
We thank the reviewers for their suggestions to improve our manuscript. Our response to 
specific point are given below in italics, with revised text in blue. 
 
 
Review 1 
 
The statement, “Thus, our estimates of the effect of different drivers to changes in GPP 
during the MH are not expected to be influenced by structural biases or sensitivity to 
parameters.” may not be entirely accurate, as the authors themselves acknowledge the use of 
an empirical soil water stress function to scale GPP (Lines 173–175). This indicates that 
model sensitivity to parameterization may still influence the results. 
We do use an empirical function for soil water stress in applying the P model. Stocker et al. 
(2020) tested this function by comparing the performance of the P model before and after its 
application against eddy-covariance flux measurement sites under different levels of aridity 
and shown using this function improves model performance. The model with this empirical 
function provides a good prediction of the observations on multiple time scales. The impact of 
water stress on photosynthesis will not be affected by running the model under MH conditions. 
CO2 levels which would affect photosynthesis through water use efficiency are explicitly and 
mechanistically accounted for in the P model. Overall, the EEO framework only uses a very 
small number of empirical parameters, and these are well quantified from global observations. 
Stocker et al. (2020) also showed that the sensitivity to these parameters was small. Therefore, 
our statement that the effect of different drivers on GPP will not be influenced by structural 
biases or sensitivity to empirical parameters seems justifiable.  
In response to comments by the second reviewer, however, we have substantially expanded the 
description of the EEO models in general, and the application of the soil-moisture stress 
function in particular, to make it clearer how these are applied in the current context (please 
see revised text in response to the second reviewer’s comment below). 
 
In their response, the authors emphasize that the novelty of this work lies in applying a 
parameter-sparse model (EEO) to investigate the relatively understudied mid-Holocene (MH) 
period. While this approach may offer advantages, the manuscript would benefit from a 
clearer explanation of how the EEO model has been validated. Specifically, the authors 
should provide evidence of model validation using independent proxies such as pollen 
reconstructions or other observational datasets. Since the conclusions draw upon the effects 
of CO₂ concentrations, precipitation, radiation, and C3/C4 vegetation fractions, the validation 
of the model's ability to simulate these drivers should be explicitly addressed. This could be 
presented as a table summarizing existing validations or as a standalone section detailing 
independent assessments. 
We provided information about the validation of each component of the model in the revised 
text, and have further expanded on this in the revised of Section 2.1 required by the second 
reviewer. This included validation of the impact of CO2 under both enhanced and lower CO2 
levels. The performance of the models with respect to variations in climate parameters was 
also discussed in that Section. Since we have cited the appropriate evaluations in the text, the 
value of adding a table is unclear – although we could include the table below if this would 
make things clearer. 
Our ability to validate the mid-Holocene and LGM simulations is limited. There is no global 
data source that provides information on GPP or C3/C4 vegetation fraction. As we stated in 
the Discussion, pollen data do not provide a way to separate C3 and C4 grasses. It could be 
used to estimate tree cover fraction, although this involves models such as REVEALS with 
their own methodological uncertainties and therefore would not provide a strong validation 



of our results. There are some local or regional studies which provide compound-specific 
δ13C analyses of leaf wax biomarkers. As we state in the Discussion, these regional studies 
are consistent with our simulations of C3/C4, both in regions where C4 was more abundant at 
the LGM and the more limited regions where it was less abundant  - this provides strong 
support for our results. We have revised the text in the Discussion to make the palaeodata 
limitations for global validation clearer and to point out the implications of the consistency 
with the limited amount of regional data that exists as follows: 
 
