Dear Editor and Reviewers,

We would like to first thank you for taking your time in reviewing our manuscript and providing
constructive feedback to aid in addressing weak points and areas of concern, while also seeking
to strengthen the novelty of the presented work. In the following, we addressed each of the points
raised. Black text indicates the reviewer’s comments. Blue text indicates our response and
changes to the manuscript.

Your feedback is much appreciated.

Sincerely,

David Brodylo

Reviewer #1
General Comments:

Brodylo et al.’s manuscript is well-written, structured clearly, and supported by strong graphical
presentation, providing a straightforward exploration into snow depth and snow water equivalent
(SWE) estimation using an ensemble machine learning approach. The integration of LiDAR,
remote sensing imagery, and in-situ observations is logical and aligns well with the type of
studies frequently published in this journal. However, | have several significant concerns
regarding the novelty of the approach, methodological clarity, and the limited sample size—
particularly for SWE estimation—that need to be thoroughly addressed before the paper can be
considered for publication. I have outlined these major concerns, along with specific suggestions
for improvement, in detail below.

Major Comments:

1. Currently, the paper's primary novel contributions are unclear to me. While the presented
approach effectively integrates established practices (ensemble machine learning methods,
LiDAR-based snow depth estimation), the methodological novelty seems incremental and
primarily focused on application in the specific context of Sodankylé, Finland. Intuitively, an
ensemble approach should outperform individual techniques; however, given the limited sample
size—especially with SWE data (only around a dozen observations)—it becomes challenging to
conclusively demonstrate superiority over simpler, more traditional methods such as multiple
linear regression. Indeed, as highlighted in Table 3, some machine learning models significantly
underperform in certain months, likely due to this limited dataset. Thus, at present, the main
takeaways and broader scientific significance are somewhat ambiguous. I encourage the authors
to clearly articulate the core contributions of their approach, considering the constraints posed by



dataset size. If a stronger case for novelty can be made, particularly in comparison to simpler or
previously established methods, this would greatly strengthen the manuscript, as I am currently
unsure of the main takeaways.

We added a convolutional neural network (CNN) model into the modeling approach. This deep
learning model served as a contrast to the more commonly utilized and well-known machine
learning methods and served to demonstrate how well each of these (RF, SVM, ANN, and MLR)
perform against CNN. CNN results were also compared to the machine learning-based EA
results for snow depth or SWE estimation. The CNN model was also included into the EA
modeling in a hybrid-like approach of machine learning and deep learning. A weighted, hybrid
model that combines deep learning with traditional machine learning can attempt to fuse the
intricacy of multiple layers of neural networks with the relative simplicity of more traditional
models for snow depth estimation over a winter timeframe, before then estimating SWE with the
predicted snow depth values. To aid in providing more valuable input data, we generated
polygons with a 3 m radius at each observed field point that contain average and standard
deviation raster band values. Previously, the band values for each point were linked to image
objects that could be long and thin, or have the point located near the corner or edge and thus not
truly represent the band values of nearby features such as trees or water. This ensured that the
input data for this new modeling approach better incorporated the spatial context of surrounding
features and led to notable modeling performance, especially for SVM and RF.

2. Further clarity is needed regarding the training and validation processes for the machine
learning models. The authors briefly mention using a "k-fold" validation but do not clearly
specify how the data was partitioned into training, validation, and test sets at each step. Important
details are missing, such as whether splits were random or sequential—random splits could
inadvertently introduce spatial autocorrelation issues. Additionally, specifics on the machine
learning implementations are essential. For instance, how deep were the random forest trees
allowed to grow? What structure was adopted for training the multi-layer perceptron—including
the number of hidden layers, neurons per layer, activation functions, epochs, and optimization
methods? Providing visualizations of training and validation curves for MLP models would also
help clarify the model training and generalization processes. These details are crucial for
reproducibility and fully understanding the robustness of the results.

Input data was randomly assigned into a 10-fold CV approach that separated the input data into a
similar number of observations for the training or testing partitions. In each iteration, 90% of the
data was utilized for training the model, while a different 10% was used to test that model. In the
next iteration, a different 10% of the data would be used to test the model, with 90% of the data
being for training. Thus, each observation is in the testing group 1 time and used to train the
model 9 different times. Given that each iteration is run independently, each successive iteration
does not result in the model learning from previous training/testing CV results which may result
in biased outcomes. The outcomes are compared once all the iterations have been run with a
mean of the model scores used for the final outcome. Chosen hyperparameter settings for each of
the model inputs were added into the appendix as suggested by Reviewer #2.

