
Dear Editor and Reviewers, 

 

We would like to first thank you for taking your time in reviewing our manuscript and providing 

constructive feedback to aid in addressing weak points and areas of concern, while also seeking 

to strengthen the novelty of the presented work. In the following, we addressed each of the points 

raised. Black text indicates the reviewer’s comments. Blue text indicates our response and 

changes to the manuscript. 

 

Your feedback is much appreciated. 

 

Sincerely, 

David Brodylo 

 

 

 

Reviewer #1 

General Comments: 

Brodylo et al.’s manuscript is well-written, structured clearly, and supported by strong graphical 

presentation, providing a straightforward exploration into snow depth and snow water equivalent 

(SWE) estimation using an ensemble machine learning approach. The integration of LiDAR, 

remote sensing imagery, and in-situ observations is logical and aligns well with the type of 

studies frequently published in this journal. However, I have several significant concerns 

regarding the novelty of the approach, methodological clarity, and the limited sample size—

particularly for SWE estimation—that need to be thoroughly addressed before the paper can be 

considered for publication. I have outlined these major concerns, along with specific suggestions 

for improvement, in detail below. 

Major Comments: 

1. Currently, the paper's primary novel contributions are unclear to me. While the presented 

approach effectively integrates established practices (ensemble machine learning methods, 

LiDAR-based snow depth estimation), the methodological novelty seems incremental and 

primarily focused on application in the specific context of Sodankylä, Finland. Intuitively, an 

ensemble approach should outperform individual techniques; however, given the limited sample 

size—especially with SWE data (only around a dozen observations)—it becomes challenging to 

conclusively demonstrate superiority over simpler, more traditional methods such as multiple 

linear regression. Indeed, as highlighted in Table 3, some machine learning models significantly 

underperform in certain months, likely due to this limited dataset. Thus, at present, the main 

takeaways and broader scientific significance are somewhat ambiguous. I encourage the authors 

to clearly articulate the core contributions of their approach, considering the constraints posed by 



dataset size. If a stronger case for novelty can be made, particularly in comparison to simpler or 

previously established methods, this would greatly strengthen the manuscript, as I am currently 

unsure of the main takeaways. 

We added a convolutional neural network (CNN) model into the modeling approach. This deep 

learning model served as a contrast to the more commonly utilized and well-known machine 

learning methods and served to demonstrate how well each of these (RF, SVM, ANN, and MLR) 

perform against CNN. CNN results were also compared to the machine learning-based EA 

results for snow depth or SWE estimation. The CNN model was also included into the EA 

modeling in a hybrid-like approach of machine learning and deep learning. A weighted, hybrid 

model that combines deep learning with traditional machine learning can attempt to fuse the 

intricacy of multiple layers of neural networks with the relative simplicity of more traditional 

models for snow depth estimation over a winter timeframe, before then estimating SWE with the 

predicted snow depth values. To aid in providing more valuable input data, we generated 

polygons with a 3 m radius at each observed field point that contain average and standard 

deviation raster band values. Previously, the band values for each point were linked to image 

objects that could be long and thin, or have the point located near the corner or edge and thus not 

truly represent the band values of nearby features such as trees or water. This ensured that the 

input data for this new modeling approach better incorporated the spatial context of surrounding 

features and led to notable modeling performance, especially for SVM and RF. 

2. Further clarity is needed regarding the training and validation processes for the machine 

learning models. The authors briefly mention using a "k-fold" validation but do not clearly 

specify how the data was partitioned into training, validation, and test sets at each step. Important 

details are missing, such as whether splits were random or sequential—random splits could 

inadvertently introduce spatial autocorrelation issues. Additionally, specifics on the machine 

learning implementations are essential. For instance, how deep were the random forest trees 

allowed to grow? What structure was adopted for training the multi-layer perceptron—including 

the number of hidden layers, neurons per layer, activation functions, epochs, and optimization 

methods? Providing visualizations of training and validation curves for MLP models would also 

help clarify the model training and generalization processes. These details are crucial for 

reproducibility and fully understanding the robustness of the results. 

Input data was randomly assigned into a 10-fold CV approach that separated the input data into a 

similar number of observations for the training or testing partitions. In each iteration, 90% of the 

data was utilized for training the model, while a different 10% was used to test that model. In the 

next iteration, a different 10% of the data would be used to test the model, with 90% of the data 

being for training. Thus, each observation is in the testing group 1 time and used to train the 

model 9 different times. Given that each iteration is run independently, each successive iteration 

does not result in the model learning from previous training/testing CV results which may result 

in biased outcomes. The outcomes are compared once all the iterations have been run with a 

mean of the model scores used for the final outcome. Chosen hyperparameter settings for each of 

the model inputs were added into the appendix as suggested by Reviewer #2. 

