

Modeling urban pollutant transport at multi-resolutions: Impacts of turbulent mixing

Zining Yang¹, Qiuyan Du¹, Qike Yang¹, Chun Zhao^{1,2,3*}, Gudongze Li¹, Zihan Xia¹,
Mingyue Xu¹, Renmin Yuan¹, Yubin Li⁴, Kaihui Xia¹, Jun Gu¹, and Jiawang Feng¹

¹Deep Space Exploration Laboratory/School of Earth and Space Sciences/CMA-USTC Laboratory of Fengyun Remote Sensing/State Key Laboratory of Fire Science/Institute of Advanced Interdisciplinary Research on High-Performance Computing Systems and Software, University of Science and Technology of China, Hefei, China

²Laoshan Laboratory, Qingdao, China

³CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, China.

⁴School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China

16

17

18

19

*Corresponding author: Chun Zhao (chunzhao@ustc.edu.cn)

Key Points:

1. Higher **horizontal** resolutions improve BC surface concentration predictions by enhancing PBL mixing and vertical wind flux, especially at night.
 2. Small-scale eddies resolved at higher **horizontal** resolutions strengthen vertical fluxes, increasing BC atmospheric lifetime and column concentrations.
 3. **Detailed land use and terrain in high-res **horizontal resolution** models enhance PBL mixing, refining pollutant transport and urban air quality simulations.**

29 **Abstract**

30 Air pollution in cities ~~seriously~~ impacts public health and ~~regional~~ climate.
31 Turbulent mixing ~~plays a~~ crucial ~~role~~ in pollutant formation and dissipation, yet
32 current atmospheric models struggle to accurately represent it. ~~The intensity of~~
33 ~~turbulent mixing~~ intensity varies with model resolution, which has rarely been analyzed.
34 To investigate turbulent mixing variations at multi-resolutions and their implications
35 for urban pollutant transport, we conducted ~~numerical~~ experiments using WRF-Chem
36 at ~~25~~ km, ~~5~~ km, and 1 km resolutions. The simulated meteorological fields and black
37 carbon (BC) concentrations are compared with observations. Differences in turbulent
38 mixing across multi-resolutions are ~~more more~~ pronounced at night, resulting in
39 noticeable variations in BC concentrations. BC surface concentrations decrease as
40 resolution increases from 25 km to 5 km and further to 1 km, but are similar at 5 km
41 and 1 km resolutions. Enhanced planetary boundary layer (PBL) mixing coefficients
42 and vertical wind flux at higher resolutions reduce BC surface concentration
43 overestimation~~the overestimation of nighttime BC surface concentrations~~. The 1 km
44 resolution parameterized lower ~~PBL~~ mixing coefficients than 5 km but resolved more
45 small-scale eddies, leading to similar near-surface turbulent mixing at both resolutions,
46 while the intensity at higher altitudes is greater at 1 km. This caused BC to be
47 transported higher and farther, increasing its atmospheric lifetime and column
48 concentrations. Variations in mixing coefficients are partly attributed to differences in
49 land use and terrain, with higher resolutions providing more detailed information~~data~~
50 that enhances~~s~~ PBL mixing coefficients, while grid size remains crucial in regions with
51 more gradual terrain and land use changes. This study interprets ~~the impacts of how~~
52 turbulent mixing on affects simulated urban pollutant diffusion at multi-resolutions.

53

54

55

56

57

58

59 **1. Introduction**

60 Since the middle of the 19th century, rapid economic growth and urbanization have
61 caused severe regional haze and photochemical smog pollution (Li et al., 2015; Li et
62 al., 2019; Ma et al., 2019). A variety of air pollution episodes mainly occur in cities
63 (Chan and Yao, 2008). Exposure to atmospheric particulate matter is one of the major
64 threats to public health (Yin et al., 2017; Liu et al., 2019). Accurate pollutant estimation
65 is crucial for the realization of pollution prevention goals. Pollution processes are
66 affected by many different factors, such as pollution source emissions (Li et al., 2017a),
67 physical and chemical characteristics of aerosols (Riccobono et al., 2014; Zhao et al.,
68 2018), topographic effects (Zhang et al., 2018), and meteorological conditions (Ye et
69 al., 2016). Significantly, pollutant concentrations are mainly gathered within the
70 planetary boundary layer (PBL), and PBL mixing processes are associated with intricate
71 turbulent eddies (Stull, 1988), which significantly affect the horizontal transport and
72 vertical diffusion of pollutants (Wang et al., 2018; Du et al., 2020; Ren et al., 2020; Ren
73 et al., 2021), as well as the formation of new aerosol particles (Wu et al., 2021).

74 The mechanism of turbulent transport has been widely investigated. The vertical
75 diffusion of pollutants in urban areas is affected by the structure of the urban boundary
76 layer (UBL), and different structures may lead to uneven spatial distribution of
77 pollutants (Han et al., 2009; Zhao et al., 2013c). First, meteorological conditions play
78 dominant roles in turbulent mixing of air pollutants within the atmospheric boundary
79 layer (ABL) (Xu et al., 2015; Miao et al., 2019). Unstable meteorological conditions
80 enhance turbulence, promoting pollutant dispersion, while stable conditions suppress it,
81 leading to pollutants accumulation. Previous studies have indicated that constant
82 stagnant winds and increased water vapor density inhibit the vertical diffusion of
83 pollutants, resulting in explosive growth of pollutants (Zhang et al., 2015a; Zhang et al.,
84 2015b; Wei et al., 2018; Zhong et al., 2018). Under these stable conditions, the inherent
85 characteristics of the stable boundary layer (SBL), particularly turbulence intermittency

86 (Costa et al., 2011), affect the heavy urban haze events by altering surface-atmosphere
87 exchanges (Wei et al., 2018; Ren et al., 2019a; Ren et al., 2019b; Wei et al., 2020; Ren
88 et al., 2021; Zhang et al., 2022). Second, diurnal variations in turbulent mixing between
89 day and night significantly influence changes in pollutant concentrations (Li et al., 2018;
90 Liu et al., 2020). In the daytime convective boundary layer (CBL), pollutants can be
91 mixed uniformly in a thick layer due to the intense turbulent mixing (Sun et al., 2018).
92 While in the nighttime SBL, reduced mixing and dispersion result in the accumulation
93 of pollutants near the surface (Holmes et al., 2015). Severe urban haze pollution
94 formation is typically accompanied with the development of nocturnal SBL (Pierce et
95 al., 2019; Li et al., 2020; Zhang et al., 2020; Li et al., 2022). Moreover, pollutants in
96 the residual layer can be mixed downward to the surface with the development of the
97 ABL the next morning (Chen et al., 2009; Sun et al., 2013; Quan et al., 2020). Overall,
98 the impact of turbulent mixing on urban pollution is important and complex.

99 Numerical simulation is an important method for studying turbulent mixing.
100 However, there are still challenges associated with accurately representing turbulent
101 mixing in numerical models. Previous researches have indicated that turbulent mixing
102 in current atmospheric chemical models is insufficient to capture stable atmospheric
103 conditions, potentially leading to rapid increases in severe haze in urban areas (Ren et
104 al., 2019b; Wang et al., 2018; Peng et al., 2018; Du et al., 2020). Von Kuhlmann et al.
105 (2003) identified insufficient upward transport of ozone and its precursors due to weak
106 convection. Some studies revealed that WRF-Chem simulations underestimate
107 turbulent exchange within stable nocturnal boundary layers, allowing unrealistic
108 accumulation of pollutants near the surface (McKeen et al., 2007; Tuccella et al., 2012;
109 Berger et al., 2016). Additionally, PBL parameterization schemes in current models
110 may not accurately represent intricate turbulent mixing, particularly in complex terrains,
111 urban areas, or extreme weather conditions. Researches have revealed that different
112 PBL parameterization schemes employed in WRF-Chem tend to underestimate
113 turbulent mixing when compared to observations (Hong et al., 2006; Banks and
114 Baldasano, 2016; Kim, 2006). Turbulent mixing coefficients diagnosed in atmospheric
115 models characterize the intensity of turbulent mixing (Cuchiara et al., 2014). However,

116 these models frequently underestimate mixing coefficients during the nighttime.
117 Researchers have employed various approaches to address this limitation. Du et al.
118 (2020) demonstrated that increasing the lower limit of PBL mixing coefficients during
119 nighttime significantly reduced the modeling biases in simulated pollutant
120 concentrations. Jia and Zhang (2021) utilized the new modified turbulent diffusion
121 coefficient to represent the mixing process of pollutants separately and improved the
122 simulation results of pollutant concentrations. Jia et al. (2021) employed the revised
123 turbulent mixing coefficient of particles using high-resolution vertical flux data of
124 particles according to the mixing length theory, and improved the overestimation of
125 pollutant concentrations. In conclusion, current atmospheric models commonly face
126 several challenges in accurately simulating turbulent mixing.

127 The representation of turbulent mixing in models is influenced by various factors,
128 including grid resolution, topography, boundary layer parameterization, atmospheric
129 dynamics, and land-surface processes. Among these factors, model resolution can
130 significantly affect turbulent mixing processes in atmospheric simulations, with
131 simulated turbulent mixing varying substantially across different resolutions. Qian et al.
132 (2010) evaluated model performance at 3 km, 15 km, and 75 km resolutions, finding
133 that only simulations at 3 km resolution accurately captured multiple concentration
134 peaks in observational data, indicating that turbulent mixing may play a critical role in
135 simulating pollutant concentrations. Fountoukis et al. (2013) conducted model
136 simulations at three resolutions and demonstrated that higher resolution reduced the
137 bias for BC concentration by more than 30% in the Northeastern United States during
138 winter, attributing this improvement to better resolved pollutant dispersion. Tao et al.
139 (2020) found that changes in model resolution led to increased pollutant concentrations
140 in urban areas but decreased concentrations in west mountain regions, likely due to
141 differences in vertical and horizontal dispersion. In conclusion, previous researches
142 have primarily focused on comparing pollutant concentrations across different model
143 resolutions, demonstrating that resolution significantly affects pollutant distribution
144 and dispersion. These studies suggest that turbulent mixing may play a crucial role.
145 However, few have systematically explored the specific mechanisms by which

146 turbulent mixing influences pollutant concentrations simulated at multi-resolutions,
147 despite their importance in determining urban atmospheric pollutions.

148 Motivated by aforementioned problems, this study aims to investigate differences
149 in pollutant concentrations across multi-resolutions and explore how the turbulent
150 mixing plays as a crucial role affecting pollutant concentrations at various resolutions.
151 Furthermore, we seek to determine whether higher-resolution simulations can address
152 the issue of inaccurate turbulent mixing in current models. The Weather Research and
153 Forecasting model coupled with Chemistry (WRF-Chem) is applied to simulate
154 pollutant and meteorological fields during the spring of 2019 in Hefei, a typical mega-
155 city and sub-center of the Yangtze River Delta (YRD) urban agglomeration in China,
156 with a population of nearly 10 million and an area of 11,445 km². Our study interprets
157 the various characteristics of black carbon (BC) distributions simulated at multi-
158 resolutions and focuses on the mechanisms involved. BC is selected as the primary
159 pollutant for this study due to its near-inert nature in the atmosphere and can be treated
160 as a representative tracer for turbulent mixing. The paper is organized as follows:
161 Section 2 introduces the WRF-Chem model configuration, the design of multi-
162 resolutions experiments, emissions from different sources, and observational data.
163 Section 3 evaluates model simulations across multi-resolutions against observations,
164 presents the spatial distributions of surface and column concentrations simulated at
165 three resolutions, and investigates the important turbulent mixing processes that
166 generate spatial variability in pollutant concentrations. Section 4 present the conclusion
167 and discussion of the analysis.

168

169 **2. Methodology**

170 **2.1 Models and Experiments**

171 **2.1.1 WRF-Chem**

172 The non-hydrostatic Weather Research and Forecasting (WRF) model includes
173 various options for dynamic cores and physical parameterizations that can be used to
174 simulate atmospheric processes over a wide range of spatial and temporal scales

175 (Skamarock et al., 2008). WRF-Chem, the chemistry version of the WRF model (Grell
176 et al., 2005), simulates trace gases and particulates interactively with the meteorological
177 fields. WRF-Chem contains some treatments for photochemistry and aerosols
178 developed by the user community. In this study, the version of WRF-Chem updated by
179 the University of Science and Technology of China (USTC version of WRF-Chem) is
180 used. Compared with the publicly released version, this USTC version of WRF-Chem
181 includes some additional functions such as the diagnosis of radiative forcing of aerosol
182 species, land surface coupled biogenic VOC (volatile organic compound) emission,
183 aerosol-snow interaction, improved PBL mixing of aerosols and a detailed diagnosis of
184 the contributions of each crucial process to pollutant concentrations (Zhao et al., 2013a;
185 Zhao et al., 2013b; Zhao et al., 2014; Zhao et al., 2016; Hu et al., 2019; Du et al., 2020;
186 Zhang et al., 2021).

187 The configuration of WRF-Chem in this study is given in Table 1. The Statewide
188 Air Pollution Research Center (SAPRC99) photochemical mechanism (Carter, 2000) is
189 chosen to simulate the gas-phase chemistry, and the Model for Simulating Aerosol
190 Interactions and Chemistry (MOSAIC) is also selected (Zaveri and Peters, 1999; Zaveri
191 et al., 2008). The MOSAIC aerosol scheme includes important physical and chemical
192 processes such as nucleation, condensation, coagulation, aqueous-phase chemistry, and
193 water uptake by aerosols. Sulfate, nitrate, ammonium, sea salt, mineral dust, organic
194 matter (OM), BC, and other (unspecified) inorganics (OIN) constitute the prognostic
195 species in MOSAIC. The aerosol direct effect is coupled to the Rapid Radiative
196 Transfer Model (RRTMG) (Mlawer et al., 1997; Iacono et al., 2000) for both SW
197 (shortwave) and LW (longwave) radiation as implemented by Zhao et al. (2011). We
198 also turned on the aerosol indirect effect, which represents the interactions between
199 aerosols and clouds, including the first and second indirect effects,
200 activation/resuspension, wet scavenging, and aqueous chemistry (Gustafson et al., 2007;
201 Chapman et al., 2009). The photolysis rate is computed by the Fast-J radiation
202 parameterization (Wild et al., 2000). Our simulation includes the secondary organic
203 aerosol (SOA) mechanism, a crucial aerosol process that can substantially reduce
204 discrepancies between simulated results and observations.

205 Another type of option is meteorological physics, including the Yonsei University
206 (YSU) nonlocal PBL parameterization scheme (Hong et al., 2006), the Noah land-
207 surface model (Chen and Dudhia, 2001) for the surface layer process, the Morrison
208 two-moment scheme (Morrison et al., 2009) for cloud microphysics, and the Rapid
209 Radiative Transfer Model (RRTMG) for longwave and shortwave radiation. The 25 km
210 resolution simulation turns on the option of cumulus parameterization, which uses the
211 Kain-Fritsch cumulus and shallow convection scheme (Kain, 2004) to simulate sub-
212 grid scale clouds and precipitation. However, this option is turned off in the other two
213 higher resolution simulations because the fine-resolution is sufficient to resolve the
214 cloud forming processes.

215

216 2.1.2 Numerical experiments

217 The study period spans from March 5th to March 20th, 2019. Following previous
218 research (Gustafson et al., 2011), the first five days are considered as the model spin-
219 up time, while the remaining integration period is used for analysis. Consequently, only
220 the results from March 10th to March 20th, 2019, are used in the analysis of this study.
221 Three different resolutions and computational domains are employed in our study. The
222 outer domain, covering East, North, and South China, has 140 x 105 grid cells (107.1°-
223 127.9°E, 17.1°-44.9°N) with a horizontal resolution of 25 km. The middle domain,
224 encompassing the entire YRD region in East China, has 250 x 250 grid cells (111.82°-
225 121.78°E, 27.02°-36.98°N) with a resolution of 5 km. The inner domain, covering most
226 of the Hefei region, consists of 150 x 150 grid cells (116.604°-117.796°E, 31.204°-
227 32.396°N) at a horizontal resolution of 1 km. The center of inner domain is the city of
228 Hefei, a typical mega-city of East China. Hefei, the capital city of Anhui province, is
229 located in the mid-latitude zone with a humid subtropical monsoon climate and serves
230 as a representative case for this study. The regions are shown in Figure S1. To facilitate
231 the comparison of discrepancies among the three simulations at different resolutions,
232 we have selected the innermost region as the main scope of study for this research, as
233 shown in Figure 1a.

234 In this study, we derive terrain information from a high-resolution (~ 1 km) US

235 Geological Survey (USGS) topographic data and interpolate it onto the WRF grid.
236 Therefore, the three domains with different resolutions exhibit varying degrees of
237 terrain detail. The 1 km grid resolves the most intricate topographic features, followed
238 by the 5 km grid, while the 25 km grid captures the least spatial detail. These multi-
239 resolutions topographic representations potentially influence pollutant turbulent mixing
240 processes, which will be analyzed in this study. The land cover dataset is derived from
241 a 1 km horizontal resolution dataset for China (Zhang et al., 2021). The land use
242 categories follow the United States Geological Survey's (USGS) 24-category
243 classification, and the dataset is based on China's land cover conditions as of 2015. It
244 This provides a more accurate representation of current land cover, particularly for
245 eastern China, which has experienced intensive urban expansion since the 2000s. Figure
246 1b shows the land cover data at different resolutions, with detailed descriptions of the
247 legend and land cover classes provided in Table S1. This set of simulations is referred
248 to as the baseline experiment. With the exception of part of Section 3.2.3, all other
249 analyses in this study are based on the results of these baseline experiments. Moreover,
250 to explore the differences in turbulent mixing simulated at multi-resolutions under
251 consistent land use conditions, we conducted an additional set of sensitivity
252 experiments referred to as the sensitivity experiment. The sensitivity experiment was
253 identical to the baseline experiment, except it used the default USGS land use category
254 data in WRF. Notably, this default USGS data in WRF's geographical static database
255 represents Chinese land use patterns before the 2000s, as shown in Figure S2. This
256 default dataset reflects land use distribution prior to China's significant urbanization.
257 Consequently, the land use data types have minor variations and remained generally
258 consistent across all three resolutions in the sensitivity experiment.

259 On the other hand, the vertical configuration within the PBL is also crucial for
260 accurately modeling pollutant dispersion. To better resolve the PBL structure and
261 mixing processes, we implemented a finer vertical resolution within the PBL. Identical
262 vertical layer distributions are maintained across all three horizontal resolutions (25 km,
263 5 km, and 1 km), ensuring direct comparability of turbulent mixing across different
264 horizontal resolutions. A total of 50 terrain-following vertical eta-layers extending from

265 the surface to approximately 15 km were used in all three resolution simulations, with
266 30 layers distributed below 2 km above the ground to describe the atmospheric
267 boundary structure in detail. The vertical layer was strategically designed with 7 layers
268 below 200 meters (each approximately 20 meters in height), 3 layers between 200 and
269 300 meters (each about 30 meters in height), and 8 layers between 300 and 1000 meters
270 (each approximately 80 meters in height). This configuration comprehensively captures
271 mixed layer development and key turbulent processes (e.g., entrainment and surface
272 flux exchange) through layer densification, which is sufficient to capture PBL turbulent
273 mixing. Jiang et al. (2024) and Jiang and Hu (2023) have demonstrated that the number
274 of model vertical layers primarily influences vertical distribution, with more vertical
275 grid layers producing a more stable vertical structure under stable boundary conditions
276 that better resolves boundary layer turbulence.

277 In order to allow for a straightforward comparison of multi-resolutions simulations
278 and facilitate the identification of differences between the high- and low-resolution
279 simulations, the corner locations of the 1 km and 5 km resolution domains are aligned
280 with the corner locations of the 25 km grid cell. Each grid cell in the 25 km simulation
281 consists of a 5 x 5 set of cells from the 5 km simulation, and each grid cell in the 5 km
282 simulation comprises 5 x 5 cells from the 1 km simulation, as shown in Figure S2S3.
283 Thus, exactly 25 grids at 5 km resolution and 625 grids at 1 km resolution are embedded
284 within each 25 km grid cell.

285 To ensure similar boundary forcing across the three simulations, initial and
286 boundary conditions are handled differently for the 25 km, 5 km, and 1 km resolution
287 domains. For the 25 km resolution, meteorological initial and lateral boundary
288 conditions are obtained from the National Center for Environmental Prediction (NCEP)
289 final reanalysis (FNL) data with $1^\circ \times 1^\circ$ resolution and 6 h temporal resolution. Initial
290 and boundary conditions for the trace gases and aerosol species are provided by the
291 quasi-global WRF-Chem simulation with 360 x 145 grid cells (67.5°S - 77.5°N , 180°W -
292 180°E) at $1^\circ \times 1^\circ$ resolution. The initial and boundary conditions for the simulation at
293 5 km resolution are derived from the simulation at 25 km resolution. Similarly, the
294 initial and boundary conditions for the simulation at 1 km resolution are derived from

295 the simulation at 5 km resolution. In this way, since the forcing for the study area is
296 consistent across multi-resolutions, differences in simulation results among multi-
297 resolutions can be attributed to disparities in model resolutions.

298

299 2.1.3 Emissions

300 Anthropogenic emissions for the outer quasi-global simulation are derived from the
301 Hemispheric Transport of Air Pollution version-2 (HTAPv2) at $0.1^\circ \times 0.1^\circ$ horizontal
302 resolution and a monthly temporal resolution for 2010 (Janssens-Maenhout et al., 2015).
303 The Multi-resolution Emission Inventory for China (MEIC) at $0.25^\circ \times 0.25^\circ$ horizontal
304 resolution for 2019 (Li et al., 2017a; Li et al., 2017b) is used to replace emissions over
305 China within the simulation domain. Emission differences significantly contribute to
306 pollutant concentration variability across multi-resolutions. Qian et al. (2010) showed
307 that sub-grid variability of emissions can contribute up to 50% of the variability near
308 Mexico City. To eliminate the impact of inconsistent emissions on pollutant
309 concentrations simulated at multi-resolutions, we ensured emission consistency
310 across ~~the all~~ three domains by interpolating emissions for all species from the 25 km
311 resolution domain to both the 5 km and 1 km resolution domains~~the 25 km resolution~~
312 ~~emissions of primary species (NH₃, CO, NO₂, SO₂, BC, OC, PM2.5, PM10, SO₄, NO₃)~~
313 ~~to the 5 km and 1 km resolution domains~~. This study primarily focuses on BC, the
314 spatial distribution of BC emissions is shown in Figure 22. Figure S3-S4 illustrates BC
315 emissions at three different resolutions, demonstrating similar spatial patterns across
316 multi-resolutions. Biomass burning emissions are obtained from the Fire Inventory
317 from NCAR (FINN) at 1 km horizontal resolution and an hour temporal resolution
318 (Wiedinmyer et al., 2011). The diurnal variation of biomass burning emissions follows
319 the suggestions by WRAP (2005), with injection heights based on Dentener et al. (2006)
320 from the Aerosol Comparison between Observations and Models (AeroCom) project.
321 Biogenic emissions were calculated using the Model of Emissions of Gases and
322 Aerosols from Nature (MEGAN) v3.0 model (Zhang et al., 2021).

323

324 2.2 Observational data

325 2.2.1 Meteorological data

326 The meteorological data were obtained from the observation tower at the University
327 of Science and Technology of China (USTC) in Hefei, Anhui, China (117.27°E,
328 31.84°N), indicated by a solid black triangle in Figure 1a. The tower measures
329 temperature, relative humidity, wind speed, and wind direction at 2 m, 4.5 m, 8 m, 12.5
330 m and 18 m heights. This site represents a typical urban surface within the study area.
331 The tower was installed on the roof of a teaching building, with its top 17 m above the
332 canopy plane. It is equipped with three RM Young 03002 anemometers and three
333 HPM155A temperature and humidity sensors to measure the aforementioned
334 meteorological parameters (Yuan et al., 2016; Liu et al., 2017). This study focuses on
335 analyzing temperature, relative humidity, and wind speed.

