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Abstract. Sedimentary rocks can provide information about
the Earth paleoenvironment and are studied extensively to
understand the causes and consequences of global climate
changes in deep time. They facilitate long-time perspectives
that constrain climate models and provide analogues for how5

Earth systems may respond to, and recover from, intervals of
profound environmental change, including projected anthro-

pogenic change. The Norwegian Svalbard archipelago offers
an extensive Phanerozoic stratigraphic record that reflects the
geological evolution of the northern flanks of continental as- 10

semblages that include Laurentia, Eurasia, and Pangea. Sval-
bard’s Phanerozoic sedimentary and paleoclimatic archive
is controlled largely by Svalbard’s overall northward plate-
tectonic motion from equatorial to high latitudes but also
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by regional to local formation of topography and basins in
response to long-term plate reorganization, as well as the
near- and far-field influence of large igneous province activ-
ity on the tectono-stratigraphic and paleoclimatic develop-
ment. Various sedimentary and geochemical proxies, such as5

bentonite beds and carbon isotope excursions associated with
the far-reaching environmental effects of the Siberian Traps,
the High Arctic Large Igneous Province, and the North At-
lantic Igneous Province, are present in Svalbard’s near com-
plete geological record. As such, Svalbard is unique in that10

these and numerous other global environmental perturbations
are recorded within a relatively restricted study area, with
most of the key events preserved and recorded in easily ac-
cessible drill cores and well-exposed outcrop sections. Here
we review deep-time paleoenvironmental and paleoclimate15

research in Svalbard by summarizing 148 peer-reviewed sci-
entific articles. The review builds on the well-established
tectono-stratigraphic and lithostratigraphic framework, as
well as state-of-the art environmental reconstructions, to pro-
vide insights into the Earth system during the Phanerozoic20

northward drift of Svalbard and the many major biotic crises
in the geological past. We focus on globally significant events
including (i) the expansion of Devonian vegetation, (ii) the
Carboniferous–Permian response to icehouse conditions dur-
ing the Late Paleozoic Ice Age (LPIA), (iii) the End-Permian25

Mass Extinction (EPME) and the subsequent Triassic recov-
ery, the (iv) Carnian Pluvial Episode, (v) Jurassic–Early Cre-
taceous climate perturbations including the Volgian Isotopic
Carbon Excursion (VOICE) and the Aptian Ocean Anoxic
Event 1a (OAE1a), and (vi) the Paleocene–Eocene Thermal30

Maximum (PETM). We present and synthesize existing core
and outcrop data that preserve biological and geochemical
proxies and climate-sensitive sedimentary facies that reflect
environmental change in terrestrial and marine settings. Fi-
nally, we discuss the Phanerozoic climate recorded in Sval-35

bard and its role in providing high-latitude calibration points
for several global paleoclimate events to provide a higher-
latitude perspective to complement the dominance of mid-
and low-latitude locations and datasets in the literature.

1 Introduction40

The recent Intergovernmental Panel on Climate Change re-
port (IPCC; Pörtner et al., 2022) and the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Ser-
vices (Watson et al., 2019) highlight the challenges human-
ity is facing due to ongoing and projected climate change.45

Human–environment interactions have accelerated dramati-
cally through the industrial revolution, and the human species
is now considered to be a dominant geological force on the
planet (Seibold, 1990; Stewart, 2016). The rate of change the
planet is experiencing is unprecedented for at least the last50

66 Myr (Zeebe et al., 2016), which could lead to a biodi-

versity crisis of similar amplitude to the crises experienced
during previous hyperthermals throughout the Phanerozoic.
However, it is still uncertain when ecological tipping points,
at which an ecosystem can no longer cope with environmen- 55

tal change, will be reached. It is thus critical to understand
and define the trajectories and pace of ecological change that
is the result of a major climate perturbation.

Studying episodes of past climate change, as recorded in
the geological record, can provide insights into the response 60

of Earth system processes to climate perturbations. Deep-
time paleoclimatology, here considered to be pre-Quaternary
(i.e., older than 2.58 Ma; all absolute ages refer to the Inter-
national Stratigraphic Chart 2023/09), in its broadest sense
refers to deciphering how and why the climate changed in 65

the past and the consequences of those changes for life
on Earth. Throughout the pre-Quaternary Phanerozoic (ca.
538.8 to 2.58 Ma), mass extinctions or smaller-scale biodi-
versity crises occurred repeatedly, often in response to rapid
climate change (Fig. 1.; e.g., Bond and Grasby, 2017; Kemp 70

et al., 2015). Understanding past climate trends and episodes
of major environmental perturbations will better constrain
our understanding of the causes and consequences of future
change (e.g., Soreghan, 2004; Jansen et al., 2007). Many
proxies exist to constrain past paleoenvironmental and cli- 75

matic settings, grouped into biological, chemical, and geo-
physical, including climate-sensitive sedimentary facies. Dif-
ferent proxies are suitable for quantifying various paleocli-
matic signals, including volcanic activity, atmospheric gas
concentration, land/sea temperature, seasonality, precipita- 80

tion, and ocean oxygenation.
Significant perturbations to global climate are often related

to relatively short-lived catastrophic events (from minutes to
1–2 Myr), including meteorite impacts, volcanic and kimber-
lite eruptions, the emplacement of large igneous provinces 85

(LIPs; Wignall, 2001; Bryan and Ernst, 2008; Green et al.,
2022), and the biogeochemical cascades that these events
cause. For example, these events disturb Earth’s biosphere
by causing extreme changes in temperature, precipitation,
wildfire frequency, sea level, oxygen level, and saturation 90

states of biologically important elements in the ocean (e.g.,
Larson and Erba, 1999; Weissert and Erba, 2004; Hönisch
et al., 2012); release of deleterious substances such as mer-
cury (e.g., Grasby et al., 2011; Sanei et al., 2012; Galloway
and Lindström, 2023); and trophic knock-on effects, affect- 95

ing both the atmosphere and marine realms (Jenkyns, 2010).
LIP volcanism in particular directly perturbs the climate sys-
tem via release of gasses directly to the atmosphere, in-
cluding SO2, CH4, and CO2, as well as HCl, halocarbons,
and Hg. LIP emplacements are in turn often associated with 100

global environmental changes, including mass extinctions
and smaller-scale biotic crises such as oceanic anoxic events
(OAEs; Schlanger and Jenkyns, 1976; Grasby et al., 2011;
Bond et al., 2014; Ernst and Youbi, 2017; Jones et al., 2016;
Svensen et al., 2019; Grasby and Bond, 2023). LIPs, by def- 105

inition (Bryan and Ernst, 2008), involve significant igneous
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Figure 1. TS1The stratigraphic record of Svalbard in a global deep-time climate context. (a) Global data coverage including mean tropical sea
surface temperatures per Myr marked as a green curve, with shaded area 95 % confidence intervals, based on oxygen isotopes from phosphatic
and carbonate fossils from Scotese et al. (2021), after Song et al. (2019). The scale of δ18OPhos (black axis on the left) represents phosphatic
fossils (phosphatic brachiopod, conodont, and fish). The scale of δ18OCarb (black axis on the right) represents carbonate fossils (belemnite,
bivalve, brachiopod, planktonic foraminifera). The ice extent from pole, marked in blue, after Macdonald (2020), LPIA – Late Paleozoic
Ice Age; major LIPs recorded in Svalbard: ST – Siberian Traps, HALIP – High Arctic Large Igneous Province, NAIP – North Atlantic
Igneous Province, (b) Phanerozoic timescale, (c) sea-level curve (after Dallmann, 2015, based on work of the International Commission on
Stratigraphy), and (d) overview of the geological record of Svalbard (modified from Dallmann, 2015).

volumes of igneous material (> 0.1× 106 km3) emplaced or
erupted over large areas (> 0.1× 106 km2) in an intraplate
setting and within a short duration (1–5 Myr pulse for> 75 %
of the volume, 50 Myr maximum lifespan), although some
igneous activity broadly accepted as LIPs has protracted his-5

tories (e.g., the High Arctic Large Igneous Province, HALIP;
Dockman et al., 2018; Heyn et al., 2024).

Svalbard is a Norwegian archipelago comprising all is-
lands between 74–81° N and 15–35° E, including the largest
island of Spitsbergen (Fig. 2). Extensive numbers of geolog-10

ical data have been acquired from outcrops and drill cores

across Svalbard. This data collection was largely triggered by
the importance of Svalbard as an equivalent to the sedimen-
tary successions in the offshore areas of the Norwegian Bar-
ents Sea (Steel and Worsley, 1984; Olaussen et al., 2025, and 15

references therein). The stratigraphic succession in Svalbard
is very extensive (Fig. 1d) with distinctive shifts in deposi-
tion over time, indicating a genetic link between deposition
and paleolatitudinal position (Fig. 3), as initially identified
by Steel and Worsley (1984). Svalbard’s Phanerozoic pale- 20

oenvironmental evolution is largely controlled by two main
factors: (1) the northward tectonic motion of Svalbard from



4 A. Smyrak-Sikora et al.: Phanerozoic paleoenvironmental and paleoclimatic evolution in Svalbard

equatorial to polar latitudes (Fig. 3) and (2) the influence
of proximal and distant LIPs (Fig. 1). Many of the regional
to global-scale events can be directly studied on sedimen-
tary rock exposures of Svalbard, notably the vertically tilted
Festningen section in western Spitsbergen (e.g., Grasby et5

al., 2015b; Vickers et al., 2019a, 2023; Senger et al., 2022).
These and other events have also been recorded in drill cores
collected for coal exploration, research purposes, and CO2
storage in central Spitsbergen (e.g., Dypvik et al., 2011;
Midtkandal et al., 2016; Grundvåg et al., 2017; Olaussen et10

al., 2019; Senger et al., 2019; Zuchuat et al., 2020; Jelby et
al., 2025).

The Arctic has warmed twice to nearly 4 times as fast as
the rest of the globe in recent decades (Rantanen et al., 2022).
This phenomenon, known as polar amplification, is largely15

due to oceanographic and atmospheric feedback processes
(e.g., Screen and Simmonds, 2010). Polar amplification is
evident in the geological past as extreme climates that are
inconsistent with temperature distributions predicted by cur-
rent models (Evans et al., 2018; Price et al., 2020). Since20

the Cretaceous, Svalbard has occupied an Arctic position,
following its earlier location within more northerly boreal
zones of the paleocontinents. Due to the current position of
Svalbard and its paleogeographic history, the nearly contin-
uous Phanerozoic record on Svalbard provides an ideal site25

to study polar amplification and, prior to the Cretaceous, to
elucidate the effects of the breakup of supercontinents and
subsequent northward plate tectonic movement (Fig. 3).

Currently, there are no compilations of paleoclimate and
paleoenvironmental research from Svalbard addressing the30

pre-Quaternary Phanerozoic depositional record that is avail-
able. As a first, this study synthesizes the stratigraphic record
covered by drill core material and high-quality outcrops with
reliable geochronological constraints. This contribution also
provides an overview of the range of proxies used to recon-35

struct Svalbard’s paleoenvironmental evolution. Owing to its
own unique tectonostratigraphic evolution, we do not include
the successions exposed on Bjørnøya (the southernmost is-
land of the Svalbard archipelago) in this review (see papers
by Worsley et al., 2001; Grundvåg et al., 2023; Janocha et al.,40

2024, for details on this succession). To provide a framework
for the review of Svalbard’s deep-time climate history, the
five-step paleoclimate classification of Zhang et al. (2016)
was used, which recognizes five major climates. These are as
follows: A – Tropical, B – Dry, C – Temperate, D – Continen-45

tal, and E – Polar. This division enables the deep-time climate
classification estimated primarily from climatically sensitive
deposits and paleontological evidence supplemented by geo-
chemical proxies including isotope data. We systematically
compile published literature (n= 148) of relevance to deep-50

time paleoclimate and paleoenvironments in Svalbard. The
synthesized data proxies (e.g., total organic carbon (TOC),
δ18O, and δ13C) reflect environmental changes in terrestrial
and marine ecosystems that are presented in the broader con-
text of pan-hemispherical and global climate events. The55

overall evolution of the paleoclimate preserved in the geo-
logical record of Svalbard is discussed and compared with
the paleo-position of Svalbard and global average tempera-
ture trends.

2 Tectonic and stratigraphic development 60

The sedimentary successions preserved in Svalbard record a
changing climate controlled to a large degree by the pale-
olatitude of Svalbard along with global climatic transitions
(e.g., Steel and Worsley, 1984). Since the start of the Pale-
ozoic, Svalbard gradually drifted from near-equatorial lati- 65

tudes to its present position at 74–81° N (Fig. 3; Scotese et
al., 1979; Torsvik et al., 2002; Torsvik and Cocks, 2019).
Svalbard’s lower Paleozoic geological record expresses its
affinity to Laurentia. Broadly speaking, Svalbard was part
of the Laurasian or Eurasian plates during its post-Devonian 70

history. The overall northward motion from an equatorial po-
sition in the Devonian and early Carboniferous to its present
polar location during the Late Cretaceous (Fig. 3) was a re-
sponse to absolute plate movement and relates to the breakup
of the supercontinent Pangea near the end of the Jurassic. 75

The LIPs with documented influence on the depositional
record in Svalbard (Fig. 3) include the Siberian Traps, im-
plicated as the causal factor of the End-Permian Mass Ex-
tinction (EPME; ca. 252 Ma; Reichow et al., 2009; Burgess
et al., 2017); the High Arctic Large Igneous Province 80

(HALIP) that influenced paleoenvironments of Svalbard and
much of the circum-Arctic area during the Early Cretaceous
(Midtkandal et al., 2016; Vickers et al., 2019a; Galloway et
al., 2022, 2023; Galloway and Lindström, 2023); and the
North Atlantic Igneous Province (NAIP), associated with 85

the opening of the North Atlantic and the warming of the
Paleocene–Eocene Thermal Maximum (PETM; started ca.
56 Ma; Charles et al., 2011).

2.1 Paleozoic (Cambrian to Permian ca. 538–252 Ma)

The early Paleozoic succession of the Oslobreen Group 90

(Fig. 4) preserved in northeastern Svalbard (Fig. 2) was de-
posited on the northern margin of Laurentia in a post-rift to
a passive margin setting (Fig. 3; Smelror et al., 2024). Later,
the Caledonian Orogeny started with the closure of the Iape-
tus Ocean and subsequent collision of Laurentia and Baltica 95

in the Early Ordovician–Early Devonian (ca. 485–410 Ma;
Barentsian Caledonides in Gee et al., 2006, 2008; Gee and
Teben’kov, 2004; Harland et al., 1974). Caledonian deforma-
tion, metamorphism, and late crustal magmatism impacted
mainly western and central-northern Svalbard, leaving the 100

northeastern parts of the archipelago practically undeformed
(Johansson et al., 2004, 2005; Smelror et al., 2024).

The syn- to post-Caledonian, Upper Silurian (Pridoli?) to
Upper Devonian (Frasnian) Old Red Sandstone (ORS) suc-
cession (ca. 423–372 Ma) represented by the Siktefjellet, Red 105

Bay, and Andrée Land groups (Fig. 4; Friend et al., 1997;
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Figure 2. Geological map of Svalbard and a regional cross-section illustrating the major structural elements of central Spitsbergen and spatial
coverage of industrial and research boreholes of relevance to deep time paleoclimatic studies. Upper left: International Bathymetric Chart of
the Arctic Ocean (IBCAO; Jakobsson et al., 2012TS2 ). Geological Map of Svalbard and cross-section (A–A’; bottom) from Dallmann (2015).
Location of boreholes from Senger et al. (2019). NH – Nordfjorden High, SHH – Sørkapp Hornsund High, ALB – Andrée Land Basin, BFZ
– Billefjorden Fault Zone, WSFTB – West Spitsbergen Fold and Thrust Belt. CSB – Central Spitsbergen Basin.

Blomeier et al., 2003a, b) is preserved in post-orogen col-
lapse basins located in the central part of northern Spitsber-
gen (Fig. 2; Piepjohn et al., 2000; Blomeier et al., 2003a, b;
Braathen et al., 2018; Smelror et al., 2024). Significant de-
formation of the ORS succession subsequently took place5

during the Late Devonian compressional Svalbardian Event
that is correlated with Ellesmerian Orogeny in Arctic Canada
(McCann, 2000; Piepjohn, 2000; Bergh et al., 2011; Piepjohn
and Dallmann, 2014; Piepjohn and von Gosen, 2018; Be-
ranek et al., 2020).10

The Tournaisian (?) – Viséan (ca. 359–330 Ma) conti-
nental coal-bearing deposits of the Billefjorden Group are
widespread across Spitsbergen (Fig. 2) and unconformably
overlie the deformed Devonian and pre-Caledonian succes-
sion (Piepjohn et al., 2000). The thickness of the Billefjorden15

Group reaches up to 250 m in central Spitsbergen (Cutbill
and Challinor, 1965; Gjelberg and Steel, 1981) and 40–100 m
in northeastern Spitsbergen (Lauritzen and Worsley, 1975;

Scheibner et al., 2012). The thickness along the west coast
of Spitsbergen is uncertain due to younger deformation and 20

repetition of the succession. The Billefjorden Group is un-
conformably overlain by the Serpukhovian (upper Mississip-
ian) to Artinskian (Cisuralian) mixed siliciclastic-carbonate–
evaporite deposits of the Gipsdalen Group (ca. 331–284 Ma).
The lower Gipsdalen Group consists of syn-tectonic units 25

filling up rift basins, the Billefjorden, Lomfjorden, St Jons-
fjorden, and Inner Hornsund troughs, developed along north–
south-striking long-lived lineaments formed in response to
regional-scale extension (Fig. 4; Holliday and Cutbill, 1972;
Gjelberg and Steel, 1981; Johannessen and Steel, 1992; 30

Faleide et al., 2008; Braathen et al., 2012). The thickest
(> 1.5 km) and best-preserved basin fill occurs in the Bille-
fjorden Trough, while corresponding succession is miss-
ing on the structural highs (Fig. 2; Cutbill and Challinor
1965; Johannessen and Steel, 1992; Braathen et al., 2012; 35

Smyrak-Sikora et al., 2018, 2021). The syn-rift units of the
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Figure 3. Global paleogeography (PaleoDEMs) from Scotese and Wright (2018), redrawn via export from GPlates (v2.5 Müller et al., 2018)
for selected time steps. Terrane boundaries in orange and political boundaries and present-day coastlines in black. Yellow dashed ring in the
global Mollweide projections identifies the approximate location of Svalbard at the selected time periods with zoom in shown to the side of
global maps. As this is a global model there may be discrepancies from regional Svalbard paleogeography whereby the reader is directed to
Dallmann (2015) for regional resolution.

lower Gipsdalen Group were subsequently overlain by up
to 500 m thick warm-water carbonate platform deposits of
the upper Gipsdalen Group (Hüneke et al., 2001; Blomeier
et al., 2011; Ahlborn and Stemmerik 2015; Sorento et al.,
2020). The Gipsdalen Group is overlain by upper Artinskian5

(Cisuralian) to Changhsingian (Lopingian) cool-water car-
bonate and spiculitic platform sediments of the Tempelfjor-
den Group (ca. 284 (?)–252 Ma). The thickness of the Tem-
pelfjorden Group varies across Spitsbergen from 6 to 460 m
(Blomeier et al., 2013; Uchman et al., 2016; Matysik et10

al., 2018), including complete absence of Permian deposits
on the Sørkapp–Hornsund High, where Carboniferous flu-
vial deposits are unconformably overlain by Lower Triassic
continental conglomerates (Zuchuat, 2014). These thickness
variations indicate ongoing uplift of the Nordfjorden High15

and the Sørkapp–Hornsund High that can be linked with the
late Permian rift event along the western Barents shelf mar-
gin (Faleide et al., 2008; Olaussen et al., 2025).