3. Given the inherently spatial nature of snow depth and SWE, I'm curious if the authors 

considered employing machine learning methods specifically designed to leverage spatial 

dependencies in data. The current choice of models—MLR, RF, and MLP—generally treats each 

data point independently, potentially losing valuable spatial context unless explicitly provided as 



an input feature. Models that explicitly capture spatial information (e.g., convolutional neural 

networks like U-Nets, or vision transformer approaches) could better represent the spatial 

variability across diverse land types. Exploring spatially aware methods, despite your current 

dataset limitations, could significantly increase the novelty and impact of your study.  

Previously, our input data for snow depth and SWE contained raster values associated with 

image objects that may not properly account for the spatial variability of nearby features. For 

instance, the field data may have been in the corner of an image object, or in one that is long and 

thin, with either case not providing a true indication of the surrounding terrain in reference to the 

location of the actual field data. To better integrate spatial context to the modeling procedure, we 

instead generated 3 m radius polygons around each field measurement that included the average 

and standard deviation of the raster data such as spaceborne imagery band values, elevation, and 

canopy height. This allowed nearby features which may have affected the real-world snow depth 

and SWE values to be better connected to the observed field snow depth and SWE data before 

then repeating the modeling. We also include a CNN model into our approach to compare how 

this method compares with the previous models, how it can be integrated into the ensemble 

approach with a hybrid of machine and deep learning, and what benefit may result for EA with 

estimating snow depth and SWE. 

4. Finally, I also feel that this paper would really benefit from a more comprehensive comparison 

to existing approaches in the literature. Although your method is LiDAR-derived, related studies 

by Bair et al. (2018), King et al. (2020), Liljestrand et al. (2024), Shao et al. (2022), and 

Vafakhah et al. (2022) (amongst others) have utilized similar ML methodologies (RF and neural-

network-based architectures) to predict regional variations of SWE. A clearer positioning of your 

work in relation to these papers would not only help justify the novelty of your method but also 

allow readers to better appreciate your contributions relative to the current state-of-the-art 

approaches. Such contextualization could also probably help address some of the concerns I raise 

in Comment 1 regarding methodological novelty. 

The mentioned studies were included in the updated manuscript. These studies and many like 

them (ours included) have noted the use of ML methodologies like RF, SVM, and other 

regression-based models in predicting snow related features, often with the support of various 

remote sensing data. Here we focused on comparing commonly utilized regression-based ML 

models and a weighted ensemble model to first estimate snow depth in six instances over a 

winter period, before then utilizing the more numerous snow depth data to aid in estimating more 

limited SWE data over the same period. To further distinguish our work, we incorporated a deep 

learning CNN model for comparison to the ML models and integrated it into the weighted 

ensemble approach. Thus, the final model would be a weighted, hybrid ensemble approach of 

machine learning and deep learning. 

 

Minor Comments: 

• Lines 89: With all the different datasets being used here, I wonder if a summary table 

listing their names, variables, resolution, and source would help better situate readers? 



A summary table listing different data types, sources, names, resolutions, etc. was 

provided at the end of section 2.2 to help more clearly visualize the datasets used in this 

approach. 

• Lines 162-163: It wasn’t totally clear to me what this RF classification scheme was 

referring to here? Why is this step necessary? 

The acquired Land Use Land Cover (LULC) data, while very helpful, was limited at a 20 

m resolution that was coarse for the chosen study site and limited the ability to make 

clear connections with obtained field data and vegetation types. In addition, the LULC 

data was from 2018, and may have become more outdated since that time. Thus, we 

needed to downscale the data to the 2 m resolution of the WorldView-2 imagery and the 

LiDAR data to provide a clear connection between these values and the landcover types. 

Just changing the resolution would result in many misclassifications, especially with 

artificial features and in heterogenous areas. As a result, we needed to utilize a 

classification-based scheme to better connect findings with properly downscaled and 

classified land cover types. While many different classification models would have 

served well, the best performance was obtained from Random Forest, which was why it 

was chosen for this purpose. 

• Section 3.1: I also don’t fully understand this image segmentation step and how it is 

“utilized as the spatial unit for image assessment”. Why does this need to be done for this 

project, and how are the resulting segments used in the models afterwards? 