3. Given the inherently spatial nature of snow depth and SWE, I'm curious if the authors
considered employing machine learning methods specifically designed to leverage spatial
dependencies in data. The current choice of models—MLR, RF, and MLP—generally treats each
data point independently, potentially losing valuable spatial context unless explicitly provided as



an input feature. Models that explicitly capture spatial information (e.g., convolutional neural
networks like U-Nets, or vision transformer approaches) could better represent the spatial
variability across diverse land types. Exploring spatially aware methods, despite your current
dataset limitations, could significantly increase the novelty and impact of your study.

Previously, our input data for snow depth and SWE contained raster values associated with
image objects that may not properly account for the spatial variability of nearby features. For
instance, the field data may have been in the corner of an image object, or in one that is long and
thin, with either case not providing a true indication of the surrounding terrain in reference to the
location of the actual field data. To better integrate spatial context to the modeling procedure, we
instead generated 3 m radius polygons around each field measurement that included the average
and standard deviation of the raster data such as spaceborne imagery band values, elevation, and
canopy height. This allowed nearby features which may have affected the real-world snow depth
and SWE values to be better connected to the observed field snow depth and SWE data before
then repeating the modeling. We also include a CNN model into our approach to compare how
this method compares with the previous models, how it can be integrated into the ensemble
approach with a hybrid of machine and deep learning, and what benefit may result for EA with
estimating snow depth and SWE.

4. Finally, I also feel that this paper would really benefit from a more comprehensive comparison
to existing approaches in the literature. Although your method is LiDAR-derived, related studies
by Bair et al. (2018), King et al. (2020), Liljestrand et al. (2024), Shao et al. (2022), and
Vafakhah et al. (2022) (amongst others) have utilized similar ML methodologies (RF and neural-
network-based architectures) to predict regional variations of SWE. A clearer positioning of your
work in relation to these papers would not only help justify the novelty of your method but also
allow readers to better appreciate your contributions relative to the current state-of-the-art
approaches. Such contextualization could also probably help address some of the concerns I raise
in Comment 1 regarding methodological novelty.

The mentioned studies were included in the updated manuscript. These studies and many like
them (ours included) have noted the use of ML methodologies like RF, SVM, and other
regression-based models in predicting snow related features, often with the support of various
remote sensing data. Here we focused on comparing commonly utilized regression-based ML
models and a weighted ensemble model to first estimate snow depth in six instances over a
winter period, before then utilizing the more numerous snow depth data to aid in estimating more
limited SWE data over the same period. To further distinguish our work, we incorporated a deep
learning CNN model for comparison to the ML models and integrated it into the weighted
ensemble approach. Thus, the final model would be a weighted, hybrid ensemble approach of
machine learning and deep learning.

Minor Comments:

o Lines 89: With all the different datasets being used here, I wonder if a summary table
listing their names, variables, resolution, and source would help better situate readers?



A summary table listing different data types, sources, names, resolutions, etc. was
provided at the end of section 2.2 to help more clearly visualize the datasets used in this
approach.

Lines 162-163: It wasn’t totally clear to me what this RF classification scheme was
referring to here? Why is this step necessary?

The acquired Land Use Land Cover (LULC) data, while very helpful, was limited at a 20
m resolution that was coarse for the chosen study site and limited the ability to make
clear connections with obtained field data and vegetation types. In addition, the LULC
data was from 2018, and may have become more outdated since that time. Thus, we
needed to downscale the data to the 2 m resolution of the WorldView-2 imagery and the
LiDAR data to provide a clear connection between these values and the landcover types.
Just changing the resolution would result in many misclassifications, especially with
artificial features and in heterogenous areas. As a result, we needed to utilize a
classification-based scheme to better connect findings with properly downscaled and
classified land cover types. While many different classification models would have
served well, the best performance was obtained from Random Forest, which was why it
was chosen for this purpose.