2.2 Mesozoic

In the Early to Middle Triassic (ca. 252–237 Ma), Svalbard 20

was part of a shallow shelf that experienced significant sub-
sidence and which was filled with up to 700 m of sediments
sourced from west and east (the Sassendalen Group; Fig. 4;
Mørk et al., 1982, 1999a; Wesenlund et al., 2022b; Bjerager
et al., 2023). By the end of the Middle Triassic (ca. 237 Ma), 25

deltaic systems sourced in the Uralides and the Fennoscan-
dian Shield reached and probably traversed Svalbard (Riis et
al., 2008; Glørstad-Clark et al., 2010; Høy and Lundschien,
2011; Anell et al., 2013; Klausen et al., 2017, 2019; Gilmul-
lina et al., 2022). Towards the latest Triassic and Early Juras- 30

sic, subsidence rates gradually decreased and sometimes
even became negative, as expressed by condensed units with
a 20 m thick, shallow-marine and continental sandstone–
shale unit of Rhaethian (latest Triassic; ca. 208–201 Ma) to
Bathonian (?) age (Middle Jurassic; ca. 168–165 Ma), trun- 35

cated by several subaerial unconformities (Drachev, 2016;
Faleide et al., 2018; Olaussen et al., 2018; Rismyhr et al.,
2018; Müller et al., 2019). This Upper Triassic deltaic and
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Figure 4. Stratigraphic column and climate summary of Svalbard highlighting the nearly continuous sedimentary record from the Devonian
to the Neogene. The stratigraphic coverage of research boreholes is indicated. Post-Devonian lithostratigraphic column after Olaussen et
al. (2025). Climate zones from Zhang et al. (2016). The climate indicators used to construct the plot are summed up in Table S1. Illustration
of data coverage is based on Gruszczyński et al. (1989), Mii et al. (1997), Wignall et al. (1998, 2016), Galfetti et al. (2007), Cui et al. (2011),
Buggisch et al. (2012), Mueller et al. (2014), Bond et al. (2015), Grasby et al. (2015a), Koevoets et al. (2016), Midtkandal et al. (2016),
Vickers et al. (2016, 2019a, 2023), Hammer et al. (2019), Doerner et al. (2020), Jelby et al. (2020b), Zuchuat et al. (2020), Wesenlund
et al. (2021), Blattmann et al. (2024), and Leu et al. (2024). Carbon isotope values (δ13Corg) and total organic carbon (TOC) plotted
from published datasets with extended stratigraphic coverage. Only data with sufficient thickness records were used. Stratigraphic age is
based on a proxy conversion from sediment thickness to time. All data are publicly accessible upon publication via the Zenodo repository
(Supplement 2TS3 ).

Upper Triassic to Middle Jurassic condensed section belongs
to the Kapp Toscana Group. Subsidence rates increased again
during the Late Jurassic (ca. 161–145 Ma), which led to the
deposition of organic-rich marine strata of the lower Advent-
dalen Group (e.g., Koevoets et al., 2016, 2019).5

The upper Middle and Upper Jurassic/lowermost Cre-
taceous succession preserved in Svalbard consists of the
Agardhfjellet Formation, and the Lower Cretaceous succes-
sion is represented by the Rurikfjellet, Helvetiafjellet, and
Carolinefjellet formations, all assigned to the Adventdalen10

Group (Fig. 4). These marine to continental units reflect in-
creased subsidence with uplift in the north and northwest that
formed a continental, siliciclastic platform. This uplift is re-
lated to emplacement of the HALIP across the Arctic, includ-

ing Svalbard, Franz Josef Land, the New Siberian Islands, the 15

Barents Shelf, Sverdrup Basin, northern Greenland, and the
Alpha-Mendeleev Ridge, via both subaerial eruptive and in-
trusive magmatism (Maher, 2001; Estrada and Henjes-Kunst,
2013; Senger et al., 2014a; Evenchick et al., 2015; Polteau et
al., 2016; Davis et al., 2017; Dockman et al., 2018; Naber et 20

al., 2021; Bédard et al., 2021; Galloway et al., 2022). HALIP
magmatism is thought to be derived from the arrival of a
thermally elevated mantle plume that caused large volumes
of mafic rocks including sills, dikes, lavas, and pyroclastic
material (Maher, 2001; Senger et al., 2014a, b; Buchan and 25

Ernst, 2018; Bédard et al., 2021; Naber et al., 2021; Heyn et
al., 2024). Robust U–Pb dating points to a short magmatic
pulse affecting Svalbard at ca. 124.5 Ma (Corfu et al., 2013).
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However, in the adjacent Sverdrup Basin (Arctic Canada),
multiple magma emplacement episodes have been identi-
fied, with pulses peaking at 122± 2 Ma, at 95± 4 Ma, and
at 81± 4 Ma (Jens et al., 2015TS4 ; Kingsbury et al., 2018;
Davis et al., 2017; Dockman et al., 2018; Bédard et al., 2021;5

Dummann et al., 2024). In Spitsbergen, the HALIP activity
triggered southward tilting of the platform, which resulted in
progradation of a sand-rich fluviodeltaic system towards the
south (Steel and Worsley, 1984; Gjelberg and Steel, 1995;
Worsley, 2008; Midtkandal and Nystuen, 2009; Grundvåg10

and Olaussen, 2017; Grundvåg et al., 2017). The extent of
the uplifted and eroded area increased during the Late Cre-
taceous (ca. 100–66 Ma) to the whole of Svalbard, which re-
sulted in the upper middle Albian deposits (uppermost Lower
Cretaceous; ca. 113–100 Ma; Hurum et al., 2016a; Hurum15

et al., 2016b) being unconformably overlain by Paleocene
strata (Jochmann et al., 2020; Helland-Hansen and Grund-
våg, 2021).

2.3 Cenozoic

The mid-Paleocene saw the recommencement of sediment20

deposition in Svalbard after a ∼ 60 Myr hiatus in response
to large-scale regional changes in plate tectonic configura-
tions (Fig. 3). The base of the Paleocene strata in Sval-
bard has been dated to 61.8 Ma (Jones et al., 2017), close
to the Danian–Selandian boundary (ca. 61.6 Ma). This age25

is contemporaneous with several changes around the Green-
land microplate, including increased rifting between Green-
land and Eurasia in the proto-Northeast Atlantic region
(Abdelmalak et al., 2023), the first pulse of North At-
lantic Igneous Province (NAIP) volcanism (Storey et al.,30

2007a), a change from carbonate- to siliciclastic-dominated
sediments in the North Sea (Clemmensen and Thomasen,
2005), widespread shear deformation along eastern Green-
land (Guarnieri, 2015), and an increase in the rate of seafloor
spreading in the Labrador Sea (Roest and Srivastava, 1989;35

Oakey and Chalmers, 2012). The combination of seafloor
spreading in the Labrador Sea and rifting along the mid-
Norwegian margin instigated compression between Green-
land and Svalbard, which evolved into a dextral transpres-
sional regime as rifting transitioned to seafloor spreading in40

the NE Atlantic by 55 Ma (Storey et al., 2007b). This pe-
riod was also coincident with the rifting and breakup of the
Eurasia Basin to the north of Svalbard. The dextral trans-
pression along the Greenland–Svalbard margin caused lo-
calized crustal shortening and the formation of the West45

Spitsbergen Fold and Thrust Belt, WSFTB (Fig. 2; Harland,
1995), linked to the Eurekan deformation (ca. 63–35 Ma)
and plate reorganization in the North Atlantic (Dallmann et
al., 1993; Braathen et al., 1995, 1999; Maher et al., 1995;
Bergh et al., 1997; Gee and Teben’kov, 2004; Faleide et al.,50

2008; Leever et al., 2011; Blinova et al., 2013; Piepjohn et
al., 2015, 2016; Gion et al., 2017). A north–south- trend-
ing foreland basin, known as the Central Spitsbergen Basin

(CSB) or the Central Tertiary Basin (CTB) in older litera-
ture, formed east of the WSFTB and was filled with over 55

1.9 km thick Paleocene to Eocene (Oligocene?) deposits of
the Van Mijenfjorden Group (Fig. 4; Steel et al., 1981, 1985;
Helland-Hansen, 1990; Müller and Spielhagen, 1990; Bruhn
and Steel, 2003; Jochmann et al., 2020; Helland-Hansen and
Grundvåg, 2021). During the Paleocene–Eocene transition 60

(ca. 56 Ma), a passive margin started to develop to the north
of Svalbard as a result of the opening of the Eurasia Basin. Fi-
nally, an Oligocene (ca. 34–23 Ma) transtensional rift phase
eventually gave way to the formation of a passive margin
west of Spitsbergen (Faleide et al., 2008; Lasabuda et al., 65

2018; Haaland et al., 2024).
The transpressional deformation related to the WSFTB

was followed by NW–SE transtensional rifting that formed
a series of grabens along the western Svalbard margin (Steel
et al., 1985; Blinova et al., 2009; Kleinspehn and Teyssier, 70

2016; Kristoffersen et al., 2020; Haaland et al., 2024). The
Forlandsundet Graben, one of the grabens cropping out be-
tween the islands of Prins Karls Forland and Spitsbergen
(Fig. 2) contains between 1000–3000 m of Eocene to po-
tentially Oligocene strata (Gabrielsen et al., 1992; Schaaf et 75

al., 2021). The final separation between Greenland and the
Barents Shelf margin eventually led to the opening of the
Fram Strait. A shallow and narrow gateway was initially es-
tablished around 20 Ma (Jokat and Herter, 2016; Fyhn and
Hopper, 2025), and the transition from a restricted to fully 80

ventilated Arctic Ocean took place around 17.5 Ma (Jakob-
sson et al., 2007). The establishment of a deep-water con-
nection through the Fram Strait is currently debated, with
suggested ages of 13.7 Ma (Jakobsson et al., 2007), 10 Ma
(e.g., Kristoffersen and Husebye, 1985; Kristoffersen, 1990), 85

and 5 Ma (Lawver et al., 1990). During these times, Svalbard
and the rest of the Barents Shelf margin experienced several
changes in motion relative to the adjacent Greenland plate.

The present archipelago configuration of Svalbard with re-
spect to the otherwise submerged setting of the Barents Shelf 90

is thought to be a consequence of a combination of uplift
during the Late Cretaceous, Paleocene–Eocene Eurekan de-
formation, and ongoing Holocene (last 11.7 kyr) isostatic re-
bound (Dimakis et al., 1998TS5 ; Worsley, 2008; Henriksen
et al., 2011a, b; Dörr et al., 2013; Lasabuda et al., 2021). 95

This uplift and exposed nature of Svalbard has resulted in
the present-day exhumation of the metamorphic succession
along the northern and western coasts of Svalbard and the
younger sedimentary cover as described above (Fig. 3).

3 Data 100

Paleoclimate research in Svalbard has traditionally relied on
the exceptionally exposed and vegetation-free outcrops, typ-
ical of the present Arctic landscape. For the last 2 decades,
research drilling across Svalbard has increasingly been uti-
lized and provides drill core material which can be repur- 105
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Figure 5. Location of data presented in the reviewed articles
summed up in Table S3 highlighting the most studied sections in
Svalbard. The size of a circle corresponds to the number of publica-
tions addressing deep-time paleoclimate proxies. See Fig. 2 for the
legend of the geological map.

posed for high-resolution paleoenvironmental and paleocli-
mate research.

3.1 Key stratigraphic sections

Figure 5 shows the geographic distribution of the primary
study sites referenced in the 148 key publications summed5

up in Tables 1 and 2 (listed with more details in Table S3 in
the Supplement). Many of these articles are centered on im-
portant sites with good chronological and lithological con-
straints. Most of the outcrops are also covered by high-
resolution digital outcrop models freely available through the10

Svalbox database (Betlem et al., 2023), facilitating data inte-
gration. Four of the localities are represented by 10 or more
publications and are described below.

3.1.1 Festningen

The Festningen section in western Spitsbergen offers a nearly15

complete stratigraphic section spanning the Mississippian
(ca. 359 Ma) to the Paleocene (Fig. 6). The ∼ 7 km long sec-
tion is easily accessible along the shoreline, with nearly ver-
tical sedimentary layers due to Eurekan deformation. Fest-
ningen is an important regional stratigraphic profile and rou-20

tinely targeted by geologists (Hoel and Orvin 1937; Steel et

al., 1978; Mørk et al.,1982; Nagy and Berge, 2008; Midtkan-
dal and Nystuen, 2009; Grundvåg et al., 2019), including
those interested in deep-time paleoclimate (e.g., Bond et al.,
2015; Grasby et al., 2016a; Vickers et al., 2023). Mørk and 25

Grundvåg (2020) offer a geological guidebook for the sec-
tion, whereas Senger et al. (2022) provided an open-access
digital outcrop model (DOM) of the 5 km long part of the
protected section. The high-resolution (7 mm pixel resolu-
tion) DOM is suitable for planning additional sampling and 30

quantitative structural and sedimentological analyses and in-
tegrating existing paleoclimatic research (Fig. 6).

3.1.2 Janusfjellet-Deltaneset

The Janusfjellet section in central Spitsbergen exposes an
Upper Triassic to Paleocene siliciclastic-dominated suc- 35

cession that has been extensively studied as part of the
Longyearbyen CO2 lab project (Olaussen et al., 2019). The
succession includes both the Upper Triassic–Middle Juras-
sic sandstone reservoirs of the Kapp Toscana Group as well
as the overlying Upper Jurassic–Lower Cretaceous Advent- 40

dalen Group. The Agardhfjellet Formation, the lowermost
part of the Adventdalen Group, has also been extensively
studied as one of the richest marine reptile sites in the world,
yielding 60 specimens so far (Hurum et al., 2012; Delsett et
al., 2016), along with an abundant seep fauna (Hryniewicz 45

et al., 2015). The outcropping section dips gently at about
3° to the southwest and exposes the same stratigraphy as in
the fully cored boreholes in Adventdalen (Olaussen et al.,
2019). As an excellent analog to the Longyearbyen CO2 lab
reservoir–caprock system, the outcrops have been systemat- 50

ically studied with focus on sedimentology (Rismyhr et al.,
2018; Jelby et al., 2020a), fault and fracture characterization
(Ogata et al., 2014a, b; Mulrooney et al., 2018; Betlem et al.,
2024; Rizzo et al., 2024), sandstone injectites (Ogata et al.,
2023), and paleoclimatic signals (Koevoets et al., 2018; Jelby 55

et al., 2020b).

3.1.3 Sassendalen

Sassendalen is a key region for understanding the Permian–
Triassic transition and evolution of Svalbard, and within
Sassendalen there are many key sections for defining dif- 60

ferent aspects of the lithostratigraphic framework of central
Spitsbergen (e.g., Mørk et al., 1999a, b). It is also a no-
table area to study global ecosystem recovery after the End-
Permian Mass Extinction (see Hurum et al., 2018; Kear et al.,
2023). Deltadalen and Lusitaniadalen are two valleys on the 65

western side of Sassendalen that excellently expose the Per-
mian Kapp Starostin to Botneheia formations. In addition,
there is the more eastern Fulmardalen (Hammer et al., 2019;
Hansen et al., 2024). The Deltadalen outcrop is directly next
to the Deltadalen research boreholes, where deposits of the 70

EPME and Permian–Triassic boundary were cored (Zuchuat
et al., 2020). As such, it provides borehole–outcrop corre-
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Table 2. Summary of proxies based on Table S3, which reviews 148 selected papers. The dataset is plotted in Fig. 13.

Cambro- Carboniferous– Permian– Jurassic–
Stratigraphic intervals Silurian Devonian Permian Triassic boundary Triassic Cretaceous Paleogene

N of N of papers 10 11 27 22 30 30 18
articles boreholes 0 0 0 3 2 10 9

outcrops 10 11 27 21 30 27 11

Proxies Biological indicators 8 8 15 14 22 24 10
and data Climate-sensitive

facies
3 7 18 2 2 3 9

Carbon isotopes δ13C 2 2 8 8 6 13 6
Oxygen isotopes δ18O 1 1 4 0 0 4 1
TOC/Rock-Eval 2 2 1 3 6 7 6
Mercury, Hg 0 0 0 2 1 1 1

lation, with the benefit of facilitating detailed sedimento-
logical studies and high-resolution sampling away from the
boreholes. In addition, a well-exposed section of Permian–
Triassic transition crops out along Lusitaniadalen located
around 5 km northwest from Deltadalen and has been the5

focus of multiple studies directly focused on the Permian–
Triassic boundary (e.g., Mørk et al., 1999a, b; Foster et al.,
2017a; Rauzi et al., 2024).

