many of these algorithms can produce positive results, though there may be a tendency for disagreement in model accuracy 71 

and outcomes (Li et al., 2023). As an alternative, a weighted ensemble-based empirical model can be utilized to potentially 72 

increase model accuracy, while also reducing estimation error (Douglas and Zhang, 2021; Brodylo et al., 2024). As each 73 

algorithm is optimized differently to generate outputs, each containing their pros and cons, an ensemble approach can improve 74 

feature estimation to ensure optimal results (Pes, 2020). A combination of such machine learning models, remote sensing 75 

imagery, and field-based snow data can thus provide the necessary foundations to map snow features across the cryosphere, 76 

which has been experiencing rising temperatures and increasing climatic uncertainty (Pan et al., 2017; Yang et al., 2020; Santi 77 

et al., 2022).  78 

One region where application of such a technique is worthwhile is in northern Europe, particularly in the Lapland 79 

region located largely within the Arctic Circle. The area around Sodankylä, Finland is prone to long, cold winters with abundant 80 

snowfall and both on-the-ground snow depth and SWE measurements are available for multiple months or more. Here, we 81 

sought to utilize an object-based machine learning ensemble approach with a combination of time-series field and automated 82 

snow data, alongside WorldView-2 (WV-2) imagery and LiDAR data to upscale snow depth, SWE, and snow density to a 10 83 

km2 local scale. This was implemented over six instances from December 2022 to April 2023, with snow estimates matched 84 

to dominant vegetative communities. Field-based snow depth observations were upscaled first, before utilizing the estimated 85 

snow depth to aid in upscaling more limited SWE field data to the local scale, with snow density then being mapped. Distinctive 86 

machine learning algorithms were employed and compared to an ensemble-based technique for both snow depth and SWE 87 

estimation. 88 

2 Study area and data 89 

2.1 Study area 90 

The study area is found near the town of Sodankylä in the Sodankylä municipality of northern Finland, which is 91 

roughly 125 km north of the Arctic Circle. The 10 km2 site is located along the Kitinen River and hosts the Finnish 92 

Meteorological Institute Arctic Space Centre (FMI-ARC) and the Sodankylä Geophysical Observatory (Bösinger, 2021) 93 

between 67.356° N, 26.609° E, and 67.381° N, 26.693° E (Fig 1). It is largely flat, with elevations ranging between 170 and 94 

190 m above sea level. Landcover consists primarily of coniferous and deciduous dominated forests and peat bogs, contains 95 

organic and mineral soils, and portrays a standard flat northern boreal forest/taiga setting (Rautiainen et al., 2014). Field 96 
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analysis revealed a multitude of vegetative species at the study site. Dominant tree species are Betula pubescens (downy birch) 97 

and Pinus sylvestris (Scots pine). Common shrub species include Andromeda polifolia (bog rosemary), Empetrum nigrum 98 

(crowberry), Rhododendron tomentosum (Labrador tea), Vaccinium cespitosum (dwarf bilberry), Vaccinium myrtillus 99 

(bilberry), Vaccinium oxycoccus (cranberry), and Vaccinium vitis-idaea (lingonberry). Graminoid species were comprised of 100 

Carex lasiocarpa (woollyfruit sedge), Danthonia decumbens (heath grass), Eriophorum vaginatum (tussock cottongrass), 101 

Scheuchzeria palustris (pod grass), and Trichophorum cespitosum (tufted bulrush). Forb species include Comarum palustre 102 

(purple marshlock) and Menyanthes trifoliata (bog bean). Lichen and moss are also common. 103 

 104 

 105 

Figure 1: Study area (a) in Sodankylä, Finland and (b) automated and manual snow depth and snow water equivalent measurements 106 
within the 10 km2 local scale study site. Image credits: © Esri, Earthstar Geographics, and Maxar. 107 

 108 

The climate in Sodankylä is defined by short but relatively warm summer season and a long and cold winter, with 109 

snow present from October to May. Taiga snow is dominant, with thick layering of depth hoar at the base of the snowpack 110 

(Anttila et al., 2014). Meaningful rain-on-snow events occur in November and early December (Bartsch et al., 2023). Between 111 

1991 and 2020 at the FMI Sodankylä Tähtelä weather station, the average yearly precipitation was 543 mm with an average 112 

yearly maximum snow depth of 91 cm that ranged from 65 – 127 cm. The average air temperature was 0.4 °C, the average 113 

minimum was -4.2 °C, and the average maximum was 4.8 °C. The absolute minimum temperature was -49.5 °C while the 114 

absolute maximum was 32.1 °C. The mean annual air temperature has increased by 0.07 °C from 2000 – 2018 (Bai et al., 115 

2021) and is expected to continue. Between the winters of 2007/08 to 2013/14 around FMI-ARC and the Sodankylä 116 

Geophysical Observatory, the maximum SWE ranged approximately from 150 – 250 mm (Essery et al., 2016). For the winter 117 

https://doi.org/10.5194/egusphere-2024-3936
Preprint. Discussion started: 23 January 2025
c© Author(s) 2025. CC BY 4.0 License.



5 

 

of 2022/23, a maximum snow depth of 99 cm was recorded at the Sodankylä Tähtelä weather station on 31 March 2023, with 118 

rapid snow melt in April and early May (Fig 2). The average air temperature was generally near or below freezing in winter 119 

and contained relatively low precipitation. The site generally contains low wind speeds that limit windblown snow 120 

redistribution, with a monthly average of 2.5 – 2.9 m s−1 above the forest canopy (Meinander et al., 2020). 121 

 122 

 123 

Figure 2: Daily average air temperature (°C), precipitation (mm), and snow depth (cm) from the FMI Sodankylä Tähtelä weather 124 
station from 01 October 2022 – 27 May 2023. 125 

2.2 Ground-based and remotely sensed measurements 126 

Field-based snow data were acquired over distinct vegetative communities on 14 December 2022, 17 January 2023, 127 

15 February 2023, 17 March 2023, 17 April 2023, and 28 April 2023. Manually obtained snow depth was measured with a 128 

fixed stake or manual probe, while SWE was calculated with a scale that is paired to a snow tube that is 70 cm high and 10 cm 129 

in diameter that includes a scale on the outside to measure snow depth (Leppänen et al., 2016). Automated observations were 130 

performed for snow depth with the Campbell Scientific SR50 sonic distance instrument and for SWE with the Sommer 131 