336 Additionally, we employed meteorological data from automatic weather stations
337 (AWSs), which were established based on the operational standards issued by the China
338 Meteorological Administration (CMA, 2018). The hourly data underwent quality
339 control (QC) by local meteorological bureaus of Anhui, following World
340 Meteorological Organization guidelines (Estevez et al., 2011). The QC included checks
341 of consistency, such as internal, temporal-spatial, and climatic range validations. These
342 QC data were used to determine daily mean, minimum, and maximum meteorological
343 variables. The AWSs recorded various parameters, including air temperature (T, °C),
344 wind speed (U, m/s), air pressure (P, Pa), and wind direction. In this study, we focus on
345 the 3-hourly 2 m temperature and 10 m wind speed obtained from four AWS stations
346 located in the study region. The four AWS sites are marked by purple solid dots in
347 Figure S5.

348

349 2.2.2 Pollutants data~~BC surface concentration~~

350 ~~In this study, we~~ derived the hourly BC observations from the air quality
351 monitoring site on the campus of USTC during spring (March 10 to March 20, 2019).
352 ~~Hefei, a major industrial and transportation hub, serves as the study area.~~ In this study,
353 we focus on analyzing BC observational data to compare with model output. BC was
354 observed using a Multi-angle Absorption Photometer (MAAP, Model-5012)

355 manufactured by Thermo Scientific. This instrument is located approximately 260 m
356 north of the USTC meteorological tower. It takes advantage of the strong visible light
357 absorption properties of BC aerosols. There is a linear relationship between the
358 attenuation of the beam after passing through the aerosol sample and the load of BC
359 aerosols on the fiber membrane. The BC concentration is derived by inverting this
360 relationship. A light scattering measurement is incorporated into the chamber to correct
361 for multiple scattering effects caused by particle accumulation on the filter tape. The
362 MAAP-5012 Black Carbon Meter collects atmospheric aerosols using glass fiber filter
363 membranes and observes them at a wavelength of 670 nm.

364 Although this study primarily focuses on the simulation of BC, we conducted a
365 comprehensive validation of other air pollutants to ensure the reliability of the
366 simulation results. However, after being initially obtained via a parameterized PBL
367 scheme, the mixing coefficients for gases are then clipped to empirically chosen
368 thresholds of 1 m²/s over rural regions and 2 m²/s over urban regions, with the
369 distinction between rural and urban regions made based on the local CO emission
370 strength. Thus, the boundary layer mixing coefficient for gases in the WRF-Chem
371 model is implicitly influenced by emission resolution rather than directly controlled by
372 model resolution. Consequently, the existing adjustment process for gas mixing
373 coefficients, which relies on CO emission strength, is unsuitable for studying the impact
374 of model resolution on the turbulent mixing of gaseous pollutants. In contrast, the
375 mixing coefficient of particulate matter is directly calculated through boundary layer
376 parameterization without subsequent modifications. Thus, in this study, we limited our
377 additional validation to PM_{2.5} (fine particulate matter with aerodynamic diameters less
378 than 2.5 μm), whose mixing processes are governed by the same resolution-dependent
379 mechanisms as BC. Ground observations of hourly PM_{2.5} surface concentrations during
380 March 2019 were obtained from the website of the Ministry of Environmental
381 Protection of China (MEP of China). As our study concentrates on the Hefei region, we
382 selected 10 monitoring stations within this area for detailed analysis. These stations are
383 marked as black triangles in Figure S5.

384 While hourly observations for both meteorology and pollutants are available, model

385 outputs are provided at 3-hour intervals to balance computational efficiency and storage
386 requirements. Hourly output data would provide higher time resolution but significantly
387 increase storage demands. Given that we ran simulations at multi-resolutions (25 km,
388 5 km, and 1 km), hourly outputs would have generated prohibitively large data volumes.
389 On the other hand, this 3-hour output interval remains sufficient for our primary
390 research objective of analyzing daily pollutant variations (particularly BC) rather than
391 precise hourly comparisons. We believe this approach effectively captures daily
392 variability patterns without losing essential detail. For direct comparisons, hourly
393 observations were sampled to match our 3-hour model output intervals.

394

395 **3. Results**

396 **3.1 Simulated meteorological fields at various horizontal resolutions**

397 — Meteorological fields may play a crucial role in the turbulent mixing and
398 pollutant transport. In this study, we evaluate time series of simulated temperature, wind
399 speed, and relative humidity across three resolutions against observational data to
400 assess resolution impacts on these key meteorological variables. Therefore, the time
401 series of simulated temperature, wind speed, and relative humidity are evaluated in this
402 study. We evaluate simulated results at three resolutions against observations to assess
403 the impact of resolution on these key meteorological variables. Figure 3a compares the
404 time series of observed and simulated 8-m wind speeds at the USTC site (117.27°E,
405 31.84°N). Simulation results among multi-resolutions are similar, attributing to
406 relatively flat and uncomplicated topography. The temporal trends of the simulations
407 closely align with observational data, exhibiting distinct diurnal variations
408 characterized by higher values during the daytime and lower values at night.
409 Additionally, the model struggles to capture some moments accurately, overestimating
410 wind speed when it suddenly increases. For instance, on March 20 at noon, while the
411 observed peak wind speed is approximately 6 m/s, simulations at 25 km and 5 km
412 resolutions produced maximum wind speeds of approximately 9 m/s, significantly
413 exceeding the observed value, with only the 1 km resolution simulation yielding results

414 close to the observation. Figure 3b compares the 2-m temperature simulated at three
415 different resolutions with the observation. The multi-resolutions simulation results
416 exhibit remarkable consistency and closely align with observations. Temperature
417 displays a pronounced diurnal variation, fluctuating between 5 and 30 °C with relative
418 stability. However, the model occasionally underestimates or overestimates values at
419 certain time points. As shown in Figure 3c, the multi-resolutions simulated results
420 demonstrate consistency and accurately capture the diurnal variation trend of observed
421 relative humidity (RH). Model results are highly consistent with observations, both
422 reaching a maximum of 100%.

423 Additionally, Figure S6 displays the time series of observed and simulated
424 meteorological variables averaged across four AWS stations in the study region. Figure
425 S6a presents a comparison of 10-m wind speed simulated at three different resolutions,
426 revealing generally consistent results with observations. The overall pattern is similar
427 to that observed at the single USTC station, characterized by a clear diurnal variation
428 with higher wind speeds during daytime and lower speeds at night. However,
429 simulations at all three resolutions occasionally deviate from observations. For example,
430 on March 11, the 5 km and 1 km resolution models overestimate wind speed at
431 approximately 7 m/s compared to the observed 4 m/s. Conversely, on March 14 during
432 the daytime, all three resolutions underestimate wind speed, simulating around 2 m/s
433 against an observed value of 4 m/s. Figure S6b compares the simulated 2-m
434 temperatures across three resolutions with observational data. The simulated
435 temperatures are remarkably similar across all resolutions and show strong correlation
436 with observations throughout most of the study period. Only a few outliers were noted,
437 which minimally impact the overall pattern. For example, all resolution models
438 overestimate temperature at noon on March 20, simulating approximately 28°C while
439 the observed temperature is only about 20°C.

440 In summary, the simulated meteorological variables across multi-resolutions
441 demonstrate strong similarity and closely match the observations, with only occasional
442 minor discrepancies. However, our subsequent analysis reveals that the variations in
443 pollutant concentrations across multi-resolutions cannot be attributed to the minor

444 discrepancies observed in the time series of meteorological variables.

445

446 **3.2 Simulated BCBC surface concentrations and impacts of turbulent mixing at**
447 **various horizontal resolutions**

448 3.2.1 Surface concentrations simulated at three different horizontal resolutions

449 The spatial distribution of BC surface concentrations across multi-resolutions in the
450 study area is illustrated in Figure 44. As the resolution improves from 25 km to 5 km
451 and further to 1 km, BC surface concentrations reveal more detailed spatial features.

452 Figure 4a-4a presents the simulation results across multi-resolutions, averaged over the
453 whole day. Significant variations exist from coarse resolutions to fine resolutions, with
454 surface concentrations decreasing as resolution increases from 25 km to 5 km and
455 further to 1 km. BC surface concentrations range from 0 to 9 $\mu\text{g}/\text{m}^3$. At 25 km resolution,
456 there is a notable discrepancy between the spatial distributions of BC concentrations
457 and emissions (Fig. 22). The highest simulated concentration at 25 km resolution is
458 located west of the USTC site, while maximum emissions are centered at the USTC
459 site. Our analysis indicates that the difference in turbulent mixing between these two
460 regions leads to spatial inconsistency between BC surface concentrations and emissions.

461 The details of this phenomenon will be discussed in section 3.2.2. Figure 4b-4b
462 illustrates the spatial distribution of BC surface concentrations during the daytime. The
463 differences in surface concentrations among multi-resolutions are minimal, with values
464 falling within the range of 0 to 5 $\mu\text{g}/\text{m}^3$. In the central urban areas, the BC surface
465 concentration simulated at 25 km resolution is marginally lower than those simulated
466 at finer resolutions. Moreover, during the daytime, simulated BC concentrations over
467 Chaohu lake areas are notably higher than in other regions, potentially due to the impact
468 of dry deposition velocity. Figure S4-S7 shows the spatial distribution of dry deposition
469 velocity, revealing lower values over lakes compared to other areas. This lower dry
470 deposition velocity leads to higher pollutant concentrations over lakes compared to land
471 areas after pollutants transport to the lake surface during the daytime. At night, dry
472 deposition velocity is similar to that of surrounding non-urban land areas. Consequently,
473 nighttime BC concentrations over lakes are approximately equal to those in surrounding

474 areas. Figure 4e-4c demonstrates the spatial distribution of BC surface concentrations
475 during nighttime. Compared to daytime, BC surface concentrations are notably higher
476 in all major urban regions at night, with high-resolution simulations capturing more
477 spatial variations. In conclusion, BC surface concentrations decrease as resolution
478 increases from 25 km to 5 km and further 1 km. However, the spatial distribution of BC
479 surface concentrations at 5 km and 1 km resolutions are similar throughout the whole
480 day.

481 To facilitate a more accurate and direct comparison of results across multi-
482 resolutions, we refine coarse grids to match fine grids. The detailed refinement process
483 is described in Text S1. Figure S5a-S8a exhibits the spatial differences in BC surface
484 concentrations between 25 km and 5 km resolutions, as well as between 25 km and 1
485 km resolutions, averaged over the whole day. It reveals that coarse-resolution (25 km
486 resolution) simulations generally yield higher BC surface concentrations than fine-
487 resolutions (5 km and 1 km resolution) simulations across most areas. The largest
488 disparities mainly occur in central urban areas with complex underlying surfaces and
489 complicated flow patterns. Figure S5b-S8b demonstrate the spatial differences in BC
490 surface concentrations between 25 km and 5 km resolutions, as well as between 25 km
491 and 1 km resolutions during the daytime, revealing smaller disparities mostly ranging
492 between -1 and 1 $\mu\text{g}/\text{m}^3$. In contrast, Figure S5c-S8c depicts pronounced differences in
493 BC concentrations between 25 km and 5 km resolutions, as well as between 25 km and
494 1 km resolutions during the nighttime, with most areas exhibiting disparities exceeding
495 2 $\mu\text{g}/\text{m}^3$. The largest differences are mainly concentrated in urban areas. These findings
496 indicate that diversities in BC surface concentrations among multi-resolutions are
497 primarily attributable to nocturnal concentrations in urban areas. However, differences
498 between 5 km and 1 km resolutions are small compared to those between 25 km and
499 finer resolutions (5 km and 1 km). BC surface concentrations are approximately equal
500 in the 5 km and 1 km simulations, as shown in Figure S6-S9.

501 Furthermore, BC observations from the USTC monitoring station were utilized to
502 validate the simulated BC surface concentrations. Figure 5-5 illustrates the diurnal
503 variation of BC surface concentrations ~~averaged over the Hefei region~~averaged over

504 the USTC site. Both observations and simulations exhibit a pronounced diurnal
505 variation, with lower concentrations during the daytime and higher concentrations at
506 night. During the daytime, BC surface concentrations simulated at three resolutions are
507 comparable to the observational data. However, nighttime simulations significantly
508 overestimate BC surface concentrations. As resolution increases from 25 km to 5 km
509 and 1 km, the simulated surface concentrations decrease, aligning more closely with
510 observations. The 25 km resolution simulations yield the highest concentrations, with
511 a maximum value of approximately 12 ug/m^3 , nearly double the observed values. In
512 contrast, BC surface concentrations simulated at 5 km and 1 km resolutions are similar
513 and more closely align with nocturnal observations, peaking at around 9 ug/m^3 . In
514 conclusion, the diurnal variation of the observation is better captured by high-resolution
515 (5 km and 1 km) simulations. The performance of BC surface concentrations across
516 multi-resolutions demonstrates that coarse grid spacing inadequately captures local
517 pollutant distributions.

518 To verify the accuracy and comprehensiveness of the simulation results, we further
519 analyzed the diurnal variation of $\text{PM}_{2.5}$ surface concentrations. Figure S10 illustrates
520 the diurnal variation of simulated $\text{PM}_{2.5}$ surface concentrations across multi-resolutions
521 compared with observations. The diurnal pattern of $\text{PM}_{2.5}$ closely resembles that of BC,
522 characterized by higher concentrations at night and lower concentrations during
523 daytime. Across all resolutions, the model slightly underestimates daytime $\text{PM}_{2.5}$
524 surface observations while overestimating nighttime values. Notably, increased
525 horizontal resolution substantially improves nocturnal simulations. The 25 km
526 resolution simulation generates an anomalous midnight peak (105 ug/m^3), resulting in
527 a +61% bias, whereas the 5 km and 1 km resolutions substantially mitigate these
528 deviations to approximately 30%. To further examine the contribution of each $\text{PM}_{2.5}$
529 component to the diurnal variation across multi-resolutions, Figure S11 shows the
530 diurnal variations of four $\text{PM}_{2.5}$ constituents (sulfate (SO_4^{2-}), nitrate (NO_3^-), OIN, and
531 organic carbon (OC)) averaged over 10 MEP sites in Hefei. Significant differences
532 emerge in the diurnal variations of these components across multi-resolution
533 simulations. Specifically, the surface concentrations of NO_3^- , OIN, and OC exhibit a

534 consistent diurnal pattern, with lower concentrations during daytime and higher
535 concentrations at night. As resolution increases from 25 km to 5 km and 1 km, the
536 simulated components surface concentrations decrease, aligning more closely with
537 observations.

538 The total concentration of PM_{2.5} and its components demonstrates significant
539 sensitivity to horizontal resolutions. Coarse resolution simulations underestimate
540 turbulent mixing capacity, resulting in overestimated concentrations. Higher resolution
541 simulations more accurately capture vertical mixing within the PBL. For secondary
542 particles such as sulfates and nitrates, formation rates depend heavily on local precursor
543 substance concentrations (SO₂, NO_x). Higher resolution simulations may enable more
544 realistic representation of precursor substance diffusion, leading to reduced local
545 concentration gradients and consequently slower secondary aerosol formation rates.
546 Additionally, variations in PM_{2.5} surface concentrations across multi-resolutions may
547 also stem from complex secondary particle generation mechanisms. For instance,
548 liquid-phase oxidation of sulfates in clouds is sensitive to local cloud water distribution,
549 with higher resolutions better capturing small-scale cloud structures that potentially
550 alter sulfate formation efficiency. The formation of ammonium nitrate (NH₄NO₃) is
551 particularly sensitive to temperature and humidity variations. At higher resolutions,
552 temperature and humidity gradients induced by urban heat island effects or
553 topographical variations can be more realistically simulated, influencing the
554 distribution of gaseous nitric acid (HNO₃) and particulate nitrate (NO₃⁻). Dry deposition
555 processes may also contribute to resolution-dependent variations, as local differences
556 in surface roughness (including buildings and vegetation) become more apparent at
557 higher resolutions, directly affecting particulate deposition velocity rates. Overall, the
558 simulation results for major air pollutants fall within a reasonable error range compared
559 to observational data, confirming the reliability of the model for this study.

560 We now aim to further investigate the underlying factors contributing to the
561 discrepancies in atmospheric pollutant simulations, with a particular focus on BC,
562 across different spatial resolutions. Previous studies have indicated that referred that the
563 diurnal variation of BC surface atmospheric particulate matter concentrations is is

564 primarily mainly controlled by daily variations of PBL mixing and BC pollutants
565 emissions (Du et al., 2020). The diurnal variation of BC emissions peak during the
566 daytime and are lower at night. –During nighttime, At night, pollutants are trapped
567 within the shallow boundary layer due to the reduced turbulent mixing, resulting in
568 elevated high BC surface concentrations. of atmospheric particulate matter. As the
569 boundary layer develops in the morning, pollutants rapidly diffuse and are transported
570 to upper atmospheric layers, leading to relatively low surface concentrations. Therefore,
571 the turbulent mixing process plays a crucial role in determining pollutant concentrations.
572 To elucidate the mechanisms underlying the disparities in simulated BC surface
573 concentrations across multi resolutions in urban areas, we conducted several in-depth
574 analyses to investigate the impact of turbulent mixing on pollutant concentrations.

575

576 3.2.2 Impacts of turbulent mixing on BC surface concentrations at three different
577 horizontal resolutions

578 To investigate the vertical mixing depth influencing pollutant diffusion, we first
579 analyze the PBL height, as illustrated in Figure 6. Figure 6a shows the spatial
580 distribution of the PBL height simulated at three different resolutions, averaged over
581 the whole day. Higher-resolution simulations yield lower PBL heights and capture more
582 intricate details compared to lower-resolution simulations. This trend is consistent
583 during both daytime and nighttime. Figure 6b demonstrates that the PBL height exceeds
584 0.9 km across most regions during the daytime. Notably, due to strong topographic
585 influences, the PBL height in the vicinity of Chaohu Lake is remarkably low, typically
586 less than 0.1 km. Conversely, in the southwestern region, characterized by higher
587 elevations and more complex terrain, the PBL height surpasses 1.1 km. Figure 6c
588 depicts the nighttime PBL heights at three different resolutions. These heights
589 predominantly fall below 0.3 km, significantly lower than those during the daytime.
590 The PBL height gradually decreases as the resolution increases, which should typically
591 lead to higher BC surface concentrations. However, BC surface concentrations actually
592 decrease as resolution increases from 25 km to 5 km and 1km (Figure 4). Consequently,
593 the PBL height alone cannot explain the differences in pollutant simulations among

594 multi-resolutions in this study.

595 Previous studies have established that PBL mixing coefficients are critical
596 determinants in air quality modeling (Du et al., 2020)([Du et al., 2020](#)). [In WRF-Chem,](#)
597 [turbulent mixing within the boundary layer is partially governed by PBL mixing](#)
598 [coefficients generated by the PBL parameterization scheme. It is worth noting that the](#)
599 [mixing coefficients for atmospheric particulate matter and gases are two distinct](#)
600 [variables in the current version of WRF-Chem. The boundary layer mixing coefficient](#)
601 [for gases is initially obtained via a parameterized PBL scheme but undergoes additional](#)
602 [modification through an empirical parameterization that enhances gas mixing based on](#)
603 [CO emission strength](#)[In WRF Chem, turbulent mixing within the boundary layer is](#)
604 [partially governed by PBL mixing coefficients simulated by the PBL parameterization](#)
605 [scheme.](#)[\(Kuhn et al., 2024\)](#)[This enhancement applies to gas pollutants when using](#)
606 [the MOSAIC aerosol scheme, as implemented in this study. Specifically, gas mixing](#)
607 [coefficients are clipped to empirically chosen thresholds of 1 m²/s over rural regions](#)
608 [and 2 m²/s over urban regions, with the distinction between rural and urban regions](#)
609 [made based on the local CO emission strength. In contrast, the mixing coefficient of](#)
610 [particulate matter is directly calculated through boundary layer parameterization](#)
611 [without subsequent modifications. Our study focuses exclusively on the turbulent](#)
612 [mixing of atmospheric particulate matter, analyzing the aerosol mixing coefficient with](#)
613 [the default lower limit of 0.1 m²/s as specified in the publicly released version of WRF-](#)
614 [Chem. Additionally, we have not implemented the mixing coefficient adjustments](#)
615 [proposed by](#)[Du et al. \(2020\)](#)[, which suggest raising the lower limit of PBL mixing](#)
616 [coefficient from 0.1 m²/s to 5 m²/s within the PBL. Unlike gas mixing coefficients, the](#)
617 [particulate matter mixing coefficient is directly calculated through boundary layer](#)
618 [parameterization without adjustments based on pollutant emission data, thus not being](#)
619 [limited by emission resolution. This approach allows the model to more accurately](#)
620 [represent the natural turbulent mixing processes. Consequently, we can investigate the](#)
621 [turbulent mixing intensity of particulate matter across different horizontal resolutions](#)
622 [and examine the true impact of grid resolution on pollutant mixing.](#)

623 The spatial distribution of [aerosol](#) turbulent mixing coefficients at the lowest model

layer is analyzed, as shown in Figure 7. Figure 7a illustrates the simulation results across multi-resolutions averaged over the whole day. The variations in PBL mixing coefficients across different resolutions are evident, with high-resolution simulations capturing more spatial characteristics. The spatial distribution of the PBL mixing coefficient demonstrates strong correlation with land use type and terrain height, which will be explored subsequently. Turbulent mixing coefficients range from 0 to $8 \text{ m}^2/\text{s}$, with peak values predominantly located in urban areas. Notably, the mixing coefficient simulated at 25 km resolution near surface around USTC substantially exceeds that of the western area, resulting in lower BC surface concentrations simulated at 25 km resolution at USTC compared to its western regions (Figure 4). This discrepancy leads to a mismatch between the spatial distribution of pollutant concentrations and emissions, as discussed in section 3.2.1. During the daytime, the PBL mixing coefficients simulated at three resolutions are relatively high, ranging from 0 to $17 \text{ m}^2/\text{s}$, as shown in Figure 7b. BC masses simulated across multi-resolutions are fully mixed within the boundary layer, resulting in similar BC surface concentrations across these resolutions. Conversely, turbulent mixing coefficients diminish considerably during the nighttime, with maximum values approximately $3 \text{ m}^2/\text{s}$, as shown in Figure 7c. The turbulent mixing coefficient emerges as one of the important factors controlling surface pollutant concentrations under stable nocturnal PBL conditions. Nighttime PBL coefficients are higher at 5 km and 1 km resolutions compared to 25 km resolution across most of the study area, resulting in lower BC surface concentrations at these two higher resolutions during the nighttime. Figure S7-S12 further illustrates the disparities in parametrized PBL mixing coefficients between 25 km resolution and the two higher-resolution simulations. However, ~~in the lowest model layer~~, Figure S8-S13 shows that the intention of turbulent mixing parameterized at 5 km resolution is larger than that at 1 km resolution, which fails to explain the similar surface concentrations in these two higher-resolution (5 km and 1 km) simulations. To further investigate this phenomenon, we selected a meridional section passing through the USTC site to analyze the distribution of vertical wind speed flux, which represents the turbulent mixing directly resolved by large-scale dynamic processes.