3.1.4 Hinlopenstretet, North Ny Friesland

The Ny Friesland section in northeastern Spitsbergen is ex-10

posed along the south coast of the Hinlopen Strait (Fig. 2)
and consists of a∼ 1 km thick Terreneuvian–Middle Ordovi-
cian carbonaceous succession of the Oslobreen Group (ca.
539–458 Ma; Hansen and Holmer, 2010; Stouge et al., 2012;
Lehnert et al., 2013; Abay et al., 2022; Smelror et al., 2024).15

This succession, consisting of siliciclastic shoreline facies at
the base, passing up to a shallow-marine carbonate platform
deposits, belongs to the North Atlantic/Arctic warm-water
carbonate platform formed on eastern Laurentia (McKerrow
et al., 1992; Stouge et al., 2012).20

3.1.5 Billefjorden and Munindalen

The inner part of Billefjorden exposes the Billefjorden Fault
Zone, where the Devonian Old Red Sandstone (ORS) de-
posits on the west, several kilometers thick, are faulted
against the several metamorphic and sedimentary succes-25

sions in the east. These include pre-Devonian metamorphic
basement, up to 250 m of Mississippian units and over 2 km
of Pennsylvanian to Permian deposits (Braathen et al., 2012;
Smyrak-Sikora et al., 2018, 2021). In Munindalen, the lower-
most Upper Devonian deposits of the Andrée Land Group ex-30

pose plant fossils that represent terrestrialization and evolu-
tion of one of the oldest forests in the world (Berry and Mar-
shall, 2015; Davies et al., 2021). The fossil Devonian forests
units are locally unconformably overlaid by the Mississip-
pian siliciclastics with coal seams belonging to the Bille-35

fjorden Group (Cutbill and Challinor, 1965; Gjelberg and
Steel, 1981). Up the section, the Gipsdalen Group consists
of the syn-rift and post-rift mixed siliciclastic-carbonate–
evaporite units (Holliday and Cutbill, 1972; Gjelberg and
Steel, 1981; Johannessen and Steel, 1992; Stemmerik, 2000; 40

2008; Blomeier et al., 2011; Ahlborn and Stemmerik, 2015;
Sorento et al., 2020; Smyrak-Sikora et al., 2018, 2021).

3.2 Drill cores

Table 1 summarizes the drill cores presently available from
Svalbard. The cores are mostly from coal exploration by 45

Store Norske Spitsbergen Kulkompani (SNSK) and CO2
storage research drilling in Adventdalen by The University
Centre in Svalbard (UNIS) (Olaussen et al., 2019; Senger et
al., 2025). In addition, stratigraphic research boreholes, in-
cluding the Sysselmannbreen (Johannessen et al., 2011) and 50

Deltadalen (Zuchuat et al., 2020) boreholes, are given. Lim-
ited core material from past petroleum exploration efforts is
known to exist (18 boreholes were drilled from 1960 to 1994;
see review by Senger et al., 2019), but these have, hitherto,
not been used in any paleoclimate investigations. Nonethe- 55

less, the associated wireline data from these wells are im-
portant calibration points for regional correlation of outcrops
and onshore seismic reflection data.

3.2.1 Coal drilling

Exploration coal drilling focused on Paleocene stratigra- 60

phy of the Van Mijenfjorden Group in the Central Spits-
bergen Basin (CSB) and Mississippian coal-rich strata of
the Billefjorden Group near Pyramiden. Lower Cretaceous
and Eocene coal-bearing strata were targeted in minor cam-
paigns. Cores from the Russian/Soviet coal mining company 65

Trust Arktikugol, including sites near Barentsburg, Coles-
dalen, and Pyramiden, are not available and likely lost as
evidenced by defunct core sheds scattered around Svalbard.
However, reports from these drill cores (Verba, 2013) have
been used locally to constrain surface geological mapping, 70



12 A. Smyrak-Sikora et al.: Phanerozoic paleoenvironmental and paleoclimatic evolution in Svalbard

Figure 6. Stratigraphic column of the best-preserved part of the Festningen section, from Mørk and Grundvåg (2020), tied to the digital model
of the entire Festningen section as presented in Senger et al. (2022). The inset images of the Permian–Triassic boundary and the Festningen
sandstone illustrate screenshots of the digital outcrop model that is accessible online and freely available for download by following the
QR codes and URLs. Paleoclimate-related research conducted on the section is highlighted for key events. These include amongst others
the End-Permian Mass Extinction and the subsequent recovery phase (e.g., Wignall et al., 1998; Grasby et al., 2016a), as well as several
Cretaceous cooling events, anoxic events, and their associated deposits (Price and Nunn, 2010; Vickers et al., 2016, 2019a; Grundvåg et al.,
2019). Abbreviations: CZ=Cenozoic, W=Wilhelmøya Subgroup, Helv. Fm=Helvetiafjellet Fm, F. Fm=Firkanten Fm. The QR codes
provide direct access to the digital model. Figure modified after Senger et al. (2022).

such as in Mimerdalen (Piepjohn and Dallmann, 2014) and
in the Billefjorden Trough (Smyrak-Sikora et al., 2021). The
Norwegian coal mining company SNSK stores most of its
cores in Endalen near Longyearbyen, with drill dates rang-
ing from the late 1960s to 2014, the last year of Norwegian5

coal exploration. These cores were investigated in several
paleoclimate-related studies, particularly across the PETM
and North Atlantic Igneous Province (NAIP)-related ash de-
posits (Table 1; Dypvik et al., 2011; Jones et al., 2019).

3.2.2 Longyearbyen CO2 lab, DH-1 to DH-810

Eight boreholes were fully cored near Longyearbyen from
2007 to 2013 to characterize a potential CO2 storage site

(Braathen et al., 2012; Olaussen et al., 2019; Senger et al.,
2025). Four of the boreholes reach the planned Upper Tri-
assic units of the Kapp Toscana Group target storage unit at 15

670–700 m, while the other boreholes focus on the cap rock
and overburden succession of the Adventdalen Group. The
full coring across the shale-dominated cap rocks provides
important constraints on the stratigraphy of the Jurassic-
Cretaceous strata (Koevoets et al., 2016; Midtkandal et al., 20

2016; Jelby et al., 2020a, b; Śliwińska et al., 2020) and
also contributed to refining the global geological timescale
(Zhang et al., 2021b). Senger et al. (2025) provide a full
overview of the datasets generated by the project including
a live database of the resulting publications, including those 25

focusing on deep-time paleoclimate.
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3.2.3 Sysselmannbreen, BH10-2008

The BH10-2008 (also known as Sysselmannbreen) research
borehole was drilled and fully cored in 2008 to recover a full
section of the Eocene–Oligocene (?) clinoform succession of
the Van Mijenfjorden Group in the CSB (Johannessen et al.,5

2011). The 1085 m long core was split, with one half stored
in a container in Endalen, outside of Longyearbyen, and the
other half stored in Equinor’s laboratory in Bergen (Doerner
et al., 2020).

3.2.4 Deltadalen, DD-1 and DD-210

The most recent research drilling in Svalbard was conducted
in 2014 at Deltadalen specifically to target the uppermost
Permian part of the Tempelfjorden Group and Lower Triassic
succession of the Sassendalen Group, with a specific interest
in the EPME and its aftermath (Zuchuat et al., 2020). The15

two ca. 100 m deep boreholes were drilled and fully cored.
The drill cores are stored at the University of Oslo.

4 Deep-time paleoclimate in Svalbard

4.1 Early Paleozoic (Cambrian, Ordovician, Silurian,
538.8–419.2 Ma)20

4.1.1 Cambrian to Middle Ordovician – the Great
Ordovician Biodiversification Event

The early Paleozoic registered two of the greatest evolution-
ary events in the history of life: the Cambrian Explosion
(ca. 540–510 Ma) and the Great Ordovician Biodiversifica-25

tion Event (GOBE; ca. 497–445 Ma; Webby et al., 2004;
Servais and Harper, 2018). This upper Furongian to Upper
Ordovician diversification event is linked to cooling of previ-
ously very warm tropical oceans (Webby et al., 2004; Servais
and Harper, 2018).30

During the Cambrian and Ordovician, Svalbard was in a
near-equatorial position (Torsvik et al., 2012; Fig. 3). The
Terreneuvian to Middle Ordovician Oslobreen Group (Fig. 4)
strata preserved in Svalbard formed on a large carbonate
platform along the northern margin of Laurentia, also ex-35

posed in the Northeast Greenland Basin and eastern North
Greenland Basin (Stouge et al., 2012; Fig. 2). The mildly
deformed, 1–1.2 km thick sandstones, fossiliferous lime-
stone, and dolomite are preserved in northeastern Spitsber-
gen (Fig. 7; Harland and Wilson, 1956; Oslobreen Series in40

Gobbett and Wilson, 1960; Fortey and Bruton, 1973; Stouge
et al., 2011; 2012; Dallmann, 2015). The succession is po-
tentially interrupted by a ∼ 15 Myr hiatus spanning over the
Series 2, Miaolingian, Furongian, and possibly the earliest
Ordovician (Fortey and Bruton, 1973; Smelror et al., 2024),45

although the lack of dateable fossils might affect this inter-
pretation (Smelror et al., 2024). The Oslobreen Group shows
surprisingly low maximum burial temperatures (Bergström,
1980; Abay et al., 2022) and eastward increasing tectonother-

mal influence linked to the Caledonian Orogeny (Johansson 50

et al., 2004). The trilobites and fauna generally show a Pacific
and Laurentian affinity (Fortey and Bruton, 1973; Hansen
and Holmer, 2010; Stouge et al., 2012).

In Ny Friesland, the Terreneuvian microbial laminated
limestone/dolomite rocks contain centimeter-scale erratic 55

chert nodules. The Lower to Middle Ordovician (ca. 485–
458 Ma) carbonates were deposited in a paleotropical ma-
rine shelf setting experiencing episodes of water column re-
dox stratification (Lee et al., 2019). Stouge (2012) also inter-
prets the Tremadocian (Lower Ordovician; ca. 485–478 Ma) 60

environment in Svalbard and Greenland as a typical tropi-
cal shelf. Occurrence of oolite beds interbedded with domed
stromatolites throughout the Tremadocian on Ny Friesland
and adjacent islands (Kröger et al., 2017) is consistent with
a peritidal tropical carbonate factory. Uchman and Han- 65

ken (2024TS8 ) recognize that carbonates of the uppermost
part of Terreneuvian and the Cambrian Series 2 contain pseu-
domorphs after evaporites. Hansen and Holmer (2010) iden-
tify strong ties of Lower and Middle Ordovician brachiopods
to faunas in North America and Greenland at the generic 70

level. Hansen and Holmer (2010) also discuss the transi-
tion from low-diversity brachiopod fauna in the Tremado-
cian and early Floian (Early Ordovician; ca. 478–470 Ma),
followed by an abrupt diversification event in the late Floian
and into the Middle Ordovician. The hypersaline conditions, 75

however, mask the expected record of the Great Ordovician
Biodiversification Event (Uchman and Hanken, 2024). Bulk
δ13Corg values recorded from the Lower Ordovician to lower-
most Middle Ordovician succession in Svalbard range from
−29 to −32 ‰ with an average of −30.4 ‰ (Fig. 7; Lee et 80

al., 2019). This is close to the average δ13Corg of −29.4 ‰
for global marine organic matter for this time interval (e.g.,
Hayes et al., 1999, Edwards and Saltzman, 2016). The Mid-
dle Ordovician part of the succession represents an overall
deepening, transgressive sequence (Kröger et al., 2017; Lee 85

et al., 2019). The Olenidae Trilobite faunas in the lower and
upper Olenidsletta Member indicate periods of redox strat-
ification in deep-water, low-oxygen conditions (Lee at al.,
2019). Kröger et al. (2017) suggest that the gradual transi-
tion to deeper deposits with more shale and local siltstone 90

and glauconitic horizons accompanied by increased burrow-
ing and fossiliferous, cherty mud-wackestone, and skeletal
grainstone is evidence of general climate cooling in the tran-
sition to the Middle Ordovician (i.e., the incipient phase of
Ordovician cooling). Despite changing to colder sea floor 95

conditions, tropical carbonate production continued in an in-
ner carbonate ramp, while a cold-water carbonate factory
prevailed in the outer ramp (Smelror et al., 2024).

4.2 Late Paleozoic (Devonian, Carboniferous, Permian,
419.2–251.9 Ma) 100

The Devonian, Carboniferous, and Permian periods record
the only complete greenhouse to icehouse to greenhouse cy-
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Figure 7. Stratigraphic section of the Cambrian and Ordovician
Oslobreen Group succession in Ny Friesland, northern Spitsbergen
(see Fig. 5 for location) after Fortey and Bruton (1973), Harland
(1997), Stouge et al. (2012), Lehnert et al. (2013), Lee et al. (2019)
and Abay et al. (2022). Bulk organic carbon isotopes (δ13Corg;
in ‰VPDB); total organic carbon (TOC; in weight percent); Bl.
– Blårevbreen Member; Topp. – Topiggane Member; Sp. – Spora
Member.

cle (LPIA) on a vegetated Earth (cf. Isbell et al., 2008). In
Svalbard, the relatively complete Devonian to Permian sedi-
mentary succession, which encompasses the Old Red Sand-
stone, Billefjorden, Gipsdalen, and Tempelfjorden groups
(Fig. 4), provides an opportunity to study responses of the 5

tropical and near-tropical depositional systems with the ter-
restrial and shallow-marine settings to the LPIA glaciations.
Svalbard occupied a near equatorial position for most of the
Devonian and Carboniferous and from the Permian started
northwards drift (Fig. 3; Torsvik and Cocks, 2019). 10

4.2.1 Devonian: Old Red Sandstone, terrestrialization,
and first forest

The advent of terrestrial vascular plants in the latest Silurian–
earliest Devonian influenced weathering processes and soil
formation and strongly impacted the CO2 cycle and global 15

climate (Berner, 1993, 2005; Gensel, 2008, and references
therein; Kenrick et al., 2012). The impact of vascular plants
can be observed in Svalbard in the Uppermost Silurian to
Upper Devonian Old Red Sandstone succession (Friend et
al., 1997; Blomeier et al., 2003a, b). This > 8 km thick suc- 20

cession is restricted to extensional collapse basins formed
in pure extensional (Piepjohn and Dallmann, 2014) or,
more likely, transtensional settings (Braathen et al., 2018).
The Andrée Land Basin exposed in central-north Spits-
bergen was filled mainly by a terrestrial succession, with 25

marginal-marine conditions recorded in the northernmost
part (Blomeier et al., 2003a). It notably includes red and
gray-green fluvial, alluvial, lacustrine, and coastal sedimen-
tary strata arranged into fining-upward units, with abundant
plant material (Friend, 1965; Moody-Stuart, 1966; Blomeier 30

et al., 2003a, b; Piepjohn and Dallmann 2014). The succes-
sion recorded indications of long-term climatic variability,
such as shifts in paleosols from calcretes and vertisols to coal
and preservation of in situ tropical forests (Berry and Mar-
shall, 2015). The biological evidence of environmental con- 35

ditions recorded in the Old Red Sandstone come from plant
fossils (Berry, 2005; Berry and Marshall 2015; Davies et
al., 2021), palynomorphs (Vigran, 1964; Allen, 1965, 1967;
Friend et al., 1997), vegetation-induced sedimentary struc-
tures (Davies et al., 2021), and scarce marine-influenced 40

fauna including ostracods and bivalves (e.g., Friend, 1961;
Worsley, 1972). Bulk geochemistry along with extraction and
biomarker analysis of Middle Devonian coal indicates a ter-
restrial plant origin with high liptinite content (Vogt, 1941;
Blumenberg et al., 2018). The flora evolved over time from 45

diminutive plants in the Middle Devonian to the first in situ
forests of lycopsids and archaeopterids in the early Fras-
nian (Late Devonian; ca. 383–372 Ma; Berry and Marshall,
2015; Davies et al., 2021). Based on sedimentological and
biological evidence for highly variable seasonal discharge 50

and scarcity of thick calcretes, Davies et al. (2021) suggested
that the precipitation regime in the Devonian was tropical
and monsoonal and that the stratigraphic partitioning into red
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bed and gray-green strata attests to long-term fluctuations in
drainage and oxidizing conditions.