All pixels found in a specified image are separated into groupings of similar pixel values. 

These grouped pixels are then converted into polygons across the entire study area, with 

each polygon representing grouped pixels that match real-world features such as a cluster 

of bushes or a small body of water. Each of these polygons, now referred to as image 

objects, will then contain the average and standard deviation of all raster-based data 

inputs which are separated into columns. The field data are then placed into image objects 

based on spatial location and modeling is performed. This was accomplished for this 

project as a pixel-based method can result in heightened variance in nearby pixel values 

that can result in extreme predictions, such as with the presence of shadows which were 

in the obtained imagery, or with rapid differences in predictions in very heterogenous 

areas. In addition, there may also be a potential mismatch between the imagery bands and 

the LiDAR data that may result in an individual pixel being incorrectly assigned a value. 

However, by using the image objects for the image assessment, it provides averaged band 

and LiDAR values that help to minimize extreme values, and thus provide more realistic 

values into the modeling approach. Once the modeling is completed, the predicted values 

are then assigned to all the image objects in the entire study area, as except for the field 

snow depth and SWE data, every image object contains the same set of raster data. 

• Lines 189-192: I think this section is important, and I would add a little more detail 

describing each of these models and how they’ve been used in other studies, as they 

really underpin your main results. For instance, I’d mention bootstrapping and 

aggregation in the RF, and I would rework your description of the ANN (as the linkage to 

the human nervous system is somewhat spurious) and not a clear description of how it 

actually works (i.e., a feedforward directed acyclic graph connected with artificial 

neurons with nonlinear activation functions) 



We expanded upon the descriptions of each of the models listed in section 3.2 and in the 

appendix to provide greater clarity of what these models are and how they function. We 

adjusted the description for ANN and updated it with text that better explains how it 

functions.  

• Lines 203-204: Do you know why the SVM performance so poor? I’m wondering if the 

sample was simply too small for this approach? This goes back to my earlier major point 

that the same issue with the limited SWE data is also likely impacting the other models. 

However, it does feel a bit odd to me to just choose to not include a model in some cases 

due to poor performance when using an ensemble approach 

SVM was dropped for SWE at the time likely due to the lack of available field data, 

which as was seen with RF could result in poor performance, especially if outliers were 

present. As noted earlier, many of the field input data were joined to image objects but 

may have been spatially located in a corner or edge or be a part of a long and thin image 

object. All of these may have not represented the true surroundings of the obtained field 

data. This was addressed by changing the field inputs to collect raster values within a 3 m 

radius of each field point, thereby providing proper spatial context into the modeling. 

This helped lead to a substantial improvement in SVM performance and including it in 

the ensemble model, along with for the other models. Hyperparameters were further 

tweaked because of this change. 

• Eqs. 1/2/3: This is personal preference but these are all very common metrics that don’t 

need to be explicitly defined in this work 

These three equations were removed from the manuscript. 

• Lines 258-260: From a physical perspective, what do you think is causing this large 

swing in performance for the ANN over these months? Is there something about the onset 

snow in December that makes this an especially challenging task for the NN? 

A possibility is that in December, which is in the early middle of the winter period, there 

is relatively little snow. Snow depth is thus less variable and is somewhat more uniform 

across the landscape regardless of canopy cover or vegetation type when compared to 

further in the winter period such as in March or April. In addition, in late autumn and 

early winter temperatures may rise above freezing and rain events may also occur, both of 

which may reduce and flatten the snowpack. Over the course of the winter period, the 

effects of frequent snowfall and wind patterns may have led to more noticeable 

differences in snow depth based on the landcover. 

• Table 1: For this table and the others after, I am wondering if this would be more 

interpretable as a bar graph? Comparing so many numbers in a table like this can bit a bit 

challenging 

For the revised manuscript we updated these tables into graphs that convey the same 

information, but ideally in a manner that is more clearly legible. For Tables 1 and 3 these 

graphs show the MAE and RMSE, alongside the coefficient of determination (R²) instead 

of the Pearson’s correlation (r) as requested by Reviewer #2. Tables 2, 4, and 6 were 

likewise updated into bar graphs that include the mean and standard deviation values, and 

were color coded to match the LULC values in the respective maps for ease of 



comparison. Maps showing the snow depth, SWE, and snow density were all also 

updated with the updated EA based results. 

• Table 2: Similar to my previous table comment 

See comment above for Table 1. 