654 Figure 8 displays the cross section of meridional wind speed flux along the USTC
655 site simulated at three different resolutions. The upward vertical wind speed flux
656 simulated at 25 km resolution are near the surface. However, the 5 km resolution
657 simulation generates stronger upward motion at a slightly higher altitude, specifically
658 between 850 and 1000 hPa. Notably, the 1 km resolution simulation captures the highest
659 vertical wind speed flux, with relatively intensive upward motion extending beyond
660 500 hPa. The 1 km resolution can resolve small-scale eddies and capture the most
661 pronounced vertical wind speed fluxes. In comparison, simulations at 5 km resolution
662 are able to capture smaller-scale eddies, while those at 25 km resolution occasionally
663 capture larger-scale eddies. Despite the larger PBL mixing coefficients at 5 km
664 resolution compared to 1 km resolution near the surface, the upward vertical wind speed
665 flux at 1 km resolution reaches higher altitudes, indicating the presence of more small-
666 scale eddies and resulting in enhanced vertical turbulent mixing. Consequently, near the
667 surface, the combined effects of turbulent mixing, which is represented by both the
668 parameterized PBL mixing coefficient and the directly resolved vertical wind speed
669 flux, lead to similar BC surface concentrations at higher resolutions (5 km and 1 km)
670 simulations. Furthermore, Figure [S9-S14](#) shows the meridional cross section during
671 daytime and nighttime. During the day, the mixing height vertically upward is relatively
672 high at all three resolutions, allowing pollutants to be fully mixed and transported
673 within the PBL. This results in similar BC surface concentrations across multi-
674 resolutions. Conversely, at night, high-resolution simulations resolve more small-scale
675 eddies, resulting in vertical transport reaching higher altitudes and intensifying
676 turbulent mixing. In conclusion, pollutants in lower-resolutions (25 km) simulations
677 tend to accumulate near the surface, whereas at higher resolutions (5 km and 1 km)
678 simulations, pollutants are transported to higher heights. This phenomenon contributes
679 to imparities in BC surface concentration across multi-resolutions.

680
681 [3.2.3 Impacts of land use type and terrain height on turbulent mixing coefficients at](#)
682 [three different horizontal resolutions](#)

683 Previous analysis indicate that the PBL mixing coefficient is one of the main factors

684 contributing to the disparities in BC surface concentrations across multi-resolutions.
685 Therefore, we further explored the factors influencing the spatial distribution of the
686 PBL mixing coefficient. Our analysis reveals that the spatial distribution of the PBL
687 mixing coefficient is closely related to land use types and terrain height. Specifically,
688 the overall distribution of the turbulent mixing coefficient is closely resembled by the
689 land use types (Figure 1b and Figure 7). However, in areas with obvious magnitude
690 changes, such as east of the USTC site, the turbulent mixing coefficient displays distinct
691 gradient changes that are not reflected in land use patterns. Notably, the spatial
692 distribution of the topographic height (Figure 1a) in this region exhibits distinct gradient
693 changes similar to those of the turbulent mixing coefficients. Consequently, the spatial
694 distribution of the turbulent mixing coefficient is influenced by both terrain and land
695 use types. This correlation can be attributed to the inter-relationship among turbulent
696 mixing, friction velocity, terrain, and land use types. Terrain and land use types
697 influence friction velocity by modifying surface roughness, which in turn directly
698 affects turbulent mixing coefficients within the PBL. Higher surface roughness
699 typically lead to greater friction velocity, subsequently enhancing turbulent intensity and
700 increasing the vertical mixing efficiency of pollutants within the PBL. To further
701 investigate this relationship, the spatial distribution of friction velocity is analyzed, as
702 shown in Figure 9. The analysis reveals that friction velocity increases as resolution
703 increases from 25 km to 5 km and 1 km resolutions, with finer resolutions (5 km and 1
704 km) capturing more spatial details. Differences in friction velocity are illustrated in
705 Figure S10S15. The spatial distribution of friction velocity indeed correlates with
706 terrain and land use patterns, consequently influencing the distribution of the PBL
707 mixing coefficient. As a result, the spatial distribution of the PBL mixing coefficient
708 correlates with land use types and terrain height.

709 Our study indicates that variations in land use type distribution simulated at
710 different horizontal resolutions are a significant factor causing changes in PBL mixing
711 coefficients across multi-resolutions. These variations in mixing coefficients relate
712 closely to BC surface concentrations, explaining specific patterns of BC surface
713 concentration distributions. For example, the BC surface concentration south of the

714 USTC site increases as resolution improves from 25 km to 5 km and 1 km resolutions
715 (Figure 4 and Figure [S5S8](#)), contrasting with concentration variations simulated in other
716 regions. Our analysis reveals that the turbulent mixing coefficient simulated at 25 km
717 resolution is higher compared to the two higher-resolution simulations in this area
718 (Figure 7 and Figure [S7S12](#)). Moreover, the spatial distribution of land use types
719 indicates that the 25 km resolution simulation resolves only a single urban land use type
720 in this area (Figure 1b). In contrast, higher resolution simulations capture additional
721 land use types beyond the urban, including lakes, farmland, and shrubs (Figure 1b). The
722 inclusion of these diverse land use types in the higher resolution leads to smaller PBL
723 mixing coefficients in this area, as the surface roughness associated with lakes,
724 farmland, and shrubs is generally lower than that of urban areas. As a result, the reduced
725 vertical mixing in the finer resolution (5 km and 1 km) simulations results in higher BC
726 surface concentrations south of the USTC site.

727 Additionally, to explore the differences in PBL mixing coefficients across multi-
728 resolutions under uniform land use conditions, we designed another set of sensitivity
729 experiments across three resolutions. As mentioned earlier, the only difference from the
730 baseline experiment was the use of the default USGS land use classification data in the
731 WRF model. As shown in Figure S2, land use type data at different horizontal
732 resolutions are approximately consistent in this setup. All other settings remained
733 identical to those in the baseline experiment.

734 Figure 10 presents the spatial distribution of PBL mixing coefficients in the
735 sensitivity experiment. Figure 10a illustrates the results across multi-resolutions
736 averaged over the whole day. Similar to the baseline experiment, increasing resolution
737 resolves more spatial details. For example, in the area where the USTC site is located,
738 the PBL mixing coefficient in the 25 km resolution simulation of the sensitivity
739 experiment is approximately 4.3 m²/s, significantly lower than the 8 m²/s observed in
740 the baseline experiment. This pattern is consistent across higher resolutions (5 km and
741 1 km). This finding aligns with the spatial distribution of land use types used in both
742 sets of experiments (Figure 1b and Figure S2). The decrease in mixing coefficients in
743 the sensitivity experiment stems from its land use data failing to resolve urban land

744 types in urban areas. Figures 10b and 10c show the PBL mixing coefficients of the
745 sensitivity experiment during daytime and nighttime, respectively. Consistent with the
746 baseline experiment, the turbulent mixing coefficients during the day are substantially
747 higher than at night. The PBL coefficients in the nighttime simulations are higher at 5
748 km and 1 km resolutions compared to the 25 km resolution.

749 Additionally, Figure S16 further illustrates the differences in the parameterized
750 PBL mixing coefficient between the 25 km resolution and the two higher-resolution
751 simulations under roughly uniform land use conditions. Figure S16c shows that in the
752 city center, the boundary layer mixing coefficient parameterized at 5 km and 1 km
753 resolutions is higher than at the 25 km resolution during nighttime. Since urban areas
754 are primarily flat, topographical differences between different resolutions in urban areas
755 are minimal, almost negligible. Furthermore, because the land use types in the
756 sensitivity experiment are approximately consistent across different resolutions, the
757 main factor responsible for resolution-related differences in the PBL mixing
758 coefficients in urban areas is the grid size. Notably, in areas with significant topographic
759 variations, such as suburban and rural regions, the difference in boundary layer mixing
760 coefficients between 25 km and 5 km/1 km resolutions in the sensitivity experiment
761 strongly correlates with the spatial distribution of topographic differences. This directly
762 demonstrates that topographic height is also a key determinant of boundary layer
763 mixing coefficient distribution. Qian et al. (2010) indicated that the terrain affects the
764 transport and mixing of aerosols and trace gases, as well as their concentrations across
765 multi-resolutions, through its impact on meteorological fields such as wind and the PBL
766 structure. These terrain-related effects are particularly significant in regions with more
767 variable topography. Additionally, Figure S17 shows that the turbulent mixing intensity
768 parameterized at 5 km resolution in the sensitivity experiment is greater than at 1 km
769 resolution. Further analysis of the latitude-pressure cross section of BC concentrations
770 and vertical wind speed flux, as shown in Figure S18, indicates that, similar to the
771 baseline experiment, the 1 km resolution of the sensitivity experiment resolves more
772 small-scale turbulent eddies, capturing more prominent vertical wind speed flux, thus
773 resulting in stronger turbulent mixing.

774 Through comprehensive analysis of both baseline and sensitivity experiments, we
775 found that within the resolution range of 25 km to 5 km and 1 km, the spatial distribution
776 accuracy of land use types plays a decisive role in parameterizing the PBL mixing
777 coefficient. Finer land use type information at higher resolutions directly alters the
778 spatial distribution of the boundary layer mixing coefficient, with urban surfaces
779 significantly increasing the parameterized PBL mixing coefficient. Therefore,
780 accurately representing land use types, particularly urban surfaces, is critical for
781 parameterizing the PBL mixing coefficient. On the other hand, in the sensitivity
782 experiment, complex terrain areas with significant elevation (such as suburban, rural,
783 and hilly regions) increase mixing coefficients by enhancing surface roughness,
784 whereas this effect is weaker in flat urban areas. Consequently, differences in PBL
785 mixing coefficients across multi-resolutions strongly correlate with terrain precision.
786 Higher resolutions can resolve finer terrain variations, affecting local turbulent mixing
787 (such as terrain-induced mechanical turbulence). This confirms the dominant role of
788 high-resolution terrain and land use information in PBL mixing coefficient
789 parameterization. Notably, in regions where land use types and terrain height remain
790 relatively flat and consistent across different horizontal resolutions in the sensitivity
791 experiments, increasing resolution still leads to enhanced boundary layer mixing
792 coefficients, highlighting the importance of grid size for parameterizing the boundary
793 layer mixing coefficient. In the resolution range from 5 km to 1 km, higher resolution
794 slightly reduces the parameterized boundary layer mixing coefficient. However, the 1
795 km resolution model resolves more small-scale turbulent eddies, resulting in stronger
796 turbulent mixing at night. In summary, for parameterization of boundary layer mixing
797 coefficients across multi-resolutions, high-resolution surface information is more
798 important in regions with significant changes in land use types and terrain height. Grid
799 size is also crucial in regions with more gradual changes, where higher-resolution grids
800 consistently enhance boundary layer mixing representation. Therefore, to improve PBL
801 mixing coefficient simulation, priority should be given to ensuring accuracy of land use
802 data (especially spatial representation of urban types), precise terrain representation in
803 complex regions, and appropriated grid resolution to enhance turbulent mixing

804 [simulation.](#)

805

806 **3.3 Simulated BC column concentrations and impacts of turbulent mixing at**
807 **various horizontal resolutions**

808 3.3.1 Simulated BC column concentrations at three different horizontal resolutions

809 It is generally accepted that the turbulent mixing process primarily affects
810 pollutant surface concentrations by mixing surface pollutants into higher layers,
811 without altering the column concentration. However, in this study, BC column
812 concentrations exhibit differences across multi-resolutions simulations. Therefore, we
813 further investigate the spatial distribution of BC column concentrations and the main
814 mechanisms behind these variations. Figure [10a-11a](#) illustrates the spatial distribution
815 of BC column concentrations simulated at three resolutions, averaged over the whole
816 day. The regional average values for the three resolutions are 2041, 2150, and 2223
817 ug/m^2 , respectively. The 5 km and 1 km resolution simulations yield larger BC column
818 concentrations compared to 25 km resolution simulations. The spatial distribution of
819 BC column concentrations simulated at 25 km resolution is highly consistent with the
820 BC emission distributions (Figure 2), showing high concentrations in central urban
821 areas exceeding 2500 ug/m^2 , while regions distant from urban centers demonstrate
822 lower concentrations, generally below 2100 ug/m^2 . The 5 km resolution simulation
823 results indicate peak column concentrations concentrated in urban areas and spread
824 around, with the southwestern area approaching 2250 ug/m^2 . The 1 km resolution
825 simulation results yield the largest BC column concentrations and demonstrate the most
826 pronounced diffusion tendency, with most areas exceeding 2250 ug/m^2 . Figure [10b-11b](#)
827 and Figure [10e-11c](#) reveal lower BC column concentrations during the daytime
828 compared to those at night, with a more pronounced dispersion trend of column
829 concentrations simulated at night. Figure [S11-S19](#) depicts the differences in BC column
830 concentrations between 25 km and 5 km resolutions, as well as between 25 km and 1
831 km resolutions, revealing that BC column concentrations in coarser resolutions are
832 marginally lower than those in finer resolutions (5 km and 1 km) in most of the study
833 areas. On the other hand, the BC column concentration simulated at 1 km resolution are

834 larger than those at 5 km resolution, as shown in Figure [S12S20](#). In conclusion, BC
835 column concentrations increases with increased resolutions, accompanied by a more
836 pronounced dispersion tendency towards higher and farther areas.

837

838 3.3.2 Impacts of turbulent mixing on BC column concentrations at three different
839 horizontal resolutions

840 We further analyze the mechanisms underlying the differences in BC column
841 concentrations across multi-resolutions in urban areas. Figure [41a-12a](#) displays the
842 vertical profiles of BC concentrations averaged over the study area. The BC profiles at
843 25 km resolution exhibit significant variability, generally decreasing from the surface
844 to higher altitudes. The near-surface BC concentration is approximately three times
845 higher than those at high altitudes, with surface concentrations reaching about 3 ug/m^3 .
846 At an altitude of 100 m, the concentration drops to 1 ug/m^3 , while above this elevation,
847 the BC concentration is less than 1 ug/m^3 . Substantial disparities exist among multi-
848 resolutions simulations in the vertical profiles of BC concentrations. Our analyses
849 above have shown that near the surface, the parameterized mixing coefficients and
850 directly resolved vertical wind speed flux are lower at 25 km resolution compared to 5
851 km and 1 km resolutions, reducing the vertical mixing of pollutants in 25 km resolution
852 simulations. Thus, BC concentrations at 25 km resolution are higher near the surface
853 and lower at higher altitudes compared to high-resolution (5 km and 1 km) simulations.
854 Moreover, the parameterized PBL mixing coefficient at 1 km resolution is lower than at
855 5 km resolution in the atmosphere, but the directly resolved upward vertical wind speed
856 flux by the model dynamic process reaches higher altitudes at 1 km resolution compared
857 to 5 km resolution. Thus, due to the combined effects of these two processes, the
858 intensity of turbulent mixing is similar between the 5 km and 1 km resolutions at near-
859 surface levels, whereas it is greater at 1 km resolution than at 5 km resolution at higher
860 altitudes. In numerical models, sub-grid scale (SGS) turbulent diffusion is typically
861 simulated by parameterization schemes. However, as model resolution increases, such
862 as achieving 1 km resolution, the turbulent mixing is increasingly resolved by the
863 dynamical framework of model. This advancement allows the model to capture

864 dynamic structures and small-scale turbulence more accurately, significantly enhancing
865 the strength of turbulent mixing. The direct resolve of dynamic processes reduces
866 reliance on traditional parameterization schemes, thereby decreasing the PBL mixing
867 coefficient parameterized at finer resolutions. In conclusion, at higher altitudes, the
868 enhanced turbulent mixing efficiently facilitates more ground-emitted pollutants to
869 higher height as resolution increases. Thus, BC concentrations at 5 km and 1 km
870 resolution are similar near surface, with 1 km resolution yielding the largest
871 concentrations at higher altitudes.

872 To further investigate the BC column concentrations and their dispersion tendency
873 towards farther areas, we analyzed the vertical profile of wind speed at three resolutions
874 averaged over the study area, as shown in Figure 4**b**12b. The vertical profile of wind
875 speed is relatively consistent across the three resolutions. From the ground to higher
876 altitudes, the overall wind speed gradually increases, transitioning from low speeds near
877 the surface to higher speeds aloft. Near the ground, the simulated average wind speed
878 is approximately 1 m/s, increasing to 4 m/s at an altitude of 1 km, and reaching an
879 average of about 7 m/s at an altitude of 2 km. In the upper atmosphere, characterized
880 by larger wind speeds, pollutants mixed up from near-surface can be transported and
881 dispersed farther. As previously mentioned, BC simulated in higher-resolution
882 simulations can be transported to higher altitudes, thus dispersing over greater distances
883 by stronger winds. Therefore, as the resolution increases, the trend of diffusion towards
884 farther regions in the simulated BC column concentrations becomes more pronounced.

885 As previously discussed, higher-resolution simulations facilitate BC transport to
886 greater altitudes and further distances. This phenomenon extends its atmospheric
887 lifetime, consequently resulting in increased column concentrations. Bauer et al. (2013)
888 noted that turbulent mixing and convective transport processes play a critical role in
889 determining BC lifetimes. Figure 4**c**13 illustrates the spatial distribution of BC lifetime,
890 calculated by dividing the BC column concentration by the dry deposition flux. It
891 demonstrates that BC lifetime gradually lengthens as resolution increases. The average
892 lifetime of BC column concentrations in the study area is 344 h, 350 h, and 382 h for
893 25 km, 5 km, and 1 km resolutions, respectively. These results clearly demonstrate that

894 BC simulated at higher resolutions exhibits prolonged atmospheric residence times.
895 Consequently, the BC column concentration is higher in high-resolution simulations.
896

897 **4. Conclusion and Discussion**

898 Turbulent mixing plays a crucial role in urban pollutant transport by enhancing the
899 diffusion of atmospheric pollutants. Current atmospheric models often underestimate
900 turbulent exchange within stable nocturnal boundary layers, and the turbulent mixing
901 varies markedly across different model horizontal resolutions. However, few studies
902 have analyzed how turbulent mixing processes across multi-resolutions affect pollutant
903 concentrations in urban areas. Therefore, our goal is to elucidate the variations in
904 pollutant concentrations across multi-resolutions and investigate the influence of
905 turbulent mixing on pollutant concentrations at various resolutions.

906 We conducted a three-nested WRF-Chem simulation at 25 km, 5 km, and 1 km
907 resolutions in the Hefei area. BC surface concentrations decrease as resolution increases
908 from 25 km to 5 km and further to 1 km but are similar at 5 km and 1 km resolutions,
909 showing significant diurnal variations with higher concentrations at night and lower
910 during the daytime. The BC surface concentrations across multi-resolutions align well
911 with USTC site observations during daytime but are overestimated at night, with this
912 overestimation decreasing at higher-resolution (5 km and 1 km). Disparities in BC
913 surface concentrations between the two finer-resolution and the 25 km resolution
914 simulations are primarily attributable to nocturnal concentrations. In addition, the
915 diurnal variation of PM_{2.5} surface concentrations simulated at different resolutions
916 follows the same trend as the observed concentrations at the national monitoring sites,
917 with slight underestimation during daytime and overestimation at night. The PBL
918 mixing coefficient plays a crucial role in controlling surface pollutant-particulate matter
919 concentrations at night. Larger nighttime PBL mixing coefficients and higher vertical
920 wind speed flux at 5 km and 1 km resolutions compared to 25 km resolution near the
921 surface result in lower BC surface concentrations. However, the PBL mixing coefficient
922 at 5 km is larger than at 1 km resolution. Moreover, the upward vertical wind speed flux

923 resolved at 1 km resolution reaches higher altitudes compared to 25 km and 5 km
924 resolutions, indicating more small-scale eddies and resulting in enhanced turbulent
925 mixing. Consequently, near the surface, the combined effects of parametrized PBL
926 mixing coefficient and the directly resolved vertical wind speed flux lead to similar BC
927 surface concentrations at 5 km and 1 km resolutions.

928 Further analysis reveals that the spatial distribution of PBL mixing coefficients is
929 influenced by both land use types and terrain heights. The turbulent mixing coefficient
930 correlates with the spatial distribution of land use types at smaller scales, with urban
931 underlying surfaces notably increasing the parameterized PBL mixing coefficient. The
932 mixing coefficient also strongly correlates with ~~while correlating with~~ terrain heights at
933 larger scales, particularly in in ~~in~~ regions with complex topography and significant
934 elevation differences, and complicated flow patterns where higher terrain substantially
935 enhances mixing coefficients. ~~–~~This correlation can be attributed to the interrelationship
936 among turbulent mixing coefficients, friction velocity, terrain, and land use types. The
937 static database of terrain and land use types employed as model input determines the
938 surface roughness. Higher surface roughness typically leads to greater friction velocity,
939 subsequently increasing the PBL mixing coefficients. Moreover, in regions where land
940 use types and terrain height remain relatively flat and consistent across multi-
941 resolutions, increasing resolution still enhances boundary layer mixing coefficients,
942 highlighting the importance of grid size. ~~–~~Thus, both surface information and grid
943 resolution are crucial for accurately parameterizing PBL mixing coefficients, with
944 priority given to accurate land use data, precise terrain representation, and higher grid
945 resolution to improve turbulent mixing simulations.

946 In WRF-Chem, the mixing coefficients of chemical species are clipped to
947 empirically chosen thresholds of 1 m²/s over rural areas and 2 m²/s over urban areas to
948 prevent unrealistically low values. These thresholds are modified based on differences
949 in anthropogenic CO and primary PM_{2.5} emissions between rural and urban regions.
950 Importantly, this adjustment applies exclusively to gases and not to aerosols when the
951 MOSAIC or MADE/SORGAM aerosol schemes are used. This is because the
952 adjustment does not couple with the aerosol PBL mixing scheme in WRF-Chem,

953 although potential modifications could be made for compatibility with the MOSAIC or
954 MADE/SORGAM scheme. Thus, the boundary layer mixing coefficient for gases is
955 implicitly influenced by emission resolution rather than directly controlled by model
956 resolution. In this study, this treatment caused gas mixing coefficients to converge
957 across different horizontal resolutions, preventing us from accurately assessing the
958 impact of horizontal resolution on gas turbulent mixing. For aerosols, however, the
959 original PBL mixing coefficients are retained, which are directly parametrized from
960 boundary layer parameterization schemes. Therefore, our focus is mainly on particulate
961 matter in this analysis and we omitted this modification for gases.

962 The variations in turbulent mixing across multi-resolution simulations not only
963 affect the BC surface concentration but also lead to different BC column concentrations.
964 BC column concentrations increase with improved resolutions, accompanied by a more
965 pronounced diffusion tendency towards higher altitudes and distant regions.
966 Throughout the atmosphere, turbulent mixing intensifies with improved resolutions,
967 resulting in pollutants being transported to higher altitudes. Concurrently, wind speed
968 increases with altitude, facilitating the pollutants which are mixed to higher altitudes to
969 be spread farther. Consequently, BC simulated at higher resolution is transported to
970 greater altitudes and dispersed to farther regions, thus persisting in the atmosphere for
971 longer periods and leading to larger lifetimes. As a result, BC column concentrations
972 increase with finer resolutions.

973 This study highlights the importance of model horizontal resolution in simulating
974 the dispersion of atmospheric pollutants. We observed that the enhanced turbulent
975 mixing strength in high-resolution can more accurately reproduce the vertical and
976 horizontal distribution of pollutants, thus aligning the simulated pollutant surface
977 concentrations more closely with actual observations. In contrast, turbulent mixing in
978 low-resolution simulations, primarily depending on boundary layer parameterizations,
979 may not adequately capture the dynamics of turbulence, leading to discrepancies
980 between the simulated and actual distribution of pollutants, particularly during the night
981 with stable boundary condition. Future research should focus on improving PBL
982 parameterization schemes to enhance model performance at lower resolutions, thereby

983 better serving the needs of air pollution control and environmental management.