Messtechnik SSG 1000 snow scale instrument. A total of 88 repeat snowpack depth (cm) measurements were taken at the 132 

same locations with 80 being manually recorded and 8 being acquired from automated stations (Fig 1(b)). Of these same 88 133 

locations, a total of 13 repeat SWE (mm) measurements were recorded: 11 manually and 2 from automated stations. SWE 134 
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values were based on the total snowpack depth. An average daily value was recorded from the automated stations to match 135 

with the field-based observations, with previously strong correlations found between the automated and manual measurements 136 

for both snow depth and SWE with average correlation coefficients of 0.98 and 0.99, respectively (Leppänen et al., 2018). 137 

Snow density (g/cm3) was calculated from dividing SWE by snow depth at the same location. 138 

On-the-ground vegetation data were acquired between 31 July and 4 August 2023. Plots were established randomly 139 

along the snow depth measurement route to encompass major plant community types, primarily coniferous and hardwood 140 

forests, and forested and herbaceous bogs. At each plot, a center point was established, flags were placed in each cardinal 141 

direction to create a circular plot with a 7.3 m radius, and GPS coordinates of the center point and flags were recorded. In each 142 

plot, all trees with diameter at breast height (DBH) greater than 10 cm were recorded by species and DBH. Five 0.5 m2 quadrats 143 

were randomly placed in each plot quadrant and aerial cover of the understory vegetation was estimated in 5% increments for 144 

the following functional groups: moss, lichen, shrub, forb, and graminoid. 145 

Cloud free and high spatial resolution (2 m) spaceborne WV-2 images were acquired on 02 August 2021 and 27 April 146 

2023. The summer imagery contained spectral readings that matched with distinct vegetative communities, while the winter 147 

imagery served to identify snow and non-snow features. Snow-free LiDAR data from 2020 was gathered from the National 148 

Land Survey of Finland at a density of 5 pulses/m². Airborne LiDAR data were obtained on 27 April and 11 May 2023 by 149 

NV5 Geospatial and contained full to partial snow cover. This was captured with a Leica City Mapper-2/Hypersion 2+ system 150 

containing an average pulse density of ≥ 25 pulses/m2, absolute vertical accuracy of ≤ 6 cm, relative vertical accuracy of ≤ 15 151 

cm, and horizontal accuracy of ≤ 14 cm. The LiDAR data were further separated into a Digital Terrain Model (DTM), Digital 152 

Surface Model (DSM), and Canopy Height Model (CHM). No major landcover changes impacted the study site during these 153 

time periods that would have necessitated the need for repeat sets of imagery. 154 

Land Use Land Cover (LULC) data were acquired from CORINE (Coordination of Information on the Environment) 155 

Land Cover (CLC) at 20 m resolution from 2018. CLC is a LULC monitoring program that is coordinated by the European 156 

Environment Agency (EEA) and is a current product of the Copernicus Land Monitoring Service (Aune-Lundberg and Strand, 157 

2021). The LULC data was utilized to link vegetative communities to snow depth and SWE in the study area, while excluding 158 

artificial features and water bodies. We downscaled the dataset to match the 2 m resolution WV-2 imagery and then updated 159 

land cover boundaries where there were evident differences with the obtained summer imagery, thereby providing an updated, 160 

higher-resolution LULC. In addition, a modified classification scheme was employed that sought to separate forest 161 

communities by soil type and wetlands by moisture content. A RF-based classification scheme was employed that achieved 162 

an Overall Accuracy (OA) of 91.7% and a Kappa value of 0.91, which indicated high LULC classification accuracy. 163 
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3 Methodology 164 

3.1 Image segmentation 165 

An Object-Based Image Analysis (OBIA) technique was utilized to make estimations of snow depth and SWE at the 166 

10 km2 local site scale In OBIA an image is separated into homogeneous groups of pixels known as image objects or segments, 167 

which are then utilized as the spatial unit for image assessment (Ye et al., 2018). This contrasts with more traditional pixel-168 

based classification methods, in which image assessment is performed on a pixel-by-pixel basis. The OBIA approach was 169 

selected as it has been found to deliver enhanced accuracy and results over traditional pixel-based approaches, especially with 170 

high-resolution imagery (Sibaruddin et al., 2018; Shayeganpour et al., 2021; Ez-zahouani et al., 2023). Additionally, outputs 171 

generated from traditional pixel-based approaches can be susceptible to high local spatial heterogeneity between adjacent 172 

pixels, commonly known as the “salt-and-pepper” effect, which is not evident with OBIA (Wang et al., 2020). 173 

Image segmentation was accomplished with the Segment Mean Shift tool in ArcGIS Pro software, a desktop GIS 174 

application. It contains a nonparametric iterative technique that utilizes kernel density estimation to generate image objects 175 

from a maximum of three image bands by grouping nearby pixels that contain similar spectral characteristics (Goldberg et al., 176 

2021). The red, green, and near-infrared bands were utilized from the summer WV-2 imagery to carry out image segmentation. 177 

For parameters, the spectral detail was set to 19 (near maximum) while spatial detail was set to 1 (minimum) to improve 178 

segmentation as both heterogeneous and homogenous areas were present. A total of 37,917 unique image objects were created. 179 

Mean and standard deviation were calculated for each image object from the LiDAR and WV-2 datasets. Additional indices 180 

utilized included the Green Chlorophyll Index (GCI), Red-Edge Chlorophyll Index (RECI), Normalized Difference Vegetation 181 

Index (NDVI), Normalized Difference Water Index (NDWI), and Soil-Adjusted Vegetation Index (SAVI). Descriptions of 182 

these widely utilized indices, beyond the scope of this work, are available in Gaitán et al. (2013), Xue and Su. (2017), and 183 

Nadjla et al. (2022). The automated and field-based snow depth and SWE measurements were spatially joined to the generated 184 

image objects. In segments that contained two or more measurements, an average value was recorded. 185 

3.2 Machine learning models 186 

Commonly utilized and unique supervised regression-based machine learning models entailing of Random Forest 187 

(RF), Support Vector Machine (SVM), Artificial Neural Network (ANN), and Multiple Linear Regression (MLR) were chosen 188 

to estimate snow depth and SWE for the image objects. RF works by training a large collection of decision trees to generate 189 

an optimal output (Hwang et al., 2023). In contrast, SVM relies on an optimal hyperplane that minimizes error bounds 190 

(Pimentel et al., 2021). ANN is based upon the association of connected neurons like that of the human nervous system (Goel 191 

et al., 2023). MLR models the linear relationship between independent variables to a dependent variable (Kim et al., 2020). 192 