4.2.2 Carboniferous to Cisuralian: Late Paleozoic Ice
Age (LPIA)

The Late Paleozoic Ice Age (LPIA) is one of the most5

important climatic events of the Phanerozoic that signifi-
cantly influenced climate and depositional systems on Earth
(Gastaldo et al., 1996; Montañez et al., 2007; Isbell et al.,
2008). The LPIA is the closest analog to present climate
conditions, characterized by discrete periods of glaciations10

separated by warm interglacials (Montañez and Poulsen,
2013). The LPIA glaciations started in the latest Devo-
nian ca. 362 Ma, extended throughout the Carboniferous),
and lasted at least until ca. 285 Ma during the middle
of the Artinskian (Cisuralian), potentially extending until15

ca. 260 Ma around the Guadalupian–Lopingian transition in
the more Alpine settings in eastern Gondwana (Montañez
and Poulsen, 2013; Rosa and Isbell, 2021). During this time,
Svalbard drifted from a tropical position into the north-
ern subtropical warm arid zone (Fig. 2; e.g., Torsvik and20

Cocks, 2019).
The early stage of the LPIA coincided with deposition of

the Mississippian Billefjorden Group. This succession un-
conformably overlies the folded Paleo-Neoproterozoic and
Devonian successions. The terrestrial deposition occurred25

on broad floodplains and included abundant coal seams de-
posited under the humid tropical climate (Fig. 4; Gjelberg
and Steel, 1981; Fairchild et al., 1982; Steel and Wors-
ley, 1984; Lopes et al., 2019). The coal-bearing succession
reaches up to 55 m thickness in eastern Spitsbergen (Scheib-30

ner et al., 2012) and 350 m in central Spitsbergen (Gjel-
berg and Steel, 1981; see borehole SLE 116 in Smyrak-
Sikora et al., 2021). Over 1200 m of cumulative thickness
is reported along the west and south parts of Spitsbergen
(Gjelberg and Steel, 1981), where this succession is repeated35

several times due to the Paleocene and Eocene WSFTB
(Maher et al., 1995; Braathen and Bergh, 1995; Fig. 10 in
Horota et al., 2022). The fluvio-lacustrine coal deposits were
commercially mined in Pyramiden from 1910 to 1998. The
coal is characterized by relatively heavy δ13C values, a low40

gammacerane index and high Pr/Ph ratios, distinctive from
the Pennsylvanian coals associated with evaporites (Nico-
laisen, 2019). Based on spores and plant fossils, Scheibner et
al. (2012) suggested that the Billefjorden Group strata were
deposited in a humid climate, in accordance with a paleogeo-45

graphic position 10–15° N (Fig. 3).
The shift from humid tropical to warm, arid to semi-

arid depositional environments occurred during the late Ser-
pukhovian (Mississippian) at the boundary between the
Billefjorden and Gipsdalen groups (Fig. 4; Holliday and Cut-50

bill, 1972; Gjelberg and Steel, 1981; Johannessen and Steel,
1992) and coincides with the initiation of regional-scale rift-
ing in Svalbard and the Barents Shelf (Nøttvedt et al., 1993;

Faleide et al., 2008; Braathen et al., 2012; Smyrak-Sikora et
al., 2018, 2021). The following mixed siliciclastic-evaporite– 55

carbonate succession of the lower Gipsdalen Group was de-
posited during the Pennsylvanian in an array of north–south-
striking rift basins (Gjelberg and Steel 1981; Smyrak-Sikora
et al., 2021). The shift from the Billefjorden Group to the
Gipsdalen Group is abrupt across most of Svalbard, and the 60

boundary likely represents a period of non-deposition or ero-
sion, especially on the structural highs. Contrastingly, in the
inner part of one of the Billefjorden Trough, the transition
is more gradual and occurs in a fluvial succession where
the only changes recorded in the meandering river system is 65

the shift from humid to arid-climate soil profiles (Olaussen
et al., 2023). This change in climate setting does not cor-
respond to recognized northward drift of Svalbard (Torsvik
and Cocks, 2019), and the reasons for this change are poorly
understood. The Billefjorden Trough began as a continen- 70

tal rift basin followed by the opening of a connection to the
ocean in the Bashkirian, which made the preposition sensi-
tive to glacio-eustatic sea-level variations (Smyrak-Sikora et
al., 2018, 2021).

The impact of the LPIA glaciations and deglaciations is 75

most readily recognized in the Bashkirian (Mississippian;
onset ca. 323 Ma) to Sakmarian (Cisuralian; ca. 293–290 Ma)
part of Gipsdalen Group, namely the paralic to marine syn- to
post-rift succession comprising the upper Ebbadalen to Gip-
shuken formations (Fig. 8). Glacio-eustatic sea-level varia- 80

tions related to LPIA significantly impacted sedimentation
in shallow shelf and coastal environments. Episodes of sea-
level lowstands are represented by terrestrial siliciclastics,
gypsum strata that precipitated in salinas and sabkhas, karst,
and exposure surfaces which are interbedded with restricted 85

to open-marine carbonate deposits formed during the sea-
level highstands (Stemmerik, 2000, 2008; Ahlborn and Stem-
merik, 2015; Sorento et al., 2020; Smyrak-Sikora et al.,
2021). The number of cycles in the Bashkirian to Sakmarian
part of the Gipsdalen Group exceeds 130 cycles (Ahlborn 90

and Stemmerik, 2015; Sorento et al., 2020; Smyrak-Sikora
et al., 2021); however, the lack of good stratigraphic control
limits cyclostratigraphic constraints. The LPIA in Svalbard
is manifested also by Asselian (peak icehouse) atmospheric
dust load estimated to be higher than the Moscovian (moder- 95

ate icehouse; Oordt et al., 2020). This is consistent with the
record from the Russian Platform that shows a δ18O maxi-
mum during the glacial maximum in the Asselian (Grossman
et al., 2008). The Asselian to Artinskian ca. 2.5 ‰ decrease
in δ18O in the Southern Urals is attributed to a ca. 4–7 °C 100

increase in temperature and is used as evidence for glacial
retreat (Korte et al., 2005). This is in line with the presence
of a major Sakmarian deglaciation event across the western
Barents Shelf and Svalbard resulting in regional deepening
of the carbonate platforms and a temporary stop of glacio- 105

eustatic cyclic deposition (Stemmerik, 2008; Ahlborn and
Stemmerik, 2015; Sorento et al., 2020).
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Figure 8. Carboniferous stratigraphy and simplified lithological profile demonstrating a shift from humid–tropical climate during deposition
of the coal-bearing Billefjorden Group to the semi-arid to arid climate of the Gipsdalen Group seen as a change of climate-sensitive facies
from coal-bearing units to red siliciclastics, evaporites, and warm-water carbonates. Modified from Braathen et al. (2012) and Smyrak-Sikora
et al. (2021).

4.2.3 Late Permian: cold-water carbonate platform

A transition from warm-water carbonate–evaporite depo-
sition to the temperate to cool-water mixed siliceous–
carbonate ramp occurred in the upper Artinskian (Cisuralian;
ca. 285 Ma) and corresponds to the transition from the Gips-5

dalen Group to the Tempelfjorden Group (Ezaki et al., 1994;
Stemmerik, 2000, 2008; Hüneke et al., 2001; Stemmerik and
Worsley, 2005; Blomeier et al., 2009, 2013; Buggisch et al.,
2012; Dustira et al., 2013; Sorento et al., 2020; Olaussen et
al., 2025). The transition is attributed to the continued north-10

ern drift of Svalbard and closure of the Uralian seaway to
the warmer Tethys to the southeast (Stemmerik, 2008) and
was likely also the result of a deepening of the entire shelf
(Blomeier et al., 2013). For the remainder of the Permian,
cool- to cold-water conditions prevailed along the northwest-15

ern margin of Pangea, leading to the deposition of a ca.
460 m thick succession dominated by spiculitic chert and
cool-water carbonates (Cutbill and Challinor 1965; Blomeier
et al., 2013; Uchman et al., 2016; Matysik et al., 2018).

Extensive oxygen isotopic data have been derived from20

brachiopods from the Artinskian–Changhingian (middle
Cisuralian to Lopingian; ca. 285–252 Ma) Kapp Starostin
Formation (e.g., Gruszczynski et al., 1989TS9 ; Mii et al.,
1997; Korte et al., 2005; Nielsen et al., 2013). However,
the high variability in the isotopic data from these Per-25

mian brachiopods (e.g., Gruszczynski et al., 1989; Korte
et al., 2005) is inconsistent with the marine habitat of

these taxa (Grossman et al., 2008). Diagenetic alteration ac-
counts for the low δ18O values of most samples (Mii et
al., 1997). To exclude diagenetically altered brachiopods, 30

many researchers have used geochemistry and petrography
(e.g., Mii et al., 1997) and targeted the best-preserved parts
of shells. Excluding these potentially altered values, bra-
chiopod δ18O values are generally −2 ‰ to −7 ‰ for the
Kungurian–Wuchiapingian (upper Cisuralian-Lopingian; ca. 35

283–254 Ma) interval of the Kapp Starostin Formation (Mii
et al., 1997). The Guadalupian–Lopingian δ13C maximum of
7.5 ‰ represents the highest spiriferid brachiopod δ13C val-
ues in the Phanerozoic (Gruszczynski et al., 1989; Mii et al.,
1997) and may reflect changes in global storage of organic 40

carbon (Mii et al., 1997). Matysik et al. (2018) investigated
the multistage diagenesis of the Kapp Starostin Formation, at
medium burial depths with deep-burial overprinting.

4.2.4 Capitanian crisis

Within the Kapp Starostin Formation, it has also been pro- 45

posed that a less severe middle Permian (Capitanian) mass
extinction is recorded (Bond et al., 2015). This Capitanian
crisis is thought to be indicated by a negative δ13Corg iso-
tope excursion, a lithofacies change (i.e., the loss of car-
bonate beds), and a drop in species richness (Grasby and 50

Beauchamp, 2009; Beauchamp and Grasby, 2012; Bond et
al., 2015). In addition, these changes have been correlated to
similar changes in the Sverdrup Basin, Arctic Canada (Bond
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et al., 2020). These changes are also associated with redox
proxies (pyrite framboids, Th/U and V/Al), suggesting the
development of anoxic conditions, and the loss of carbonates
from the Kapp Starostin Formation was interpreted to be the
consequence of ocean acidification, leading to a sustained in-5

terval of a shallow lysocline and calcite compensation depth
(CCD) (Beauchamp and Grasby, 2012; Grasby et al., 2015a),
making this transition consistent with other hyperthermal
events. The timing of these changes is also consistent with
the changes observed at tropical paleolatitudes (Sun et al.,10

2012; Wignall et al., 2012TS10 ), suggesting that the Capita-
nian crisis was a global event. However, the interpretation
that the Capitanian crisis is recorded in the Kapp Starostin
Formation is disputed, owing to the lack of biostratigraphi-
cal data confirming the rocks are of Capitanian age (Shen et15

al., 2005TS11 ; Lee et al., 2022). A reanalysis of the same sec-
tions using brachiopod data suggested that this event is not
the Capitanian crisis but instead a faunal turnover that oc-
curred during the Kungurian (Lee et al., 2022), where shoal-
ing of the lysocline and CCD is also observed in the Sverdrup20

basin (Beauchamp and Grasby, 2012). Moreover, based on
the “lysocline–ocean acidification” model, the development
of shallow lysocline and calcite compensation depth is inter-
preted to have persisted for millions of years (Beauchamp
and Grasby, 2012), although the large carbonate buffering25

capacity of ocean water suggests that ocean acidification is
unlikely to persist for such long intervals of time (Hönisch
et al., 2012; Cui et al., 2015). It, therefore, remains equivo-
cal as to whether the Kapp Starostin Formation records the
Capitanian Crisis.30

4.3 Mesozoic (Triassic, Jurassic, Cretaceous,
252.2–66 Ma)

4.3.1 The Permian–Triassic transition

The End-Permian Mass Extinction Event (EPME) at ca.
252 Ma (Burgess et al., 2014) was the most catastrophic ex-35

tinction event of the Phanerozoic, which decimated 75 % of
terrestrial species (Hochuli et al., 2010) and 81 % of marine
species (Stanley, 2016). This extinction is associated with a
marked and continuous global negative carbon isotope ex-
cursion (CIE; Korte and Kozur, 2010), along with an oxy-40

gen isotope anomaly (e.g., Sun et al., 2012). The cause(s) of
the EPME is debated; both a bolide impact and the emplace-
ment and eruptions of the Siberian Traps LIP are implicated
as causal mechanisms (Svensen et al., 2009, 2018; Grasby et
al., 2011; Sanei et al., 2012; Ogden and Sleep, 2012; Ivanov45

et al., 2013; Burgess and Bowring, 2015; Sanson Barrera,
2016; Wu et al., 2021). Even though the intrusive and ex-
trusive character of the Siberian Traps LIP is generally ac-
cepted as the extinction trigger that led to the cascading en-
vironmental changes, it is not fully understood which envi-50

ronmental changes led to the collapse of terrestrial and ma-
rine ecosystems (e.g., Hochuli et al., 2010; Korte and Kozur,

2010; Black et al., 2014; Grasby et al., 2015b; Joachimski et
al., 2020; Scotese et al., 2021; Wu et al., 2021; Galloway and
Lindström, 2023a). 55

In Svalbard, the mass extinction event is expressed dif-
ferently compared to equatorial Tethyan carbonate succes-
sions. In west and central Spitsbergen, the pre-extinction in-
terval belongs to the uppermost part of the Kapp Starostin
Formation, which is usually devoid of any skeletal fossil 60

material (Fig. 9; Bond et al., 2015; Grasby et al., 2015a;
Lee et al., 2022). The only exception is the poorly pre-
served lingulid brachiopod species documented (e.g., Gob-
bet, 1963TS12 ) and rare impressions of large brachiopods,
bryozoans, and bivalves so far, making it virtually impos- 65

sible to robustly reconstruct diversity dynamics during this
important interval (Uchman et al., 2016; Foster et al., 2022).
The Permian Kapp Starostin Formation is, therefore, poorly
age-constrained, and no index fossils of Changhsingian (pre-
extinction) age have yet been identified. Based on sedimento- 70

logical evidence as well as on the nature of the sharp negative
δ13Corg excursion, the upper part of the Kapp Starostin and
the overlying Triassic Sassendalen Group (separated in the
Vardebukta Formation in the west and Vikinghødga Forma-
tion in the east) have been interpreted to represent continuous 75

deposition across the Permian–Triassic boundary (Wignall et
al., 1998; Schobben et al., 2020; Zuchuat et al., 2020). This
transition is also associated with the abrupt disappearance
of cemented, highly bioturbated, spiculite- and chert-bearing
mudstones and sandstones, conformably overlain by easily 80

weathered, usually laminated, scarcely bioturbated, silica-
poor mudstones (e.g., Mørk et al., 1993, 1999a, b; Uchman
et al., 2016; Rodríguez-Tovar et al., 2021). The EPME has,
therefore, been interpreted as a progressive phase of extinc-
tion starting at the base of the Vardebukta Formation in west 85

Spitsbergen (Wignall et al., 1998; Grasby et al., 2015a) and
a horizon ∼ 1.6 m into the Vikinghøgda Formation in cen-
tral Spitsbergen (Mørk et al., 1999b; Nabbefeld et al., 2010).
Grasby et al. (2015b), based on mercury anomalies and shifts
in carbon isotopes, interpret EPME as a progressive extinc- 90

tion event indicating prolonged volcanic activity and envi-
ronmental stress preceding the extinction event.

The post-extinction sediments, which in Svalbard are as-
signed to the Lower Triassic Vardebukta and Vikinghøgda
formations, yield a scarce and low-diversity ichno- 95

assemblage (Wignall et al., 1998; Uchman et al., 2016;
Rodríguez-Tovar et al., 2021), as well as abundant macro-
fossils, including key Triassic index fossils (ammonoids and
conodonts), which have been useful in inferring the tim-
ing of the extinction and the recovery. From the base of 100

both formations, a diverse assemblage of ammonoids have
been recorded including Otoceras boreale, Glyptophiceras
nielseni, Ophiceras spathi, O. cf. compressum, O. cf. kochi,
O. cf. poulseni, Paravishnuites paradigma, and P. oxynotus
(Mørk et al., 1999b), which occur ca. 6 m above the base of 105

the Vikinghøgda Formation (Nakrem et al., 2008) and 2.5 m
into the Vardebukta Formation (Alistair McGowan, per-
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Figure 9. Top: geological map of central Spitsbergen highlighting the drill site (yellow star) and the adjacent Deltadalen river section (green
star; geological map adapted from Major et al., 1992). Overview of the sedimentary section illustrating the lithostratigraphic formations in
central Spitsbergen after Dallmann et al. (1999), Mørk et al. (1999b), Midtkandal et al. (2008), Nagy and Berge (2008), Dypvik et al. (2011),
Blomeier et al. (2013), Lord et al. (2014 TS13 ), Koevoets et al. (2016), and Smelror and Larssen (2016TS14 ). Bottom: the Permian–Triassic
boundary as it appears in the Deltadalen DD-1 drill core. Modified after Zuchuat et al. (2020). EMPE – End-Permian Mass Extinction Event;
Kp. St. Fm. – Kapp Starostin Formation; Mbr. – member; Fm – formation; H.p – Hindeodus parvus; * – member boundary after Mørk et al.
(1999b); ** Induan–Olenekian boundary age after Burgess et al. (2014).
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sonal communication, November 2015). Mørk et al. (1999b),
Nakrem et al. (2008), and Zuchuat et al. (2020) also de-
scribed conodonts from the base of the Vikinghøgda Forma-
tion, which suggests that the interpreted extinction horizon
in Svalbard is time-equivalent with the onset of the mass ex-5

tinction at the Global Stratotype Section and Point (GSSP) in
Meishan, China, and the Permian–Triassic boundary occurs
4.1 m into the Vikinghøgda Formation. This record is similar
to other high-latitude clastic Permian–Triassic successions in
Jameson Land, Greenland (Twitchett et al., 2001); the Sver-10

drup Basin in Canada (Henderson and Baud, 1997); and the
South Verkhoyansk region, Russia (Biakov et al., 2016). Fur-
thermore, in South Verkhoyansk, the Changhsingian sand-
stones record bivalve communities with large Intomodesma
species that suddenly go extinct at the base of the Otoceras15

concavum ammonoid zone (Biakov et al., 2016), coincident
with the change in bioturbation record in Svalbard (Uchman
et al., 2016; Rodríguez-Tovar et al., 2021).