984 Moreover, we have noted that the parameterized PBL mixing coefficient decreases
985 when transitioning from 5 km to 1 km resolution, alongside an increase in vertical wind
986 speed flux which represents turbulent mixing directly resolved by the dynamical
987 processes. This trend suggests that if the resolution was further increased to LES scales,
988 the parameterized PBL mixing coefficient might diminish significantly, potentially
989 approaching zero, while the turbulence mixing resolved directly by the dynamics would
990 intensify considerably. At LES scales, the majority of turbulent mixing is directly
991 resolved, capturing the atmospheric dynamical processes and turbulent exchanges more
992 realistically, thereby reducing the simulation biases caused by parameterization errors.
993 This shift diminishes reliance on traditional boundary layer parameterizations to
994 simulate turbulent mixing, leading to a substantial reduction in the parameterized
995 boundary layer mixing coefficient. By capturing the finer details of atmospheric
996 dynamics, the model provides a more realistic representation of turbulent mixing and
997 related physical processes, which is crucial for understanding weather patterns, climate
998 variability, and pollutant dispersion. However, due to the huge computational resources
999 required for LES simulation, we have not yet performed an analysis at the LES scale,
1000 but it is worth further exploring in the future.

1001 Our analysis also found that higher-resolution facilitate transport over greater
1002 distances, suggesting that inter-city pollutant diffusion can be affected by model
1003 resolution, with coarse-resolution potentially reducing long-range transport and inter-
1004 urban impacts. While previous studies have examined pollutant formation mechanisms
1005 at specific resolutions and explored the physical and chemical interactions among
1006 megacities, few have considered the impacts of different resolutions on long-range
1007 transport between cities. Due to computational cost constraints, inter-urban impacts are
1008 not discussed in this study but deserve further investigation in the future. Furthermore,
~~1009 this study focuses exclusively on BC, a primary aerosol species, while the impact of~~
~~1010 grid resolution on secondary aerosols may differ. Future investigations could expand~~
~~1011 this analysis to encompass a wider spectrum of pollutant species. Finally, while vertical~~
~~1012 resolution is held constant in our study, we recognize that it could influence the~~

1013 interpretation of the turbulence processes in certain scenarios, especially in regions with
1014 complex vertical structures. Therefore, future work could systematically explore the
1015 interplay between vertical resolution and pollutant concentration or aerosol-boundary
1016 layer feedbacks.

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032

1033 ***Data availability.*** The release version of WRF-Chem can be downloaded from
1034 http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. The updated USTC
1035 version of WRF-Chem can be downloaded from <http://aemol.ustc.edu.cn/product/list/>
1036 or contact chunzhao@ustc.edu.cn. Additionally, code modifications will be
1037 incorporated into the release version of WRF-Chem in the future.

1038
1039 ***Author contributions.*** Zining Yang and Chun Zhao designed the experiments and
1040 conducted and analyzed the simulations. All authors contributed to the discussion and
1041 final version of the paper.

1042

1043 ***Competing interests.*** The contact author has declared that none of the authors has
1044 any competing interests.

1045 ***Acknowledgments.*** This research was supported by the National Key Research and
1046 Development Program of China (No. 2022YFC3700701), the Strategic Priority
1047 Research Program of Chinese Academy of Sciences (XDB0500303), National Natural
1048 Science Foundation of China (41775146), the USTC Research Funds of the Double
1049 First-Class Initiative (YD2080002007, KY2080000114), the Science and Technology
1050 Innovation Project of Laoshan Laboratory (LSKJ202300305), and the National Key
1051 Scientific and Technological Infrastructure project “Earth System Numerical
1052 Simulation Facility” (EarthLab). The study used the computing resources from the
1053 Supercomputing Center of the University of Science and Technology of China (USTC)
1054 and the Qingdao Supercomputing and Big Data Center.

1055 **Reference**

- 1056 Banks, R. F. and Baldasano, J. M.: Impact of WRF model PBL schemes on air quality
1057 simulations over Catalonia, Spain, *Science of the Total Environment*, 572, 98-113,
1058 <https://doi.org/10.1016/j.scitotenv.2016.07.167>, 2016.
- 1059 Bauer, S. E., Bausch, A., Nazarenko, L., Tsigaridis, K., Xu, B., Edwards, R., Bisiaux,
1060 M., and McConnell, J.: Historical and future black carbon deposition on the three
1061 ice caps: Ice core measurements and model simulations from 1850 to 2100, *Journal*
1062 of Geophysical Research-Atmospheres, 118, 7948-7961,
1063 <https://doi.org/10.1002/jgrd.50612>, 2013.
- 1064 Berger, A., Barbet, C., Leriche, M., Deguillaume, L., Mari, C., Chaumerliac, N., Begue,
1065 N., Tulet, P., Gazen, D., and Escobar, J.: Evaluation of Meso-NH and WRF-CHEM
1066 simulated gas and aerosol chemistry over Europe based on hourly observations,
1067 Atmospheric Research, 176, 43-63,
1068 <https://doi.org/10.1016/j.atmosres.2016.02.006>, 2016.
- 1069 Carter: Implementation of the SAPRC-99 chemical mechanism into the models-3
1070 framework, 2000.
- 1071 Chan, C. K. and Yao, X.: Air pollution in mega cities in China, *Atmospheric*
1072 *Environment*, 42, 1-42, <https://doi.org/10.1016/j.atmosenv.2007.09.003>, 2008.
- 1073 Chapman, E. G., Gustafson, W. I., Jr., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour,
1074 M. S., and Fast, J. D.: Coupling aerosol-cloud-radiative processes in the WRF-
1075 Chem model: Investigating the radiative impact of elevated point sources,
1076 *Atmospheric Chemistry and Physics*, 9, 945-964, <https://doi.org/10.5194/acp-9-945-2009>, 2009.
- 1077 Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface-Hydrology Model with
1078 the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and
1079 Sensitivity, *Monthly Weather Review*, 129, 569-585, 2001.
- 1080 Chen, Y., Zhao, C., Zhang, Q., Deng, Z., Huang, M., and Ma, X.: Aircraft study of
1081 Mountain Chimney Effect of Beijing, China, *Journal of Geophysical Research-
1082 Atmospheres*, 114, <https://doi.org/10.1029/2008jd010610>, 2009.

- 1084 CMA, 2018: Technical Specifications for Maintenance of Regional Automatic Weather
1085 Stations. QX/T 465–2018. (in Chinese). Available at:
1086 <http://cmastd.cmatc.cn/standardView.jspx?id=3076>. Accessed on 5 May 2022.,
1087 2018.
- 1088 Costa, F. D., Acevedo, O. C., Mombach, J. C. M., and Degrazia, G. A.: A Simplified
1089 Model for Intermittent Turbulence in the Nocturnal Boundary Layer, *Journal of the*
1090 *Atmospheric Sciences*, 68, 1714-1729, <https://doi.org/10.1175/2011jas3655.1>,
1091 2011.
- 1092 Cuchiara, G. C., Li, X., Carvalho, J., and Rappenglueck, B.: Intercomparison of
1093 planetary boundary layer parameterization and its impacts on surface ozone
1094 concentration in the WRF-Chem model for a case study in Houston/Texas,
1095 *Atmospheric Environment*, 96, 175-185,
1096 <https://doi.org/10.1016/j.atmosenv.2014.07.013>, 2014.
- 1097 Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P.,
1098 Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J. P., Textor,
1099 Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol
1100 and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom,
1101 *Atmospheric Chemistry and Physics*, 6, 4321-4344, <https://doi.org/10.5194/acp-6-4321-2006>, 2006.
- 1103 Du, Q., Zhao, C., Zhang, M., Dong, X., Chen, Y., Liu, Z., Hu, Z., Zhang, Q., Li, Y.,
1104 Yuan, R., and Miao, S.: Modeling diurnal variation of surface PM_{2.5} concentrations
1105 over East China with WRF-Chem: impacts from boundary-layer mixing and
1106 anthropogenic emission, *Atmospheric Chemistry and Physics*, 20, 2839-2863,
1107 <https://doi.org/10.5194/acp-20-2839-2020>, 2020.
- 1108 Estevez, J., Gavilan, P., and Giraldez, J. V.: Guidelines on validation procedures for
1109 meteorological data from automatic weather stations, *Journal of Hydrology*, 402,
1110 144-154, <https://doi.org/10.1016/j.jhydrol.2011.02.031>, 2011.
- 1111 Fountoukis, C., Koraj, D., van der Gon, H. A. C. D., Charalampidis, P. E., Pilinis, C.,
1112 and Pandis, S. N.: Impact of grid resolution on the predicted fine PM by a regional
1113 3-D chemical transport model, *Atmospheric Environment*, 68, 24-32,

- 1114 <https://doi.org/10.1016/j.atmosenv.2012.11.008>, 2013.
- 1115 Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C.,
1116 and Eder, B.: Fully coupled "online" chemistry within the WRF model,
1117 Atmospheric Environment, 39, 6957-6975,
1118 <https://doi.org/10.1016/j.atmosenv.2005.04.027>, 2005.
- 1119 Gustafson, W. I., Jr., Qian, Y., and Fast, J. D.: Downscaling aerosols and the impact of
1120 neglected subgrid processes on direct aerosol radiative forcing for a representative
1121 global climate model grid spacing, Journal of Geophysical Research-Atmospheres,
1122 116, <https://doi.org/10.1029/2010jd015480>, 2011.
- 1123 Gustafson, W. I., Jr., Chapman, E. G., Ghan, S. J., Easter, R. C., and Fast, J. D.: Impact
1124 on modeled cloud characteristics due to simplified treatment of uniform cloud
1125 condensation nuclei during NEAQS 2004, Geophysical Research Letters, 34,
1126 <https://doi.org/10.1029/2007gl030021>, 2007.
- 1127 Han, S., Bian, H., Tie, X., Xie, Y., Sun, M., and Liu, A.: Impact of nocturnal planetary
1128 boundary layer on urban air pollutants: Measurements from a 250-m tower over
1129 Tianjin, China, Journal of Hazardous Materials, 162, 264-269,
1130 <https://doi.org/10.1016/j.jhazmat.2008.05.056>, 2009.
- 1131 Holmes, H. A., Sriramasamudram, J. K., Pardyjak, E. R., and Whiteman, C. D.:
1132 Turbulent Fluxes and Pollutant Mixing during Wintertime Air Pollution Episodes
1133 in Complex Terrain, Environmental Science & Technology, 49, 13206-13214,
1134 <https://doi.org/10.1021/acs.est.5b02616>, 2015.
- 1135 Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit
1136 treatment of entrainment processes, Monthly Weather Review, 134, 2318-2341,
1137 <https://doi.org/10.1175/mwr3199.1>, 2006.
- 1138 Hu, Z., Huang, J., Zhao, C., Bi, J., Jin, Q., Qian, Y., Leung, L. R., Feng, T., Chen, S.,
1139 and Ma, J.: Modeling the contributions of Northern Hemisphere dust sources to
1140 dust outflow from East Asia, Atmospheric Environment, 202, 234-243,
1141 <https://doi.org/10.1016/j.atmosenv.2019.01.022>, 2019.
- 1142 Iacono, M. J., Mlawer, E. J., Clough, S. A., and Morcrette, J. J.: Impact of an improved
1143 longwave radiation model, RRTM, on the energy budget and thermodynamic

1144 properties of the NCAR community climate model, CCM3, Journal of Geophysical
1145 Research-Atmospheres, 105, 14873-14890, <https://doi.org/10.1029/2000jd900091>,
1146 2000.

1147 Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot,
1148 G., Keating, T., Zhang, Q., Kurokawa, J., Wankmueller, R., van der Gon, H. D.,
1149 Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.:
1150 HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010
1151 to study hemispheric transport of air pollution, Atmospheric Chemistry and
1152 Physics, 15, 11411-11432, <https://doi.org/10.5194/acp-15-11411-2015>, 2015.

1153 Jia, W. and Zhang, X.: Impact of modified turbulent diffusion of PM_{2.5} aerosol in WRF-
1154 Chem simulations in eastern China, Atmospheric Chemistry and Physics, 21,
1155 16827-16841, <https://doi.org/10.5194/acp-21-16827-2021>, 2021.

1156 Jia, W., Zhang, X., Zhang, H., and Ren, Y.: Application of Turbulent Diffusion Term of
1157 Aerosols in Mesoscale Model, Geophysical Research Letters, 48,
1158 <https://doi.org/10.1029/2021gl093199>, 2021.

1159 Jiang, L. and Hu, J.: Influence of the lowest model level height and vertical grid
1160 resolution on mesoscale meteorological modeling, Atmospheric Research, 296,
1161 <https://doi.org/10.1016/j.atmosres.2023.107066>, 2023.

1162 Jiang, L., Bessagnet, B., Meleux, F., Couvidat, F., Tognet, F., and Hu, J.: The role of
1163 vertical grid resolution and turbulent diffusion uncertainty on chemical transport
1164 modeling, Atmospheric Research, 312,
1165 <https://doi.org/10.1016/j.atmosres.2024.107759>, 2024.

1166 Kain, J. S.: The Kain-Fritsch convective parameterization: An update, Journal of
1167 Applied Meteorology, 43, 170-181, [https://doi.org/10.1175/1520-0450\(2004\)043<0170:Tkcpau>2.0.Co;2](https://doi.org/10.1175/1520-0450(2004)043<0170:Tkcpau>2.0.Co;2), 2004.

1169 Kim, S. W.: The Influence of PBL Parameterizations on the Distributions of Chemical
1170 Species in a Mesoscale Chemical Transport Model, WRF-Chem,
1171 Kuhn, L., Beirle, S., Kumar, V., Osipov, S., Pozzer, A., Boesch, T., Kumar, R., and
1172 Wagner, T.: On the influence of vertical mixing, boundary layer schemes, and
1173 temporal emission profiles on tropospheric NO₂ in WRF-Chem - comparisons to

- 1174 in situ, satellite, and MAX-DOAS observations, Atmospheric Chemistry and
1175 Physics, 24, 185-217, <https://doi.org/10.5194/acp-24-185-2024>, 2024.
- 1176 Li, H., Li, L., Huang, C., An, J., Yan, R., Huang, H., Wang, Y., Lu, Q., Wang, Q., Lou,
1177 S., Wang, H., Zhou, M., Tao, S., Qiao, L., and Chen, M.: Ozone Source
1178 Apportionment at Urban Area during a Typical Photochemical Pollution Episode
1179 in the Summer of 2013 in the Yangtze River Delta, Environmental Science, 36, 1-
1180 10, 2015.
- 1181 Li, L., An, J., Huang, L., Yan, R., Huang, C., and Yarwood, G.: Ozone source
1182 apportionment over the Yangtze River Delta region, China: Investigation of
1183 regional transport, sectoral contributions and seasonal differences, Atmospheric
1184 Environment, 202, 269-280, <https://doi.org/10.1016/j.atmosenv.2019.01.028>,
1185 2019.
- 1186 Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H.,
1187 Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a
1188 review, National Science Review, 4, 834-866, <https://doi.org/10.1093/nsr/nwx150>,
1189 2017a.
- 1190 Li, M., Zhang, Q., Kurokawa, J.-i., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y.,
1191 Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang,
1192 S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission
1193 inventory under the international collaboration framework of the MICS-Asia and
1194 HTAP, Atmospheric Chemistry and Physics, 17, 935-963,
1195 <https://doi.org/10.5194/acp-17-935-2017>, 2017b.
- 1196 Li, Q., Zhang, H., Jin, X., Cai, X., and Song, Y.: Mechanism of haze pollution in
1197 summer and its difference with winter in the North China Plain, Science of the
1198 Total Environment, 806, <https://doi.org/10.1016/j.scitotenv.2021.150625>, 2022.
- 1199 Li, Q., Wu, B., Liu, J., Zhang, H., Cai, X., and Song, Y.: Characteristics of the
1200 atmospheric boundary layer and its relation with PM_{2.5} during haze episodes in
1201 winter in the North China Plain, Atmospheric Environment, 223,
1202 <https://doi.org/10.1016/j.atmosenv.2020.117265>, 2020.
- 1203 Li, X.-B., Wang, D.-S., Lu, Q.-C., Peng, Z.-R., and Wang, Z.-Y.: Investigating vertical

- 1204 distribution patterns of lower tropospheric PM_{2.5} using unmanned
1205 aerial vehicle measurements, *Atmospheric Environment*, 173, 62-71,
1206 <https://doi.org/10.1016/j.atmosenv.2017.11.009>, 2018.
- 1207 Liu, C., Huang, J., Wang, Y., Tao, X., Hu, C., Deng, L., Xu, J., Xiao, H.-W., Luo, L.,
1208 Xiao, H.-Y., and Xiao, W.: Vertical distribution of PM_{2.5} and
1209 interactions with the atmospheric boundary layer during the development stage of
1210 a heavy haze pollution event, *Science of the Total Environment*, 704,
1211 <https://doi.org/10.1016/j.scitotenv.2019.135329>, 2020.
- 1212 Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y., Tong, S., Coelho, M. S. Z.
1213 S., Saldiva, P. H. N., Lavigne, E., Matus, P., Ortega, N. V., Garcia, S. O., Pascal,
1214 M., Stafoggia, M., Scortichini, M., Hashizume, M., Honda, Y., Hurtado-Diaz, M.,
1215 Cruz, J., Nunes, B., Teixeira, J. P., Kim, H., Tobias, A., Iniguez, C., Forsberg, B.,
1216 Astrom, C., Ragettli, M. S., Guo, Y.-L., Chen, B.-Y., Bell, M. L., Wright, C. Y.,
1217 Scovronick, N., Garland, R. M., Milojevic, A., Kysely, J., Urban, A., Orru, H.,
1218 Indermitte, E., Jaakkola, J. J. K., Rytí, N. R. I., Katsouyanni, K., Analitis, A.,
1219 Zanobetti, A., Schwartz, J., Chen, J., Wu, T., Cohen, A., Gasparrini, A., and Kan,
1220 H.: Ambient Particulate Air Pollution and Daily Mortality in 652 Cities, *New
England Journal of Medicine*, 381, 705-715,
1221 <https://doi.org/10.1056/NEJMoa1817364>, 2019.
- 1222 Liu, H., Yuan, R., Mei, J., Sun, J., Liu, Q., and Wang, Y.: Scale Properties of Anisotropic
1223 and Isotropic Turbulence in the Urban Surface Layer, *Boundary-Layer
1224 Meteorology*, 165, 277-294, <https://doi.org/10.1007/s10546-017-0272-z>, 2017.
- 1225 Ma, T., Duan, F., He, K., Qin, Y., Tong, D., Geng, G., Liu, X., Li, H., Yang, S., Ye, S.,
1226 Xu, B., Zhang, Q., and Ma, Y.: Air pollution characteristics and their relationship
1227 with emissions and meteorology in the Yangtze River Delta region during 2014-
1228 2016, *Journal of Environmental Sciences*, 83, 8-20,
1229 <https://doi.org/10.1016/j.jes.2019.02.031>, 2019.
- 1230 McKeen, S., Chung, S. H., Wilczak, J., Grell, G., Djalalova, I., Peckham, S., Gong, W.,
1231 Bouchet, V., Moffet, R., Tang, Y., Carmichael, G. R., Mathur, R., and Yu, S.:
1232 Evaluation of several PM_{2.5} forecast models using data collected during the

- 1234 ICARTT/NEAQS 2004 field study, Journal of Geophysical Research-Atmospheres,
1235 112, <https://doi.org/10.1029/2006jd007608>, 2007.
- 1236 Miao, Y., Li, J., Miao, S., Che, H., Wang, Y., Zhang, X., Zhu, R., and Liu, S.: Interaction
1237 Between Planetary Boundary Layer and PM_{2.5} Pollution in
1238 Megacities in China: a Review, Current Pollution Reports, 5, 261-271,
1239 <https://doi.org/10.1007/s40726-019-00124-5>, 2019.
- 1240 Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative
1241 transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model
1242 for the longwave, Journal of Geophysical Research-Atmospheres, 102, 16663-
1243 16682, <https://doi.org/10.1029/97jd00237>, 1997.
- 1244 Morrison, H., Thompson, G., and Tatarki, V.: Impact of Cloud Microphysics on the
1245 Development of Trailing Stratiform Precipitation in a Simulated Squall Line:
1246 Comparison of One- and Two-Moment Schemes, Monthly Weather Review, 137,
1247 991-1007, <https://doi.org/10.1175/2008mwr2556.1>, 2009.
- 1248 Peng, Y., Wang, H., Li, Y., Liu, C., Zhao, T., Zhang, X., Gao, Z., Jiang, T., Che, H., and
1249 Zhang, M.: Evaluating the performance of two surface layer schemes for the
1250 momentum and heat exchange processes during severe haze pollution in Jing-Jin-
1251 Ji in eastern China, Atmospheric Chemistry and Physics, 18, 17421-17435,
1252 <https://doi.org/10.5194/acp-18-17421-2018>, 2018.
- 1253 Pierce, A. M., Loria-Salazar, S. M., Holmes, H. A., and Gustin, M. S.: Investigating
1254 horizontal and vertical pollution gradients in the atmosphere associated with an
1255 urban location in complex terrain, Reno, Nevada, USA, Atmospheric Environment,
1256 196, 103-117, <https://doi.org/10.1016/j.atmosenv.2018.09.063>, 2019.
- 1257 Qian, Y., Gustafson, W. I., Jr., and Fast, J. D.: An investigation of the sub-grid
1258 variability of trace gases and aerosols for global climate modeling, Atmospheric
1259 Chemistry and Physics, 10, 6917-6946, <https://doi.org/10.5194/acp-10-6917-2010>,
1260 2010.
- 1261 Quan, J., Dou, Y., Zhao, X., Liu, Q., Sun, Z., Pan, Y., Jia, X., Cheng, Z., Ma, P., Su, J.,
1262 Xin, J., and Liu, Y.: Regional atmospheric pollutant transport mechanisms over the
1263 North China Plain driven by topography and planetary boundary layer processes,

- 1264 Atmospheric Environment, 221, <https://doi.org/10.1016/j.atmosenv.2019.117098>,
1265 2020.
- 1266 Ren, Y., Zhang, H., Wei, W., Cai, X., and Song, Y.: Determining the fluctuation of PM_{2.5}
1267 mass concentration and its applicability to Monin-Obukhov similarity, Science of
1268 the Total Environment, 710, <https://doi.org/10.1016/j.scitotenv.2019.136398>, 2020.
- 1269 Ren, Y., Zhang, H., Wei, W., Cai, X., Song, Y., and Kang, L.: A study on atmospheric
1270 turbulence structure and intermittency during heavy haze pollution in the Beijing
1271 area, Science China-Earth Sciences, 62, 2058-2068,
1272 <https://doi.org/10.1007/s11430-019-9451-0>, 2019a.
- 1273 Ren, Y., Zhang, H., Wei, W., Wu, B., Cai, X., and Song, Y.: Effects of turbulence
1274 structure and urbanization on the heavy haze pollution process, Atmospheric
1275 Chemistry and Physics, 19, 1041-1057, <https://doi.org/10.5194/acp-19-1041-2019>,
1276 2019b.
- 1277 Ren, Y., Zhang, H., Zhang, X., Li, Q., Cai, X., Song, Y., Kang, L., and Zhu, T.: Temporal
1278 and spatial characteristics of turbulent transfer and diffusion coefficient of PM_{2.5},
1279 Science of the Total Environment, 782, 782,
1280 <https://doi.org/10.1016/j.scitotenv.2021.146804>, 2021.
- 1281 Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega, I. K., Rondo, L.,
1282 Almeida, J., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Downard, A.,
1283 Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Hansel, A.,
1284 Junninen, H., Kajos, M., Keskinen, H., Kupc, A., Kuerten, A., Kvashin, A. N.,
1285 Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Nieminen, T., Onnela,
1286 A., Petaja, T., Praplan, A. P., Santos, F. D., Schallhart, S., Seinfeld, J. H., Sipila,
1287 M., Spracklen, D. V., Stozhkov, Y., Stratmann, F., Tome, A., Tsagkogeorgas, G.,
1288 Vaattovaara, P., Viisanen, Y., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H.,
1289 Wimmer, D., Carslaw, K. S., Curtius, J., Donahue, N. M., Kirkby, J., Kulmala, M.,
1290 Worsnop, D. R., and Baltensperger, U.: Oxidation Products of Biogenic Emissions
1291 Contribute to Nucleation of Atmospheric Particles, Science, 344, 717-721,
1292 <https://doi.org/10.1126/science.1243527>, 2014.
- 1293 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., and Powers, J. G.: A

