S1 - Analytical solutions of AGWP and AGTP metrics for valid CO₂, CH₄ and N₂O.

$$AGWP_{CO2}(H) = A_{CO2} \left\{ \alpha_0 H + \sum_j^3 \alpha_j \tau_j \left(1 - e^{-\frac{H}{\tau_j}} \right) \right\}$$
(S1.1)

$$AGTP_{CO2}(TH) = A_{CO2} \sum_{j=1}^{2} \left\{ \alpha_0 c_j \left(1 - \exp(\frac{-TH}{d_j}) \right) + \sum_{i=1}^{3} \frac{\alpha_i \tau_i c_j}{\tau_i - d_j} \left(\exp(\frac{-H}{\tau_i}) - \exp(\frac{-TH}{d_j}) \right) \right\}$$
(S1.2)

For non-CO₂ gas i :

$$AGWP_i = A_i \tau_i (1 - e^{-\frac{H}{\tau_i}})$$
(S1.3)

$$AGTP_{i}(TH) = A_{i} \sum_{j=1}^{2} \frac{\tau c_{j}}{\tau_{i} - d_{j}} \left(\exp(\frac{-TH}{\tau_{i}}) - \exp(\frac{-TH}{d_{j}}) \right)$$
(S1.4)

S2 - Table S2: Detailed climate parameters values used for climate metrics

Variable	Definition	Unit	Value	Uncertainty	Uncertainty distribution type	Source
Н	Time horizon	Years	1–1000	-	-	(Joos et al., 2013)
AGWP _{CO2}						
RE _{CO2}	Radiative efficiency in CO ₂ mixing ratio	W.m ⁻² .ppb ⁻¹	1.33 x 10 ⁻⁵	0.16 x 10 ⁻⁵	Normal 1.645σ	(Forster et al., 2021)
A _{CO2}	Radiative forcing scaling factor	W.m ⁻² .kg ⁻¹	1.71 x 10 ⁻¹⁵	0.21 x 10 ⁻¹⁵	Normal 1.645σ	-
α ₀₋₃	Coefficient for fraction of atmospheric CO ₂ associated with a nominal timescale	Unitless	$\alpha_0 = 1 - \alpha_{1-} \alpha_{2-} \alpha_3;$ $\alpha_1 = 0.2240;$ $\alpha_2 = 0.2824; \alpha_3 = 0.2763;$ $\tau_1 = 394.4; \tau_2 = 36.54;$	-	-	(Joos et al., 2013)
τ ₁₋₃	IRF _{co2} nominal timescale	Years	$\tau_3 = 4.304$			
AGWP _{CH4}						
RE _{CH4}	Radiative efficiency in CH4 mixing ratio without indirect effects	W.m ⁻² .ppb ⁻¹	3.89 x 10 ⁻⁴	0.96 x 10 ⁻⁴	Normal 1.645σ	(Forster et al., 2021)
τ^{OH}_{CH4}	Total chemical lifetime of methane	Years	9.7	1.1	Normal 1o	(Szopa, 2021)
T atm, CH4	Total atmospheric lifetime	Years	9.1	0.9	Normal 1o	(Szopa, 2021)
f _{сн4}	Feedback factor	Unitless	1.30	0.07	Normal 1o	(Thornhill et al., 2021)
τ _{CH4}	Perturbation lifetime	Years	11.8	1.8	Normal 1.645σ	(Forster et al., 2021)
f1	Tropospheric ozone indirect effect scaling	Unitless	0.36	0.18	Normal 1.645σ	(Forster et al., 2021)
f2	Stratospheric water vapour indirect effect scaling	Unitless	0.103	0.103	Normal 1.645σ	(Forster et al., 2021)
A _{CH4}	Radiative forcing scaling factor with indirect effect	W.m ⁻² .kg ⁻¹	2.00 x 10 ⁻¹³	0.49 x 10 ⁻¹³	Normal 1.645σ	(Forster et al., 2021)
Υ	Fractional molar yield of CO ₂ from CH ₄ oxidation	Unitless	0.75	[0.5 - 1]	Uniform	(Forster et al., 2021)
AGWP _{N20}						
RE _{N2O}	Radiative efficiency in N_20 mixing ratio without indirect effects	W.m ⁻² .ppb ⁻¹	3.19 x 10 ⁻³	1.25 x 10 ⁻³	Normal 1.645σ	(Forster et al., 2021)
A _{N2O}	Radiative forcing scaling factor with indirect effect	W.m ⁻² .kg ⁻¹	3.6 x 10 ⁻¹³	1.4 x 10 ⁻¹³	Normal 1.645σ	(Forster et al., 2021)
τ atm, N2O	Mean atmospheric lifetime	Years	116	9	Normal 1.645σ	(Canadell, 2021)
f _{N20}	Feedback factor	Years	0.94	0.01	Normal 1.645σ	(Prather et al., 2015)
τ _{N2O}	Perturbation lifetime	Years	109	10	Normal 1.645σ	Canadell et al. (2021)
-	Methane lifetime effect in $ppb(CH_4)$ per $ppb(N_2O)$	-	-1.7	1.7	Normal 1.645σ	(Forster et al., 2021)
RE_{N20}^{O3}	Upper stratospheric ozone depletion	W.m ⁻² .ppb ⁻¹	5.5 x 10 ⁻⁴	0.4 x 10 ⁻⁴	Normal 1.645σ	(Forster et al., 2021)