• Figure 5: The red->green color scheme for snow depth can be challenging to view for 

color blind individuals, and I would recommend moving to something more accessible 

Thank you for pointing this out. The color scheme for snow depth was now updated from 

red -> green to a different variation of blue->orange, as is seen in the previous version of 

Figure 5 (h) to make it more accessible for color blind individuals. This same color 

scheme change was applied to Figures 7 and 8 for consistency and ease of comparison 

between figures. 

• Lines 318-319: Was the SVM left out because it had bad performance everywhere for 

SWE? As you state, the RF was also inconsistent for SWE prediction, but was still 

included in this part of the analysis 

Correct, SVM was left out as it was largely producing poor metrics for SWE. It is valid 

that RF was also inconsistent with modeling results. It was chosen to remove SVM at the 

time as neither individually nor when it was added into the ensemble analysis did it 

provide meaningful outcomes, and in all cases reduced ensemble performance. With RF, 

while it sometimes did result in poorer outcomes, it also had instances where it provided 

meaningful outcomes and benefited the ensemble analysis, and was thus included in the 

SWE modeling. However, due to undergoing notable field data image object changes, we 

have redone model performance and have included SVM for SWE. This is largely due to 

changing the field-based image objects to instead be polygons with a 3 m radius at each 

field location, which thereby better included nearby terrain and vegetation values. While 

this benefited all models, it was most evident with SVM. 

• Lines 344-362: I appreciate the detail the authors put into comparing SWE over various 

land cover types, however this section (and other similar paragraphs) are a bit challenging 

to parse in their current form. Currently, you list many statistics in a row, and it isn’t fully 

clear to me what I am to take from all of these stats? I wonder if you could restructure 

these paragraphs to highlight the most important findings and relate those to what the 

predictive accuracy means for each land cover type? 

We revised how this paragraph and other paragraphs like it were structured to highlight 

the most important findings, while minimizing or eliminating findings that are minor or 

add little value. The repetition of values was reduced to make it clearer. This was done 

through most of the results section of the manuscript. 

• Lines 428-429: When referring to EA here, it sounds as if it is it’s own technique, but 

really it is just a combination of the MLR/RF/MLP. And this enhanced performance in 

the EA is because of high variability in individual models with biases which mostly 

cancel out resulting in a more stable prediction. So is this section speaking primarily to 

the high variability of individual models? 



Yes, the EA outputs are the result of a mixture of model outputs with high variability that 

can often cancel out, and thus generally lead to more stable predictions. The text in this 

section highlights that RF had the highest variation out of the listed models, specifically 

in terms of having a large range between positive and more discouraging modeling 

metrics, such as having a r value of .05 and 0.71. None of the other models listed 

experienced such a dramatic variation, despite utilizing the same input data but in 

different instances. This contrasted with ANN, MLR, and EA which tended to be more 

stable in each instance. In the current manuscript this portion was updated with the 

inclusion of the CNN and SVM models, alongside updated metrics for all models. 

• Line 430: I would reword this sentence “EA consistently produced the best or second 

best metrics, and generally produced the best metrics” 

This sentence was reworded in the revised manuscript as “EA contained the most stable 

and positive metrics for R2 in all instances.” 

• Lines 471-475: Could you have included reanalysis estimates from say ERA5 to provide 

temperature, humidity and pressure data to your models? While coarse, this would 

perhaps give you some additional information about the surrounding environmental 

context at the time of observation? 

We attempted to include data from ERA5, and while it did provide some additional 

context, it was still nonetheless hard to visually distinguish how factors such as 

temperature, humidity and pressure with a coarser resolution could be immediately made 

relevant. When inputted into the models, at the best it was mixed results while oftentimes 

limiting performance. Had our field locations been more dispersed and greater in number, 

it likely would have aided the modeling performance. 

• Lines 501-502: I would strongly recommend including some code for reproducing at 

least a subset of these results, perhaps in an interactive notebook uploaded to Google 

Colab with some test data? Then others could more easily test and build on what you 

have provided here 

We provided a link for code to be made available to the public near the bottom of the 

manuscript in the section “Code and data availability”. It also includes data so that others 

who are interested can test and build upon what was done in this manuscript, and to 

verify that the outcomes are reproducible. 
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Reviewer #2 

The paper “Object-based ensemble estimation of snow depth and snow water equivalent over 

multiple months in Sodankylä, Finland,” authored by Brodylo et al., investigates the use of four 

machine learning techniques and their ensemble for snow depth estimation. The estimated snow 

depths were then used to estimate SWE. Finally, the ratio of the modeled SWE to snow depths 

was taken to estimate snow density. In my estimation, the paper is well written. However, I have 

major comments regarding the methodological clarity. 