Numerous geochemical and sedimentological studies have
investigated the environmental changes recorded in Svalbard20

associated with the EPME. The negative δ13Corg and δ13Ccarb
isotope excursions, which occur just prior to the Permian–
Triassic boundary, reflect a rapid influx of isotopically light
carbon into the atmosphere, while the influx of heavy met-
als and the presence of abundant tephra layers, including one25

just above the first appearance datum (FAD) of Hindeodus
parvus and dated at 252.13± 0.62 Ma (Fig. 9; Zuchuat et
al., 2020), are in good agreement with the tephra beds from
the Induan GSSP section in Meishan (Burgess et al., 2014)
that have been inferred to link the Siberian Traps LIP and30

the mass extinction in Svalbard (Gruszczynski et al., 1989;
Grasby et al., 2015b; Zuchuat et al., 2020). The reduced
iron (Fe) / potassium (K) elemental ratio that accompanied
the extinction horizon in the Vikinghøgda Formation seems
to suggest that the tropical atmospheric circulation (Hadley35

Cell) could have expanded towards the poles, associated with
an increased aridity in the hinterland of the basin (Zuchuat et
al., 2020) developed within overall and mega-monsoonal Tri-
assic climate (e.g., Hu et al., 2023). Redox proxies, including
lipid biomarkers (Summons et al., 2022), Fe and P specia-40

tion (Schobben et al., 2020), trace-metal data (Grasby et al.,
2015b; Uchman et al., 2016; Wignall et al., 2016; Zuchuat
et al., 2020), and pyrite framboid sizes (Dustira et al., 2013;
Wignall et al., 2016), also suggest that the mass extinction
is associated with the expansion of oxygen minimum zones45

in the ocean, bringing anoxic and euxinic conditions into
shallow-marine settings, as well as subsequent pulses of re-
dox changes throughout the Early Triassic (Rodríguez-Tovar
et al., 2021). Isotopic signatures of lipid biomarkers suggest
frequent phytoplankton blooms, and phosphorus speciation50

data indicate an increase in nutrient supply and the remobi-
lization of biologically available P as a consequence of the
mass-extinction event initiating feedback that further devel-
oped anoxic conditions (Nabbefeld et al., 2010; Schobben et
al., 2020).55

Thermal stress and ocean acidification are also widely con-
sidered as key factors in the EPME, with global average
temperature increases reaching 7 °C (Kidder and Worsley,
2004; Svensen et al., 2009; Sun et al., 2012; Stordal et al.,
2017; Burger et al., 2019), potentially as much as 9–12 °C 60

(Joachimski et al., 2012, 2020; Schobben et al., 2014; Chen
et al., 2016). In Svalbard, there are currently no published
geochemical investigations of the environmental changes as-
sociated with this hyperthermal event, but the presence of
warm-water taxa such as red algae (Wignall et al., 1998), the 65

conodont genus Clarkina (Nakrem et al., 2008), and both os-
tracod and radiolarian species that were equatorial during the
Changhsingian (Foster et al., 2023) suggests that higher pale-
olatitudinal settings were unusually warm following the mass
extinction. The cessation of carbonate rocks combined with 70

the loss of carbonate secreting taxa near the top of the Kapp
Starostin and across the Boreal Realm also provided an alter-
native hypothesis that ocean acidification developed and per-
sisted for an unexpected long duration in the Late Permian
(Beauchamp and Grasby, 2012; Grasby et al., 2015a). This 75

hypothesis, however, requires the persistence of undersatu-
rated conditions for millions of years, which is inconsistent
with some Earth system models that suggest that ocean acid-
ification events cannot persist for this length of time (e.g.,
Hönisch et al., 2012). In addition, the lack of dissolution and 80

repair marks on well-preserved mollusks from the extinction
aftermath have also been interpreted to suggest that ocean
acidification was not severe enough to have impacted skele-
tal calcification in the Boreal realm, at least at the onset of the
Triassic (Foster et al., 2022). Furthermore, based on a meta- 85

analysis of modern calcifying organisms, Leung et al. (2022)
suggested that ocean acidification alone may not be a major
driver of biodiversity loss as previously thought, with mul-
tiple other factors affecting the vulnerability of marine or-
ganisms to ocean acidification. More research is, therefore, 90

required to understand the role of thermal stress and ocean
acidification in high-latitude marine extinctions.

The impact of the EMPE on terrestrial ecosystems can
also be investigated from Svalbard’s marine successions.
The Permian to Triassic palynological record of Svalbard 95

and the Barents Shelf has been intensely investigated (e.g.,
Mangerud and Konieczny, 1993), in part due to their util-
ity for petroleum exploration (e.g., Vigran et al., 2014). A
spore spike demise of gymnosperms, malformed spores and
pollen, a drop in abundance of acritarchs, and compound 100

specific isotopes of algal and land-plant-derived biomarkers
all coincide with the mass extinction event, suggesting near-
synchroneity between effects in marine and terrestrial realms
(Stemmerik et al., 2001; Nabbefeld et al., 2010; Uchman et
al., 2016). The presence of Permian plant taxa, including ma- 105

jor Paleozoic plant groups in the Lower Triassic successions
of Svalbard and the Barents Shelf, however, has led to some
authors interpreting that the EMPE only had a minor impact
on plant communities (Hochuli et al., 2010; Vigran et al.,
2014). Aberrant pollen and spores reported from the Barents 110
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Sea and elsewhere have been suggested to be a consequence
of severe atmospheric pollution and increased UVA-B radi-
ation due to emissions from emplacement of the Siberian
Traps (Black et al., 2014; Hochuli et al., 2017; Galloway and
Lindström, 2023a, and references therein).5

4.3.2 Early Triassic ecosystem recovery

The post-EPME survival and recovery of marine organisms
recorded from Svalbard and the Boreal realm was relatively
fast compared to equatorial locations (Twitchett and Barras,
2004). Within the early Griesbachian H. parvus conodont10

zone in central Spitsbergen (Lusitaniadalen and Deltadalen),
a diverse assemblage of macro and microfossils have been
recorded, including the only documented silicified marine
assemblage of the Early Triassic (Foster et al., 2017b), the
oldest record of post-extinction silica-excreting organisms15

globally (radiolarians and siliceous sponges; Foster et al.,
2023), and the presence of an ecological complex assem-
blage of trace fossils (Nabbefeld et al., 2010; Rodríguez-
Tovar et al., 2021). In addition, across Svalbard, the Lower
Triassic succession preserved many groups, including bry-20

ozoans (Nakrem and Mørk, 1991), algae (Wignall et al.,
1998), conodonts (Nakrem et al., 2008), bivalves and gas-
tropods (Buchan et al., 1965; Tozer and Parker, 1968; Fos-
ter, 2015; Foster et al., 2017b), ammonoids (see Nakrem et
al., 2008), ostracods (Olempska and Błaszyk, 1996), echin-25

oderms (Salamon et al., 2015), and trace fossils (Wignall
et al., 1998). Whilst sedimentation-rate calculations suggest
marine ecosystems only required ca. 150 kyr to recover from
the mass extinction (Rodríguez-Tovar et al., 2021), based on
index conodonts, there is a distinctive pulse of environmen-30

tal and ecological recovery in the Dienerian (Hatleberg and
Clark, 1984; Wignall et al., 1998; Mørk and Worsley, 2006;
Salamon et al., 2015).

The Lower Triassic succession of Svalbard is also fun-
damental for understanding the evolution and radiation of35

marine vertebrates following the Permian–Triassic transi-
tion. The Triassic succession of Svalbard has long been
well known for four described vertebrate fossil horizons (in
stratigraphic order): the Fish Niveau, Grippia Niveau, Lower
Saurian Niveau, and Upper Saurian Niveau (Wiman, 1910,40

1928). These bone beds correspond to the Lusitaniadalen
(the Fish Niveau) and Vendomdalen (the Grippa and Lower
Saurian Niveau) members of the Vikinghøgda Formation that
span the Smithian–Spathian transition (Lower Triassic; ca.
249.2 Ma), and the Ladinian-age (Middle Triassic; ca. 242–45

237 Ma) Blanknuten Member of the Botneheia Formation
(the Upper Saurian Niveau; Maxwell and Kear, 2013; Hu-
rum et al., 2018). Recent work on Early and Middle Triassic
ecosystems in Svalbard reveals an exceptionally rapid diver-
sification among marine vertebrates andichthyosaurs likely50

evolved prior to the EPME (Kear et al., 2023). The bone
beds reveal a much more complex food web than previously
thought (Hurum et al., 2014, 2018; Bratvold, 2016; Delsett

et al., 2017; Ekeheien et al., 2018; Engelschiøn et al., 2018;
Økland et al., 2018; Roberts et al., 2022; Kear et al., 2023), 55

suggesting that the Boreal Sea served as a climatic refuge
after the EPME (Kear et al., 2023; Foster et al., 2023).

It has been hypothesized that the recovery from the EPME
was delayed due to subsequent crises throughout the Early
Triassic (Payne et al., 2004; Ware et al., 2011; Song et al., 60

2012; Foster et al., 2017b; Zuchuat et al., 2020; Wu et al.,
2021), despite the degree of ichnofacies diversity and inten-
sity reached pre-extinction level in ca. 150 Kyr (Rodríguez-
Tovar et al., 2021). The first crisis occurring after the EPME
is the “late Dienerian biotic crisis” (late Early Triassic; ca. 65

251 Ma), which is recognized by a negative CIE in the
Vikinghøgda Formation in Deltadalen, central Spitsbergen,
where it is sandwiched between two thin tephra layers. This
benthic crisis was associated with dysoxic conditions in the
water column and the seafloor (Zuchuat et al., 2020) and 70

was first documented from the Tethyan with the Werfen For-
mation, northern Italy (Hofmann et al., 2015; Foster et al.,
2017a), as well as from subtropical latitudes along the Pan-
thalassic margin (Ware et al., 2011; Hofmann et al., 2011,
2014). The palynological record from Greenland suggests 75

that this CIE coincides with a more significant turnover in
plant communities than at the End-Permian Mass Extinction
(Hochuli et al., 2017). This indicates that the late Dienerian
Crisis might have been of global significance. The presence
of the two tephra horizons directly above and below the neg- 80

ative CIE of the late Dienerian biotic crisis suggests a vol-
canic trigger for the event, but the exact nature of this poten-
tial biotic crisis in Svalbard and globally requires additional
research.

The most prevalent of the biotic crises in the Triassic is 85

the Smithian–Spathian transition, which is associated with a
negative CIE greater than at the EPME (Payne et al., 2004;
Grasby et al., 2013, 2016b) followed by prominent positive
C isotope excursion (e.g., Galfetti et al., 2007). In Svalbard,
the Smithian–Spathian transition is recorded as a regression 90

and subsequent transgression, with numerous fossiliferous
horizons (e.g., Hoel and Orvin, 1937; Buchan et al., 1965;
Tozer, 1967; Weitschat and Lehmann, 1978TS15 ; Mørk et
al., 1999b; Foster, 2015; Hammer et al., 2019; Hansen et
al., 2024; Leu et al., 2024). While the Smithian–Spathian 95

transition has received considerably less attention than the
Permian–Triassic transition, recent research has highlighted
the multi-factor nature of this event on the dynamic of the C
and P cycles in the Arctic (Hammer et al., 2019; Blattmann et
al., 2024). Nevertheless, many outstanding questions remain 100

unanswered, both globally and on Svalbard:

– What was the timing of the event?

– What caused the CIE?

– What environmental changes are associated with the
CIE? 105
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– How were terrestrial and marine ecosystems impacted
by the event?

At the Festningen section, Hg concentrations and
Hg/TOC both show a noticeable spike in the Tvillingodden
Formation of the Sassendalen Group, which have been as-5

sociated with Hg loading associated with increased activity
from the Siberian Traps (Grasby et al., 2016b). This peak
has also been correlated with Hg loading recorded at the
Smithian–Spathian boundary at Smith Creek, Arctic Canada,
even though the Smithian–Spathian boundary is associated10

with a carbon isotope peak at most sections globally. In
the equivalent Vikinghøgda Formation at the Wallenbergf-
jellet section, however, the Smithian–Spathian boundary (the
top of the Wasatchites tardus ammonoid zone) is associated
with a positive CIE (Galfetti et al., 2007; Hammer et al.,15

2019), and the Hg loading occurred prior to the Smithian–
Spathian boundary in the middle to late Smithian (Hammer
et al., 2019). This is consistent with the Festningen section,
which suggests the Hg loading occurred synchronously dur-
ing the Smithian (Grasby et al., 2016a). At the Kongressf-20

jellet and Vikinghøgda sections, just above the base of the
Vendomdalen Member of the Vikinghøgda Formation, a sig-
nificant shift in the palynological record is recorded (Mørk
et al., 1999b; Galfetti et al., 2007). This Smithian–Spathian
turnover is also recorded in the shallow cores drilled at25

the Svalis Dome, central Barents Sea (Hochuli and Vigran,
2010TS16 ). This turnover in the palynological record has
been associated with the re-establishment of diverse woody
gymnosperm ecosystems, marking a recovery signal from
both the Permian–Triassic climate crisis and a “late Smithian30

Thermal Maximum”. This is supported by the synchronous
recovery in the latitudinal diversity gradient of ammonoids
(Brayard et al., 2009TS17 ) and the recovery of equatorial ben-
thic marine communities (Twitchett and Wignall, 1996TS18 ;
Chen et al., 2011; Pietsch and Bottjer, 2014; Hofmann et35

al., 2014, 2015; Foster et al., 2015, 2017a, 2018, 2023a).
The Smithian–Spathian transition, therefore, appears to be
marked by a late Smithian Thermal Maximum and a sub-
sequent Smithian–Spathian boundary cooling and associated
biotic recovery in Svalbard and pan-Arctic.40

4.3.3 Middle to Late Triassic: organic-rich mudstones
rich in phosphate

The Middle Triassic succession is dominated by organic-
rich mudstone to siltstones of the Anisian–Ladinian (Mid-
dle Triassic; ca. 247–237 Ma) Botneheia and Brevaisber-45

get formations of the upper Sassendalen Group (Mørk and
Bjorøy, 1984; Krajewski, 2008, 2013; Grasby et al., 2015b,
2020; Wesenlund et al., 2021; Knies et al., 2022). The upper
Blanknuten Member of the Botneheia Formation (Ladinian)
reaches 12 wt % TOC, and certain stratigraphic intervals, par-50

ticularly in the underlying Muen Member (Anisian), contain
abundant phosphorite nodules (e.g., Krajewski, 2013; We-

senlund et al., 2021, 2022; Engelschiøn et al., 2023). In the
Anisian, nutrient saturated runoff from continental areas, par-
ticularly associated with the approaching delta system from 55

the southeast (see next section), coupled with upwelling of
nutrient-rich waters from the Panthalassic Ocean, resulted in
extensive algal blooms and the formation of oxygen mini-
mum zones, which promoted dysoxia and anoxia and preser-
vation of organic matter and precipitation of phosphate (Kra- 60

jewski, 2013; Vigran et al., 2014; Wesenlund et al., 2022;
Engelschiøn et al., 2023). Repeated transgression-regression
events, influenced by the emerging delta system, likely con-
tributed to fossil-preservation potential of the Middle Trias-
sic strata as the relatively shallow offshore environment was 65

temporarily punctuated by anoxic events (Mørk et al., 1989;
Krajewski, 2013; Engelschiøn et al., 2023). Fossil preserva-
tion has also occurred by complete barium sulfate (barite)
pseudomorphing, possibly by sulfate remobilization from the
organic-rich shales (Engelschiøn et al., 2023). Moreover, the 70

high TOC values in the Ladinian Blanknuten Member sug-
gest deposition under euxinic conditions, possibly governed
by restricted water circulation due to shallowing of the basin,
as well as water-mass stratification caused by the increasing
influx of riverine waters into the marine basin (Wesenlund et 75

al., 2022).

4.3.4 Late Triassic: the Carnian Pluvial Episode and the
world’s largest delta plain

The Carnian Pluvial Episode spanning the Julian 2 and Tu-
valian 1 substages of the Carnian (CPE, ca. 233 Ma) marks a 80

period of worldwide documented increased rainfall and asso-
ciated biotic changes that occurred within an overall global
monsoonal system dominating the Triassic climate of Pangea
(Simms and Ruffell, 1989; Breda et al., 2009; Preto et al.,
2010; Dal Corso et al., 2018; Hu et al., 2023). The CPE was 85

first recognized as concomitant to global carbonate platform
environment perturbations, associated with an increased ter-
rigenous input into sedimentary basins (Dal Corso et al.,
2018) and the rapid diversification of dinosaurs (Benton et
al., 2018). The CPE is also associated with several isotope 90

perturbations in terrestrial and marine C and Hg records,
which potentially reflects multiple pulses of volcanic activ-
ity of the Wrangellia LIP (Dal Corso et al., 2018; Jin et
al., 2023). Analyses of palynological assemblages, chem-
ical weathering indices, δ18O apatite records, and redox- 95

sensitive elements suggest that the CPE was characterized
by an extremely humid climate (e.g., Roghi, 2004; Baranyi et
al., 2019), warm temperatures (Rigo and Joachimski, 2010;
Rigo et al., 2012TS19 ; Sun et al., 2016), and widespread
marine dysoxia and anoxia (Soua, 2014; Sun et al., 2016; 100

Tomimatsu et al., 2022). Shallow-water carbonate produc-
tion switched as a result of climatic variations and eustatic
sea-level fall (Jin et al., 2020), which impacted both the ma-
rine and the continental biosphere, with high extinction rates
in ammonoids and conodonts (Rigo et al., 2007; Dal Corso et 105



22 A. Smyrak-Sikora et al.: Phanerozoic paleoenvironmental and paleoclimatic evolution in Svalbard

al., 2022); rapid extinction of terrestrial tetrapods; and a sub-
sequent diversification of dinosaurs (Bernardi et al., 2018),
mammals (Benton et al., 2018), scleractinian corals (Stanley,
2003), calcareous dinoflagellates, and plants (e.g., Dal Corso
et al., 2022).5

While the CPE is well documented in the Tethyan Realm
(Dal Corso et al., 2018), evidence from the Boreal Realm
remains limited. In Svalbard, preliminary palynological ev-
idence from the Kapp Toscana Group in central Spitsber-
gen integrated with organic carbon isotope and paleomag-10

netic constraints indicates warming during the late Julian-1
(Mueller et al., 2016; Paterson et al., 2016) and suggest wet-
ter conditions starting from the Julian-2, which occurs in the
lower part of the De Geerdalen Formation (Mueller et al.,
2016). In addition, the detailed study of paleosols in the De15

Geerdalen Formation above the CPE seems to indicate the
transition from humid (coal) to warm arid (caliche) climate
settings (Lord et al., 2017, 2022), which might be caused
by oscillations within the Triassic mega-monsoonal system
(e.g., Preto et al., 2010). Nevertheless, the precise location20

of the CPE in Svalbard’s stratigraphy remains uncertain, and
increased research can help understand the exact triggering
mechanism of these climate perturbations.

4.3.5 Jurassic–Cretaceous: a greenhouse with cold
snaps25

The Jurassic and Cretaceous saw some of the warmest back-
ground global temperatures of the Phanerozoic (Jenkyns et
al., 2012) and collapse of the mega-monsoonal climate pre-
vailing in the Triassic (Sellwood and Valdes, 2008). Per-
manent polar ice caps were not present, although evidence30

for episodic cooling and the growth and decay of small,
ephemeral polar ice caps has been presented (e.g., Price,
1999; Miller et al., 2005; Grasby et al., 2017b; Alley et al.,
2020) accompanied by rafting ice (Frakes and Francis, 1988).