AGTP							
λ	Net feedback parameter	W.m ⁻² .K ⁻¹	1.16	0.40	Normal 1o	(Forster et al., 2021)	
$\Delta F_{2 \times co2}$	Effective radiative forcing of CO ₂ doubling	W.m ⁻²	3.93	0.47	Normal 1o	(Forster et al., 2021)	
ECS	Equilibrium climate sensitivity from constrained ensemble	K.(W.m ⁻²) ⁻¹	0.76	0.28	Normal 1o	(Forster et al., 2021)	
C ₁	ECS fractional contribution of the fast mode	-	c ₁ = 0.586		Normal 1o	(Forster et al., 2021)	
C 2	ECS fractional contribution of the slow mode	-	$c_2 = 1 - c_1$	-	Normal 1o	(Forster et al., 2021)	
d1	Fast relaxation time	Years	d ₁ = 3.4		Normal 1o	(Forstor at al. 2021)	
d ₂	slow relaxation time	Years	d ₂ = 285	-	Normal 1o	rmal 1o	
CCf							
γ	IRF _{ccf} intensity term	kgCO ₂ yr ⁻¹ °C ⁻¹	11.06 x 10 ¹²	-	-	(Gasser et al., 2017)	
β1-3	Coefficient for fraction of IRF _{CCF} associated with a nominal timescale	Unitless	$\beta_1 {=} 0.6368$; $\beta_2 {=} 0.3322$; $\beta_3 {=} 0.0310$	-	-	(Gasser et al., 2017)	
К1-3	IRF _{ccf} nominal timescale	Years	κ ₁ =2.376; κ ₂ =30.14; κ ₃ =490.1	-	-	(Gasser et al., 2017)	

S3 - Analytical resolution of the convolution between \mbox{IRF}_{CH4} and $\mbox{AG}xx_{CO2}$ describing to methane oxidation

$$IRF_{CH4} * AGWP_{CO2}(H) = Y \frac{M_{CO2}}{M_{CH4}} \frac{1}{\tau_{CH4}^{OH}} \int_{0}^{H} e^{-\frac{t}{\tau_{CH4}^{OH}}} \int_{0}^{H-t} A_{CO2} IRF_{CO2}(x) \, dx \, dt$$

$$= Y \frac{M_{CO2}}{M_{CH4}} \frac{1}{\tau_{CH4}^{OH}} A_{CO2} \left[\alpha_0 \tau_{CH4}^{OH} \left(H + \tau_{CH4}^{OH} \left(e^{-\frac{H}{\tau_{CH4}^{OH}}} - 1 \right) \right) \right)$$

$$- \sum_{i} \left\{ \frac{\alpha_i \tau_i^2 \tau_{CH4}^{OH}}{\tau_i - \tau_{CH4}^{OH}} \left(e^{-\frac{H}{\tau_i}} - e^{-\frac{H}{\tau_{CH4}^{OH}}} \right) + \alpha_i \tau_i \tau_{CH4}^{OH} \left(1 - e^{-\frac{H}{\tau_{CH4}}} \right) \right\} \right]$$
(S3.1)