  

1. In section 3.2, the authors mentioned using Artificial Neural Networks (ANNs), among 

other models. However, they did not mention the exact architecture of the ANN (e.g., 

feed-forward, convolutional, transformers, etc.) used. Without this information, it is 

difficult to evaluate the appropriateness of the ANN architecture used in the study. 

The architecture of the ANN model was a feed-forward model with a single hidden layer. 

Specifically, we used “nnet” from the “caret” package in the R programming language. 

This was expanded upon and added to the text in section 3.2 alongside in the appendix. 

2. In section 3.2, the details of the hyperparameters of the ML models (SVM, RF, and ANN) 

used were not mentioned. For example, for ANN, in addition to the architecture type, it 

would be beneficial to add the number of layers and neurons per layer, the activation 

function used, regularization (if any), the number of epochs, and other important 

hyperparameters used. For SVM, the kernel used, gamma, tolerance, and other important 

hyperparameters should be specified. For RF, the number of trees, the maximum depth, 

the minimum number of samples required to be at a leaf node, the minimum number of 

samples required to split an internal node, and other important hyperparameters should be 

specified. These details are essential for reproducibility. 

The hyperparameters for the RF, SVM, and ANN models were added into the appendix at 

the end to provide greater clarity for how the models were tuned and what values were 

specified. This section also includes the hyperparameters for the convolutional neural 

network (CNN) model as suggested by Reviewer #1. 

https://doi.org/10.1016/j.envsoft.2024.106053
https://doi.org/10.5194/essd-14-795-2022
https://doi.org/10.1007/s12145-022-00846-z


3. Also, in section 3.2, the authors mentioned using 10-fold cross-validation. However, 

important details are missing. 

1. Was the 10-fold CV done on the entire dataset or just the training set? 

The 10-fold CV was performed on the entire dataset to generate model 

performance when making predictions with the CNN, RF, SVM, ANN, and MLR 

models. For EA, it was indirectly applied, in that the outcomes were based off the 

weighted combination of base model outputs which were obtained with CV. 

2. No details about the train/test split ratio and strategy (random, stratified, etc) were 

mentioned. 

The utilized 10-fold CV approach was utilized to randomly separate the input data 

into either training or testing. In each iteration, 90% of the data was utilized for 

training the model, while a different 10% was used to test that model. In the next 

iteration, a different 10% of the data would be used to test the model, with 90% of 

the data being for training. Thus, each observation is in the testing group 1 time 

and used to train the model 9 different times. Given that each iteration is run 

independently, each successive iteration does not result in the model learning 

from previous training/testing CV results which may result in biased outcomes. 

The outcomes are compared once all the iterations have been run with a mean of 

the model scores used for the final outcome. 

3. During the CV, how were hyperparameter configurations selected? Was it a grid 

search or Bayesian? A table of the hyperparameters tuned and their optimal values 

can be placed in the appendix. 

Hyperparameters were selected and configured based on a manual trial-and-error 

approach. We included a table of chosen hyperparameters in the appendix of this 

work alongside utilized values. This is for all models including the addition of a 

convolutional neural network (CNN) model as suggested by Reviewer #1. 

4. In section 3.3, the authors used Pearson’s correlation as a measure of prediction accuracy. 

However, a perfect correlation does not necessarily mean that the model is good or that 

the predicted values are close to the true values. For example, cor(y, y) = cor(y, 20y) = 

cor(y, 300y) = cor(y, 10000y) = 1. That is to say, a model could be doing significantly 

worse and still have a perfect correlation. I encourage the authors to use the coefficient of 

determination instead. Please do not square the correlation coefficient; you can use 

r2_score in sklearn (https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.r2_score.html) or see this link for the 

formula (https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score). 

For the measure of prediction accuracy, we used the coefficient of determination (R2) 

instead of the Pearson’s correlation (r) for all models. As the code was produced in the R 

programming language, the coefficient of determination was determined from 

“r.squared”. This ensures that the coefficient of determination is directly utilized and is 

not based upon squaring previously obtained correlation coefficient values. 

https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score


5. This study uses 13 points of SWE and 88 points of depths to train the ML models. This is 

an extremely limited sample size for training any machine learning model, especially 

when trying to predict across 37,917 image objects with varying characteristics. This 

raises a serious concern about overfitting. With such a small training set, for example, for 

the SWE estimation problem, there's a high risk that the model would simply memorize 

the patterns in those 13 objects rather than learning generalizable relationships. 