The modelled abundance of C4 plants was nearly double at the LGM compared to the pre-
industrial era (40% versus 23% of the vegetation fraction) and C4 vegetation was responsible 
for 56% of the total modelled GPP at that time. These changes are broadly consistent with 
pollen records, indicating a substantial reduction in tree taxa at the LGM (Prentice et al., 2000; 
Williams, 2003: Pickett et al., 2004; Cordova et al., 2009; Marchant et al., 2009; Williams et 
al., 2011). It is difficult to estimate the magnitude of this reduction because existing regional 
reconstructions have not been applied to the LGM (e.g. Zanon et al., 2018; Serge et al., 2023) 
and furthermore employ techniques that are based on modern calibrations and therefore do not 
account for the impact of CO2 on tree cover (Prentice et al., 2022). However, while pollen data 
can be used discriminate between trees (virtually all C3) and grasses, it cannot be used to infer 
changes in the importance of C3 and C4 grasses. Compound-specific δ13C analyses of leaf wax 
biomarkers provide evidence of the relative contribution of C3 and C4 plants (Eglinton & 
Eglinton, 2008; Diefendorf et al., 2010) and have shown that C4 plants were more abundant at 
the LGM than during the Holocene in many regions (e.g. in southern Africa: Rommerskirchen 
et al., 2006; Vogts et al., 2012; eastern Africa: Sinninghe Damsté et al., 2011; Himalayan Basin: 
Galy et al., 2008; southern China: Jiang et al., 2019; south-western North America: Cotton et 
al., 2016; northern South America: Makou et al., 2007), consistent with our simulations. There 
are a few regions where C4 plants were less abundant at the LGM than during the Holocene, 
including the Chinese Loess Plateau and the Great Plains of North America (Cotton et al., 
2016). Both of these regions are identified as characterised by reduced C4 abundance in our 
simulations. The consistency of the signs of the regional changes in the observed relative 
abundance of C3 to C4 plants to our simulated changes provides strong support for the model 
predictions. 
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Additionally, my original concern regarding the large inter-model spread in Last Glacial 
Maximum (LGM) GPP estimates was not fully addressed. It remains unclear how the newly 
derived estimate fits within the broader context of previous estimates, and what implications 
this has for reducing uncertainty or reconciling existing model disagreements. A more in-
depth discussion of how the new estimate compares to the existing range—and whether it 
provides any constraints or insights—would significantly strengthen the manuscript. 
We reiterate the point that we made last time about the difficulties of diagnosing the cause of 
the large range in previous estimates of GPP at the LGM. The forcing data used for these 
simulations (e.g. ice sheet configuration) varied, the climate models themselves differ 
structurally and in terms of specific parameter values used, and the vegetation component of 
these models are also different. Moreover, the vegetation components of the models are very 
complex being plant-functional type (PFT) based, and this involves specifying many (poorly 
constrained) parameters for each PFT. Evaluation of the performance of these models tends to 
focus on outcomes (e.g. vegetation distribution) rather than the individual processes (e.g. 
photosynthesis, evapotrainspiration) that gave rise to these outcomes. Our EEO-based models 
are parameter sparse, have been evaluated at process level using a wide range of different 
types of observation (controlled experiments, FACE experiments, field studies and geographic 
patterns of key traits in response to specific environmental gradients)  and therefore provides 
robust simulations of key vegetation properties. The EEO-based models have repeatedly been 
shown to out-perform the models that are routinely used to make projections in simulating the 
modern GPP. Although we are forced to use a climate model to provide LGM climate inputs, 
we have chosen the best-performing model as independently evaluated using quantitative 
climate reconstructions. Thus, we believe that our LGM simulations are likely to be more 
reliable than the previous estimates, although we have acknowledged in the Discussion that it 
would have been useful to run simulations with other CMIP6/PMIP4 models – but 
unfortunately other models did not archive all of the required variables. Since we recognise 
that we have perhaps been somewhat cautious about claiming our model is better tested and 
likely to provide more robust estimates of past GPP, we will re-organise and modify the 
Discussion section on the comparison with previous estimates, as follows: 
 



We have shown that the LGM was characterised by a large reduction in modelled GPP, while 
the mid-Holocene was characterised by a small increase in GPP compared to the pre-industrial 
state. Estimated GPP at the LGM was ca 84 PgC yr-1 compared to ca 110 PgC yr-1 in the PI. 
The simulated reduction at the LGM is consistent with previous model-based estimates (e.g. 
François et al., 1998; Prentice et al., 2011; Hoogakker et al., 2016), including those from the 
latest phase of the Couple Model Intercomparison project (CMIP6/PMIP4: Supplementary 
Table 3). However, previous estimates of GPP span a considerable range, from 40-110 PgC yr-
1). This reflects differences in the boundary conditions used, differences in the vegetation 
models used and their sensitivity to changes in CO2, and differences in the structure and 
parameterisations of the climate models overall. Diagnosing the specific causes of this large 
range is therefore extremely difficult. The parameter sparse nature of our EEO-based modelling 
approach, and the fact that the individual processes that give rise to the simulated GPP have 
been independently validated, suggest that our estimate of ca 84 PgC yr-1 is more likely to be 
realistic than previous estimates. A limited number of studies have estimated GPP at the LGM 
by constraining model estimates using oxygen isotope records from ice core (Landais et al., 
2007; Ciais et al., 2011; Yang et al., 2022).  The still large range in simulated GPP (40-110 
PgC yr-1) reflects, in part, uncertainties associated with estimating ocean productivity and 
respiration fractionation rates. Thus, although there is a consensus that GPP was considerably 
lower at the LGM than during pre-industrial times, and this is consistent with pollen evidence 
for a very large reduction in tree cover over much of the world (Prentice et al., 2000; Williams, 
2003; Pickett et al., 2004; Marchant et al., 2009), the absolute magnitude of this change is 
uncertain. Nevertheless, since the climate simulated by the MPI ESM has been shown to 
reproduce pollen-based climate reconstructions better than most other CMIP6/PMIP4 models 
(Kageyama et al., 2021) and we use robust EEO-models to estimate the overall change in GPP, 
the partitioning of the impacts of different factors in the simulated reduction of GPP is likely 
to be robust. 
 