- 1294 Description of the Advanced Research WRF Version 3, NCAR Technical Note
1295 NCAR/TN-475+STR. June 2008. Mesoscale and Microscale Meteorology
1296 Division. National Center for Atmospheric Research. Boulder, 475, 2008.
- 1297 Stull, R. B.: An Introduction to Boundary Layer Meteorology, An Introduction to
1298 Boundary Layer Meteorology1988.
- 1299 Sun, T., Che, H., Qi, B., Wang, Y., Dong, Y., Xia, X., Wang, H., Gui, K., Zheng, Y.,
1300 Zhao, H., Ma, Q., Du, R., and Zhang, X.: Aerosol optical characteristics and their
1301 vertical distributions under enhanced haze pollution events: effect of the regional
1302 transport of different aerosol types over eastern China, Atmospheric Chemistry and
1303 Physics, 18, 2949-2971, <https://doi.org/10.5194/acp-18-2949-2018>, 2018.
- 1304 Sun, Y., Song, T., Tang, G., and Wang, Y.: The vertical distribution of
1305 PM_{2.5} and boundary-layer structure during summer haze in Beijing,
1306 Atmospheric Environment, 74, 413-421,
1307 <https://doi.org/10.1016/j.atmosenv.2013.03.011>, 2013.
- 1308 Tao, H., Xing, J., Zhou, H., Pleim, J., Ran, L., Chang, X., Wang, S., Chen, F., Zheng,
1309 H., and Li, J.: Impacts of improved modeling resolution on the simulation of
1310 meteorology, air quality, and human exposure to PM_{2.5}, O₃ in Beijing, China,
1311 Journal of Cleaner Production, 243, <https://doi.org/10.1016/j.jclepro.2019.118574>,
1312 2020.
- 1313 Tuccella, P., Curci, G., Visconti, G., Bessagnet, B., Menut, L., and Park, R. J.: Modeling
1314 of gas and aerosol with WRF-Chem over Europe: Evaluation and sensitivity study,
1315 Journal of Geophysical Research-Atmospheres, 117,
1316 <https://doi.org/10.1029/2011jd016302>, 2012.
- 1317 Von Kuhlmann, R., Lawrence, M. G., Crutzen, P. J., and Rasch, P. J.: A model for
1318 studies of tropospheric ozone and nonmethane hydrocarbons: Model description
1319 and ozone results, Journal of Geophysical Research-Atmospheres, 108,
1320 <https://doi.org/10.1029/2002jd002893>, 2003.
- 1321 Wang, H., Peng, Y., Zhang, X., Liu, H., Zhang, M., Che, H., Cheng, Y., and Zheng, Y.:
1322 Contributions to the explosive growth of PM_{2.5} mass due to aerosol-radiation
1323 feedback and decrease in turbulent diffusion during a red alert heavy haze in

- 1324 Beijing-Tianjin-Hebei, China, Atmospheric Chemistry and Physics, 18, 17717-
1325 17733, <https://doi.org/10.5194/acp-18-17717-2018>, 2018.
- 1326 Wei, W., Zhang, H., Cai, X., Song, Y., Bian, Y., Xiao, K., and Zhang, H.: Influence of
1327 Intermittent Turbulence on Air Pollution and Its Dispersion in Winter 2016/2017
1328 over Beijing, China, Journal of Meteorological Research, 34, 176-188,
1329 <https://doi.org/10.1007/s13351-020-9128-4>, 2020.
- 1330 Wei, W., Zhang, H., Wu, B., Huang, Y., Cai, X., Song, Y., and Li, J.: Intermittent
1331 turbulence contributes to vertical dispersion of PM_{2.5} in the North China Plain:
1332 cases from Tianjin, Atmospheric Chemistry and Physics, 18, 12953-12967,
1333 <https://doi.org/10.5194/acp-18-12953-2018>, 2018.
- 1334 Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando,
1335 J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution
1336 global model to estimate the emissions from open burning, Geoscientific Model
1337 Development, 4, 625-641, <https://doi.org/10.5194/gmd-4-625-2011>, 2011.
- 1338 Wild, O., Zhu, X., and Prather, M. J.: Fast-j: Accurate simulation of in- and below-
1339 cloud photolysis in tropospheric chemical models, Journal of Atmospheric
1340 Chemistry, 37, 245-282, <https://doi.org/10.1023/a:1006415919030>, 2000.
- 1341 WRAP – Western Regional Air Partnership: 2002 Fire Emission Inventory for the
1342 WRAP Region – Phase II, Project No.178-6, available at:
1343 <http://www.wrapair.org/forums/fejf/tasks/FEJFTask7PhaseII.html> (last access: 30
1344 September 2021), 2005.
- 1345 Wu, H., Li, Z., Li, H., Luo, K., Wang, Y., Yan, P., Hu, F., Zhang, F., Sun, Y., Shang, D.,
1346 Liang, C., Zhang, D., Wei, J., Wu, T., Jin, X., Fan, X., Cribb, M., Fischer, M. L.,
1347 Kulmala, M., and Petaja, T.: The impact of the atmospheric turbulence-
1348 development tendency on new particle formation: a common finding on three
1349 continents, National Science Review, 8, <https://doi.org/10.1093/nsr/nwaa157>,
1350 2021.
- 1351 Xu, J., Yan, F., Xie, Y., Wang, F., Wu, J., and Fu, Q.: Impact of meteorological
1352 conditions on a nine-day particulate matter pollution event observed in December
1353 2013, Shanghai, China, Particuology, 20, 69-79,

- 1354 <https://doi.org/10.1016/j.partic.2014.09.001>, 2015.
- 1355 Ye, X., Song, Y., Cai, X., and Zhang, H.: Study on the synoptic flow patterns and
1356 boundary layer process of the severe haze events over the North China Plain in
1357 January 2013, Atmospheric Environment, 124, 129-145,
1358 <https://doi.org/10.1016/j.atmosenv.2015.06.011>, 2016.
- 1359 Yin, P., Brauer, M., Cohen, A., Burnett, R. T., Liu, J., Liu, Y., Liang, R., Wang, W., Qi,
1360 J., Wang, L., and Zhou, M.: Long-term Fine Particulate Matter Exposure and
1361 Nonaccidental and Cause-specific Mortality in a Large National Cohort of Chinese
1362 Men, Environmental Health Perspectives, 125, <https://doi.org/10.1289/ehp1673>,
1363 2017.
- 1364 Yuan, R., Luo, T., Sun, J., Liu, H., Fu, Y., and Wang, Z.: A new method for estimating
1365 aerosol mass flux in the urban surface layer using LAS technology, Atmospheric
1366 Measurement Techniques, 9, 1925-1937, <https://doi.org/10.5194/amt-9-1925-2016>,
1367 2016.
- 1368 Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for
1369 large-scale applications, Journal of Geophysical Research-Atmospheres, 104,
1370 30387-30415, <https://doi.org/10.1029/1999jd900876>, 1999.
- 1371 Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol
1372 Interactions and Chemistry (MOSAIC), Journal of Geophysical Research-
1373 Atmospheres, 113, <https://doi.org/10.1029/2007jd008782>, 2008.
- 1374 Zhang, H., Zhang, X., Li, Q., Cai, X., Fan, S., Song, Y., Hu, F., Che, H., Quan, J., Kang,
1375 L., and Zhu, T.: Research progress on estimation of atmospheric boundary layer
1376 height, Acta Meteorologica Sinica, 78, 522-536, 2020.
- 1377 Zhang, L., Zhang, H., Li, Q., Cai, X., and Song, Y.: Vertical dispersion mechanism of
1378 long-range transported dust in Beijing: Effects of atmospheric turbulence,
1379 Atmospheric Research, 269, <https://doi.org/10.1016/j.atmosres.2022.106033>,
1380 2022.
- 1381 Zhang, L., Sun, J. Y., Shen, X. J., Zhang, Y. M., Che, H., Ma, Q. L., Zhang, Y. W.,
1382 Zhang, X. Y., and Ogren, J. A.: Observations of relative humidity effects on aerosol
1383 light scattering in the Yangtze River Delta of China, Atmospheric Chemistry and

- 1384 Physics, 15, 8439-8454, <https://doi.org/10.5194/acp-15-8439-2015>, 2015a.
- 1385 Zhang, M., Zhao, C., Yang, Y., Du, Q., Shen, Y., Lin, S., Gu, D., Su, W., and Liu, C.:
1386 Modeling sensitivities of BVOCs to different versions of MEGAN emission
1387 schemes in WRF-Chem (v3.6) and its impacts over eastern China, Geoscientific
1388 Model Development, 14, 6155-6175, <https://doi.org/10.5194/gmd-14-6155-2021>,
1389 2021.
- 1390 Zhang, R., Wang, G., Guo, S., Zarnora, M. L., Ying, Q., Lin, Y., Wang, W., Hu, M., and
1391 Wang, Y.: Formation of Urban Fine Particulate Matter, Chemical Reviews, 115,
1392 3803-3855, <https://doi.org/10.1021/acs.chemrev.5b00067>, 2015b.
- 1393 Zhang, Z., Xu, X., Qiao, L., Gong, D., Kim, S.-J., Wang, Y., and Mao, R.: Numerical
1394 simulations of the effects of regional topography on haze pollution in Beijing,
1395 Scientific Reports, 8, <https://doi.org/10.1038/s41598-018-23880-8>, 2018.
- 1396 Zhao, C., Liu, X., Leung, L. R., and Hagos, S.: Radiative impact of mineral dust on
1397 monsoon precipitation variability over West Africa, Atmospheric Chemistry and
1398 Physics, 11, 1879-1893, <https://doi.org/10.5194/acp-11-1879-2011>, 2011.
- 1399 Zhao, C., Leung, L. R., Easter, R., Hand, J., and Avise, J.: Characterization of speciated
1400 aerosol direct radiative forcing over California, Journal of Geophysical Research-
1401 Atmospheres, 118, 2372-2388, <https://doi.org/10.1029/2012jd018364>, 2013a.
- 1402 Zhao, C., Li, Y., Zhang, F., Sun, Y., and Wang, P.: Growth rates of fine aerosol particles
1403 at a site near Beijing in June 2013, Advances in Atmospheric Sciences, 35, 209-
1404 217, <https://doi.org/10.1007/s00376-017-7069-3>, 2018.
- 1405 Zhao, C., Chen, S., Leung, L. R., Qian, Y., Kok, J. F., Zaveri, R. A., and Huang, J.:
1406 Uncertainty in modeling dust mass balance and radiative forcing from size
1407 parameterization, Atmospheric Chemistry and Physics, 13, 10733-10753,
1408 <https://doi.org/10.5194/acp-13-10733-2013>, 2013b.
- 1409 Zhao, C., Hu, Z., Qian, Y., Leung, L. R., Huang, J., Huang, M., Jin, J., Flanner, M. G.,
1410 Zhang, R., Wang, H., Yan, H., Lu, Z., and Streets, D. G.: Simulating black carbon
1411 and dust and their radiative forcing in seasonal snow: a case study over North
1412 China with field campaign measurements, Atmospheric Chemistry and Physics, 14,
1413 11475-11491, <https://doi.org/10.5194/acp-14-11475-2014>, 2014.

1414 Zhao, C., Huang, M., Fast, J. D., Berg, L. K., Qian, Y., Guenther, A., Gu, D.,
1415 Shrivastava, M., Liu, Y., Walters, S., Pfister, G., Jin, J., Shilling, J. E., and Warneke,
1416 C.: Sensitivity of biogenic volatile organic compounds to land surface
1417 parameterizations and vegetation distributions in California, Geoscientific Model
1418 Development, 9, 1959-1976, <https://doi.org/10.5194/gmd-9-1959-2016>, 2016.

1419 Zhao, X. J., Zhao, P. S., Xu, J., Meng, W., Pu, W. W., Dong, F., He, D., and Shi, Q. F.:
1420 Analysis of a winter regional haze event and its formation mechanism in the North
1421 China Plain, Atmospheric Chemistry and Physics, 13, 5685-5696,
1422 <https://doi.org/10.5194/acp-13-5685-2013>, 2013c.

1423 Zhong, J., Zhang, X., Dong, Y., Wang, Y., Liu, C., Wang, J., Zhang, Y., and Che, H.:
1424 Feedback effects of boundary-layer meteorological factors on cumulative
1425 explosive growth of PM_{2.5} during winter heavy pollution episodes in Beijing from
1426 2013 to 2016, Atmospheric Chemistry and Physics, 18, 247-258,
1427 <https://doi.org/10.5194/acp-18-247-2018>, 2018.

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450

1451 **Table 1 WRF-Chem model configuration**

<u>Horizontal resolution</u>	<u>25 km & 5 km & 1 km</u>
<u>Domain size</u>	<u>140 x 105 & 250 x 250 & 150 x 150</u>
<u>Simulation period</u>	<u>5 March to 21 March 2019</u>
<u>Gas-phase chemistry scheme</u>	<u>SAPRC99 mechanism</u>
<u>Radiation scheme</u>	<u>Fast-J</u>
<u>PBL scheme</u>	<u>YSU scheme</u>
<u>Microphysics scheme</u>	<u>Morrison two-moment scheme</u>
<u>Land surface scheme</u>	<u>Noah land-surface scheme</u>
<u>Cumulus scheme</u>	<u>Kain-Fritsch (25 km grid only)</u>
<u>Surface layer scheme</u>	<u>Revised MM5 Monin-Obukhov scheme</u>
<u>Longwave radiation scheme</u>	<u>RRTMG scheme</u>
<u>Shortwave radiation scheme</u>	<u>RRTMG scheme</u>

1452

1453

1454

Table 1 WRF-Chem model configuration

<u>Horizontal resolution</u>	<u>25 km & 5 km & 1 km</u>
<u>Domain size</u>	<u>140 x 105 & 250 x 250 & 150 x 150</u>
<u>Simulation period</u>	<u>5 March to 21 March 2019</u>
<u>Gas-phase chemistry scheme</u>	<u>SAPRC99 mechanism</u>
<u>Radiation scheme</u>	<u>Fast-J</u>
<u>PBL scheme</u>	<u>YSU scheme</u>
<u>Microphysics scheme</u>	<u>Morrison two-moment scheme</u>
<u>Land surface scheme</u>	<u>Noah land-surface scheme</u>
<u>Cumulus scheme</u>	<u>Kain-Fritsch (25 km grid only)</u>
<u>Surface layer scheme</u>	<u>Revised MM5 Monin-Obukhov scheme</u>
<u>Longwave radiation scheme</u>	<u>RRTMG scheme</u>
<u>Shortwave radiation scheme</u>	<u>RRTMG scheme</u>