Section 3.1: I also don’t fully understand this image segmentation step and how it is
“utilized as the spatial unit for image assessment”. Why does this need to be done for this
project, and how are the resulting segments used in the models afterwards?

All pixels found in a specified image are separated into groupings of similar pixel values.
These grouped pixels are then converted into polygons across the entire study area, with
each polygon representing grouped pixels that match real-world features such as a cluster
of bushes or a small body of water. Each of these polygons, now referred to as image
objects, will then contain the average and standard deviation of all raster-based data
inputs which are separated into columns. The field data are then placed into image objects
based on spatial location and modeling is performed. This was accomplished for this
project as a pixel-based method can result in heightened variance in nearby pixel values
that can result in extreme predictions, such as with the presence of shadows which were
in the obtained imagery, or with rapid differences in predictions in very heterogenous
areas. In addition, there may also be a potential mismatch between the imagery bands and
the LIDAR data that may result in an individual pixel being incorrectly assigned a value.
However, by using the image objects for the image assessment, it provides averaged band
and LiDAR values that help to minimize extreme values, and thus provide more realistic
values into the modeling approach. Once the modeling is completed, the predicted values
are then assigned to all the image objects in the entire study area, as except for the field
snow depth and SWE data, every image object contains the same set of raster data.

Lines 189-192: I think this section is important, and I would add a little more detail
describing each of these models and how they’ve been used in other studies, as they
really underpin your main results. For instance, I’d mention bootstrapping and
aggregation in the RF, and I would rework your description of the ANN (as the linkage to
the human nervous system is somewhat spurious) and not a clear description of how it
actually works (i.e., a feedforward directed acyclic graph connected with artificial
neurons with nonlinear activation functions)



We expanded upon the descriptions of each of the models listed in section 3.2 and in the
appendix to provide greater clarity of what these models are and how they function. We
adjusted the description for ANN and updated it with text that better explains how it
functions.

Lines 203-204: Do you know why the SVM performance so poor? I’'m wondering if the
sample was simply too small for this approach? This goes back to my earlier major point
that the same issue with the limited SWE data is also likely impacting the other models.
However, it does feel a bit odd to me to just choose to not include a model in some cases
due to poor performance when using an ensemble approach

SVM was dropped for SWE at the time likely due to the lack of available field data,
which as was seen with RF could result in poor performance, especially if outliers were
present. As noted earlier, many of the field input data were joined to image objects but
may have been spatially located in a corner or edge or be a part of a long and thin image
object. All of these may have not represented the true surroundings of the obtained field
data. This was addressed by changing the field inputs to collect raster values within a 3 m
radius of each field point, thereby providing proper spatial context into the modeling.
This helped lead to a substantial improvement in SVM performance and including it in
the ensemble model, along with for the other models. Hyperparameters were further
tweaked because of this change.

Eqs. 1/2/3: This is personal preference but these are all very common metrics that don’t
need to be explicitly defined in this work

These three equations were removed from the manuscript.

Lines 258-260: From a physical perspective, what do you think is causing this large
swing in performance for the ANN over these months? Is there something about the onset
snow in December that makes this an especially challenging task for the NN?

A possibility is that in December, which is in the early middle of the winter period, there
is relatively little snow. Snow depth is thus less variable and is somewhat more uniform
across the landscape regardless of canopy cover or vegetation type when compared to
further in the winter period such as in March or April. In addition, in late autumn and
early winter temperatures may rise above freezing and rain events may also occur, both of
which may reduce and flatten the snowpack. Over the course of the winter period, the
effects of frequent snowfall and wind patterns may have led to more noticeable
differences in snow depth based on the landcover.

Table 1: For this table and the others after, I am wondering if this would be more
interpretable as a bar graph? Comparing so many numbers in a table like this can bit a bit
challenging

For the revised manuscript we updated these tables into graphs that convey the same
information, but ideally in a manner that is more clearly legible. For Tables 1 and 3 these
graphs show the MAE and RMSE, alongside the coefficient of determination (R?) instead
of the Pearson’s correlation (7) as requested by Reviewer #2. Tables 2, 4, and 6 were
likewise updated into bar graphs that include the mean and standard deviation values, and
were color coded to match the LULC values in the respective maps for ease of



comparison. Maps showing the snow depth, SWE, and snow density were all also
updated with the updated EA based results.