Therefore, the authors should comment on how to validate the SWE across the upscaled 

10 km2. How did the authors ensure that the model wasn't overfitting for the SWE 

estimates? These points should be added to the discussion. 

The issue of limited sample sizes, especially for SWE was considered during the 

development of this study. As the study site was in a 10 km2 study area, this limited the 

influence of major weather patterns that would influence a portion of the study area, 

while not impacting other areas in the study. Here, if major weather events such as 

snowfall or change in temperature did occur, it would have been relatively uniform and 

over a similar start and stop period. In addition, land cover types were largely well 

covered with field snow depth data that may be related to SWE measurements, even if the 

SWE data was more limited. To address the overfitting issue, one method was using the 

cross-validation approach with 10 folds. With this, we could tune hyperparameters on the 

original training set, while also not letting the testing set be seen for selecting the final 

model. In a simpler approach such as one time split between training and testing, the 

model could get lucky with a certain set of inputs for the testing/training phase, and then 

provide an unusually optimistic outcome that would give caution for overfitting or bias. If 

this occurs during the cross-validation approach that one iteration has extremely positive 

metrics, it would not be the final choice given that the final output would be an average 

of all 10 iterations, including those that provide poor metrics. In addition, multiple trial 

runs were done with a pseudorandom number generator when assigning the training / 

testing for the cross-validation modeling to verify if the outputted metrics were consistent 

or if there were any unusually high spikes. As multiple models were also tested in each 

instance, it was possible to compare the mapped results between all models. While in 

theory all models could be overfitted, they should ideally at minimum reveal similar 

trends in the data. If one or each model has notably differing results, it is a warning that 

something may not be right with the modeling and warrants further investigation. Given 

the limited data availability, model complexity was halted from become too elaborate and 

thus considering noise in the data that would invite the possibility of overfitting. Input 

data was also standardized and Principal Component Analysis (PCA) was performed, 

which aided to lessen overfitting and minimized data leakage. 

6. Line 204: The model weights should use another metric since correlation is not reliable 

based on comment 4. Also, I think adding the weighting formula would be helpful to 

readers. 

We changed the model weights to the coefficient of determination (R2) based on 

comment 4. The weighting formula for how the ensemble analysis is placed in section 3.3 

and explained. 

7. Line 203: SVM was dropped due to poor performance. Could you please quantify "poor" 

in this scenario? 



Due to undergoing notable field data image object changes, we have redone model 

performance and have included SVM for SWE. This is largely due to changing the field-

based image objects to instead be polygons with a 3 m radius at each field location, 

which thereby better included nearby terrain and vegetation values. Because of the 

change, hyperparameters were also tweaked for SVM, along with for ANN and RF. 

8. Figure 3: One might think field snow depth and field swe are inputs. The authors should 

clarify in the caption that they are the outcome variables, not the input. Or they could 

represent output data with a different color. 

Figure 3 was updated to better reflect the distinction for snow depth and SWE being 

outcome variables and not as input variables. A unique color for snow depth and SWE 

was applied, and it was clarified in the caption that these are output variables to be 

predicted and not the input. 

9. Tables 1-4: Were these metrics obtained from the entire dataset or just the testing set? 

The values in Tables 1 and 3 were obtained from the data inputs in the cross-validation 

approach. The field data values in Tables 2 and 4 were obtained from the entire data 

where field input values were available and matched to vegetative landcover types. Local 

scale outputs here were obtained from the entire dataset and matched to vegetative 

landcover types. 

10. The authors should comment on the transferability of the ML models in this study. Can 

we grab this model and apply it elsewhere? The authors could dedicate a paragraph to 

model transferability in the discussion.  

A paragraph in the discussion was added that discusses the potential of the applied model 

to be utilized in other snow-prone regions of the world, and how this may be transferred 

to such regions. We noted the similarities in regions that have similar terrain, while also 

noting potential challenges in other snow-prone regions with differing conditions such as 

in mountainous terrain. In addition, it was noted how the model had potential to adapt 

when sample sizes are low (simpler models) or when sample sizes are high (complex 

models). 

11. Line 167: A period is missing between "scale" and "In OBIA". 

Thank you, this has been corrected. 