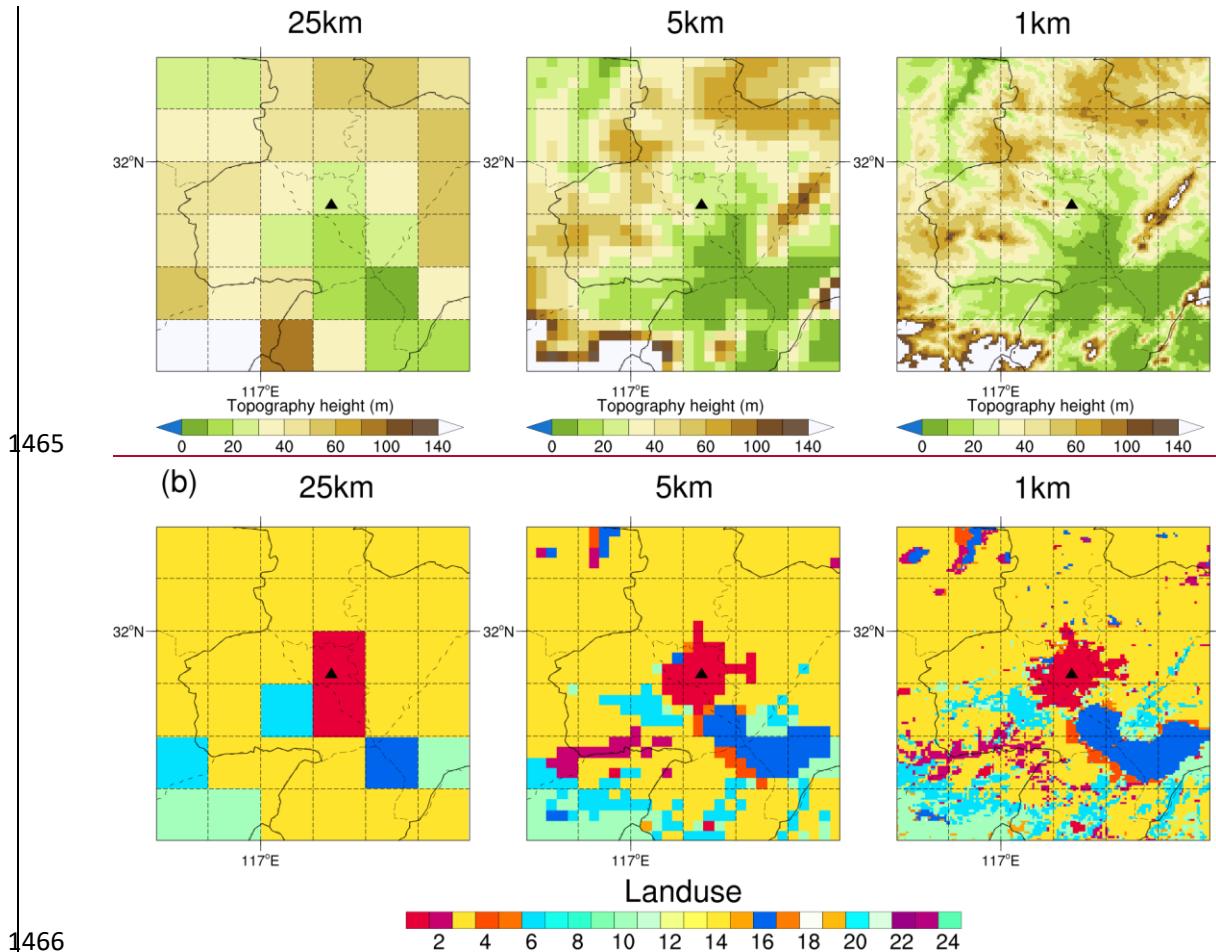
1455

1456

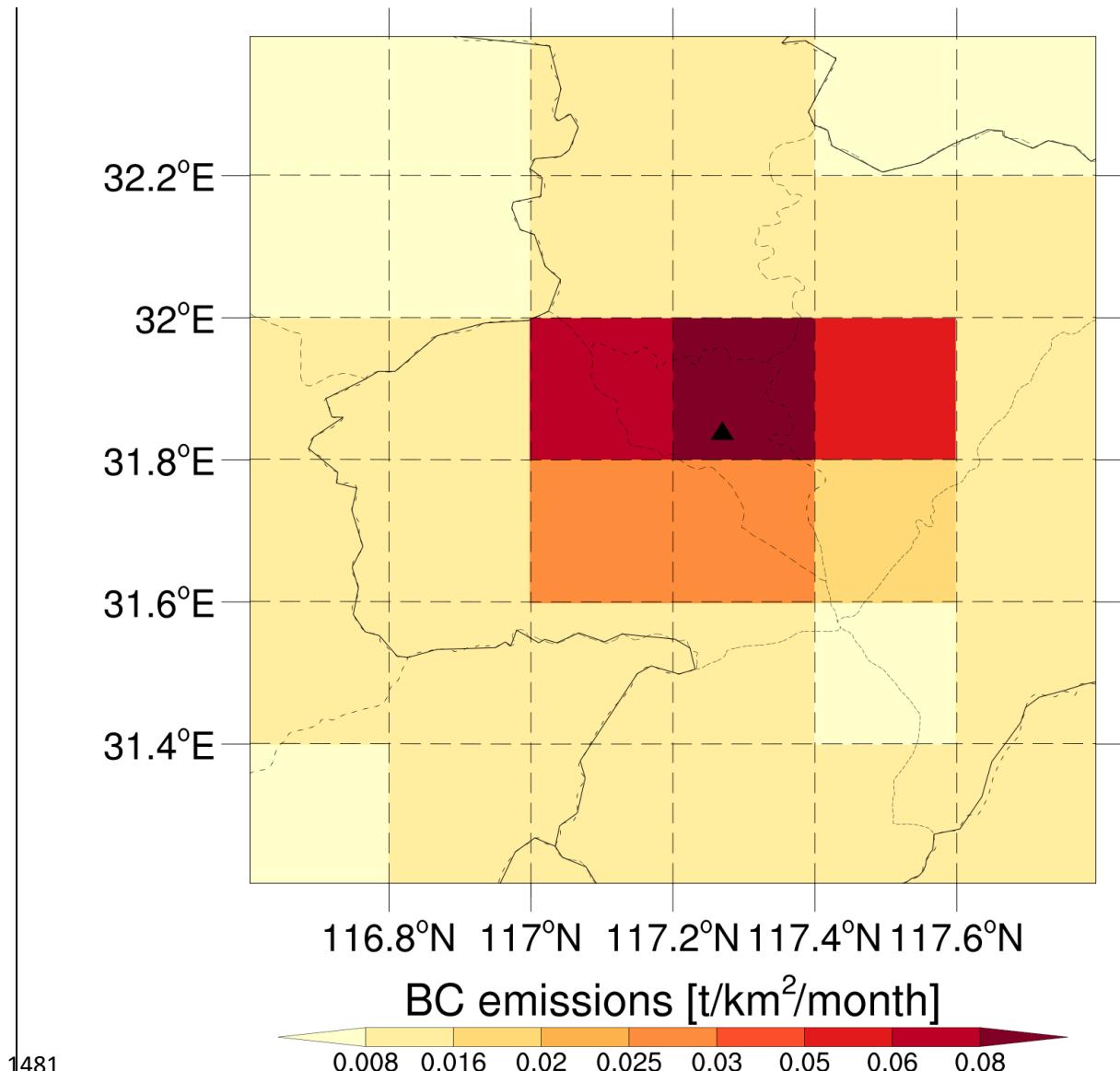
1457

1458

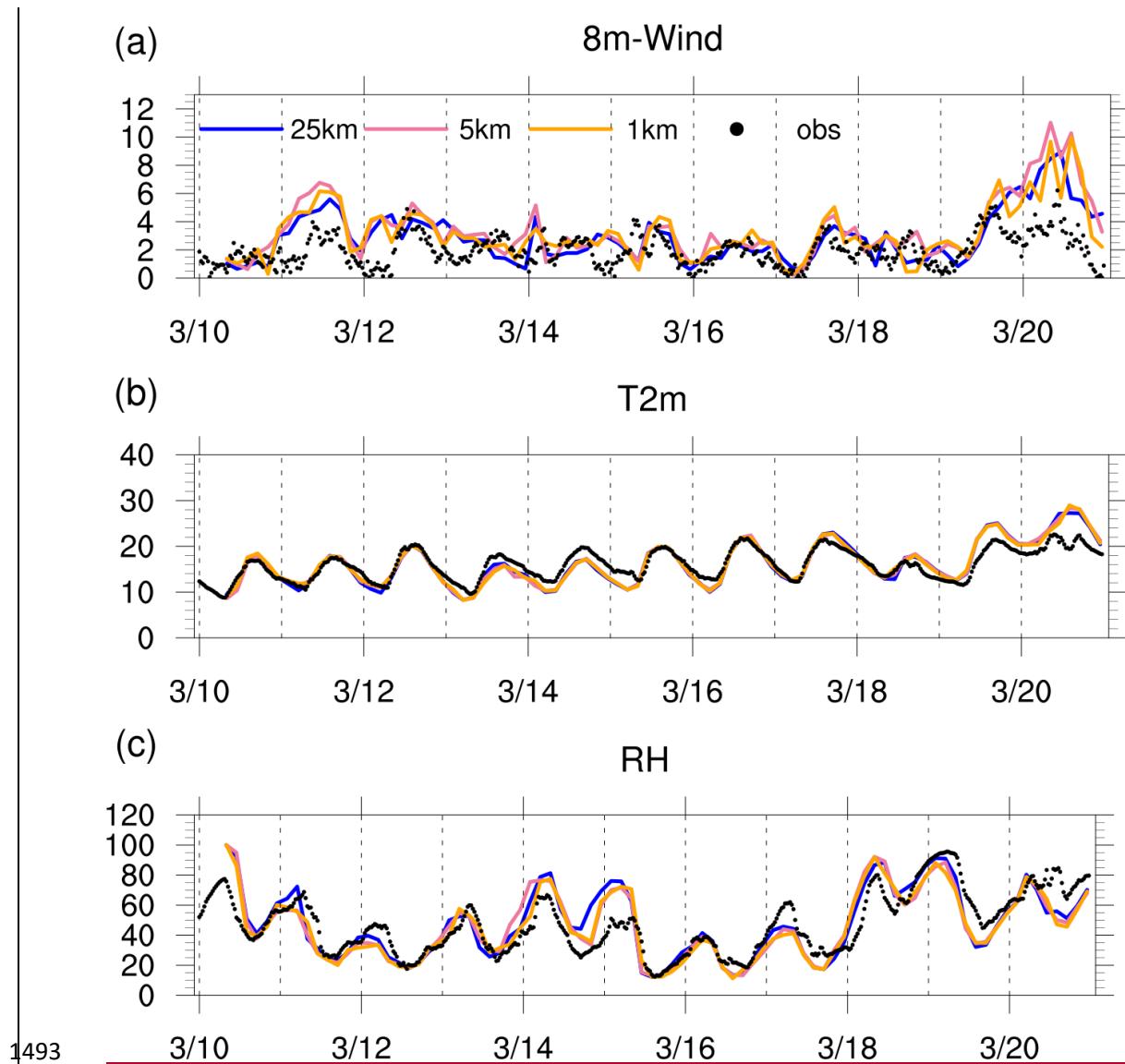
1459

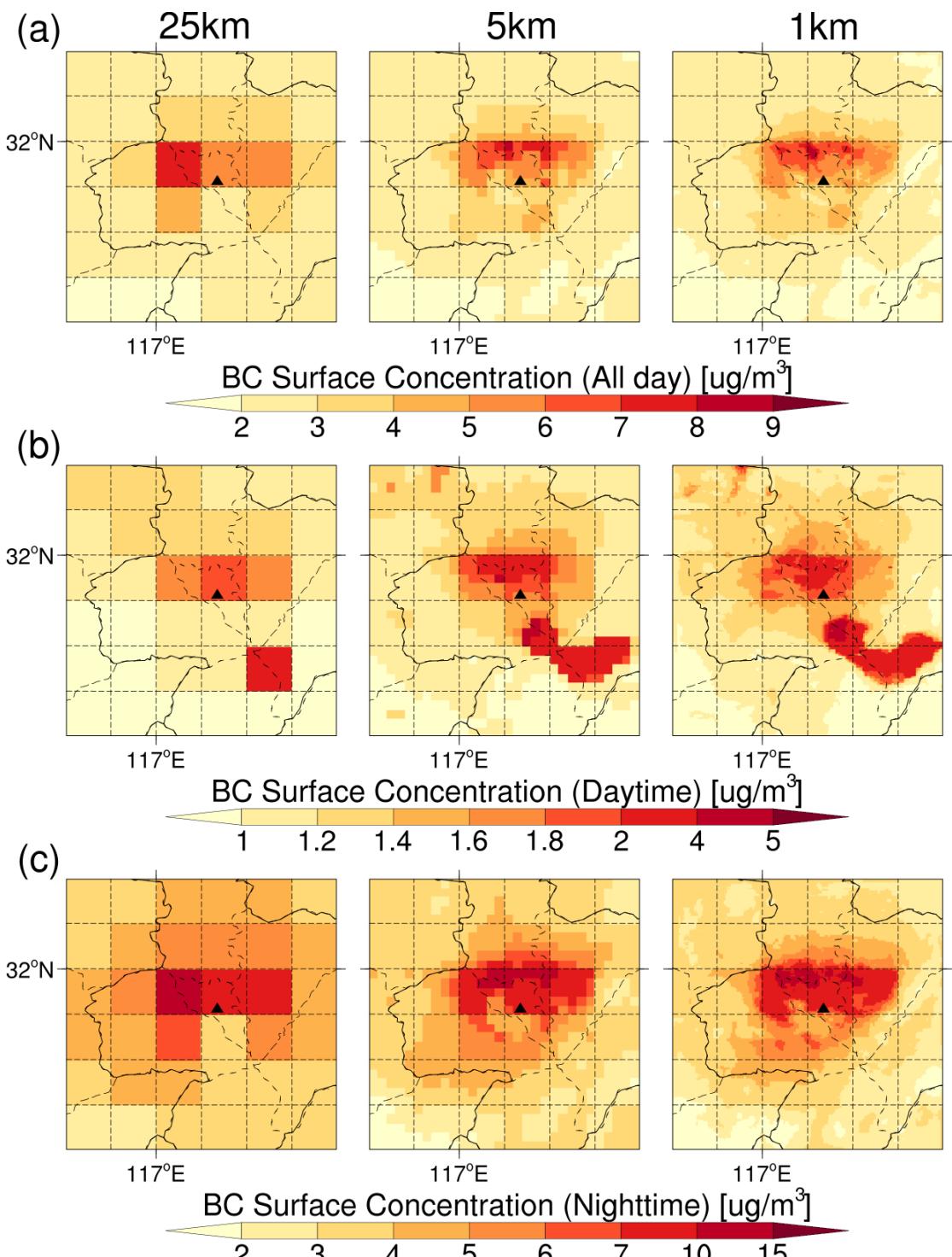

1460

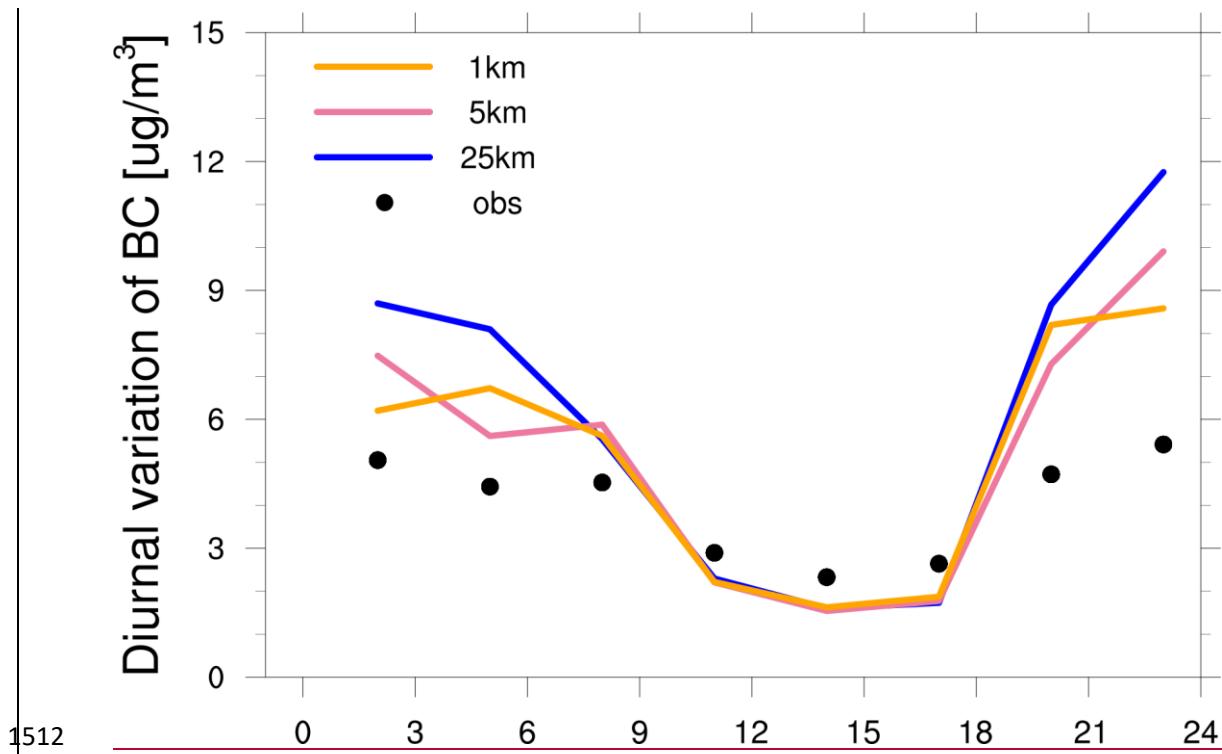
1461

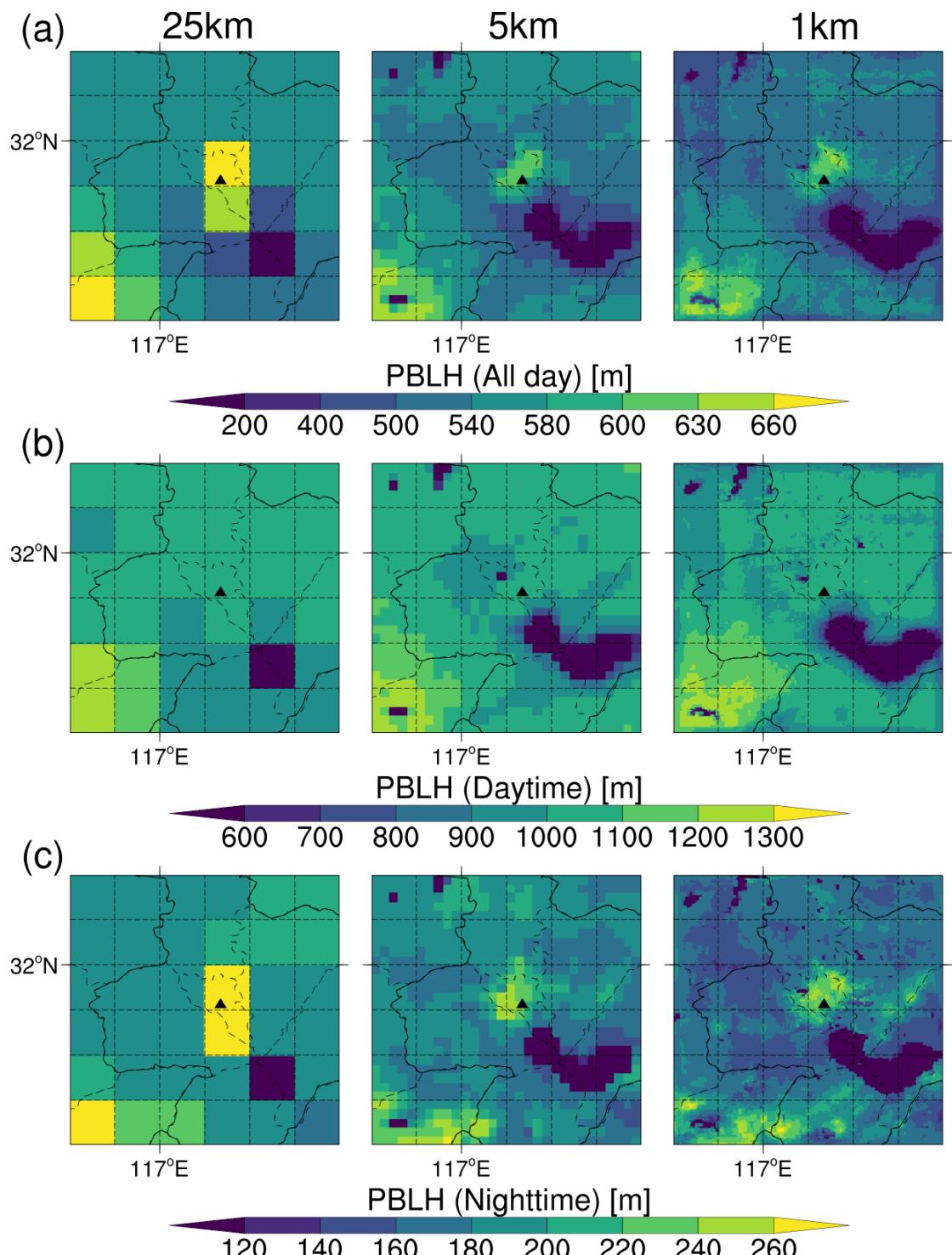

1462

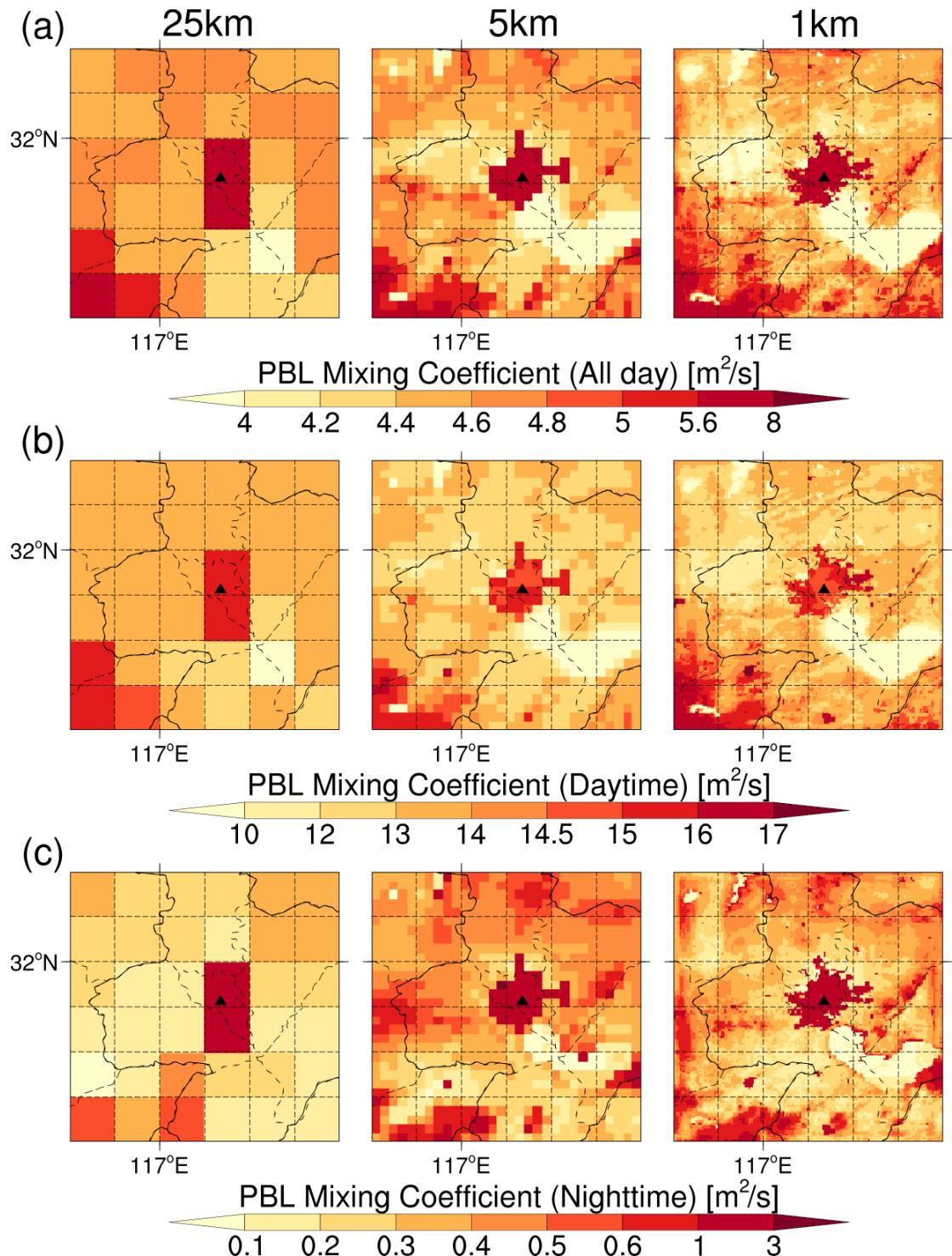
1463

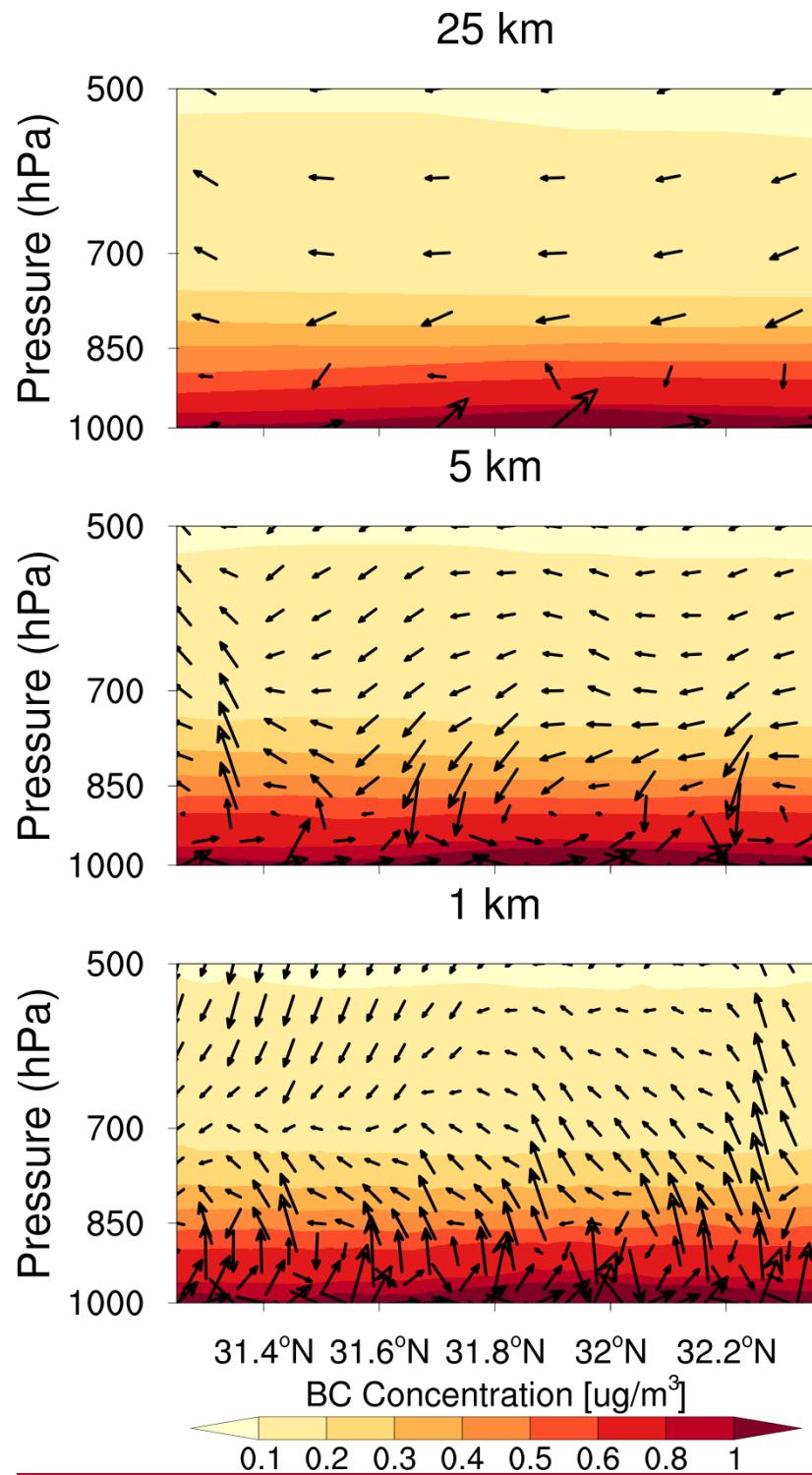

1464

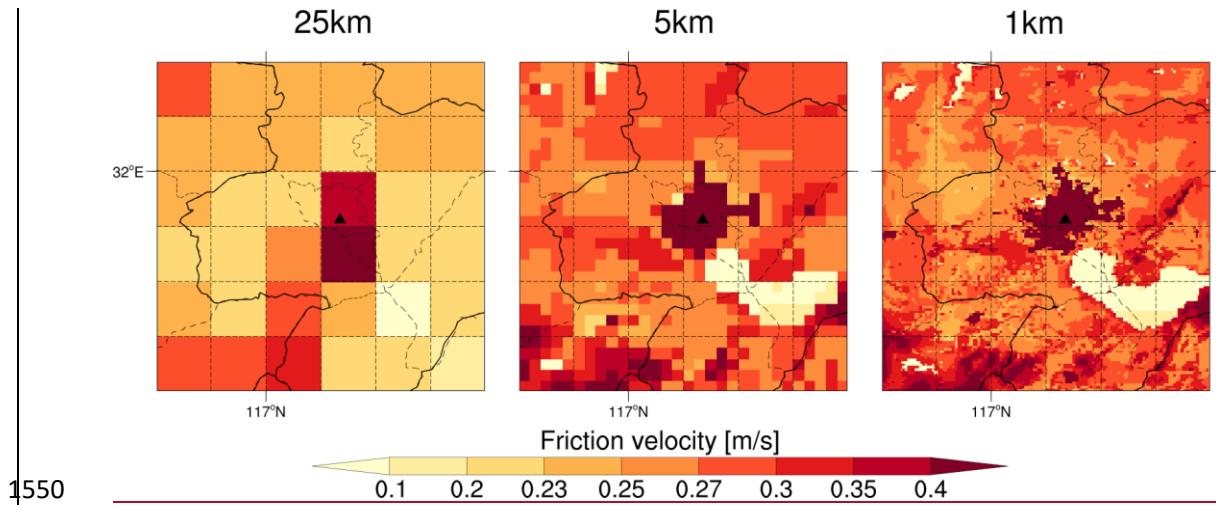

Figure 1. (a) The terrain height (m) in the study area for 25-km (left), 5-km (middle), and 1-km (right) resolution simulations, respectively; (b) Spatial distribution of land use types in the study area for 25-km (left), 5-km (middle), and 1-km (right) resolution simulations, respectively. The solid black triangle indicates the location of the USTC site.


1481
1482 **Figure 2.** Spatial distribution of BC emissions in the study area. The solid black
1483 triangle indicates the location of the USTC site.
1484
1485
1486
1487
1488
1489
1490
1491
1492


1493
1494 **Figure 3.** Time series at USTC meteorological tower observation site of observed
1495 (black dot) and simulated wind speed at 8 m (top, unit: m s^{-1}), temperature at 2 m
1496 (middle, unit: $^{\circ}\text{C}$), and relative humidity (bottom, unit: %) for 25-km (solid blue line)
1497 resolution, 5-km (solid pink line) resolution, and 1-km (solid orange line) resolution,
1498 respectively.
1499
1500
1501
1502
1503
1504


Figure 4. Spatial distribution of the BC surface concentration in the study area for 25-km (left), 5-km (middle), and 1-km (right) resolution simulations of the whole day (top), the daytime (middle), and the nighttime (bottom), respectively. The solid black triangle indicates the location of the USTC site.