Oxygen isotope records of Jurassic and Early Cretaceous35

from Svalbard have been derived largely from belemnites
(e.g., Ditchfield, 1997; Price and Nunn, 2010; Hammer
et al., 2011), and an extensive dataset has been derived
from Kong Karls Land (Ditchfield, 1997). The usefulness of
these data, however, is hampered by low-resolution biostrati-40

graphic age constraints and pervasive diagenesis. Nonethe-
less, some well-preserved belemnites were identified, and
oxygen isotope data from Hammer et al. (2011) from the up-
per Agardhfjellet Formation (Volgian–Ryzanian, which ap-
proximately correlates with late Tithonian to early Berri-45

asian, Late Jurassic–Early Cretaceous; ca. 149–140 Ma) and
Price and Nunn (2010) from the Hauterivian (Early Cre-
taceous; ca. 133–126 Ma) part of the Rurikfjellet Forma-
tion of Festningen (see Jelby et al., 2020b for a discus-
sion of the age constraints) show δ18O values ranging from50

−3.0 ‰ to 0.8 ‰ VPDB. The belemnite data from Kong
Karls Land (spanning the Aalenian to Valanginian; Middle
Jurassic to Early Cretaceous; ca. 175–132 Ma) give δ18O val-

ues of −0.7 ‰ to 1.2 ‰ VPDB. These data argue for cool-
ing and warming episodes at these high paleolatitudes and 55

may indicate high seasonality and/or high-frequency climatic
variability, although the absolute temperatures they represent
are hard to interpret. Common practice would be to assume
that the seawater δ18O was −1 ‰ SMOW (i.e., that of an
ice-free world) and use either the equation for molluscan 60

calcite (Anderson and Arthur, 1983) or experimentally de-
rived synthetic calcite (Kim and O’Neil, 1997) to calculate
the precipitation temperature of the calcite. However, Price
and Nunn (2010) used the presence of glendonites in certain
horizons to independently assess paleotemperature of those 65

intervals and back-calculated the δ18Osw. This suggested that
the seawater δ18O was much lower than the global average
(i.e., heavily meteorically influenced), which is supported by
the depositional setting (ranging from marine to terrestrial
delta plain). Furthermore, recent work using clumped iso- 70

tope thermometry on belemnites suggests that the equations
of Kim and O’Neil (1997) or Anderson and Arthur (1983) are
not suitable for belemnite calcite, and rather, the temperature
equations of Kele et al. (2015) or Daëron et al. (2019) should
be used (Price and Passey, 2013; Wierzbowski et al., 2018; 75

Bajnai et al., 2020; Price et al., 2020; Vickers et al., 2019b,
2020, 2021). Using the latter results in warmer estimated
temperatures than previously thought, even if one assumes
a meteorically influenced δ18Osw of−2.5 ‰ SMOW. For ex-
ample, the belemnite data from Kong Karls Land suggest 80

temperatures closer to 12–20 °C rather than the 8–13 °C orig-
inally postulated by Ditchfield (1997). The belemnites from
Festningen may indicate a temperature range of around 13–
30 °C rather than the 9–25 °C originally suggested by Price
and Nunn (2010) and Hammer et al. (2011). 85

Jurassic–Cretaceous boundary and the Volgian Isotopic
Carbon Excursion (VOICE)

The global carbon isotope (δ13C) signal of the Upper Jurassic
and Jurassic–Cretaceous (J-K, ca. 145 Ma) boundary as rec-
ognized in Tethyan, Atlantic, and Pacific sections is generally 90

characterized by a steady decline. This decline has been at-
tributed to progressive deceleration of the carbon cycle due to
the development of more oligotrophic oceanic conditions and
reduced marine primary production (Weissert and Channell,
1989; Weissert et al., 1998; Weissert and Erba, 2004; Tremo- 95

lada et al., 2006; Price et al., 2016). In Svalbard, however, the
upper Kimmeridgian–middle Volgian succession displays a
prominent negative CIE termed the “Volgian Isotopic Car-
bon Excursion” or “VOICE” by Hammer et al. (2012). The
VOICE is of much greater magnitude than the entirety of 100

the long-lived decline of the lower-latitude records (Fig. 11;
Morgans-Bell et al., 2001; Price and Rogov, 2009; Žák et al.,
2011; Hammer et al., 2012; Zakharov et al., 2014; Koevoets
et al., 2016, 2018; Galloway et al., 2020; Jelby et al., 2020b).
This recently recognized carbon isotope marker of Boreal 105

sections (observed across Svalbard, northern Siberia, Arc-
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tic Canada, the Russian Platform, and possibly the southern
UK; Galloway et al., 2020; Jelby et al., 2020b, and references
therein) and newly discovered occurrences in the Neuquén
Basin of Argentina (Capelli et al., 2021; Weger et al., 2022)
and possibly in the eastern Tethys (Fallatah et al., 2024) and5

western Tethys (Celestino et al., 2017) is characterized by a
relatively abrupt negative excursion (≤ 6.4 ‰ in Svalbard) in
δ13Corg values. This excursion is followed by a positive trend
in δ13Corg values through the upper Volgian–Ryzanian and
across the J-K boundary (Price and Rogov, 2009; Hammer10

et al., 2012; Dzyuba et al., 2013; Zakharov et al., 2014; Ko-
evoets et al., 2016; Galloway et al., 2020; Jelby et al., 2020b;
Vickers et al., 2023).

In Svalbard, the VOICE is documented in both drill core
(DH-2, central Spitsbergen) and outcrop sections (e.g., Myk-15

legardfjellet, eastern coast of Spitsbergen; Festningen, west-
ern Spitsbergen) and falls within the paper-shale-dominated
Oppdalssåta and Slottsmøya members of the Agardhfjel-
let Formation (Koevoets et al., 2016, 2019; Jelby et al.,
2020b; Vickers et al., 2023). The VOICE and positive re-20

covery across the J-K boundary were originally considered
unique to the Boreal realm, as a result of decoupling from the
global carbon reservoir during the Late Jurassic. Galloway
et al. (2020) and Jelby et al. (2020b) attributed this Boreally
limited CIE to restricted oceanographic connectivity between25

the shallow epeiric seas of the high northern latitudes and
open oceans, associated with water-mass stratification and
increased continental runoff (Park et al., 2024) due to an eu-
static sea-level lowstand. As a result, basinal depletion of 13C
resulted from oxidation of terrestrial organic matter, or input30

of isotopically light CO2 by respiration of marine organisms,
and/or riverine dissolved inorganic carbon (DIC) (Patterson
and Walter, 1994; Holmden et al., 1998). However, the recent
discovery of the VOICE in the Southern Hemisphere (Ro-
driguez Blanco et al., 2022; Capelli et al., 2022TS22 ; Weger35

et al., 2022), albeit with diachroneity seen also in the Arctic
(e.g., Rogov, 2021; Rogov et al., 2023), which may reflect
poor age control or a latitudinal climate gradient, indicates
that the excursion is not limited to high northern latitudes.
Weger et al. (2022) suggested that the VOICE was driven by40

changes in the input of terrestrially derived organic matter,
controlled by relative sea-level change and climate, although
this hypothesis is refuted by Fallatah et al. (2024) and Gal-
loway et al. (2024) because the VOICE may be present in a
restricted setting in the Tethys (Fallatah et al., 2024) and be-45

cause there is a lack of consistent changes in organic matter
type (as indicted by OI and HI) and indices of weather and
grain size across the VOICE in the Sverdrup and Barents Sea
basin material (Galloway et al., 2024).

Collectively, the VOICE is ascribed variously to restricted50

circulation (Galloway et al., 2020; Jelby et al., 2020b; Śli-
wińska, et al., 2020; Fallatah et al., 2024), precipitation
of authigenic carbonate in reducing conditions (Dalseg et
al., 2016; Rodriguez Blanco et al., 2022), or variations in
the input of terrestrially derived organic matter that is in55

turn a manifestation of relative sea-level change and climate
(Capelli et al., 2021; Weger et al., 2022). However, none of
these models alone can explain the contemporaneous enrich-
ment of Ag in Arctic basins (Galloway et al., 2024), and
alternatives must be considered. An interval of silver (Ag) 60

enrichment occurs across the VOICE in the Sverdrup Basin
(Canadian Arctic, 3–6 times higher than average shale) and
at Festningen (6 times higher than average shale). Silver is
similarly enriched in black shales of Jurassic and Cretaceous
age in the Barents Sea, Norwegian Shelf, and West Siberia 65

Basin (Lipinski et al., 2003; Zanin et al., 2016). The rela-
tionship of Ag to organic matter, S, Fe, and redox-sensitive
trace elements in the strata from Canada and Festningen sug-
gests that an extra-basinal source of Ag to seawater during
the Volgian existed and that the source was enhanced hy- 70

drothermal flux in the proto-Amerasia basin during rift cli-
max, with sufficient circulation to transport high-Ag sea-
water to surrounding shelves (Svalbard) and within and to
extensional basins (Sverdrup Basin). Europium (Eu) values
show an anomaly (Eu/Eu*> 1) during the VOICE in both 75

the Canadian strata and the strata at Festningen, suggesting
the presence of hydrothermal fluids. It is possible that the
negative carbon isotopic signature of the VOICE is, in part,
associated with the putative hydrothermal systems hypothe-
sized to have caused Ag enrichment. Nearly all negative car- 80

bon isotope excursions in the geological record, but so far
not the VOICE, are interpreted to reflect episodes of mas-
sive carbon release. Its global manifestation could therefore
be the result of widespread rifting and outgassing of large
quantities of CO2 (see Brune et al., 2017) associated with the 85

breakup of Pangea (Galloway et al., 2024).

Valanginian Weissert Event

The Weissert Event is a prominent global carbon cycle
perturbation which occurred in the Early Cretaceous (ca.
133 Ma). It is expressed in carbon isotope records (Lini et 90

al., 1992; Price et al., 2016) and is manifested in Arctic
Canada (Galloway et al., 2020) and Svalbard (Jelby et al.,
2020b; Vickers et al., 2023) (Fig. 11). The isotope event
consists of a globally recognized positive CIE of a signif-
icant magnitude (2 ‰–5 ‰), which is widely documented 95

in marine carbonates, fossil shell material, terrestrial plants,
and organic matter (e.g., Lini et al., 1992; Gröcke et al.,
2005; Aguirre-Urreta et al., 2008; Price et al., 2016; Gal-
loway et al., 2020; Jelby et al., 2020b; Vickers et al., 2023;
Fallatah et al., 2024). Regional to global climate cooling in 100

the Valanginian (Early Cretaceous; ca. 140–133 Ma) is well
documented (e.g., Pucéat et al., 2003; Weissert and Erba,
2004; McArthur et al., 2007; Bodin et al., 2015; Meissner
et al., 2015; Grasby et al., 2017b), although the timing, mag-
nitude, and extent of this cooling are debated (e.g., van de 105

Schootbrugge et al., 2000; McArthur et al., 2007), as is the
mechanism for the CIE. Paleoclimatic reconstructions using
biomarkers indicate a ∼ 3 °C global surface cooling across
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Figure 10. Correlation of organic stable carbon isotope (δ13Corg) stratigraphy between the cored wells DH-2, DH-5, and DH-6 and the
Myklegardfjellet outcrop section, calibrated by total organic carbon (TOC) trends, and dinocyst and ammonite biostratigraphy (compiled
and modified from Jelby et al. 2020b, 2025, and Koevoets et al., 2016, 2018). The boundary between the Agardhfjellet and Rurikfjellet
formations (conforming to a base-Valanginian unconformity and demarcated by a marked drop in TOC values) is used as a correlation
datum. Note the clear expression of the Weissert Event and “Volgian Isotopic Carbon Excursion” (VOICE) in the different sections. uH–lB,
upper Hauterivian–lower Barremian. For details on the dinocyst bio-events, the reader is referred to Jelby et al. (2020b, 2025) and Śliwińska
et al. (2020).

the event (Cavalheiro et al., 2021), and glacial deposits from
the Eromanga Basin (Australia) suggest the transient devel-
opment of a small southern polar ice cap (Alley et al., 2020),
whereas stable oxygen isotope records show mixed signals,
with rising δ18Obelemnite values suggesting cooling in the Bo-5

real Realm from the late Valanginian to early Hauterivian
(Podlaha et al., 1998; McArthur et al., 2004; Price and Mut-
terlose, 2004; Bodin et al., 2015; Meissner et al., 2015), with
little change in Tethyan records (e.g., van de Schootbrugge
et al., 2000; McArthur et al., 2007).10

In the Arctic (including Svalbard), the widespread occur-
rence of glendonites around the Weissert Event interval (from
the Berriasian to Hauterivian; Grasby et al., 2017b; Vickers
et al., 2019a; Galloway et al., 2020; Jelby et al., 2025) has
led to speculation of the cooling being decoupled from the15

CIE (e.g., Rogov et al., 2017), although this may partially
be an artifact of age uncertainties for the Arctic successions
(e.g., Vickers et al., 2019a; Jelby et al., 2020b, 2025). It may
also suggest that episodic cooling punctuated the background
warmth throughout the Early Cretaceous. The emplacement 20

of the Paraná-Etendeka LIP is broadly coincident with the
Weissert Event CIE (Fig. 11), although uncertainties sur-
rounding the exact relative timings have led to much debate
around the causal mechanism for the event (e.g., Weissert
et al., 1998; Weissert and Erba, 2004; Duchamp-Alphonse 25

et al., 2007; Dodd et al., 2015; Rocha et al., 2020; Gomes
and Vasconcelos, 2021). Recently, it has been shown that the
peak of Paraná-Etendeka activity coincided with the onset of
the Weissert Event (Martinez et al., 2023), supporting a vol-
canic trigger for this CIE. 30
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Figure 11. Overview of the Upper Jurassic and Lower Cretaceous stratigraphy of Svalbard plotted against time, from Jelby et al. (2025),
based on Grundvåg et al. (2017, 2019). To the left of the stratigraphic summary chart, thicknesses of the formations, first- and second-order
regressive-transgressive sequences, occurrence of glendonites (Vickers et al., 2019a), LIP volcanic episodes (see references in Vickers et al.,
2023), and organic stable carbon isotopes (see Jelby et al., 2025, and references therein) are shown. These are plotted against global δ13C
trends, sea level, and ages from the Geological Time Scale 2020 (Gale et al., 2020TS20 ; Hesselbo et al., 2020TS21 ).

In Svalbard, the δ13Corg record reveals an abrupt and pro-
nounced positive excursion of up to 5.5 ‰ in the lower
Valanginian, coincident with the base of the Rurikfjellet For-
mation (Fig. 11; Jelby et al., 2020b, 2025). The excursion
is clearly observed in both core (DH-5 and DH-6 in Ad-5

ventdalen) and outcrop (Myklegardfjellet) sections, where
δ13Corg reaches the most positive values recorded since the
Callovian–Oxfordian (Koevoets et al., 2016). Glendonites
are found in numerous horizons in the Festningen locality,
although a patchy δ13Corg curve and poor stratigraphic dat-10

ing of this section due to local small-scale tectonism have led
to uncertainty as to the relative age of the glendonites with re-

spect to the Weissert Event (Vickers et al., 2019a, 2023; Jelby
et al., 2020b, 2025). Glendonites in the Canadian successions
occur in Valanginian of the Deer Bay Formation (Grasby et 15

al., 2017b; Galloway et al., 2020).
Examination of the Hg record across this interval at both

Festningen and correlative sites in the Sverdrup Basin simi-
larly yielded uncertain results, due to the poor age constraints
preventing convincing identification of the Weissert Event 20

CIE (Vickers et al., 2023). Nonetheless, Arctic Hg/TOC ra-
tios are observed to increase across the proposed Weissert
Event intervals in both Svalbard and the Sverdrup Basin.
This supports recent work indicating that Paraná-Etendeka
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volcanism was synchronous with the onset of the Weissert
Event CIE (Gomes and Vasconcelos, 2021). In other locali-
ties on Svalbard (DH-5 borehole in Adventdalen and Myk-
legardfjellet in eastern Spitsbergen, Fig. 10), the Weissert
Event is well dated with age-diagnostic ammonites and pa-5

lynomorphs (Jelby et al., 2020b, 2025) and with the ob-
served δ13Corg trend being consistent with the globally rec-
ognized Weissert Event (Fig. 11; Lini et al., 1992; Weis-
sert et al., 1998; Weissert and Erba, 2004). The onset of the
Weissert Event in Svalbard appears to have occurred ear-10

lier than in other Boreal sites, but this diachroneity may
reflect a depositional hiatus and/or stratal condensation in
the glauconitic plastic clay of the Myklegardfjellet Bed at
the base of the Rurikfjellet Formation, corresponding to
the Tethyan T. pertransiens–N. neocomiensiformis ammonite15

zones (Jelby et al., 2020b, 2025).
In summary, the Weissert Event represents an important

recoupling of the carbon cycle between Boreal (including
Svalbard) and lower-latitude basins (including Tethyan, At-
lantic, and Pacific), probably because of re-established ocean20

connections in response to a global eustatic sea-level rise
and changing oceanic gateway connections (Haq, 2014; Gal-
loway et al., 2020; Jelby et al., 2020b). However, Jelby et
al. (2020b) recognized that the decay of the event in Sval-
bard spanned the late Valanginian to early Barremian (Early25

Cretaceous; ca. 125.77–121.4 Ma) but is negligible compared
to most other Boreal and lower-latitude records and that the
signal remains relatively stable at near-peak values following
the positive excursion. This indicates that the oceanographic
reconnection between higher and lower latitudes, and thus30

ocean ventilation, must have been sufficiently limited to keep
some Boreal basins (including Svalbard) relatively deviated
from prevailing global carbon cycle dynamics following the
isotopic event due to water exchange only through narrow,
shallow straits (Price and Mutterlose, 2004).35

The Cretaceous HALIP and OAE1a

The largest carbon cycle perturbation of the Early Cretaceous
occurred in the early Aptian (a. 121–113 Ma). It is associ-
ated with Ocean Anoxic Event 1a (OAE1a,∼ 120 Ma), when
black shale deposition occurred across multiple marine sites,40

indicative of widespread ocean anoxia (e.g., Jenkyns, 1980).
OAE1a is characterized by a globally recognized sharp nega-
tive CIE followed by a twin-peaked positive “recovery” CIE
(Fig. 11; Jenkyns, 1995; Menegatti et al., 1998; Ando et al.,
2002; Price, 2003; Weissert and Erba, 2004; Herrle et al.,45

2015; Dummann et al., 2021), which has also been recog-
nized in multiple localities across Svalbard and in the Cana-
dian Arctic (Herrle et al., 2015; Midtkandal et al., 2016;
Vickers et al., 2016, 2019a, 2023; Grundvåg et al., 2019;
Dummann et al., 2021). Significant perturbations in global50

climate are believed to have occurred along with the CIE,
with global warming followed by cooling being evident from
multiple proxies in sites from across the globe (e.g., Bottini

et al., 2015; Bodin et al., 2015; Harper et al., 2021; Galloway
et al., 2022). 55

In Svalbard and other Arctic localities, the occurrence of
numerous glendonite horizons immediately after the CIE (in-
Aptian – Albian strata) supports the global extent of the post-
OAE1a cooling (Fig. 11; Schröder-Adams et al., 2014; Her-
rle et al., 2015; Grasby et al., 2017b; Rogov et al., 2017; 60

Vickers et al., 2019a). The OAE1a is believed to be linked
to LIP volcanism, as both the Greater Ontong Java Plateau
(OJP) in the Pacific Ocean and the HALIP were being em-
placed approximately synchronously with the onset of the
event (Fig. 11; Midtkandal et al., 2016; Percival et al., 2021; 65

Galloway et al., 2022). However, uncertainties surrounding
the exact relative timings of the volcanism and the OAE1a
complicate the interpretation of the cause of the event (Tar-
duno et al., 1991; Mahoney et al., 1993; Parkinson et al.,
2002; Tejada et al., 2002, 2009; Erba et al., 2004, 2015; 70

Chambers et al., 2004; Thordarson, 2004; Dockman et al.,
2018; Kasbohm et al., 2021; Galloway et al., 2022).