To aid in reducing potential modeling bias and overfitting, a k-fold cross-validation technique was employed. With this, 193 

matched data samples are randomly split into k number of subsets, with k-1 being utilized to train models and the remainder 194 
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to test models (Abriha et al., 2023). Here, a k-fold of 10 was utilized whereby in each subset 90% of the data is assigned for 195 

training and 10% is for testing, with output metrics determined from the average of all iterations. 196 

3.3 Object-based ensemble machine learning 197 

An object-based ensemble machine learning approach was applied from a combined weighted output of the RF, SVM, 198 

ANN, and MLR models which is referred to here as Ensemble Analysis (EA). Given that these individual models compute 199 

predictions differently and will have varying accuracies and errors, EA can result in a more robust model that considers more 200 

accurate models while minimizing the influence of less accurate ones. This is relevant for repeat predictions over the same 201 

study site as a model may perform well in one scenario while underperforming in another, such as with estimating snow depth 202 

during a period of low or high snowfall. All four models were included to estimate snow depth, while SVM was dropped for 203 

SWE estimation due to poor modeling results. The model weights for EA were determined by the correlation coefficient (r), 204 

in which a model with a larger r value would be given a higher weight, and the sum of weights equal to 1.0 (Zhang et al., 205 

2020). Combined model uncertainty for EA predictions was based on the standard deviation of model outputs and is referred 206 

to as the standard deviation to ensemble prediction (STDE). Other statistical metrics included the Mean Absolute Error (MAE), 207 

which is the absolute error between the observed and predicted values, and the Root Mean Square Error (RMSE), which is 208 

more sensitive to outliers and is the square root of the mean squared error between observed and predicted values. Larger 209 

differences between MAE and RMSE would serve to indicate a high variance of the individual errors from the test samples. 210 

The r, MAE, and RMSE were calculated by: 211 

𝑟 =
∑ (𝑝𝑖−𝑝̅𝑖)(𝑜𝑖−𝑜̅𝑖
𝑛
𝑖=1 )

√∑ (𝑝𝑖−𝑝̅𝑖)
2𝑛

𝑖=1 √∑ (𝑜𝑖−𝑜̅𝑖)
2𝑛

𝑖=1

 ,          (1) 212 

𝑀𝐴𝐸 =
∑ |𝑝𝑖−𝑜𝑖|
𝑛
𝑖=1

𝑛
 ,           (2) 213 

𝑅𝑀𝑆𝐸 = √
∑ (𝑝𝑖−𝑜𝑖)

2𝑛
𝑖=1

𝑛
 ,           (3) 214 

where n is the number of matched samples, 𝑝𝑖 is the model prediction, 𝑜𝑖 is the observed snow depth or SWE, 𝑝̅𝑖 is the average 215 

of the predicted values, and 𝑜̅𝑖 is the average of the observed snow depth or SWE as adapted from Brodylo et al. (2024). 216 

Local scale estimations were generated for snow depth via the ensemble-based approach, which were then utilized as 217 

added inputs to aid in upscaling the more limited field acquired SWE data to the same local scale. Snow density was measured 218 

by dividing the estimated SWE by the estimated snow depth in each respective instance. A summary of the methodology 219 

framework can be found in Fig 3. Image objects were generated from multispectral imagery via image segmentation, with 220 

averaged remote sensing and field snow depth values assigned to each unique image object (1). The spatially matched data 221 

was then evaluated through the base machine learning models (RF, SVM, ANN, and MLR) to predict snow depth before being 222 

ascertained with EA by combining model outputs with weighted averaging based on the r value of each model (2). Model 223 

https://doi.org/10.5194/egusphere-2024-3936
Preprint. Discussion started: 23 January 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 

metrics were obtained from each model alongside the mapped estimated local scale snow depth, with the estimated snow depth 224 

from EA and field SWE values then being spatially joined to the previously matched input data (3). The updated spatially 225 

matched data was analyzed by the base machine learning models (RF, ANN, and MLR) to predict SWE before being finalized 226 

with EA (4). Model metrics were generated along with the mapped estimated local scale SWE in each instance (5). 227 

 228 

 229 

Figure 3: Methodology framework to upscale field snow depth data to a local scale by using an object-based ensemble machine 230 
learning approach, and then joining the produced snow depth outputs and matched input data with the field SWE data to generate 231 
local scale SWE outputs. Blue indicates input/output data, yellow indicates processed data, red indicates machine learning, and 232 
green indicates model metrics. RF is Random Forest, SVM is Support Vector Machine, ANN is Artificial Neural Network, MLR is 233 
Multiple Linear Regression, and EA is Ensemble Analysis. 234 
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While the methodology is similar to that found in Brodylo et al. (2024), that work was solely intent on upscaling 1 235 

m2 permafrost active layer thickness (ALT) field data to three 1 km2 local scale sites in Alaska before then further upscaling 236 

the ALT estimates to a 100 km2 regional scale over multiple years. Here, we focused on first upscaling repeat field snow depth 237 

measurements to a 10 km2 local scale in Finland over multiple instances, and then combined the estimated snow depth data to 238 

the original machine learning input data. The addition of snow depth as an input variable enabled a separate, enhanced estimate 239 

of SWE at the same 10 km2 local scale with more limited repeat field SWE measurements over the same multiple instances in 240 

a single winter period. This then permitted snow density to be calculated at each moment in time from snow depth and SWE 241 

estimations. The approach was applied to a shorter temporal analysis for snow depth, SWE, and snow density. It revealed how 242 

each of these variables were interconnected during the initial, middle, and late winter, how machine learning models performed 243 

over the course of the winter period, and how the studied variables related to landcover types over these different instances. In 244 

addition, machine learning snow depth estimates were directly compared to independent LiDAR-based snow depth estimation. 245 

4 Results 246 

4.1 Snow depth 247 

All tested models performed relatively well with the snow depth estimations. The best r, MAE, and RMSE values 248 

were observed with EA in all instances (Table 1). March and April contained the highest r values which were above or equal 249 

to 0.67, and peaked with EA at 0.80 in March, 0.75 in early April, and 0.79 at the end of April. December, which had the 250 

lowest snow depth, had the worst r values with a minimum of 0.46 produced with ANN and a maximum of 0.63 produced 251 

with EA. Owing to the lower snow depth, MAE and RMSE were the smallest out of all six instances at 2.8 cm and 3.6 cm for 252 

EA, respectively. MAE and RMSE steadily increased for all models from roughly 2.8 – 3.3 cm and 3.6 – 4.4 cm in December 253 

to 5.9 – 7.1 cm and 7.8 – 8.9 cm at the end of April. This was expected given increased snowfall and snow depth over time, 254 

alongside minor periods of snowmelt throughout and accelerated snowmelt in April that would increase model uncertainty. 255 