We have also added a concluding sentence to the final paragraph of the Discussion to 
reiterate the advantages of using EEO-based models for the simulation of past vegetation, as 
follows: 

…. more accurately than the land-surface models used to predict the terrestrial carbon cycle 
(Cai et al., 2025; Zhou et al., 2025). Given their simplicity, the fact that the very few parameters 
required are well constrained from observations, and the demonstrated quality of their 
performance, EEO-modelling holds considerable promise for understanding past vegetation 
changes and their impact on climate. 
 
 
Review 2 
 
This is a very interesting study. Definitely, eco-evolutionary optimization modeling is an 
effective approach in estimating global GPP in different geological periods.  
We thank the reviewer for their positive evaluation of the worth of this approach 
 
The main issue for me is the lack of clarity regarding how the flowchart in Figure 1 was 
conducted in the simulations. While I understand the general intent, these steps raise 
important questions that I could not figure out and also could not find the answers in this 
manuscript and related references: 
In Step 1: The use of the P-model to estimate potential GPP for C₃ and C₄ plants by assuming 
fAPAR = 1.0 is straightforward and aligns with standard applications of the P-model. This 



part is clear and no problem for me. 
In Step 2: The integration of global tree cover data and a C₃/C₄ model is where the confusion 
begins. It is unclear how tree cover data from the three specified periods (LGM, MH, and PI) 
were obtained, and more importantly, how these data were used in the C₃/C₄ model. Given 
that most C₄ species are grasses, the relationship between tree cover and the selection of C₃ 
versus C₄ GPP is not intuitive. Moreover, the referenced preprint describing the C₃/C₄ model 
lacks sufficient detail to explain it in this context. What mechanism or criteria does the model 
use to distinguish between C₃ and C₄ dominance? Without this, the reader cannot assess the 
validity of this step. 
In Step 3: The introduction of the LAI model is also vague. No detailed descriptions are 
provided regarding the model’s structure or rationale. The paragraph between lines 155–176 
(Page 5) appears to describe this model, but it remains opaque after multiple times of reading. 
A clear explanation of how LAI and fAPAR are calculated and linked to the earlier steps is 
needed. 
Step 4: The reapplication of the P-model and C₃/C₄ model using the updated fAPAR from 
Step 3 raises the question of whether more iterations are needed. Additionally, the use of the 
SPLASH model is introduced somewhat abruptly. It is said to provide a soil moisture 
correction to GPP (Lines 174–176), but the connection between cloud cover, soil moisture 
limitation, and GPP is not explained in sufficient detail. 
Overall, the simulation system employed in this study appears to draw upon several existing 
models—P-model, C₃/C₄ model, LAI model, and SPLASH—some of which include 
optimization principles. However, the manuscript offers only general descriptions of these 
models and lacks a coherent and specific explanation of how they were implemented and 
integrated in this research and how the “optimal” was solved. Key model assumptions, 
parameterizations, and linkages between steps are either not provided or are difficult to 
follow. As a result, it is unclear how the full system operates or how optimization principles 
are realized within it. 
I recommend that the authors substantially revise the methods section to clearly explain each 
step in the simulation workflow, including detailed roles of each model, data inputs, and how 
optimization is achieved. A more explicit and self-contained description would significantly 
improve the transparency and reproducibility of the study. 
We have expanded the model description to give a general overview of the simulation system 
we are using and the different steps involved, as shown in Figure 1. For each component 
model, we have provided a fuller description of the model, including the key assumptions and 
parameterizations. We have also revised the text to make it clear what EEO principles we are 
invoking in each of the models.  We have also made it clear when we are using empirical 
relationships or empirically derived parameter values. The SPLASH model, which is not an 
EEO model, was only used to calculate soil moisture based on the climate model inputs, and 
this is then used to determine when to apply the soil moisture correction that is used in drier 
regions when running the P model. We have therefore expanded the description of this 
empirical correction and made it clear what the purpose of SPLASH is. The reapplication of 
the P-model and C₃/C₄ model in Step 4 using the updated fAPAR from Step 3 is in order to 
translate from the leaf level to the canopy level. This is therefore not an iterative process. We 
hope that the revised text (Section 2.1) explains what we have done more clearly. The revised 
text is as follows: 
 