Attempts to use Hg as a proxy for volcanism to resolve the
question of relative timing of HALIP and OJP with regards to
the OAE1a CIE and accompanying climatic/environmental 75

perturbations have yielded ambiguous results (Percival et al.,
2021; Vickers et al., 2023), and recent work using palynol-
ogy suggests HALIP-related landscape disturbances began to
occur in the latest Barremian, coincident with the first pulse
of the HALIP but prior to the early Aptian onset of OAE1a 80

(Galloway et al., 2022). The onset of the negative δ13C ex-
cursion across Svalbard occurs within a sapropel-rich inter-
val which is highly impoverished in marine palynomorphs
(dinocysts) but which yield a number of reworked taxa (e.g.,
in the Ullaberget outcrop section, the DH-2, and the DH-1 85

cores near Longyearbyen (Midtkandal et al., 2016; Grund-
våg et al., 2019; Śliwińska et al., 2020), narrowing the age
to the Barremian–Aptian transitional interval. The regional
flooding event that is considered to correlate globally with
the OAE1a yields well-preserved dinocysts and has been as- 90

signed an earliest Aptian age (Midtkandal et al.,2016; Grund-
våg et al., 2017, 2019). Younger Cretaceous strata that else-
where record other OAEs (e.g., OAE1b, OAE 2, OAE3) are
absent from Svalbard (Fig. 4).

4.4 Cenozoic 95

The Paleogene succession in Svalbard includes Paleocene-
age to possibly mid-Oligocene-age strata (61.8 to ∼ 30 Ma)
and thus was deposited during the global climate transi-
tion from greenhouse to coolhouse conditions (Zachos et al.,
2001; Westerhold et al., 2020). Since the Late Cretaceous, 100

Svalbard was already located north of the Arctic Circle (e.g.,
Harland, 1997) at paleolatitudes comparable to the present
(Fig. 3). Therefore, the Cenozoic geological record in Spits-
bergen provides a natural reference interval for future polar
amplification to global warming in a warm Arctic. 105
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The deposits of the CSB belong to the Van Mijenfjorden
Group with thicknesses up to 2200 m. The basin fill begins
with the Paleocene coal-bearing successions that demon-
strates a transgressive trend from delta plain to prodelta/outer
shelf facies, followed by marine mudstones and intensely5

bioturbated sandstones that mainly were sourced from north
and northeast of Svalbard (Petersen et al., 2016; Lüthje et
al., 2020TS23 ; Jochmann et al., 2020). The first evidence of
WSFTB-derived sediments occurs in the latest Paleocene
with a westerly derived clastic wedge known as the Hol-10

lendardalen Formation. The upper part of the CSB contin-
ued to fill into the Eocene and possibly the Oligocene and
consists of > 800 m thick deposits of shelf and shelf-edge
deltas, slope clinotherms, and basin floor fans sourced from
the WSFTB to the west (Steel et al., 1981; Johannessen and15

Steel, 2005; Helland-Hansen and Grundvåg, 2021). Maxi-
mum subsidence occurred during the deposition of the Frys-
jaodden Formation, which contains a significantly expanded
(> 30 m) Paleocene–Eocene Thermal Maximum (PETM) se-
quence (Cui, 2010; Charles et al., 2011; Dypvik et al., 2011).20

The shallowing-upward uppermost CSB fill is seen as a
transition from deepwater marine via shallow-marine/delta
front to coastal plain and continental strata. The Norwegian–
Greenland Seaway became severely restricted at this time,
isolating the Arctic from the Atlantic Ocean during the25

PETM and early Eocene (Blakey, 2021; Hovikoski et al.,
2021; Jones et al., 2023). Overall, the Paleogene coal-bearing
successions developed in several stratigraphic levels of Sval-
bard are an excellent archive for reconstruction of the past
vegetation and climate. These intervals provide an insight30

into the fauna/vegetation of Svalbard at these times (see
Sect 6.3).

4.4.1 Paleocene hothouse from an Arctic Circle
perspective

The Paleocene was characterized by a hothouse climate35

(Zachos et al., 2001; Westerhold et al., 2020). In Sval-
bard, the CSB Paleocene succession consists of the terres-
trial to nearshore Firkanten Formation (yielding fossil fauna)
and the offshore marine Basilika, Grumantbyen, and lower-
most Frysjaodden formations. The Firkanten Formation of40

early Paleocene age (Selandian) contains fossil plant-bearing
units, also known as the Barentsburg flora (see Golovneva
et al., 2023). These deposits have been extensively investi-
gated due to economic interest and exploitation of coal re-
sources over the last century, yet there are relatively few45

publications describing the succession in detail (cf. Steel
et al., 1981; Nøttvedt, 1985; Nagy, 2005; Jochmann et al.,
2020; Lüthje et al., 2020). Coal exploration over the past few
decades has provided more than 500 drill cores through the
early Paleogene of Svalbard and focuses in particular on the50

coal-bearing Todalen Member of the Firkanten Formation.
Fission-track ages from the Firkanten Formation dated the
unit to 63±2 and 64±2 Ma (Blythe and Kleinspehn, 1998). A

more precise age is derived from an ash layer that cross-cuts
the lowermost coal seam in the Firkanten Formation. It has 55

been dated using U–Pb methods to 61.596± 0.028 MaTS24

(Jones et al., 2017) at the Danian–Selandian boundary, con-
straining the main coal deposition to the early Selandian.
The Paleocene coals have recently been shown to com-
prise much higher-resolution stratigraphic records than pre- 60

viously anticipated (Large and Marshall, 2015; Large et al.,
2021), especially when coals are formed from peat growing
in colder climates. The age model developed by Large and
Marshall (2015) and an improved understanding of long-term
storage of peatland carbon (Large et al., 2021) can be imple- 65

mented to assess accumulation rates. For example, the 1.5 m
thick Longyear coal seam has a modeled accumulation rate
of 59 and 99 kyr for temperate and boreal climates, respec-
tively, which suggests a high-resolution record that can be
used to infer variation in atmospheric dust input and the ef- 70

fects of forest fires (Marshall, 2013). Material has been col-
lected from the now closed coal mines in ongoing research
projects to expand on these existing datasets. The Selandian
coal seams provide details of the vegetation on Svalbard at
that time. The paleoflora from Svalbard reveal a temperate 75

(mean annual temperature 10.1± 2°), maritime, humid cli-
mate, with warm summers and cool mild winters (e.g., Uhl
et al., 2007; Golovneva et al., 2023). Temperate Arctic pale-
otemperatures are corroborated by Pantodont tracks discov-
ered at the upper boundary of the coal layer of the Firkanten 80

Formation (Lüthje et al., 2010). The climatic conditions were
similar in the larger Arctic region (e.g., O’Regan et al., 2011).

4.4.2 The Paleocene–Eocene Thermal Maximum
(PETM)

The PETM was a transient period (∼ 150–200 kyr) of rapid 85

global warming that began around 56 Ma, superimposed on
already greenhouse conditions of the early Paleogene (Za-
chos et al., 2001). The event is recognized as a global neg-
ative CIE in sections worldwide, attributed to a massive re-
lease of 13C-depleted carbon to the ocean–atmosphere sys- 90

tem (McInerney and Wing, 2011). Potential sources include
surface reservoirs such as dissociation of methane hydrates
from marine sediments (e.g., Dickens et al., 1995) and/or
volcanic and thermogenic degassing from the emplacement
of the NAIP (e.g., Svensen et al., 2004; Gutjahr et al., 2017; 95

Berndt et al., 2023; Jones et al., 2023). Existing High Arc-
tic records for the PETM and following hyperthermal events
suggest subtropical temperatures in both marine and terres-
trial realms (e.g., Suc et al., 2020; Sluijs et al., 2000). In
Svalbard, the PETM and its various environmental effects 100

have been thoroughly documented in several chemostrati-
graphic to biostratigraphic multi-proxy studies (Charles et
al., 2011; Dypvik et al., 2011; Harding et al., 2011; Nagy
et al., 2013; Wieczorek et al., 2013; Jones et al., 2019; Cui
et al., 2021; Pogge von Strandmann et al., 2021). The bulk 105

of these studies are focused on a SNSK drill core (BH09/05)
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from a coal exploration well located on the eastern flank of
the CSB (Fig. 2).

The timing and duration of the PETM are well con-
strained from Svalbard strata with a high-precision U–Pb ra-
diometric age of an ash layer within the CIE outcropping5

near Longyearbyen, coupled with evidence of orbital cycles
within the strata of the BH09/05 core (Charles et al., 2011).
Other studies explore the myriad consequences of extreme
warming in Svalbard strata. The abundance of kaolinite in
the PETM interval (Dypvik et al., 2011) and a large negative10

lithium isotope excursion coincident with the CIE (Pogge
von Strandmann et al., 2021) suggests increased weather-
ing rates in response to warmer and wetter conditions. In-
creased runoff rates resulted in a stratified water column with
a freshwater surface layer and oxygen depleted bottom wa-15

ters, which severely reduced the diversity of various fauna
elements in the basin (Harding et al., 2011; Dypvik et al.,
2011; Nagy et al., 2013). Osmium isotopes (Wieczorek et al.,
2013) and mercury anomalies (Jones et al., 2019) show key
variations in the activity of the NAIP at this time, supporting20

the hypothesis that NAIP volcanism and magmatism was at
least partially responsible for the extreme carbon emissions
at the PETM onset. While studies on the BH09/05 core are
now plentiful, there are numerous other cores and outcrops
that contain the PETM strata that have received little to no25

attention.

4.4.3 The decline of the Eocene greenhouse climate

The hothouse conditions of the early Eocene were followed
by a gradual global cooling that culminated in the transition
into the icehouse climate at around 34 Ma (e.g., Westerhold30

et al., 2020; Hutchinson et al., 2021). Paleobotanical records
from the Arctic suggest that during the middle Eocene, the
mean annual precipitation was > 120 cm yr−1 TS25 (Green-
wood et al., 2010). In Svalbard, the continental, flora-
bearing units are found within the Aspelintoppen Forma-35

tion (Steel et al., 1978, 1985), probably spanning the mid-
dle Eocene and not younger than late Eocene or early
Oligocene (Matthiessen, 1986; Cepek and Krutzsch, 2001),
and the upper Eocene (Golovneva and Zolina, 2023) or early
Oligocene (Head, 1984) Renardodden Formation. Abundant40

paleoflora from the Aspelintoppen Formation and the Re-
nardodden Formation (Manum, 1962; Kvaček and Manum,
1993; Kvaček et al., 1994; Cepek and Krutzsch, 2001; Uhl
et al., 2007) indicates mean annual precipitation rates of
1423 and 1716 mm yr−1, respectively (Golovneva, 2000).45

Angiosperm morphotypes indicate a strong seasonal precip-
itation pattern (from 356 to 656 mm in the three wettest
months and 112–247 mm for the three driest months; Clifton,
2012). The high rates of precipitation and increased weath-
ering rates, in combination with active tectonism, promoted50

the transfer of sand into deeper settings via flood-generated
hyperpycnal flows at this time (Grundvåg et al., 2023). In the
late Eocene, Svalbard was only a few degrees south of the

present 78° N (Fig. 3), but fossil plant material indicates that
the temperature at that time was much warmer than today, 55

and the estimated mean annual air temperature was around
+9 °C (Golovneva, 2000; Golovneva et al., 2023; Uhl et al.,
2007). Several studies have evaluated the abundance and di-
versity of fossil plants and the occurrence of coal seams and
fossil insects in the terrestrial parts of the Eocene Aspelintop- 60

pen Formation (e.g., Dallmann et al., 1999; Uhl et al., 2007;
Marshall et al., 2015). In other areas of the High Arctic, such
as Ellesmere Island, fossil remnants of a varanid lizard, the
tortoise Geochelone, and the alligator Allognathosuchus con-
firm warm temperatures that remained above freezing (e.g., 65

Estes and Hutchinson, 1980; Eberle and Greenwood, 2012).
The sporadic occurrence of glendonites and outsized

clasts, the latter possibly indicating rafting by temporal sea
ice, in the marine parts of the succession suggests strong sea-
sonal or temporal temperature variations in Svalbard (Kel- 70

logg, 1975; Dalland, 1976; Spielhagen and Tripati, 2009).
This is in accordance with some of the paleofloristic/in-
sect studies that infer freezing temperatures during winter
months and an overall cooling trend for the entire inter-
val (Golovneva, 2000; Uhl et al., 2007; Wappler and Denk, 75

2011). Some of the signals preserved in the sedimentary rock
record may be caused by other allogenic forcing factors than
climate fluctuations, such as tectonics and relative sea-level
changes, but similar results from a range of proxies includ-
ing plant morphotypes support the validity of paleoclimate 80

reconstructions. As such, deconvolving climatic and tectonic
signals in tectonically active basins is of major importance.
In the restricted Arctic Ocean during the early middle Eocene
(ca. 49 Ma), increased runoff caused stratification of the wa-
ter column (with a fresh-water lid) and led to the well-known 85

Azolla freshwater algal blooms that eventually contributed to
the withdrawing of the atmospheric CO2 and cooling of the
global climate from the middle Eocene onwards (Brinkhuis
et al., 2006; Speelman et al., 2009).

4.4.4 The Eocene–Oligocene Transition and connection 90

with the Arctic Ocean

A major step in the long-term Cenozoic climate evolution
took place at the Eocene Oligocene Transition (EOT; ∼
34 Ma), when decreasing atmospheric CO2 and changes to
ocean gateways led to a development of the first permanent 95

ice cap in Antarctica and initiated the icehouse type of cli-
mate which still exists today (Straume et al., 2020; West-
erhold et al., 2020; Hutchinson et al., 2021). However, the
global scale of the transition is not fully understood, since in
contrast to the well-studied deep sea sites from southern and 100

equatorial regions, the signature of the EOT for the northern
high latitudes remains poorly constrained. Climate models
suggest that closing and opening the gateways to the Arc-
tic Ocean (such as the Fram Strait) had equally large im-
pact on the temperature development in the high northern 105

latitudes as the CO2 decrease (e.g., Hutchinson et al., 2019,
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2021; Straume et al., 2022; Śliwińska et al., 2023). How-
ever, the number of proxy records from the northern polar
regions to evaluate the history of the Fram Strait and validate
the climate models is limited. The ACEX core (IODP Ex-
pedition 302) from the Arctic Ocean contains a hiatus that5

misses an estimated interval from 44.4 to 18.2 Ma (Back-
man et al., 2008). The ODP site 913 from the Greenlandic
Sea suffers from a hiatus at the EOT (Eldrett et al., 2004;
Sangiorgi et al. 2008). Furthermore, the existing sea surface
temperature proxy data are of extremely low resolution (Liu10

et al., 2009) in comparison with time-equivalent records from
the Labrador Sea and the North Sea (Śliwińska et al., 2019,
2023). Molecular fossil (alkenone) records suggest at least
5 °C cooling in the northern high latitudes, associated with
the transition towards the coolhouse climate (Liu et al., 2009;15

Śliwińska et al., 2023). The existing pollen record revealed a
significant cooling of ca. 5 °C in cold months mean tempera-
tures on East Greenland across the EOT (Eldrett et al., 2009).