The base models of RF, SVM, ANN, and MLR generally contained similar values for each instance, with some variation. RF 256 

and SVM performed well in all instances, though the former produced the worst r (0.66) in January while the latter produced 257 

consistently above average r, MAE, and RMSE values in all instances. ANN generated the poorest outcomes for r, MAE, and 258 

RMSE (0.46, 3.3 cm, and 4.4 cm) in December, however outside of that it produced positive results, such as in January where 259 

it produced the best for all three (0.69, 3.9 cm, and 4.8 cm). MLR performed on par with the other machine learning algorithms, 260 

yet it arguably produced the poorest metrics, as it repeatedly delivered the highest MAE and RMSE in February (4.9 and 5.9 261 

cm), March (4.8 and 6.0 cm), early April (6.4 and 8.4 cm), and the end of April (7.1 and 8.9 cm). More information about 262 

outputs produced with EA for each instance can be seen in Fig 4, with each instance containing a 1:1 line, fitted linear 263 

regression line, and scatterplot with STDE error bars in blue. With minor exceptions, there was largely an overall agreement 264 

between the field and estimated snow depth values, and between the individual model outputs.  265 
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Table 1: Machine learning model metrics for estimated snow depth with RF, SVM, ANN, MLR, and EA. MAE and RMSE are in 266 
cm. 267 

14-December-22 17-January-23 

 RF SVM ANN MLR EA  RF SVM ANN MLR EA 

r 0.60 0.61 0.46 0.56 0.63 r 0.66 0.69 0.69 0.68 0.73 

MAE 2.9 2.8 3.3 3.2 2.8 MAE 4.1 4.0 3.9 4.0 3.7 

RMSE 3.7 3.7 4.4 4.2 3.6 RMSE 4.9 4.9 4.8 5.1 4.5 

15-February-23 17-March-23 

 RF SVM ANN MLR EA  RF SVM ANN MLR EA 

r 0.73 0.73 0.67 0.62 0.73 r 0.78 0.78 0.70 0.72 0.80 

MAE 3.9 3.7 4.1 4.9 3.6 MAE 4.4 4.0 4.6 4.8 3.9 

RMSE 4.8 4.7 5.1 5.9 4.6 RMSE 5.4 5.1 5.7 6.0 4.9 

17-April-23 28-April-23 

 RF SVM ANN MLR EA  RF SVM ANN MLR EA 

r 0.67 0.68 0.68 0.67 0.75 r 0.76 0.74 0.74 0.73 0.79 

MAE 5.7 5.7 5.8 6.4 5.1 MAE 6.1 6.4 6.6 7.1 5.9 

RMSE 7.9 7.9 7.7 8.4 7.1 RMSE 8.2 8.5 8.5 8.9 7.8 

 268 
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 269 

 270 

Figure 4: Scatterplot, 1:1 line (red line), and fitted regression line (black line) between the predicted snow depth from EA and the 271 
measured snow depth on each occasion from 14-December-2022 until 28-April-2023. STDE is in cyan. 272 

 273 

The snow depth average and standard deviation at each of the vegetative land cover types with the field data and local 274 

scale EA outputs are in Table 2. Mapped snow depth at the field scale and local scale estimates with EA for each instance from 275 

December 2022 – April 2023 can be seen in Fig 5. There was a general agreement and similar snow depth patterns in LULC’s 276 

that contained both field and local scale data. The average snow depth was lowest for the field and local scale in December at 277 

29 cm for both, while the highest readings were in March at 75 and 76 cm, with a rapid decline at the end of April at 36 and 278 

37 cm. Standard deviation was lowest in December (±5 and ±3 cm) while highest at the end of April (±13 and ±8 cm) when 279 

there was increased snowmelt. At the field scale there was up to a 10 – 11 cm difference between coniferous forest (peat soil) 280 

and coniferous forest (mineral soil) from January to early April. The exception is at the end of April during the period of 281 
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snowmelt when field coniferous forest (mineral soil) contained higher snow depth at 43 cm than coniferous forest (peat soil) 282 

at 40 cm. A similar pattern was evident with the field transitional woodland/shrub (peat soil) repeatedly containing higher 283 

snow depths than transitional woodland/shrub (mineral soil) with a maximum difference of 10 cm in early April. However, at 284 

the end of April both were equal at 36 cm of snow depth. Field-based peatbog (wet) and open area contained the lowest levels 285 

of snow depth in all instances, ranging from 26 – 70 cm and 25 – 70 cm, respectively, with the latter experiencing elevated 286 

standard deviation of ±20 and ±22 cm in the last two instances.  287 
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Table 2: Mean and standard deviation (in parentheses) for snow depth (cm) estimates per LULC with field data and at the local 288 
scale with EA. Blank values indicate no field data. 289 

 Snow depth field data Snow depth estimates with EA 

 1
4
-D

ec-2
2
 

1
7
-Jan

-2
3
 

1
5
-F

eb
-2

3
 

1
7
-M

ar-2
3
 

1
7
-A

p
r-2

3
 

2
8
-A

p
r-2

3
 

1
4
-D

ec-2
2
 

1
7
-Jan

-2
3
 

1
5
-F

eb
-2

3
 

1
7
-M

ar-2
3
 

1
7
-A

p
r-2

3
 

2
8
-A

p
r-2

3
 

Arable 
      29 60 61 77 69 37 

      (3) (6) (6) (6) (5) (9) 

Broad-leaved forest 

(mineral soil) 

      31 60 60 77 71 41 

      (2) (3) (3) (4) (4) (6) 

Broad-leaved forest 

(peat soil) 

      32 61 61 79 70 40 

      (2) (3) (3) (3) (4) (6) 

Coniferous forest 

(mineral soil) 

29 55 57 74 64 43 29 57 58 75 66 40 

(5) (6) (4) (6) (7) (9) (2) (4) (3) (5) (4) (5) 

Coniferous forest (peat 

soil) 

34 66 67 84 74 40 32 63 63 81 72 42 

(2) (5) (5) (6) (7) (2) (1) (3) (2) (3) (3) (5) 

Open area 
25 54 54 70 51 33 28 60 61 77 67 39 

(4) (7) (6) (7) (20) (22) (3) (5) (4) (5) (6) (7) 

Peatbog (dry) 
      30 59 59 73 63 36 

      (2) (3) (3) (3) (5) (5) 