Figure 5. Diurnal variation of BC surface concentrations within 24 h averaged over the USTC site during the study period for 25-km (solid blue line), 5-km (solid pink line), and 1-km (solid orange line) resolution simulations and observations (black dot). Both the simulated results and observations are sampled at the model output frequency, i.e., 3-hourly.


Figure 6. Spatial distribution of the PBL height in the study area for 25-km (left), 5-km (middle), and 1-km (right) resolution simulations of the whole day (top), the daytime (middle), and the nighttime (bottom), respectively. The solid black triangle indicates the location of the USTC site.

1536
1537 **Figure 7.** Spatial distribution of PBL mixing coefficients in the study area for 25-km
1538 (left), 5-km (middle), and 1-km (right) resolution simulations of the whole day (top),
1539 the daytime (middle), and the nighttime (bottom), respectively. The solid black
1540 triangle indicates the location of the USTC site.
1541
1542

Figure 8. The latitude-pressure cross section of BC concentrations and wind speed flux along the USTC site for 25-km (top), 5-km (middle), and 1-km (bottom) resolution simulations of the whole day, respectively. Vector arrows are the combination of wind speed fluxes v and w , with the vertical wind speed flux being multiplied by 100 for visibility. The shaded contours represent BC concentrations at each pressure level.

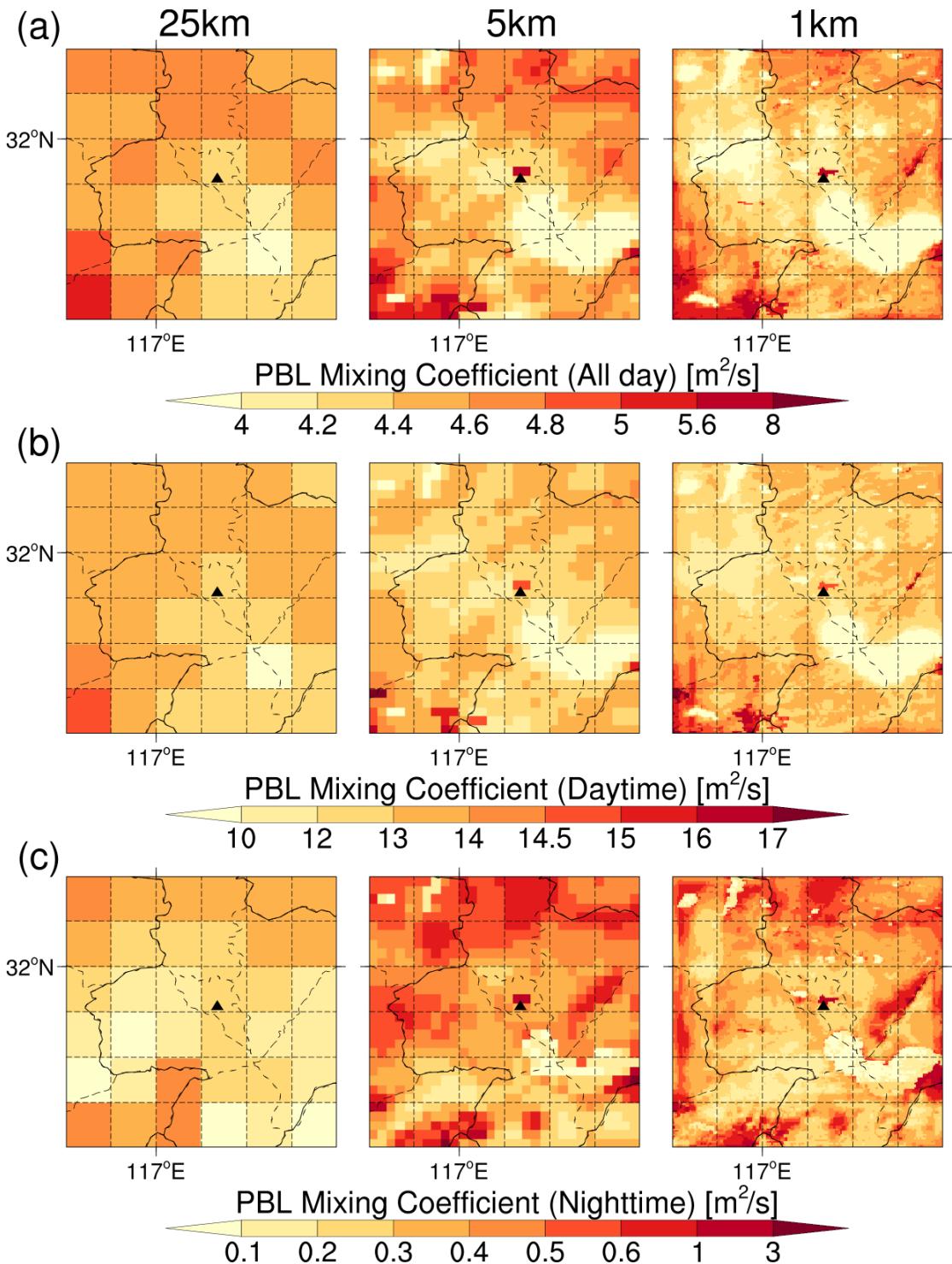
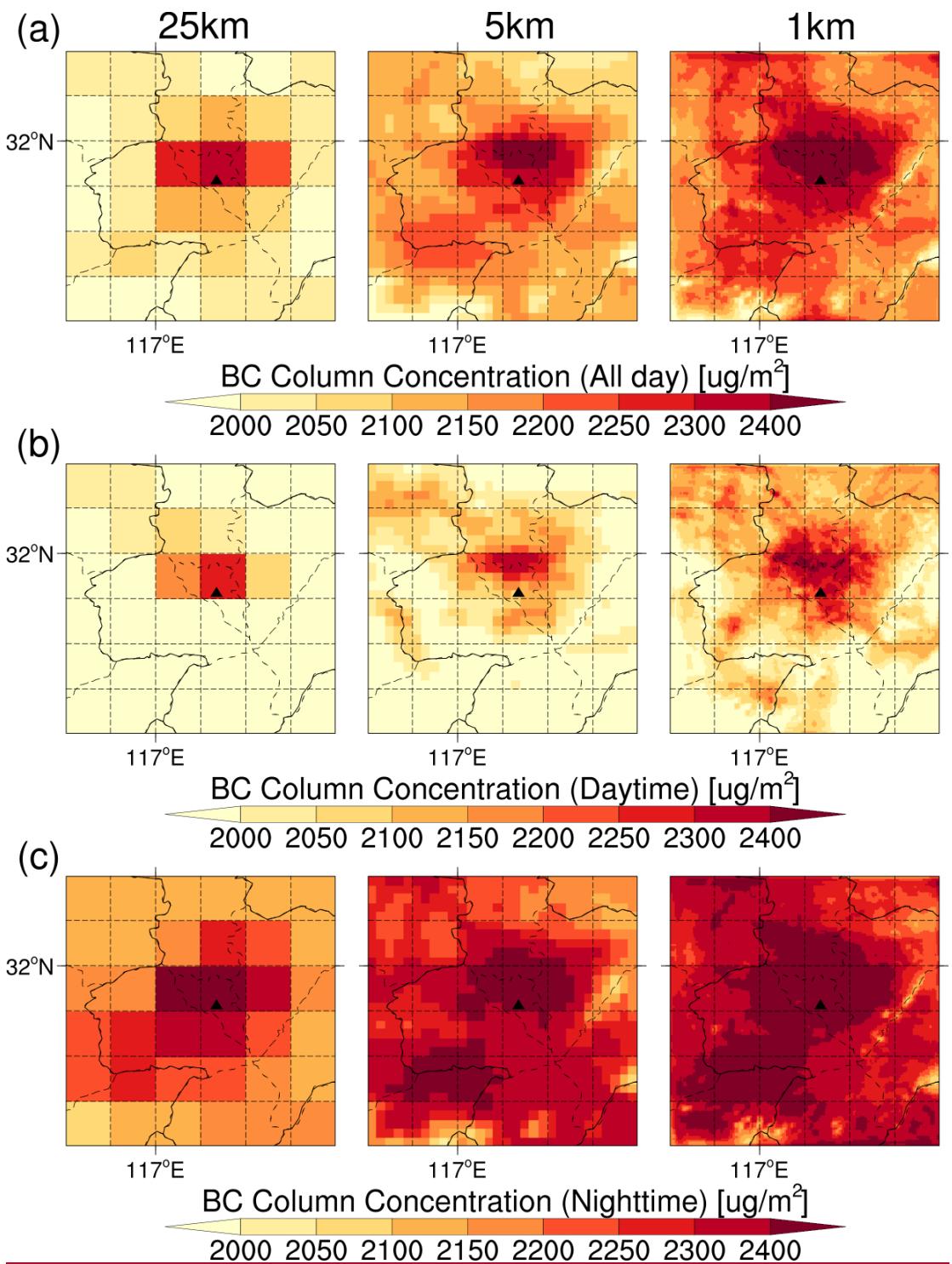
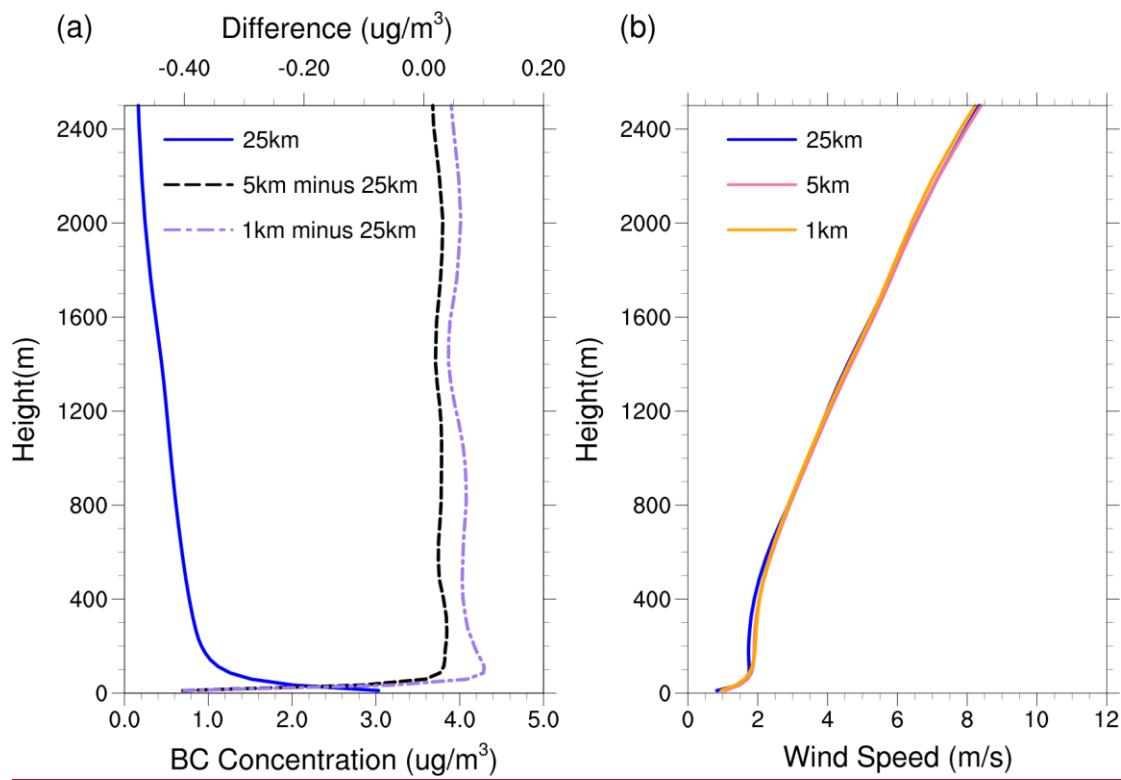
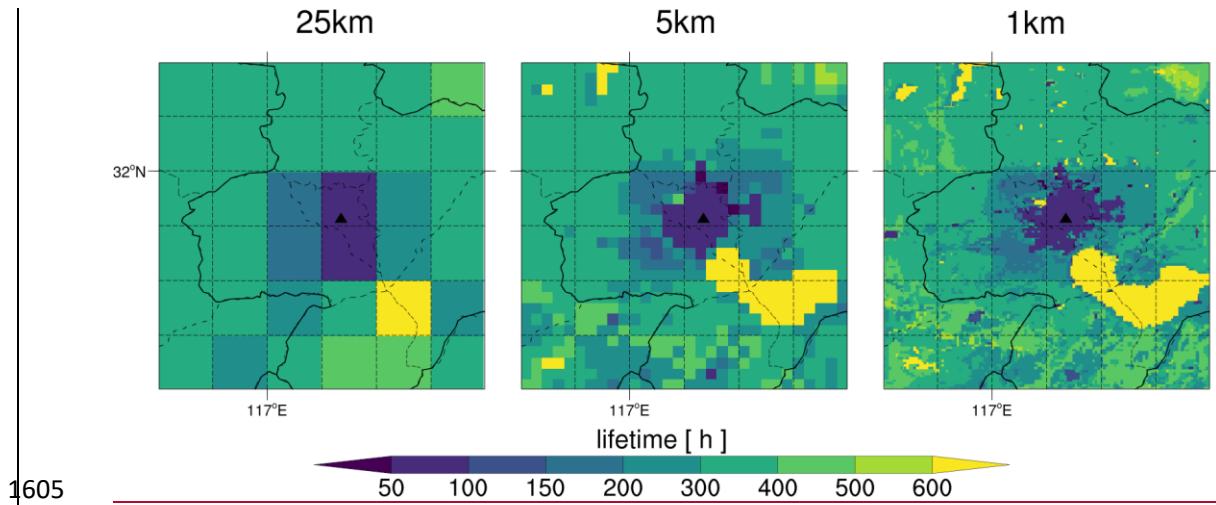


Figure 9. Spatial distribution of friction velocity in the study area for 25-km (left), 5-


km (middle), and 1-km (right) resolution simulations of the whole day, respectively.

The solid black triangle indicates the location of the USTC site.


1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572


Figure 10. Spatial distribution of PBL mixing coefficients in the study area for 25-km (left), 5-km (middle), and 1-km (right) resolution simulations of the whole day (top), the daytime (middle), and the nighttime (bottom), respectively. The solid black triangle indicates the location of the USTC site. The simulation results are from the three sensitivity experiments.

1580
1581 **Figure 11.** Spatial distribution of the BC column concentration in the study area for
1582 25-km (left), 5-km (middle), and 1-km (right) resolution simulations of the whole day
1583 (top), the daytime (middle), and the nighttime (bottom), respectively. The solid black
1584 triangle indicates the location of the USTC site.
1585
1586

Figure 12. (a) Vertical profiles of BC concentrations simulated at 25-km resolution (solid blue line), the difference between 5-km and 25-km resolutions (dashed black line), and the difference between 1-km and 25-km resolutions (dashed purple line) averaged over the study area for the whole day, respectively. (b) Vertical profiles of wind speed simulated at 25-km resolution (solid blue line), 5-km resolution (solid pink line), and 1-km resolution (solid orange line) averaged over the study area for the whole day, respectively.

Figure 13. Spatial distribution of the lifetime in the study area for 25-km (left), 5-km (middle), and 1-km (right) resolution simulations of the whole day, respectively. The solid black triangle indicates the location of the USTC site.