During the EOT, Svalbard was already located at ∼ 80 °N
and therefore provides insights into the climate evolution20

across the EOT in the northern high latitudes. In the CSB
the youngest Paleogene unit is the Aspelintoppen Formation,
which is assigned to the late Eocene (plant fragments) or
Oligocene (mollusks) (Manum and Throndsen, 1986). Un-
fortunately, the age model for this formation remains poorly25

constrained. With an improved age model, the Eocene–
Oligocene succession could provide a valuable contribution
to the atmospheric temperature evolution across the EOT
in the northern high latitudes and be further resolved with
pollen records, comparable with the Norwegian-Greenland30

Sea (Eldrett et al., 2009). Marine to terrestrial deposits of
possible late Eocene to Oligocene age have also been re-
ported mainly from the exposed parts of the Forlandsun-
det and Bellsund grabens on the West Spitsbergen mar-
gin (Gabrielsen et al., 1992; Weber, 2019; Śliwińska and35

Head, 2020; Schaaf et al., 2021). However, these studies
are very limited. The foraminifera assemblages collected
from the Sarstangen conglomerate at the Balanuspynten pro-
file on the eastern side of the Forlandsundet Graben re-
veal the presence of marine Oligocene strata assigned to the40

Buchananisen Group (Feyling-Hanssen and Ulleberg, 1984).
This age has later been substantiated by palynostratigraphic
analyses, which suggests an early to middle Oligocene age,
at least for the sediments exposed along the eastern basin
margin (Schaaf et al., 2021). The two foraminiferal zones45

(TA and TB) that were originally assigned to the middle
to upper Oligocene can more accurately be assigned to the
lower Oligocene (lower Rupelian; the TA zone) and the
upper Oligocene (lower Chattian; the TB zone). The early
Oligocene age of the marine strata is confirmed by the pres-50

ence of dinocyst Svalbardella cooksoniae (Manum, 1960).
The appearance interval of S. cooksoniae in the earliest
Oligocene seems to be associated with a cooling interval
(Śliwińska and Heilmann-Clausen, 2011). A single sample
from the Calypsostranda Group at the Renardodden sec-55

tion on the southern shore of Bellsund, a structural outlier
interpreted to be an exposed part of the Bellsund Graben,
has yielded dinocysts of late Eocene or early Oligocene age
(Head, 1984; Śliwińska and Head, 2020). Based on the as-
sociation of pollen in the Skilvika Formation, an upper Pale- 60

ocene to Eocene age can be suggested for the lower part of
the section (Weber, 2019).

4.4.5 Neogene hiatus

Svalbard experienced two uplift phases in recent times. The
first and major uplift phase started in the Eocene (> 36 Ma) 65

and persisted to ca. 10 Ma. This was followed by less promi-
nent uplift from ca. 10 Ma onwards that generated the mod-
ern topography of the archipelago (Dörr et al., 2013). These
uplift events are matched by contemporaneous uplift phases
in Greenland, the Barents Shelf, and Baltica (Dörr et al., 70

2013) and are attributed to crustal thinning and the onset of
ocean spreading in the Arctic and North Atlantic driven by
mantle processes related to anomalously hot mantle under-
lying this part of the Arctic (Green and Duddy, 2010). The
presence of thick pre-glacial (Miocene and Pliocene? 23 to 75

2.58 Ma) and glacial (late Pliocene and Pleistocene) offshore
clastic wedges along the western and northern margins of
Spitsbergen (Hjelstuen et al., 1996; Lasabuda et al., 2018;
Alexandropoulou et al., 2021) suggests a net denudation of
ca. 3 km (Riis and Fjeldskaar, 1992; Lasabuda et al., 2021). 80

The overall amplitude of Neogene uplift decreases eastwards
with the uplift along parts of WSFTB exceeding 2.5 km and
over 1.5 km in the CSB (Dörr et al., 2013). Estimates based
on organic geochemical proxies suggest total uplift of 2.5
to 3.5 km (Throndsen, 1982; Marshall et al., 2015; Olaussen 85

et al., 2019). As a result, Miocene and Pliocene sedimen-
tary strata are not preserved anywhere on Svalbard, while
only intermittent remains of Pleistocene glacial deposits are
found (Ingólfsson and Landvik, 2013). Uplift of 9 mm yr−1

continues in central-western Spitsbergen today, with only 90

1 mm yr−1 of that attributed to isostatic rebound due to the
recent Weichselian glaciation (Kierulf et al., 2022).

5 Absolute radiochronology of Svalbard
stratigraphy

Despite the extensive stratigraphic successions spanning 95

much of the Phanerozoic in Svalbard, robust absolute ra-
diometric stratigraphic age constraints are scarce. Except
for data on Devonian and older magmatic and metamorphic
rocks from the pre-Caledonian “basement” (e.g., Myhre et
al., 2008; Pettersson et al., 2009; Majka and Kośmińska, 100

2017; McClelland et al., 2019), no robust ages are pub-
lished from the stratigraphy pre-dating the Permian–Triassic
boundary. The first radiometric age comes from an ash layer
from the Festningen section (Fig. 6; Grasby et al., 2015TS26 )
and from the Deltadalen section at the Permian–Triassic 105

boundary (Fig. 9; Zuchuat et al., 2020). In Deltadalen, a zir-
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Figure 12. (a) Geochemical data from well BH 10-2008 are from Doerner et al. (2020), and borehole stratigraphy is after Grundvåg et
al. (2014). (b) Geological map showing the outline of Paleocene deposits and position of BH 10-2008 from Helland-Hansen and Grundvåg
(2021). (c) Lithostratigraphic summary of the Paleogene deposits of the Central Spitsbergen Basin. Modified from Helland-Hansen and
Grundvåg (2021). The age of the Paleocene–Eocene boundary is from Charles et al. (2011) and Harding et al. (2011).

con U–Pb chemical abrasion isotope dilution thermal ion-
ization mass spectrometry (CA-ID-TIMS) age of 252.13±
0.62 Ma from a bentonite bed (volcanic ash) ca. 15 cm above
the first appearance datum (FAD) of the age diagnostic H.
parvus (onset Triassic) in the Vikinghøgda Fm. ties the bios-5

tratigraphic record to an absolute age. This age records the
onset of the Triassic in Svalbard and the Panthalassic Ocean
within error (Zuchuat et al., 2020). Given the sedimentation
rate constraints for this section (Zuchuat et al., 2020), and the
uncertainty in the age of the bentonite, there is overlap in age10

between the FAD of H. parvus in Svalbard and the FAD of H.
parvus of 251.902± 0.024 Ma at the Induan GSSP (Burgess
et al., 2014). This indicates synchronicity of the End-Permian
Mass Extinction in the Panthalassic and Tethyan domains at
a 0.2 % (2σ ) level of uncertainty.15

The next absolute stratigraphic tie point occurs in the Bar-
remian to lower Aptian Helvetiafjellet Formation, where a
bentonite layer from two cores taken in Longyearbyen (DH-
3 and DH-7; Fig. 4) was dated to 123.1± 0.3 Ma (zircon
U–Pb CA-ID-TIMS; Corfu et al., 2013; Midtkandal et al.,20

2016). Bio- and chemo-stratigraphical evidence suggests that
this bentonite layer is of mid-Barremian age (Midtkandal et

al., 2016) and that it occurs ∼ 40 m below the Barremian–
Aptian boundary and the onset of the Early Aptian Oceanic
Anoxic event 1a (OAE1a). Subsequent magnetostratigraphy 25

tied this bentonite age to the magnetic polarity record, and
hence Zhang et al. (2021a) were able to calculate an age
of 121.2± 0.4 Ma for the Barremian–Aptian boundary, ac-
cepting the M0r magnetochron as a boundary marker. Based
on available ages for the HALIP in Svalbard (124.7± 0.3 to 30

123.9± 0.3 Ma; Corfu et al., 2013) and Franz Josef Land
(∼ 122–123 Ma; Corfu et al., 2013), there is no overlap in
age with a HALIP magmatic pulse of this event with the
OAE1a. However, mafic lavas and intrusives from the Sver-
drup basin in northern Canada do show overlapping ages 35

(Evenchick et al., 2015; Dockman et al., 2018) with the up-
dated Barremian–Aptian boundary age not precluding a rela-
tionship between a pulse of the HALIP with the AOE1a.

To our knowledge, there are no further absolute age con-
straints published for the Mesozoic stratigraphy of Sval- 40

bard. However, the onset of Paleogene sedimentation in the
CSB (Fig. 4) and the Paleocene to early Eocene stratigra-
phy is well constrained through high precision zircon CA-
ID-TIMS U–Pb ages (Charles et al., 2011; Jones et al., 2017;
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Figure 13. Correlation of the Phanerozoic climate plot based mainly on climate-sensitive facies (see Supplement), supplemented by biolog-
ical and geochemical proxies with the paleogeographic position of Svalbard (Scotese and Wright, 2018) and compilation of the published
global average temperature curves.

Jochmann et al., 2020). A bentonite bed towards the base of
the Firkanten Formation (see diagram in Fig. 12), dated from
three different parts of the basin, yielded an age of 61.596±
0.028 Ma overlapping with the Danian–Selandian boundary,
and a bentonite layer from the lower part of the overlying5

Basilika Formation has an age of 59.32± 0.19 Ma overlap-
ping with the Selandian–Thanetian boundary (Jones et al.,
2017). Based on these marker horizons, deposition within the
CSB was estimated to start around 61.76± 0.09 Ma. A ben-
tonite horizon within the Frysjaodden Formation was dated10

to 55.785±0.034 Ma by Charles et al. (2011). This ash layer
is a key marker bed for constraining the Paleocene–Eocene
boundary as it is found within the PETM CIE in Svalbard
strata. Charles et al. (2011) used this age and possible pre-
cession cycles within borehole BH09/05 to estimate an age of15

55.866±0.098 Ma for the Paleocene–Eocene boundary (i.e.,
the PETM onset).

To date, there are no further robust and precise radiometric
ages from Svalbard’s Paleozoic strata. However, well-studied
outcrop successions and abundant drill core material from20

much of the Paleozoic offer an excellent possibility to search
for target volcanic rocks in the stratigraphy that may be dated
by high-precision zircon U–Pb methods, thus improving the

chronostratigraphy not only of Svalbard but potentially also
globally (e.g., Zhang et al., 2021a). 25

6 Evolution of the Phanerozoic climate in Svalbard

The parameters controlling the Phanerozoic climate in Sval-
bard can be simplified to the two core elements: global dis-
tribution of paleoclimatic zones (Köppen belts; e.g., Boucot
et al., 2013) and the paleolatitude of Svalbard (e.g., Steel 30

and Worsley, 1984; Torsvik and Cocks, 2017, Olaussen et
al., 2025). The deep-time models of Phanerozoic climate
for either low-latitude regions between 40° N and 40° S
(Fig. 13; based on oxygen isotope record (Song et al., 2019;
Vérard and Veizer, 2019; Veizer and Prokoph, 2015; Gross- 35

man, 2012; Royer et al., 2004) or global average temper-
ature (GAT; Wing and Huber, 2019; Valdes et al., 2018;
Mills et al., 2019) are characterized by a “Double Hump”
pattern (Fig. 13; Fischer, 1981, 1982, 1984; Frakes et al.,
1992; Scotese et al., 1999; Summerhayes, 2015). The GAT 40

trends show high temperatures during the early Paleozoic
and cooler temperatures during the late Paleozoic, followed
by warmer and monsoonal Mesozoic and early Cenozoic
temperatures, finally returning to cooler temperatures in the
late Cenozoic (Fig. 13). This pattern is formed in response 45
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Figure 14. Compilation plot of main proxies as a function of geo-
logical time, based on Table 2.

to breakup and accretion of supercontinents (van der Meer
et al., 2014, 2017). The geochemical proxies, such as oxy-
gen isotopes, have limited application in Svalbard due to
burial, diagenetic, and hydrothermal alterations (e.g., Bug-
gies, 2013; Matysik et al., 2018). Therefore, the overall5

Phanerozoic climate trends illustrated in Fig. 14 are based
on climate-sensitive lithofacies supplemented by biological
and geochemical proxies where possible. The datasets used
for all deep-time paleoclimatic and paleoenvironmental stud-
ies in Svalbard mainly come from the outcrop’s investiga-10

tions (See Fig. 14). Only about 18 % of the studies mainly
of the Mesozoic and Cenozoic strata address borehole data
(Fig. 14).

6.1 Paleozoic

The warm and tropical to subtropical climate recorded in15

the early Paleozoic sedimentary succession in Svalbard re-
flects its near equatorial position (Fig. 3). The Paleozoic cli-
mate slightly oscillates between the tropical and subtropical,
dry climate. While the Late Ordovician cooling (ca. 460–

440 Ma) is not recorded in Svalbard, likely due to a strati- 20

graphic gap, the highest temperatures were reached in the
Mississippian (Fig. 13). The northward drift of the continen-
tal plate on which Svalbard is located accelerated in the Mis-
sissippian to the late Triassic (Fig. 13; Torsvik and Cocks,
2019), while its impact on the climate can be recognized 25

in the Carboniferous–Permian succession. The Mississip-
pian to Pennsylvanian shift in climate seen as a transition of
climate-sensitive facies from the Mississippian coal-bearing
deposits indicating tropical humid climate, through the Penn-
sylvanian semi-arid subtropical evaporites and siliciclastic 30

red beds, and warm-water carbonate facies (Sect. 4) is poten-
tially accommodated by the changes in paleolatitude (Steel
and Worsley, 1984; Torsvik and Cocks, 2019); however, the
impact of global cooling related to the LPIA (e.g., Isbell et
al., 2008) should also be considered. The following cooling 35

trend expressed by the shift from cool-water to cold-water
carbonate platform deposits (Sect. 4) takes place despite the
overall increased trend of global temperature in the Permian
(Fig. 13).

6.2 Mesozoic 40

Despite the general northward migration through differ-
ent climate zones, Svalbard’s sedimentary Mesozoic strata
recorded a more complex story, reflecting both global and
regional climatic and environmental trends, and the control
from the paleolatitude position of Svalbard, which is evident 45

in the Paleozoic, is not clearly seen. Indeed, the Mesozoic
is characterized at the global scale by overall warm condi-
tions, with overall mega-monsoonal climate, especially in the
Triassic (Parrish, 1993; Mutti and Weissert, 1995; Preto et
al., 2010), punctuated by several established hyperthermal 50

events and potential ones, such as the EPME, the late Di-
enerian biotic crisis, the Smithian–Spathian transition, and
the Carnian Pluvial Episode. Most of these hyperthermals
are associated with the emplacement of LIPs or smaller-scale
volcanic activities (see Sect. 4 for details). The emplace- 55

ment of one LIP, however, might have triggered a global
cooling rather than a global warming episode (the Weis-
sert Event; Martinez et al., 2023). In addition to these in-
dividual events, longer-lived climate perturbations and oscil-
lations are recorded in the Mesozoic strata of Svalbard, in- 60

cluding periodic cooling–warming episodes during the Mid-
dle Jurassic to Early Cretaceous, as testified by the presence
of cool-climate-indicators such as glendonite crystals in cer-
tain stratigraphic intervals. These climatic cycles generated
(glacio-?)eustatic sea-level variations, leading to changes in 65

global oceanic circulation as shallow seaways were periodi-
cally exposed during sea-level lowstands. These climatic and
(glacio-?)eustatic sea-level variations impacted the amount
and the redistribution of precipitation, runoff, temperature,
salinity, water-mass stratification, nutrients, and productiv- 70

ity between basins, as well as notably impacting the global
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carbon- and phosphorus cycles. One of these periodic pertur-
bations recorded in Svalbard was the VOICE event.

6.3 Cenozoic

The Late Cretaceous climate maximum along with the Neo-
gene cooling (Fig. 13) is not recorded in Svalbard due to5

stratigraphic gaps. During the Cenozoic, Svalbard was posi-
tioned at the high northern latitudes (the Arctic Circle). Un-
der the greenhouse conditions of the Paleocene and Eocene,
paleoflora of Svalbard suggest a humid and temperate cli-
mate at that time, punctuated by hyperthermal conditions10

during the PETM (Sect. 4). Therefore, palynoflora from Sval-
bard provides a unique insight into the high-latitude end
member for estimating the latitudinal gradient under the
greenhouse conditions of the early Cenozoic. Notably, the
paleoflora suggests slightly warmer temperatures and higher15

mean annual precipitation during the Paleocene than in the
Eocene–earliest Oligocene. This may be an effect of the de-
cline of the greenhouse climate. During the early Oligocene,
Svalbard (located at approximately 80° N) experienced sig-
nificant cooling: the presence of specific dinocysts suggests a20

notable cooling interval during this period. The cooling trend
is a direct response to the global cooling and the transition to
the modern icehouse climate state with a bipolar glaciation
(Fig. 13).

7 Conclusions25

In this contribution we synthesized the review of the Pre-
Quaternary Phanerozoic (ca. 541 to 2.588 Ma) deep-time pa-
leoclimatic research conducted on Svalbard’s sedimentary
succession and conclude the following:

– Svalbard represents an excellent location for studying30

multiple globally relevant paleoclimatic events within a
spatially constrained area.

– Svalbard’s geological record is influenced by both its
northward drift and the recurring influence of large ig-
neous provinces that affected its climate. These include,35

at least, the End-Permian Siberian Traps LIP, the Early
Cretaceous High Arctic LIP, and the Paleogene North
Atlantic Igneous Province.

– Specific events that record environmental perturbations
at the global scale imprinted on Svalbard’s geological40

record include the LPIA, the End-Permian Mass Ex-
tinction, Early Cretaceous anoxic events and cold snaps,
and the Paleocene–Eocene Thermal Maximum.

– These are recorded as changes in biological, lithologi-
cal, and chemical proxies of past climates preserved in45

both outcrops and drill cores.

– Absolute radiometric ages constrain the continuous
stratigraphic successions but are unevenly distributed
throughout the stratigraphy.

– Of the 148 key publications, the most used proxies to 50

quantify past environments and climate are sedimento-
logical studies of biological indicators (104), climate-
sensitive facies (45), carbon isotopes δ13C (42), oxygen
isotopes δ18O (10), and mercury (5).

This contribution serves as a foundation for future deep-time 55

paleoclimate studies utilizing outcrops, opportunistic drill
cores, or dedicated deep-time paleoclimate scientific drilling
planned in the near future.

Data availability. All datasets come from published scientific con-
tributions or are part of the paper, including Sects. S2 and S3 in the 60

Supplement.
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in Fig. 4. Section S2 consists of (a) a table with data plot- 65
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Śliwińska, K. K. and Head, M. J.: New species of the dinoflagellate
cyst genus Svalbardella Manum, 1960, emend. from the Paleo-
gene and Neogene of the northern high to middle latitudes, J.
Micropalaeontol., 39, 139–154, 2020.
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