Peatbog (wet) 
26 52 53 70 61 27 27 56 56 73 61 30 

(4) (6) (8) (9) (10) (12) (2) (4) (4) (5) (6) (7) 

Transitional woodland 

/shrub (mineral soil) 

29 57 57 74 60 36 30 61 61 79 70 41 

(2) (6) (5) (7) (14) (14) (3) (4) (4) (5) (6) (7) 

Transitional woodland 

/shrub (peat soil) 

31 59 61 80 70 37 30 61 61 79 69 39 

(5) (6) (7) (6) (8) (9) (2) (4) (4) (5) (5) (7) 

All LULC 
29 56 57 75 64 36 29 58 59 76 66 37 

(5) (7) (7) (8) (11) (13) (3) (5) (4) (5) (7) (8) 

 290 
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291 

Figure 5: Field and estimated snow depth (cm) in a) 14-December-22, b) 17-January-23, c) 15-February-23, d) 17-March-23, e) 17-292 

April-23, and f) 28-April-23 alongside g) a LULC map based on data from CLC and h) 28-April-23 snow depth difference from 27-293 

April-23 collected LiDAR. 294 

 295 

At peak snow depth at the local scale in March, both dry and wet peatbogs contained the lowest average snow depth 296 

at 73 cm. Dry, unsaturated peatbog was found to have snow depths equal to or greater than wet, saturated peatbog, with a 297 
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difference of 3 cm in the first three months, equal in March and early April, and then jumping to 6 cm at the end of April 298 

during more intense snow melt. Arable and open area contained similar estimated snow depth values in all instances and were 299 

higher than dry and wet peatbogs from January to the end of April. Forests and transitional woodlands largely contained the 300 

highest average values in March with broad-leaved forest recording 77 cm (mineral soil) and 79 cm (peat soil), coniferous 301 

forest (peat soil) with 81 cm, and transitional woodland/shrub containing 79 cm in both mineral and peat soil. There was also 302 

a consistent 1-2 cm snow depth difference between the local scale broad-leaved forest peat soils and mineral soils, with the 303 

former having higher snow depth leading up to peak snow depth in March, while the inverse was evident post peak snow 304 

depth. Transitional woodland/shrub mimicked this during post peak snow depth with a 1-2 cm snow depth difference between 305 

mineral and peat soil. Local scale coniferous forest (peat soil) consistently contained snow depth values greater than coniferous 306 

forest (mineral soil), with up to a 5 – 6 cm difference from January to early April. In addition, field and local scale snow depth 307 

estimates from 28 April were compared to the difference between snow covered DTM from the prior day and snow-free DTM 308 

from 2020. Results indicate field snow depth measurements generally exceeded the estimated LiDAR-based snow depth 309 

estimations by an average of 9.6 cm, while for the local scale with EA it was lower at 5.4 cm. 310 

4.2 Snow water equivalent 311 

Machine learning model performance for SWE estimation between RF, ANN, MLR, and EA can be seen in Table 3. 312 

Given more limited field-based SWE measurements with 13 samples, the models encountered more pronounced challenges 313 

matching estimations to real-world data yet were generally able to produce acceptable results. SVM was dropped due to poor 314 

performance in all instances. ANN, MLR, and EA contained relatively stable and positive metrics for r, MAE, and RMSE in 315 

all instances. EA generally produced the best metrics, although MLR performed best in some instances. Metrics from RF 316 

varied considerably, being on-par with the other models in December, February, and late April while poor in January, March, 317 

and early April. Despite this, RF was included in the weighted ensemble procedure given that in some instances it produced 318 

acceptable outcomes, while in others the low r value would greatly minimize its weight. A scatterplot, 1:1 line, and fitted linear 319 

regression line for each instance of SWE predictions produced by EA alongside STDE can be seen in Fig 6. December 320 

contained the poorest metrics, with a maximum r of 0.37 with MLR and EA, which may be connected to the poorer snow 321 

depth metrics in that same month, while March contained the highest r of 0.87 with MLR and 0.79 with EA. Similarly with 322 

the snow depth metrics over the same period, MAE and RMSE were lowest in December from roughly 5.0 – 6.6 mm and 5.9 323 

– 7.9 mm before rising to become the highest at the end of April at 24.1 – 33.4 mm and 33.4 – 41.5 mm.  324 
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Table 3: Machine learning model metrics for estimated snow water equivalent with RF, ANN, MLR, and EA. MAE and RMSE are 325 
in mm. 326 

14-December-22 17-January-23 

 RF ANN MLR EA  RF ANN MLR EA 

r 0.30 0.36 0.37 0.37 r 0.05 0.69 0.63 0.71 

MAE 5.0 6.2 6.6 5.8 MAE 9.0 8.4 6.9 6.7 

RMSE 5.9 7.5 7.9 6.6 RMSE 11.0 10.5 9.6 8.4 

15-February-23 17-March-23 

 RF ANN MLR EA  RF ANN MLR EA 

r 0.71 0.67 0.70 0.72 r 0.16 0.64 0.87 0.79 

MAE 11.0 8.9 8.3 6.7 MAE 15.2 12.0 6.3 8.2 

RMSE 12.3 11.6 10.9 9.8 RMSE 17.4 16.0 8.7 10.9 

17-April-23 28-April-23 

 RF ANN MLR EA  RF ANN MLR EA 

r 0.09 0.70 0.72 0.73 r 0.55 0.56 0.71 0.67 

MAE 19.4 14.9 12.9 13.5 MAE 33.4 30.5 31.2 24.1 

RMSE 22.5 18.0 16.0 15.8 RMSE 39.2 41.5 36.9 33.4 

  327 
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 328 

Figure 6: Scatterplot, 1:1 line (red line), and fitted regression line (black line) between the predicted SWE from EA and the measured 329 
SWE on each occasion from 14-December-2022 until 28-April-2023. STDE is in cyan. 330 

 331 

The r values produced by RF ranged from a very poor correlation of 0.05 in January to a high correlation of 0.71 in 332 

February. Despite this, RF easily contained the best MAE and RMSE from all models in December (5.0 and 5.9 mm) alongside 333 

the best r in February from all base models at 0.71, with EA at 0.72. ANN primarily contained metrics that were intermediate, 334 

yet from the base models it was able to produce in January the best r at 0.69 and in late April the best MAE at 30.5. Out of the 335 

base models, MLR generally achieved the best r, MAE, and RMSE in most instances, with it being especially dominant in 336 