We simulated vegetation changes at the LGM and the MH compared to the pre-industrial (PI) 
state using a sequence of linked models that predict GPP, leaf area index (LAI) and C3/C4 
competition based on EEO theory (Fig. 1). We first simulate potential GPP (equivalent to leaf-



level photosynthesis) for C3 and C4 plants independently. These estimates are used to derive 
total potential GPP allowing for competition between C3 and C4 plants. Potential GPP is 
converted to actual GPP using a model that simulates the seasonal cycle of leaf area index 
(LAI), which is converted to the fraction of absorbed photosynthetically active radiation 
(fAPAR) using using Beer’s law. Finally, we use a soil water balance model to calculate soil 
moisture, then take account of the impact of low soil mosture on GPP using an empirical 
correction. 

The P model (Wang et al., 2017, Stocker et al., 2020) is a light-use efficiency model that 
simulates GPP. It uses the Farquhar-von Caemmerer-Berry photosynthesis model (Farquhar et 
al., 1980) for instantaneous biochemical processes combined with two EEO hypotheses 
describing photosynthetic acclimation, the ‘coordination’ and ‘least- cost’ hypotheses (Prentice 
et al., 2014, Wang et al., 2017), to account for the spatial and temporal acclimation of 
carboxylation and stomatal conductance to environmental variations at weekly to monthly time 
scales. Although the P model simulates both C3 and C4 photosynthesis, it does not need to make 
any other distinctions between plant functional types. The required inputs to the model (Fig. 1) 
are air temperature (°C), vapour pressure deficit (VPD, Pa) derived from relative humidity, air 
pressure (Pa) (to account for the effect of elevation on photosynthesis, incident photosynthetic 
photon flux density (PPFD, µmol m⁻² s⁻¹) estimated from shortwave (solar) radiation, and 
ambient CO2 concentration. The P model has been extensively validated and shown to predict 
the geographic patterns and seasonal cycles of GPP under modern conditions successfully 
(Wang et al., 2017; Stocker et al., 2020). Furthermore, it correctly predicts related physiological 
characteristics, including the global pattern of the maximum carboxylation (Vcmax) rate in 
relation to gradients in PPFD, temperature and VPD (Smith et al., 2019), the seasonal variation 
of Vcmax in different biomes (Jiang et al., 2020), its response to atmospheric CO2 (Smith and 
Keenan, 2020), and the variation of photosynthetic traits along elevational gradients (Peng et 
al., 2020). The responses of photosynthetic properties to enhanced CO2 as simulated by the P 
model have been validated against both Free Air Carbon dioxide Enrichment (FACE) 
experiments (Wang et al., 2017) and controlled-environment experiments (Smith and Keenan, 
2020). Moreover, the model’s implied response of photosynthetic capacity to CO2 has been 
validated by measurements on plants experimentally grown at low (160 ppm) CO2 (Harrison 
et al., 2021). 

The P model first simulates potential GPP for C3 and C4 plants separately, without 
consideration of competition between them (Figure 1). These estimates are fed into a simple 
model of C3/C4 competition based on the P model (Lavergne et al., 2024). The principle of the 
C3/C4 model is as follows. C4 plants (mainly grasses, some shrubs) have a higher rate of 
photosynthesis under hot and/or dry conditions, especially under low CO2, which reduces C3 
photosynthesis. On the other hand, C4 plants can only become dominant or co-dominant if tree 
cover is limited, because (C3) trees have the advantage in competition for light: C3 trees can 
outcompete C4 grasses through shading even where the C4 pathway would yield higher rates 
of photosynthesis. The relative photosynthetic advantage of C4 plants is estimated in the model 
as the difference between the monthly potential GPP for C3 and C4 plants, summed over the 
year. The C4 share of total GPP is then estimated based on a logistic relationship between 
model-estimated C4 relative advantage and observed C4 abundance. An additional function 
relates the proportion of GPP from trees to total potential GPP based on the relationship 
between annual mean percentage tree cover and the simulated annual GPP of C3 plants. Thus, 
tree cover is an additional required input to the competition model (Figure 1). The competition 
model also enforces a minimum temperature threshold to define conditions under which C4 
plants cannot grow, where this limit is set to a minimum temperature of the coldest month of –