Table 2: Similar to my previous table comment
See comment above for Table 1.

Figure 5: The red->green color scheme for snow depth can be challenging to view for
color blind individuals, and I would recommend moving to something more accessible

Thank you for pointing this out. The color scheme for snow depth was now updated from
red -> green to a different variation of blue->orange, as is seen in the previous version of
Figure 5 (h) to make it more accessible for color blind individuals. This same color
scheme change was applied to Figures 7 and 8 for consistency and ease of comparison
between figures.

Lines 318-319: Was the SVM left out because it had bad performance everywhere for
SWE? As you state, the RF was also inconsistent for SWE prediction, but was still
included in this part of the analysis

Correct, SVM was left out as it was largely producing poor metrics for SWE. It is valid
that RF was also inconsistent with modeling results. It was chosen to remove SVM at the
time as neither individually nor when it was added into the ensemble analysis did it
provide meaningful outcomes, and in all cases reduced ensemble performance. With RF,
while it sometimes did result in poorer outcomes, it also had instances where it provided
meaningful outcomes and benefited the ensemble analysis, and was thus included in the
SWE modeling. However, due to undergoing notable field data image object changes, we
have redone model performance and have included SVM for SWE. This is largely due to
changing the field-based image objects to instead be polygons with a 3 m radius at each
field location, which thereby better included nearby terrain and vegetation values. While
this benefited all models, it was most evident with SVM.

Lines 344-362: 1 appreciate the detail the authors put into comparing SWE over various
land cover types, however this section (and other similar paragraphs) are a bit challenging
to parse in their current form. Currently, you list many statistics in a row, and it isn’t fully
clear to me what I am to take from all of these stats? I wonder if you could restructure
these paragraphs to highlight the most important findings and relate those to what the
predictive accuracy means for each land cover type?

We revised how this paragraph and other paragraphs like it were structured to highlight
the most important findings, while minimizing or eliminating findings that are minor or
add little value. The repetition of values was reduced to make it clearer. This was done
through most of the results section of the manuscript.

Lines 428-429: When referring to EA here, it sounds as if it is it’s own technique, but
really it is just a combination of the MLR/RF/MLP. And this enhanced performance in
the EA is because of high variability in individual models with biases which mostly
cancel out resulting in a more stable prediction. So is this section speaking primarily to
the high variability of individual models?



Yes, the EA outputs are the result of a mixture of model outputs with high variability that
can often cancel out, and thus generally lead to more stable predictions. The text in this
section highlights that RF had the highest variation out of the listed models, specifically
in terms of having a large range between positive and more discouraging modeling
metrics, such as having a » value of .05 and 0.71. None of the other models listed
experienced such a dramatic variation, despite utilizing the same input data but in
different instances. This contrasted with ANN, MLR, and EA which tended to be more
stable in each instance. In the current manuscript this portion was updated with the
inclusion of the CNN and SVM models, alongside updated metrics for all models.

Line 430: I would reword this sentence “EA consistently produced the best or second
best metrics, and generally produced the best metrics”

This sentence was reworded in the revised manuscript as “EA contained the most stable
and positive metrics for R? in all instances.”

Lines 471-475: Could you have included reanalysis estimates from say ERAS to provide
temperature, humidity and pressure data to your models? While coarse, this would
perhaps give you some additional information about the surrounding environmental
context at the time of observation?

We attempted to include data from ERAS, and while it did provide some additional
context, it was still nonetheless hard to visually distinguish how factors such as
temperature, humidity and pressure with a coarser resolution could be immediately made
relevant. When inputted into the models, at the best it was mixed results while oftentimes
limiting performance. Had our field locations been more dispersed and greater in number,
it likely would have aided the modeling performance.

Lines 501-502: I would strongly recommend including some code for reproducing at
least a subset of these results, perhaps in an interactive notebook uploaded to Google
Colab with some test data? Then others could more easily test and build on what you
have provided here

We provided a link for code to be made available to the public near the bottom of the
manuscript in the section “Code and data availability”. It also includes data so that others
who are interested can test and build upon what was done in this manuscript, and to
verify that the outcomes are reproducible.
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Thank you for the references, these were included and cited in the manuscript.