$$IRF_{CH4} * AGTP_{CO2}(H) = Y \frac{M_{CO2}}{M_{CH4}} \frac{1}{\tau_{CH4}^{OH}} \int_{0}^{H} e^{-\frac{t}{\tau_{CH4}}} \int_{0}^{H-t} A_{CO2} IRF_{CO2}(x) IRF_{T}(t-x) \, dx dt$$
(S3.2)
$$= Y \frac{M_{CO2}}{M_{CH4}} \frac{1}{\tau_{CH4}^{OH}} A_{CO2} \times ECS$$
$$\times \sum_{j=1}^{2} \left\{ \frac{\alpha_{0} c_{j} \tau_{CH4}^{OH} d_{j}}{\tau_{CH4}^{OH} - d_{j}} \left(e^{-\frac{H}{\tau_{CH4}^{OH}}} - e^{-\frac{H}{d_{j}}} \right) + \alpha_{0} c_{j} \tau_{CH4}^{OH} (1 - e^{-\frac{H}{\tau_{CH4}^{OH}}}) \right.$$
$$\left. + \sum_{i=1}^{3} \frac{\alpha_{i} \tau_{i}^{2} c_{j} \tau_{CH4}^{OH}}{(d_{j} - \tau_{i}) (\tau_{i} - \tau_{CH4}^{OH})} \left(e^{-\frac{H}{\tau_{i}}} - e^{-\frac{H}{\tau_{CH4}^{OH}}} \right) + \frac{\alpha_{i} \tau_{i} c_{j} d_{j} \tau_{CH4}^{OH}}{(d_{j} - \tau_{i}) (\tau_{CH4}^{OH} - e^{-\frac{H}{d_{j}}}) \right\}$$

S4 - Table S4: Fitting parameters of model responses in CO₂ (*IRF*_{cO2}) for a 100 GtC emission pulse added to a constant background of 389 ppm from (Joos et al., 2013, Supplementary Information, Table S1) considered to compute uncertainty range

model	nryears	a 0	a1	a ₂	a ₃	τ_1	τ ₂	τ3
NCAR CSM1.4	289	2.935E-07	3.665E-01	3.542E-01	2.793E-01	1.691E+03	2.836E+01	5.316E+00
HadGEM2 ES	101	4.340E-01	1.973E-01	1.889E-01	1.798E-01	2.307E+01	2.307E+01	3.922E+00
MPI-ESM	101	1.252E-07	5.864E-01	1.826E-01	2.310E-01	1.781E+02	9.039E+00	8.989E+00
Bern3D-LPJ	1000	6.345E-10	5.150E-01	2.631E-01	2.219E-01	1.955E+03	4.583E+01	3.872E+00
Bern3D-LPJ (ensemble)	585	2.796E-01	2.382E-01	2.382E-01	2.440E-01	2.762E+02	3.845E+01	4.928E+00
Bern2.5D- LPJ	1000	2.362E-01	9.866E-02	3.850E-01	2.801E-01	2.321E+02	5.850E+01	2.587E+00
CLIMBER2- LPJ	1000	2.318E-01	2.756E-01	4.900E-01	2.576E-03	2.726E+02	6.692E+00	6.692E+00
DCESS	1000	2.159E-01	2.912E-01	2.410E-01	2.518E-01	3.799E+02	3.631E+01	3.398E+00
GENIE (ensemble)	1000	2.145E-01	2.490E-01	1.924E-01	3.441E-01	2.701E+02	3.932E+01	4.305E+00
LOVECLIM	1000	8.539E-08	3.606E-01	4.503E-01	1.891E-01	1.596E+03	2.171E+01	2.281E+00
MESMO	1000	2.848E-01	2.938E-01	2.382E-01	1.831E-01	4.543E+02	2.500E+01	2.014E+00
UVic2.9	1000	3.186E-01	1.748E-01	1.921E-01	3.145E-01	3.046E+02	2.656E+01	3.800E+00
ACC2	985	1.779E-01	1.654E-01	3.796E-01	2.772E-01	3.862E+02	3.689E+01	3.723E+00
Bern-SAR	1000	1.994E-01	1.762E-01	3.452E-01	2.792E-01	3.331E+02	3.969E+01	4.110E+00
MAGICC6 (ensemble)	604	2.051E-01	2.533E-01	3.318E-01	2.098E-01	5.961E+02	2.197E+01	2.995E+00
TOTEM2	984	7.177E-06	2.032E-01	6.995E-01	9.738E-02	8.577E+04	1.118E+02	1.583E-02
multi-model mean	1000	2.173E-01	2.240E-01	2.824E-01	2.763E-01	3.944E+02	3.654E+01	4.304E+00

In this study, all models that compute IRF CO_2 at least up to 500 years (long-term time horizon in climate metrics) have their fit extended up to 1000 years for the uncertainty range. In other words, fits from NCAR CSM1.4, HadGEM2-ES and MPI-ESM are not considered here.

S5: $\ensuremath{\mathsf{IRF}_{\mathsf{T}}}$ to match MAGICC's behaviour used in AR6

https://gitlab.com/magicc/ar6-wg1-plots-and-processing/-/blob/main/notebooks/calculatetemperature-irf-for-ch6/110_calculate_temperature_irf_from_2xCO2.ipynb?plain=0&blame=1

See out [33]