March (0.87, 6.3 mm, and 8.7 mm) and early April (0.72, 12.9 mm, and 16.0 mm). However, it also produced the worst MAE 337 

and RMSE in December (6.2 and 7.9 mm). In contrast, EA continually generated the best or second-best metrics in all instances 338 

for r, MAE, and RMSE. EA was particularly dominant with the best r, MAE, and RMSE in January (0.71, 6.7 mm, 8.4 mm) 339 

and February (0.72, 6.7 mm, 9.8 mm). This was despite the large variation in r for RF in both months (0.05 and 0.71). In 340 
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December it matched MLR for the highest r (0.37), while in early April it contained slightly better r (0.73) and RMSE (15.8). 341 

At the end of April, EA generated the lowest MAE (24.1 mm) and RMSE (33.4 mm), which were notably better than the best 342 

base model MAE from ANN (30.5 mm) and RMSE from MLR (36.9 mm). 343 

The average and standard deviation of SWE field data and local scale EA outputs at the vegetative land cover types 344 

for all instances can be seen in Table 4. There were particularly notable SWE disparities at the end of April between peatbog 345 

and forest communities. As with snow depth, the average field and local scale SWE were lowest in December (34 and 35 mm), 346 

while they were highest in early April (177 and 187 mm), post-peak snow depth. Standard deviation increased over the period 347 

at both the field and local scale from ±6 and ±5 mm in December to ±46 and ±33 mm at the end of April. Across all instances 348 

the field SWE for coniferous forest (mineral soil), open area, and peatbog (wet) ranged from 30 to 173 mm, 34 to 176 mm, 349 

and 37 to 180 mm, respectively. Field SWE was repeatedly higher in transitional woodland/shrub (peat soil) ranging from 38 350 

to 192 mm. The exception was at the end of April when the inverse occurred, and it recorded the lowest SWE (119 mm) 351 

alongside the highest standard deviation of ±80 mm that was influenced by extreme SWE field data variation. At the local 352 

scale, SWE continually ranged higher at coniferous forest (peat soil) from 36 to 191 mm than at coniferous forest (mineral 353 

soil) from 29 to 185 mm, despite the lack of on-the-ground data for the former. At the end of April, the difference increased 354 

to 19 mm. For both broad-leaved forest and transitional woodland/shrub, the opposite was found with SWE values tending to 355 

be higher in mineral soil than in peat soil from January to the end of April. For broad-leaved forest the difference peaked at 6 356 

mm at the end of April, while for transitional woodland/shrub it was up to 18 mm in both March and the end of April. Local 357 

scale peatbog (dry) had higher or equal to average SWE than peatbog (wet) from January to end of April, ranging from 111 – 358 

181 mm, compared to 108 – 178 mm. In late April the difference widened to 20 mm. Local scale arable and open area contained 359 

continually higher SWE values than dry and wet peatbogs between January and late April. A distribution of SWE over the 10 360 

km2 site for each instance from December 2022 – April 2023 can be seen in Fig 7, which illustrates where and how much SWE 361 

varied over time for the field data and EA-based local scale outputs.   362 
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Table 4: Mean and standard deviation (in parentheses) for SWE (mm) estimates per LULC with field data and at the local scale 363 
with EA. Blank values indicate no field data. 364 

 SWE field data SWE estimates with EA 
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Arable 
      35 123 142 183 194 149 

      (7) (15) (8) (14) (11) (35) 

Broad-leaved forest 

(mineral soil) 

      35 123 139 194 193 167 

      (5) (7) (6) (11) (11) (22) 

Broad-leaved forest 

(peat soil) 

      36 120 140 190 191 161 

      (4) (8) (7) (11) (12) (24) 

Coniferous forest 

(mineral soil) 

30 105 132 159 173 140 29 120 134 180 185 150 

(7) (9) (17) (11) (19) (34) (6) (10) (7) (14) (14) (24) 

Coniferous forest (peat 

soil) 

      37 123 143 192 198 169 

      (3) (5) (4) (8) (8) (17) 

Open area 
34 115 136 164 176 142 37 128 140 193 194 164 

(9) (12) (22) (26) (44) (55) (5) (11) (6) (19) (14) (24) 

Peatbog (dry) 
      36 111 133 169 181 133 

      (2) (8) (6) (12) (12) (25) 

Peatbog (wet) 
37 107 131 162 180 121 37 108 133 165 178 113 

(3) (13) (14) (21) (17) (45) (2) (10) (8) (17) (15) (29) 

Transitional woodland 

/shrub (mineral soil) 

      36 130 142 201 198 172 

      (6) (9) (6) (12) (12) (22) 

Transitional woodland 

/shrub (peat soil) 

38 120 137 183 182 119 38 117 141 183 194 154 

(5) (11) (14) (21) (35) (80) (2) (9) (7) (14) (11) (27) 

All LULC 
34 110 133 166 177 131 35 117 137 180 187 144 

(6) (11) (15) (18) (23) (46) (5) (11) (8) (18) (15) (33) 

365 
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 366 

Figure 7: Field and estimated SWE (mm) in a) 14-December-22, b) 17-January-23, c) 15-February-23, d) 17-March-23, e) 17-April-367 
23, and f) 28-April-23 alongside g) a LULC map based on data from CLC. 368 

 369 

4.3 Snow density 370 

Snow density is the ratio between the volume of water produced by melting a given volume of snow and the original 371 

volume of snow itself. This percentage refers to the water content within a given volume of snow. In general, fresh snowfall 372 

has low density while older, compacted, or wind-effected snow will have a higher density. Table 5 contains the mean and 373 

standard deviation of the snow density percentage for each vegetative landcover type from December to the end of April. The 374 

average snow density percentage for field and local scale data was lowest in December with 12% for both, while the highest 375 

was at the end of April at 36% and 39%, respectively. Standard deviation for the combined averages were generally low, with 376 
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a maximum of ±4% and ±5% in late April for field and local scale EA estimates. For the first five instances, snow density 377 

percentages were slightly higher with the canopy-free open area and peatbog (wet), which ranged from 14 – 31% and 13 – 378 

29%. In contrast, the more tree-covered coniferous forest (mineral soil) and transitional woodland/shrub (peat soil) routinely 379 

experienced lower percentages ranging from 11 – 27% and 13 – 27%. In the final instance, field transitional woodland/shrub 380 

(peat soil) and peatbog (wet) had the highest snow density percentages at 42% and 39%, while open area and coniferous forest 381 

(mineral soil) were markedly lower at 33% and 32%. 382 

 383 

Table 5: Mean and standard deviation (in parentheses) for snow-to-water-percentage estimates per LULC with field data and EA. 384 
Blank values indicate no field data. 385 