Reviewer #2

The paper “Object-based ensemble estimation of snow depth and snow water equivalent over
multiple months in Sodankyld, Finland,” authored by Brodylo et al., investigates the use of four
machine learning techniques and their ensemble for snow depth estimation. The estimated snow
depths were then used to estimate SWE. Finally, the ratio of the modeled SWE to snow depths
was taken to estimate snow density. In my estimation, the paper is well written. However, I have
major comments regarding the methodological clarity.

1. In section 3.2, the authors mentioned using Artificial Neural Networks (ANNs), among
other models. However, they did not mention the exact architecture of the ANN (e.g.,
feed-forward, convolutional, transformers, etc.) used. Without this information, it is
difficult to evaluate the appropriateness of the ANN architecture used in the study.

The architecture of the ANN model was a feed-forward model with a single hidden layer.
Specifically, we used “nnet” from the “caret” package in the R programming language.
This was expanded upon and added to the text in section 3.2 alongside in the appendix.

2. Insection 3.2, the details of the hyperparameters of the ML models (SVM, RF, and ANN)
used were not mentioned. For example, for ANN, in addition to the architecture type, it
would be beneficial to add the number of layers and neurons per layer, the activation
function used, regularization (if any), the number of epochs, and other important
hyperparameters used. For SVM, the kernel used, gamma, tolerance, and other important
hyperparameters should be specified. For RF, the number of trees, the maximum depth,
the minimum number of samples required to be at a leaf node, the minimum number of
samples required to split an internal node, and other important hyperparameters should be
specified. These details are essential for reproducibility.

The hyperparameters for the RF, SVM, and ANN models were added into the appendix at
the end to provide greater clarity for how the models were tuned and what values were
specified. This section also includes the hyperparameters for the convolutional neural
network (CNN) model as suggested by Reviewer #1.
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3. Also, in section 3.2, the authors mentioned using 10-fold cross-validation. However,
important details are missing.

1. Was the 10-fold CV done on the entire dataset or just the training set?

The 10-fold CV was performed on the entire dataset to generate model
performance when making predictions with the CNN, RF, SVM, ANN, and MLR
models. For EA, it was indirectly applied, in that the outcomes were based off the
weighted combination of base model outputs which were obtained with CV.

2. No details about the train/test split ratio and strategy (random, stratified, etc) were
mentioned.

The utilized 10-fold CV approach was utilized to randomly separate the input data
into either training or testing. In each iteration, 90% of the data was utilized for
training the model, while a different 10% was used to test that model. In the next
iteration, a different 10% of the data would be used to test the model, with 90% of
the data being for training. Thus, each observation is in the testing group 1 time
and used to train the model 9 different times. Given that each iteration is run
independently, each successive iteration does not result in the model learning
from previous training/testing CV results which may result in biased outcomes.
The outcomes are compared once all the iterations have been run with a mean of
the model scores used for the final outcome.

3. During the CV, how were hyperparameter configurations selected? Was it a grid
search or Bayesian? A table of the hyperparameters tuned and their optimal values
can be placed in the appendix.

Hyperparameters were selected and configured based on a manual trial-and-error
approach. We included a table of chosen hyperparameters in the appendix of this
work alongside utilized values. This is for all models including the addition of a
convolutional neural network (CNN) model as suggested by Reviewer #1.

4. In section 3.3, the authors used Pearson’s correlation as a measure of prediction accuracy.
However, a perfect correlation does not necessarily mean that the model is good or that
the predicted values are close to the true values. For example, cor(y, y) = cor(y, 20y) =
cor(y, 300y) = cor(y, 10000y) = 1. That is to say, a model could be doing significantly
worse and still have a perfect correlation. I encourage the authors to use the coefficient of
determination instead. Please do not square the correlation coefficient; you can use
r2_score in sklearn (https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.r2_score.html) or see this link for the
formula (https://scikit-learn.org/stable/modules/model evaluation.html#r2-score).