24° based on experimental data. The competition model has been shown to reproduce global 
patterns in the relative abundance of C3/C4 plants as well as the observed rate of Δ13C in recent 
decades, as shown by independent atmospheric estimates (Lavergne et al., 2020). 

To convert potential GPP to actual GPP, we use an LAI model (Figure 1) that predicts the 
seasonal cycle of LAI based on environmental conditions and the P-model estimates of 
potential GPP, i.e. the GPP predicted when fAPAR is set to 1 (Zhou et al., 2025). This model 
is based on the EEO hypothesis that seasonal variations in LAI are coordinated with variations 
in potental GPP because leaves are displayed at (or close to) the time when they are able to be 
most productive. A seasonal maximum LAI model was embedded in this model to provide an 
upper limit to the seasonal LAI predictions (Zhu et al., 2022; Cai et al., 2025). The calculation 
of seasonal maximum LAI incorporates an EEO-based water-carbon trade-off and is defined 
as the lesser of an energy-limited and a water-limited estimate (Zhu et al., 2022; Cai et al., 
2025). The model assumes that, under energy limitation, plants allocate carbon to leaves to 
maximize GPP after accounting for the costs of leaf construction and maintenance, including 
the costs of obtaining water and nutrients. This leads to a clear optimum because investing in 
leaf tissue yields diminishing returns due to mutual leaf shading. Under water limitation, the 
model assumes that plants adjust their rooting behaviour to extract a portion of annual 
precipitation from the soil, irrespective of its distribution throughout the year, and allocate 
carbon to leaves so that all this water is transpired, thereby maximizing GPP. There are inherent 
delays between the steady-state LAI and the real-time dynamic LAI because photosynthetic 
and phenological processes do not respond instantaneously to weather fluctuations: the 
allocation of photosynthate to leaves can take days to months. Thus, the seasonal dynamics of 
LAI were calculated using a moving average to represent the time lag between allocation to 
leaves and modelled steady-state LAI (Zhou et al., 2025). The seasonal LAI model has been 
shown to capture observed LAI dynamics across all biomes at different temporal scales 
(weekly, seasonal, annual and interannual variability) both at individual eddy-covariance flux 
measurement sites and when compared to satellite-derived LAI (Zhou et al., 2025). 
Furthermore, it predicts both the multi-year average LAI and the annual trends in LAI better 
than any of the biosphere models used in the Trends and Drivers of Terrestrial Sources and 
Sinks of Carbon Dioxide (TRENDY) project (Zhou et al., 2025). The seasonal cycle of fAPAR 
is calculated from the seasonal cycle of LAI using Beer’s law (Swinehart, 1962) and this is 
then used to calculate seasonal changes in actual GPP using the P model.  

Finally, we apply an empirical soil moisture correction (𝛽(𝜃): Stocker et al., 2020) to account 
for the additional impact of soil moisture stress on GPP. This has the form of a quadratic 
expression applied when soil moisture is below a given threshold value, where the sensitivity 
of this relationship varies depending on aridity such that the decline in β(θ ) with drying soils 
is steep in dry climates and less steep in wetter climates. The soil moisture stress function was 
developed by comparing simulations of GPP with flux-tower data at sites across a range of 
climatic aridity (Stocker et al., 2020). Soil moisture was calculated using the Simple Process-
Led Algorithms for Simulating Habitats (SPLASH) model (Davis et al., 2017), which is a 
generic soil water accounting model in which daily losses depend on potential evaporation, 
reduced in proportion to relative soil water content. 

 
We realised that we never actually specified that the tree cover information came from the 
MPI simulations, and have now added this information in section 2.2 – which we have 
renamed accordingly: 
 



2.2. Derivation of LGM, MH and PI climate and tree cover inputs 
 
The revised text to specify tree cover is: 
 
…… and uniquely has archived all the necessary climate and vegetation outputs needed to 
run the EEO-based models 
 
The climate and tree cover outputs necessary to run the EEO-based models ……. 