 Snow-water-percentage field data Snow-water-percentage estimates with EA 
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Arable 
      12 20 23 24 29 42 

      (2) (2) (2) (2) (2) (8) 

Broad-leaved forest 

(mineral soil) 

      11 21 23 25 27 41 

      (1) (2) (1) (2) (2) (7) 

Broad-leaved forest 

(peat soil) 

      11 20 23 24 27 41 

      (1) (2) (1) (2) (1) (5) 

Coniferous forest 

(mineral soil) 

11 20 23 22 27 32 10 21 23 24 28 38 

(3) (1) (3) (1) (1) (1) (2) (2) (1) (3) (2) (5) 

Coniferous forest (peat 

soil) 

      12 20 23 24 28 41 

      (1) (1) (1) (1) (1) (3) 

Open area 
14 21 24 22 31 33 13 21 23 25 29 42.5 

(1) (1) (1) (1) (5) (1) (2) (2) (2) (2) (2) (5) 

Peatbog (dry) 
      12 19 23 23 29 37 

      (1) (1) (1) (1) (1) (4) 

Peatbog (wet) 
13 21 23 22 29 39 14 19 24 23 30 38 

(1) (2) (1) (1) (2) (1) (1) (1) (1) (1) (1) (5) 

Transitional woodland 

/shrub (mineral soil) 

      12 21 23 26 28 43 

      (2) (2) (1) (2) (2) (6) 

Transitional woodland 

/shrub (peat soil) 

13 20 23 23 27 42 13 19 23 23 28 40 

(2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (4) 
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All LULC 
12 20 23 22 28 36 12 20 23 24 28 39 

(2) (1) (2) (1) (3) (4) (2) (2) (1) (2) (2) (5) 

 386 

As with the field averages, for the local scale averages from December to early April there were generally minimal 387 

differences in snow density between different land cover types while experiencing greater fluctuations at the end of April with 388 

a maximum difference of 6%. Local scale arable and open area contained the same averages in three instances with open area 389 

also having a 1% higher increase in snow density in three instances. Peatbog (wet) contained percentages equal or up to 2% 390 

higher than peatbog (dry) in all instances. Average snow density percentage on transitional woodland/shrub (mineral soil) was 391 

equal to or up to 3% higher than for peat soil from January to the end of April, with broad-leaved forest (mineral soil) being 392 

equal to the broad-leaved forest (peat soil) in four instances and up to 1% higher in the remaining two. For coniferous forest it 393 

was relatively stable between the mineral and peat soils until the end of April when the average was 38% for mineral soil and 394 

41% for peat soil. At the end of April for the local scale, the lowest snow density averages were recorded for dry and wet 395 

peatbogs at 37% and 38%, alongside 38% for coniferous forest (mineral soil). In contrast, the highest average snow density 396 

percentages at the local scale were in transitional woodland/shrub (mineral soil) at 43%, along with both arable and open area 397 

at 42%. A spatial view of the gradual increase in the snow density percentage across the six instances with the rapid rise at the 398 

end of April can be seen in Fig 8.  399 
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 400 

Figure 8: Field and estimated snow density percentage in a) 14-December-22, b) 17-January-23, c) 15-February-23, d) 17-March-23, 401 
e) 17-April-23, and f) 28-April-23 alongside g) a LULC map based on data from CLC. 402 

5 Discussion 403 

With snow depth estimation, all models performed well, with EA generating the best statistics. As is common for the 404 

study region the snow depth was lowest in December and highest in March before daily temperatures began exceeding 0 °C 405 

in April. There were consistent differences in snow depth between different vegetative communities. This was most apparent 406 

with higher snow depth being associated with broad-leaved forests, transitional woodland/shrubs, and particularly with 407 

coniferous forest (peat soil). Shallower snow depth was recorded at arable, coniferous forest (mineral soil), open areas, and 408 

both dry and wet peatbogs. With peatbogs, wet peat conducts heat better than dry peat resulting in heat flowing more 409 

effortlessly in wet peat layers in winter (Kujala et al., 2008), which may result in increased snowmelt and compaction. 410 
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Furthermore, mineral soil is more thermally conductive than peat soil (Atchley et al., 2016), which may promote snowmelt 411 

and compaction in similar vegetation communities containing mineral soil compared with peat soil where snowmelt and 412 

compaction would be reduced. Forests with drier mineral soils were generally more shielded from saturated soil found in 413 

peatbogs, while forests with peat soil were oftentimes adjacent to peatbogs. As the water table in many parts was at or near the 414 

surface, adjacent soils would contain greater soil saturation while the shielded mineral soils would in theory be more 415 

unsaturated. A notable exception is for approximately half of the broad-leaved forest (mineral soil) that is along the Kitinen 416 

River, which may have especially influenced snow depth, SWE, and snow density readings for that LULC. Given that saturated 417 

soil needs greater energy to heat than does unsaturated soil (Howe and Smith, 2021), saturated soil would require greater 418 

energy to warm in the spring and remain warmer in the winter than the unsaturated soil, which would have a resulting impact 419 

on snow cover. Post winter soil thaw varied with five FMI Campbell Scientific 109-L soil temperature sensors in the study 420 

area at 5 and 10 cm below the surface. For two sensors found in coniferous forest and one in an open area with mineral soil, 421 

the soil fully thawed out between 10 – 25 April, while for the two sensors in the peatland, the soil thawed out from 11 – 13 422 

May, which would have aided in accelerating overlaying snow cover melt for the former. It should be noted the impact that 423 

direct solar radiation may have on the energy balance of the snowpack and melt processes, along with wind impacted (open 424 

areas) versus wind protected (forest) vegetative communities. Lastly, snow interception and sublimation are major factors in 425 

forest communities, especially with conifers, which can lead to a notable diversity of snow accumulation on the forest floor 426 

(Helbig, 2020). 427 

For the SWE estimations, model results were more mixed, but nonetheless promising. ANN, MLR, and EA were all 428 

able to produce encouraging metrics, while there was elevated variation with RF. EA consistently produced the best or second-429 

best metrics, and generally produced the best metrics. MLR also performed well despite being the simplest form of machine 430 

learning in this study. In comparison to the snow depth there was a much smaller sample size which led to greater model 431 

uncertainty and disagreement. A greater number of SWE field samples would have provided enhanced findings; however, 432 

these field measurements can be time-consuming and expensive to collect across a large geographic region, with SWE 433 

measurements taking approximately 20 times as long to complete compared to snow depth measurements (Sturm et al., 2010). 434 