For the measure of prediction accuracy, we used the coefficient of determination (R?)
instead of the Pearson’s correlation (r) for all models. As the code was produced in the R
programming language, the coefficient of determination was determined from
“r.squared”. This ensures that the coefficient of determination is directly utilized and is
not based upon squaring previously obtained correlation coefficient values.


https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score

This study uses 13 points of SWE and 88 points of depths to train the ML models. This is
an extremely limited sample size for training any machine learning model, especially
when trying to predict across 37,917 image objects with varying characteristics. This
raises a serious concern about overfitting. With such a small training set, for example, for
the SWE estimation problem, there's a high risk that the model would simply memorize
the patterns in those 13 objects rather than learning generalizable relationships.
Therefore, the authors should comment on how to validate the SWE across the upscaled
10 km?. How did the authors ensure that the model wasn't overfitting for the SWE
estimates? These points should be added to the discussion.

The issue of limited sample sizes, especially for SWE was considered during the
development of this study. As the study site was in a 10 km? study area, this limited the
influence of major weather patterns that would influence a portion of the study area,
while not impacting other areas in the study. Here, if major weather events such as
snowfall or change in temperature did occur, it would have been relatively uniform and
over a similar start and stop period. In addition, land cover types were largely well
covered with field snow depth data that may be related to SWE measurements, even if the
SWE data was more limited. To address the overfitting issue, one method was using the
cross-validation approach with 10 folds. With this, we could tune hyperparameters on the
original training set, while also not letting the testing set be seen for selecting the final
model. In a simpler approach such as one time split between training and testing, the
model could get lucky with a certain set of inputs for the testing/training phase, and then
provide an unusually optimistic outcome that would give caution for overfitting or bias. If
this occurs during the cross-validation approach that one iteration has extremely positive
metrics, it would not be the final choice given that the final output would be an average
of all 10 iterations, including those that provide poor metrics. In addition, multiple trial
runs were done with a pseudorandom number generator when assigning the training /
testing for the cross-validation modeling to verify if the outputted metrics were consistent
or if there were any unusually high spikes. As multiple models were also tested in each
instance, it was possible to compare the mapped results between all models. While in
theory all models could be overfitted, they should ideally at minimum reveal similar
trends in the data. If one or each model has notably differing results, it is a warning that
something may not be right with the modeling and warrants further investigation. Given
the limited data availability, model complexity was halted from become too elaborate and
thus considering noise in the data that would invite the possibility of overfitting. Input
data was also standardized and Principal Component Analysis (PCA) was performed,
which aided to lessen overfitting and minimized data leakage.

Line 204: The model weights should use another metric since correlation is not reliable
based on comment 4. Also, I think adding the weighting formula would be helpful to
readers.

We changed the model weights to the coefficient of determination (R?) based on
comment 4. The weighting formula for how the ensemble analysis is placed in section 3.3
and explained.

Line 203: SVM was dropped due to poor performance. Could you please quantify "poor"
in this scenario?



10.

11.

Due to undergoing notable field data image object changes, we have redone model
performance and have included SVM for SWE. This is largely due to changing the field-
based image objects to instead be polygons with a 3 m radius at each field location,
which thereby better included nearby terrain and vegetation values. Because of the
change, hyperparameters were also tweaked for SVM, along with for ANN and RF.

Figure 3: One might think field snow depth and field swe are inputs. The authors should
clarify in the caption that they are the outcome variables, not the input. Or they could
represent output data with a different color.

Figure 3 was updated to better reflect the distinction for snow depth and SWE being
outcome variables and not as input variables. A unique color for snow depth and SWE
was applied, and it was clarified in the caption that these are output variables to be
predicted and not the input.

Tables 1-4: Were these metrics obtained from the entire dataset or just the testing set?

The values in Tables 1 and 3 were obtained from the data inputs in the cross-validation
approach. The field data values in Tables 2 and 4 were obtained from the entire data
where field input values were available and matched to vegetative landcover types. Local
scale outputs here were obtained from the entire dataset and matched to vegetative
landcover types.

The authors should comment on the transferability of the ML models in this study. Can
we grab this model and apply it elsewhere? The authors could dedicate a paragraph to
model transferability in the discussion.

A paragraph in the discussion was added that discusses the potential of the applied model
to be utilized in other snow-prone regions of the world, and how this may be transferred
to such regions. We noted the similarities in regions that have similar terrain, while also
noting potential challenges in other snow-prone regions with differing conditions such as
in mountainous terrain. In addition, it was noted how the model had potential to adapt
when sample sizes are low (simpler models) or when sample sizes are high (complex
models).

Line 167: A period is missing between "scale" and "In OBIA".

Thank you, this has been corrected.