Nonetheless SWE was found to be lowest in December and highest in early April, which was post-peak snow depth. With the 435 

field data, it was found that SWE was higher in transitional woodland/shrub (peat soil) than with coniferous forest (mineral 436 

soil), which may be attributed to potentially more saturated peat soil allowing for greater water retention within the snow 437 

cover, while the unsaturated mineral soil drained slightly more liquid from the overlaying snow cover. Mineral soils across the 438 

study site are sand-rich and would be dry most of the time at the surface and likely never reach saturation, with any melted 439 

snow being drained in these soils. The one exception was with the end of April when there was a notable reversal, which may 440 

have been due to increased snow interception, snowmelt, sublimation, and windblown snow from branches in some vegetation 441 

types. A similar trend was observed at the local scale. Local scale coniferous forest (peat soil) continually contained higher 442 

average SWE than coniferous forest (mineral soil) which may be the result of the unsaturated mineral soil absorbing water 443 

from the overlaying snow while the saturated peat soil slowed the draining of water through the snowpack and into the soils. 444 
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Wet and dry peatbogs largely contained the lowest SWE measurements. These low open areas likely experienced enhanced 445 

wind activity that blew snow laterally away while also leading to greater sublimation. This would have led to greater snow 446 

particle cohesion and denser wind slab layer formation at the surface of the snowpack due to sintering after snow was mobilized 447 

in the wind (Mott et al., 2018). 448 

Lastly, snow density was lowest in December and increased until the end of April when it was highest, which was 449 

during a period of rapid snowmelt. This was to be expected given that the beginning and middle winter typically contain larger 450 

quantities of fresh snowfall, while by the end of winter the snowpack would have compacted over time and become denser as 451 

the snowpack reaches an equilibrium temperature state of 0 °C (e.g., isothermal). As the snowpack develops, a larger snow 452 

grain size (depth hoar) results in a lower density in shallow snowpack. However, as the snowpack becomes isothermal, the 453 

depth hoar layer will metamorphose and become denser, especially near the ground (Gu et al., 2019). With the field data, a 454 

higher snow density percentage was observed at the end of April in peatbog (wet) and transitional woodland/shrub (peat soil) 455 

which contrasted with coniferous forest (mineral soil) and open area and may be attributed to soil saturation for those specific 456 

locations. At the end of April for the local scale the highest snow density percentages were found in vegetative communities 457 

that were more impacted by wind such as arable, open area, and transitional woodland/shrub (mineral soil) by a slight amount. 458 

In contrast, coniferous forest (mineral soil) along with wet and dry peatbogs contained the lowest percentages with landcover 459 

containing peat soil experiencing higher snow density percentages than with landcover containing mineral soil. Local scale 460 

wet peatbog was found to generally contain slightly higher amounts than dry peatbog. This may be attributed to dry peatbog 461 

being on average ~2.2 m higher in elevation than wet peatbog in our study area, which may have contributed to the movement 462 

of water over time to wet peatbogs at incrementally lower elevations. 463 

Solar radiation increased throughout the timeframe and was not uniform over the study area, such as with thick forests 464 

sometimes obscuring adjacent canopy-free areas from solar radiation. As this would have impacted real-world snow estimates, 465 

we incorporated end of winter WV-2 imagery in the framework as it was able to aid in capturing such irregularities. A limited 466 

quantity and spatial extent of field measurements restricted further associations with vegetative communities, especially for 467 

SWE and, in turn, snow density. Had additional measurements been taken at communities missing field data, there would be 468 

a more comprehensive understanding of snow-landcover relationships. Additional datasets would have likely improved the 469 

model statistics and estimation of all three studied features. Soil moisture and air/subsurface temperature data were accessible 470 

in the study area yet were excluded, despite their strong association with snow depth and SWE (Contosta et al., 2016). This 471 

was due to a limited number of these measurements that corresponded to the six instances, with some containing gaps or 472 

missing data which would hinder spatial mapping and association with landcover types. Furthermore, very few of these 473 

measurements were located on or adjacent to the field snow depth and SWE measurements, which severely limited a proper 474 

linkage between the field data with soil moisture and temperature. Additional remote-sensing based data could have been 475 

utilized as an add-on to assist in mapping soil moisture and temperature for the study, alongside improving estimations for 476 

snow depth and SWE. However, due to the vegetative heterogeneity at the 10 km2 site and clustering of the field data, medium 477 

and low-resolution imagery would have provided questionable benefit. High-resolution hyperspectral imagery and Synthetic 478 
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Aperture Radar (SAR) are particularly relevant, given the additional available spectral bands of the former and the proven 479 

application with snow depth and SWE detection in the latter (Patil et al., 2020), and would have likely benefited the findings. 480 

6 Conclusions 481 

We employed an object-based machine learning ensemble approach with time-series field snow depth and SWE data 482 

in northern Finland to first estimate snow depth at a local scale, before incorporating the snow depth outputs to estimate SWE 483 

at the same local scale alongside generating snow density estimations from six instances between December 2022 and April 484 

2023. Snow depth peaked in March, SWE peaked shortly after in early April, and snow density peaked with the final available 485 

data at the end of April. Multiple machine learning models, particularly with the ensemble approach, were shown to positively 486 

estimate key snowpack attributes over the period at the study site in Sodankylä. We established that there are direct spatial and 487 

temporal connections between three commonly studied snowpack elements with vegetation and soil types, with more research 488 

recommended to further characterize these associations. Although there is promise with intricate machine learning techniques, 489 

this study also highlights opportunities to assess where less complex methods may be employed for computational efficiency, 490 

especially when scaling up. While performed over a small portion of northern Finland, when matched with other field-based 491 

snowpack and remote sensing data across the region it would be possible to further upscale the studied snow-based estimates 492 

over a wider, regional-scale over various periods in time. This would also need to account for differing types of snowpack, 493 

terrain, and vegetative communities found throughout the pan-Arctic domain. As average temperatures around the Arctic are 494 

projected to increase with fewer days below freezing, more uncertain climactic conditions and precipitation events would 495 

affect the quantity, rate, and timing of snowfall, snow-on/snow-off, and snowmelt runoff in the region. Given that waterbodies 496 

such as lakes, ponds, and rivers in Finland and other high latitude areas are fed by the annual snowmelt, any changes to this 497 

natural process would meaningfully alter the hydrological makeup. The machine-learning based methodology applied in this 498 

effort can serve to benefit future snow-related analyses in high latitude regions, alongside other areas on Earth that regularly 499 

experience seasonal snow. 500 
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