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

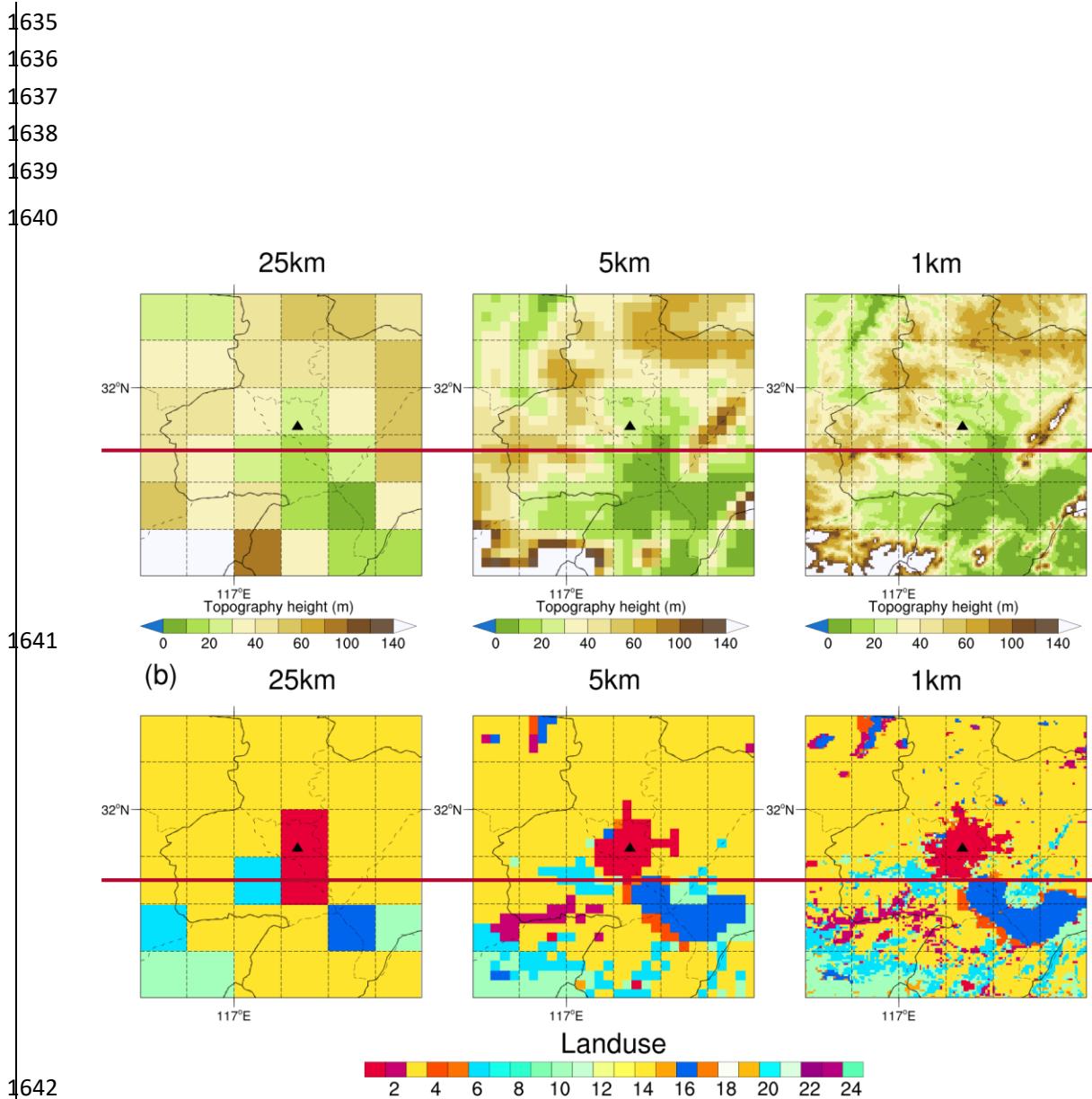
1625

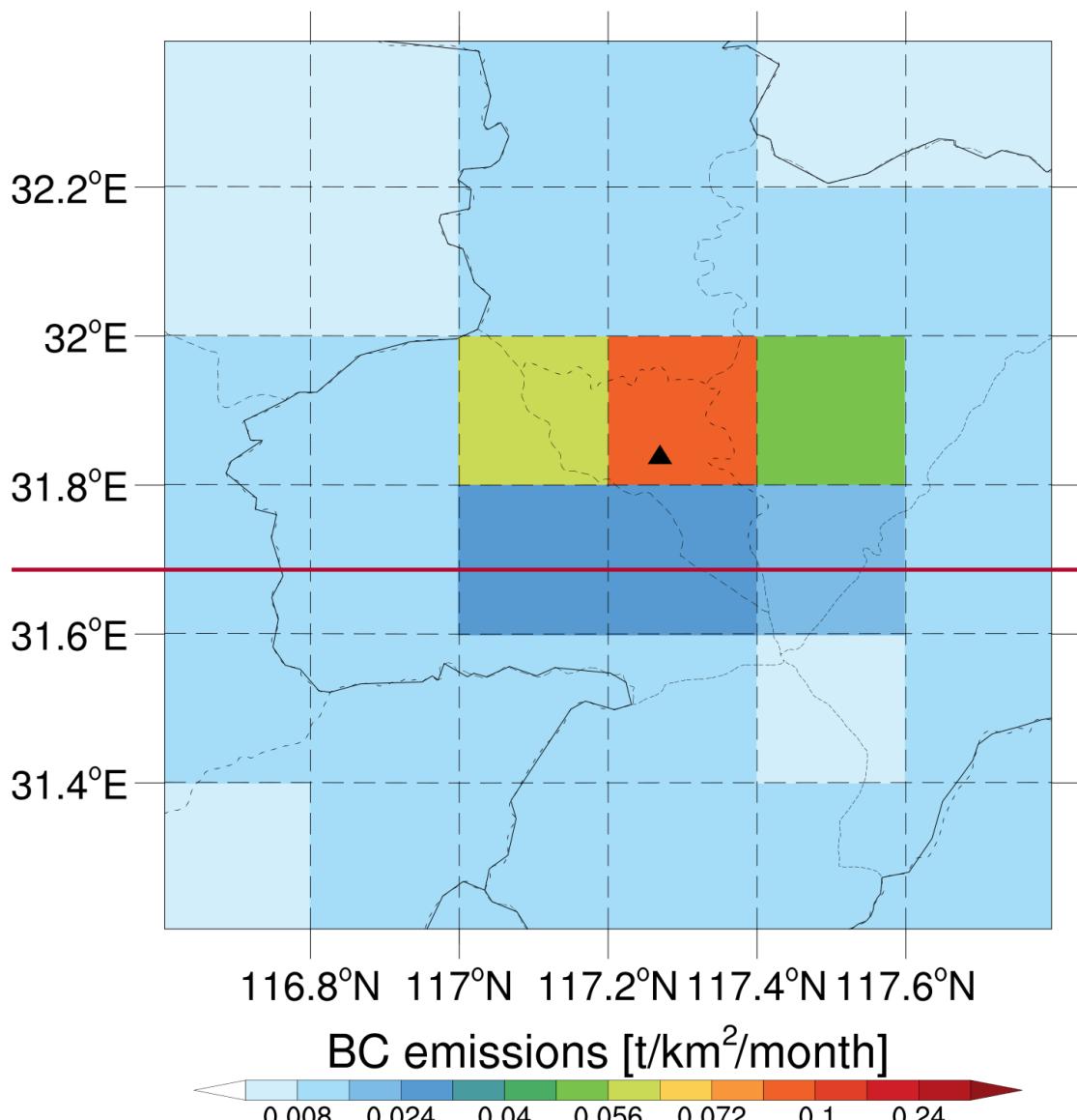
1626

1627

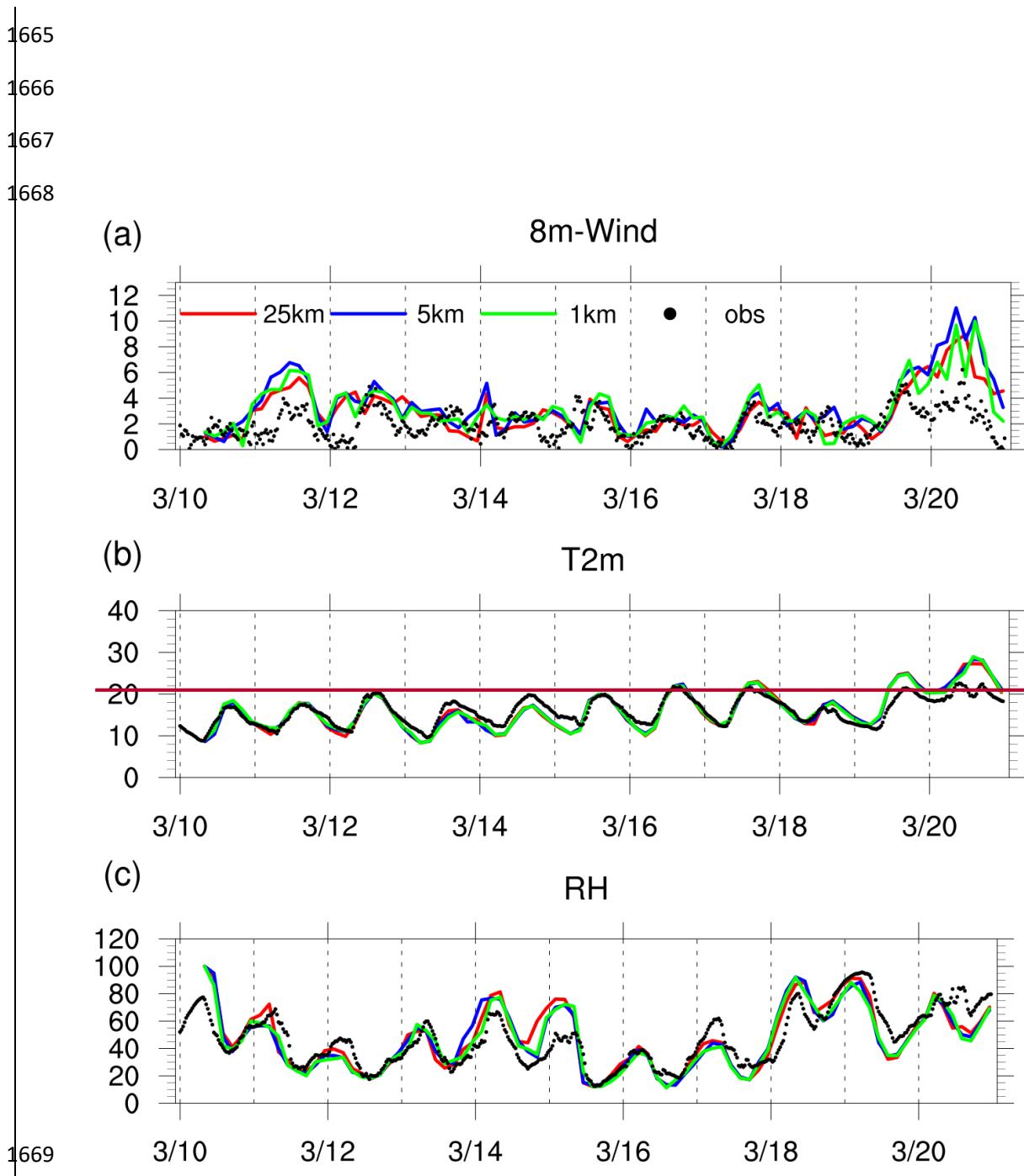
1628

1629


1630


1631

1632


1633

1634

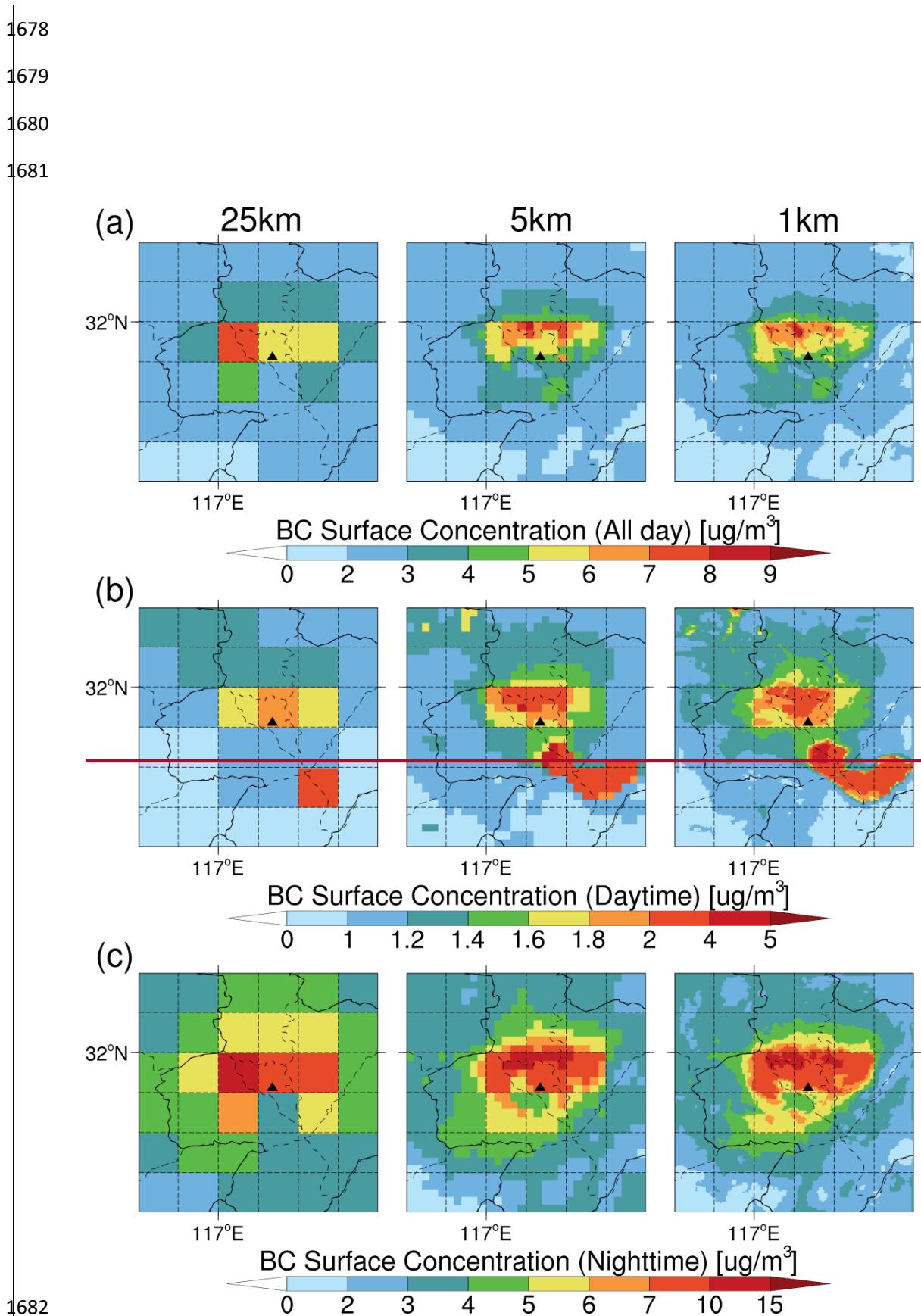


Figure 2. Spatial distribution of BC emissions in the study area. The solid black triangle indicates the location of the USTC site.

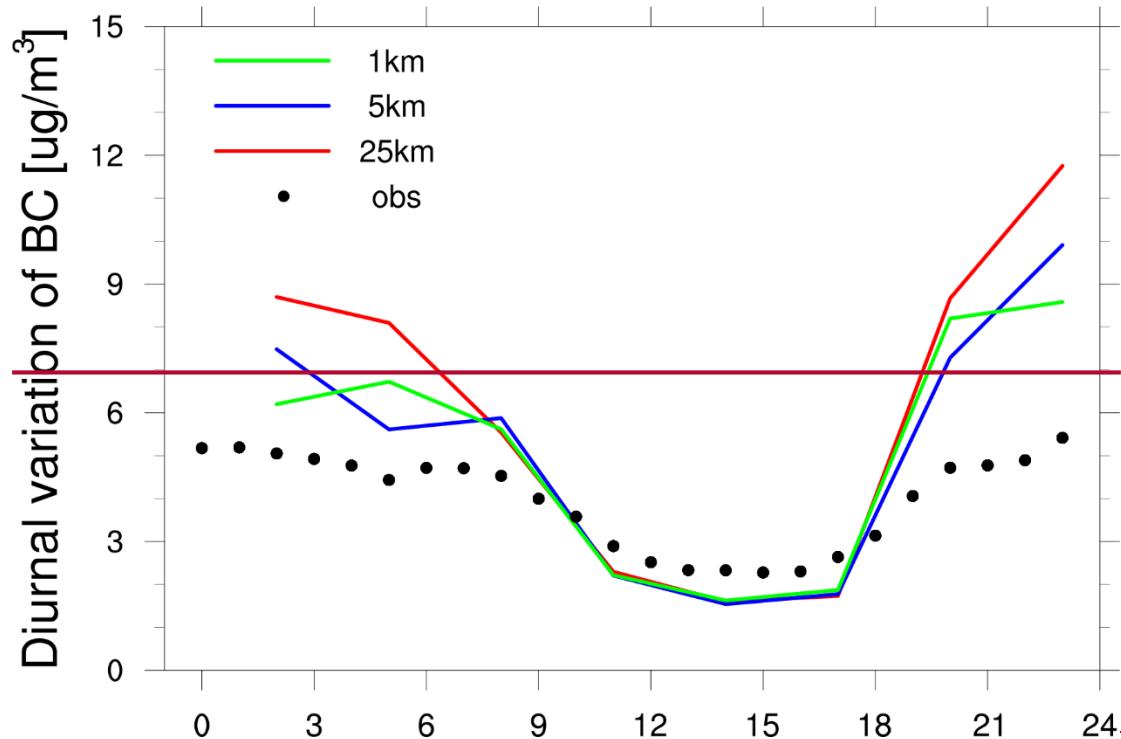


Figure 3. Time series at USTC meteorological tower observation site of observed (black dot) and simulated wind speed at 8 m (top, unit: m s^{-1}), temperature at 2 m (middle, unit: $^{\circ}\text{C}$), and relative humidity (bottom, unit: %) for 25 km (solid red line) resolution, 5 km (solid blue line) resolution, and 1 km (solid green line) resolution, respectively.

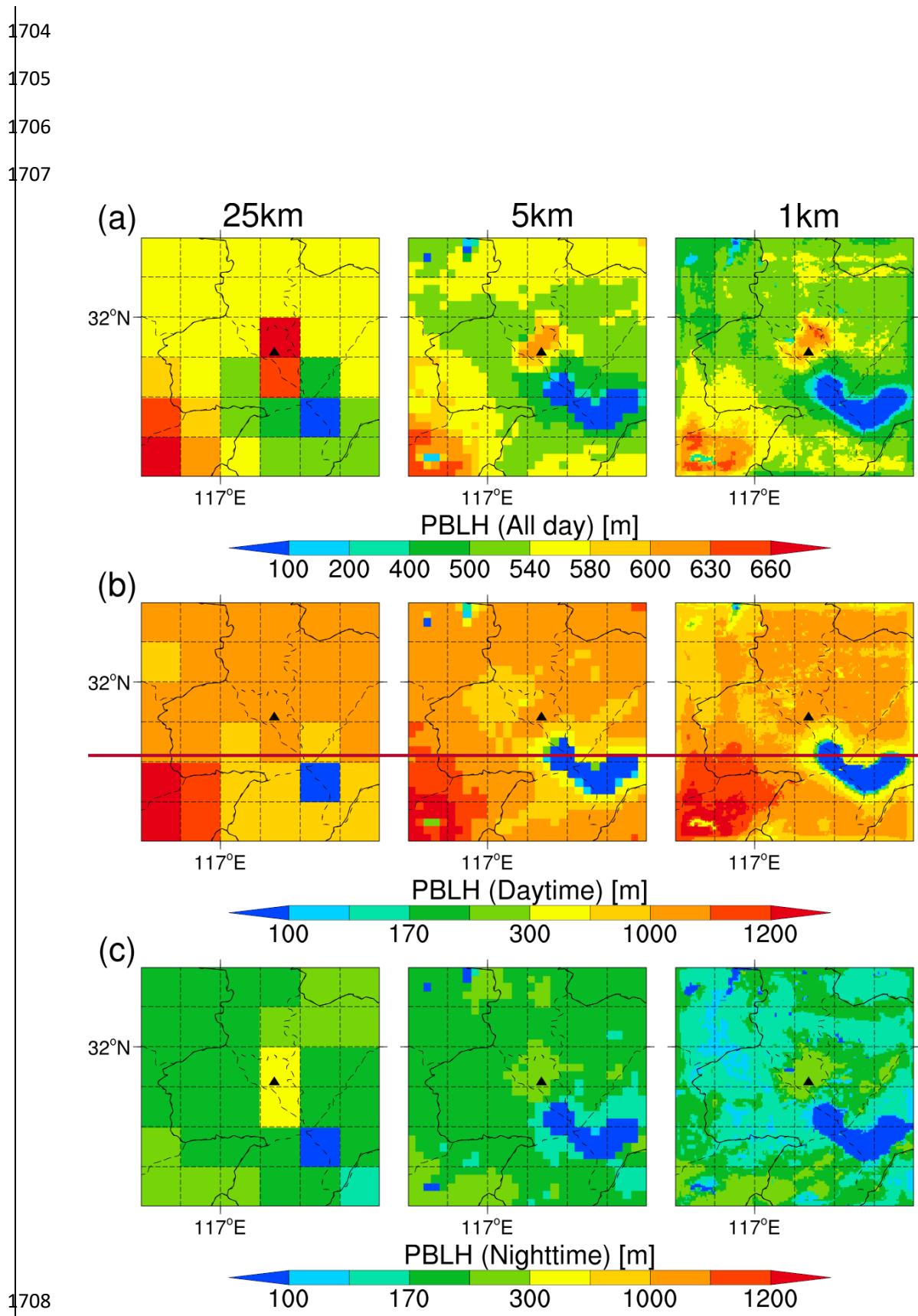
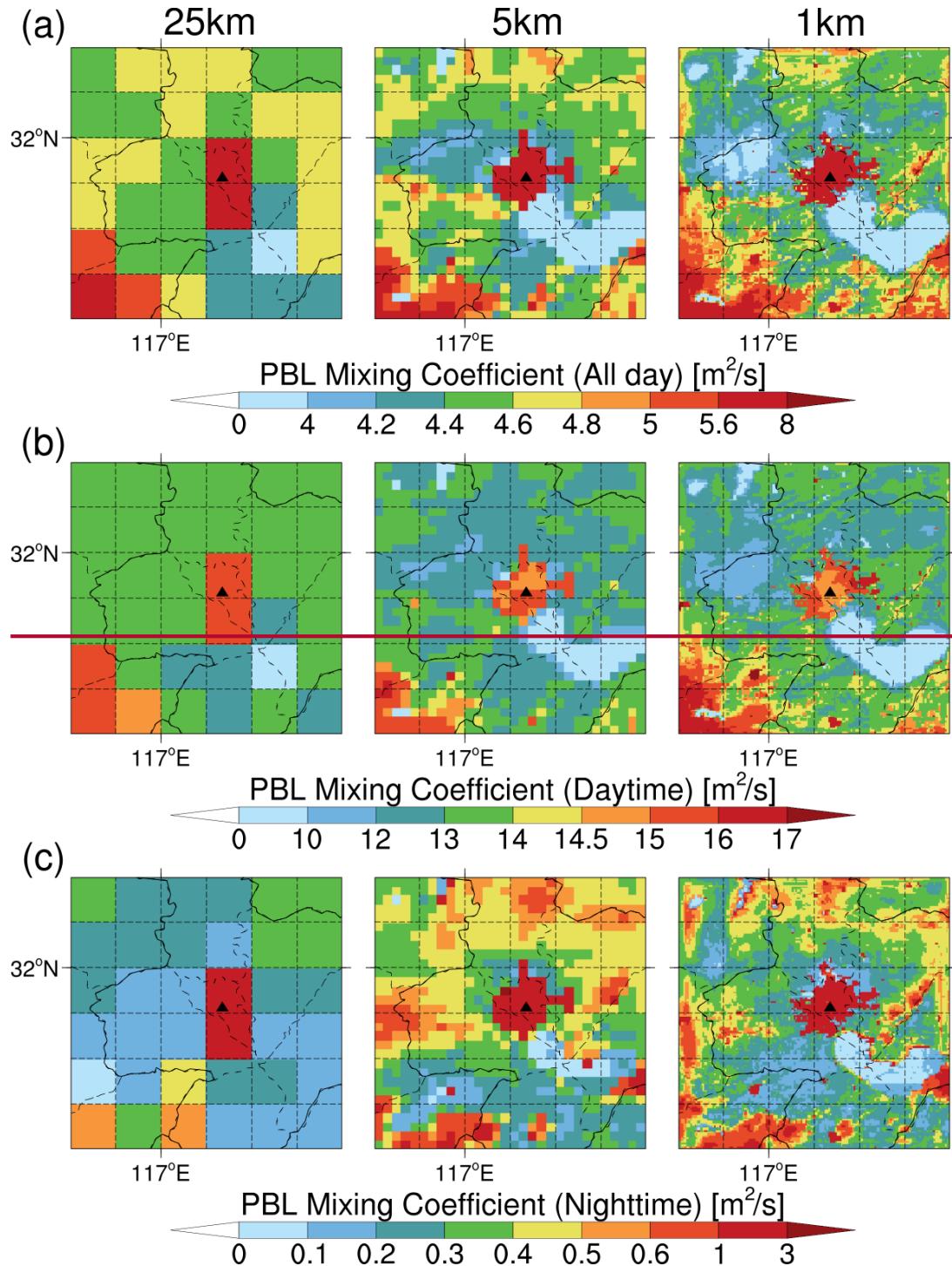
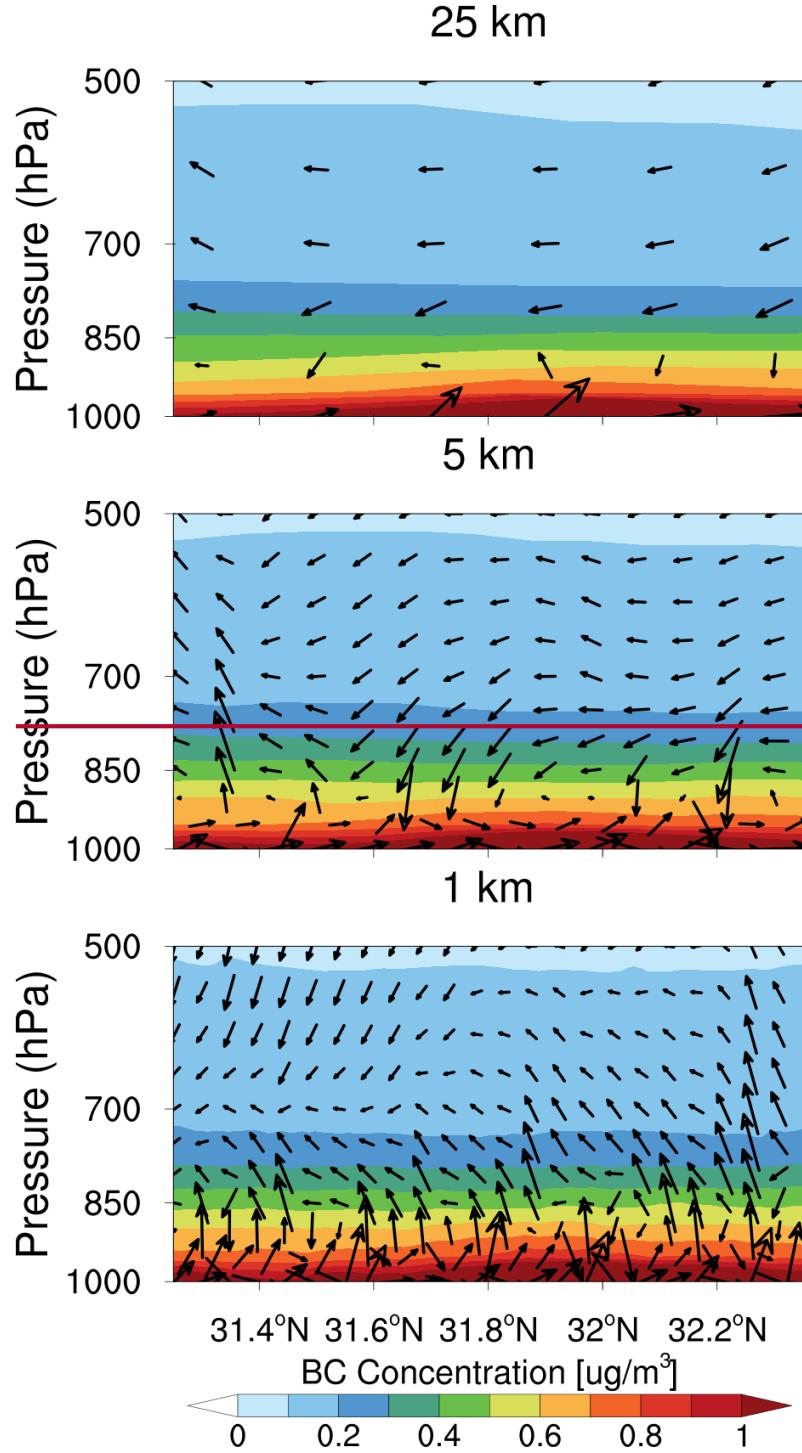


Figure 4. Spatial distribution of the BC surface concentration in the study area for 25-km (left), 5-km (middle), and 1-km (right) resolution simulations of the whole day

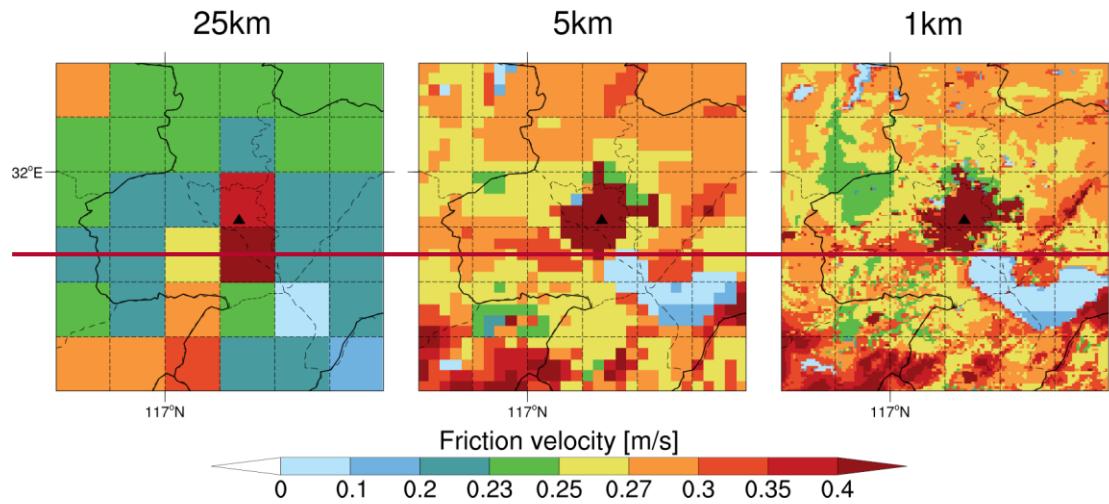
1685 (top), the daytime (middle), and the nighttime (bottom), respectively. The solid black
1686 triangle indicates the location of the USTC site.
1687
1688



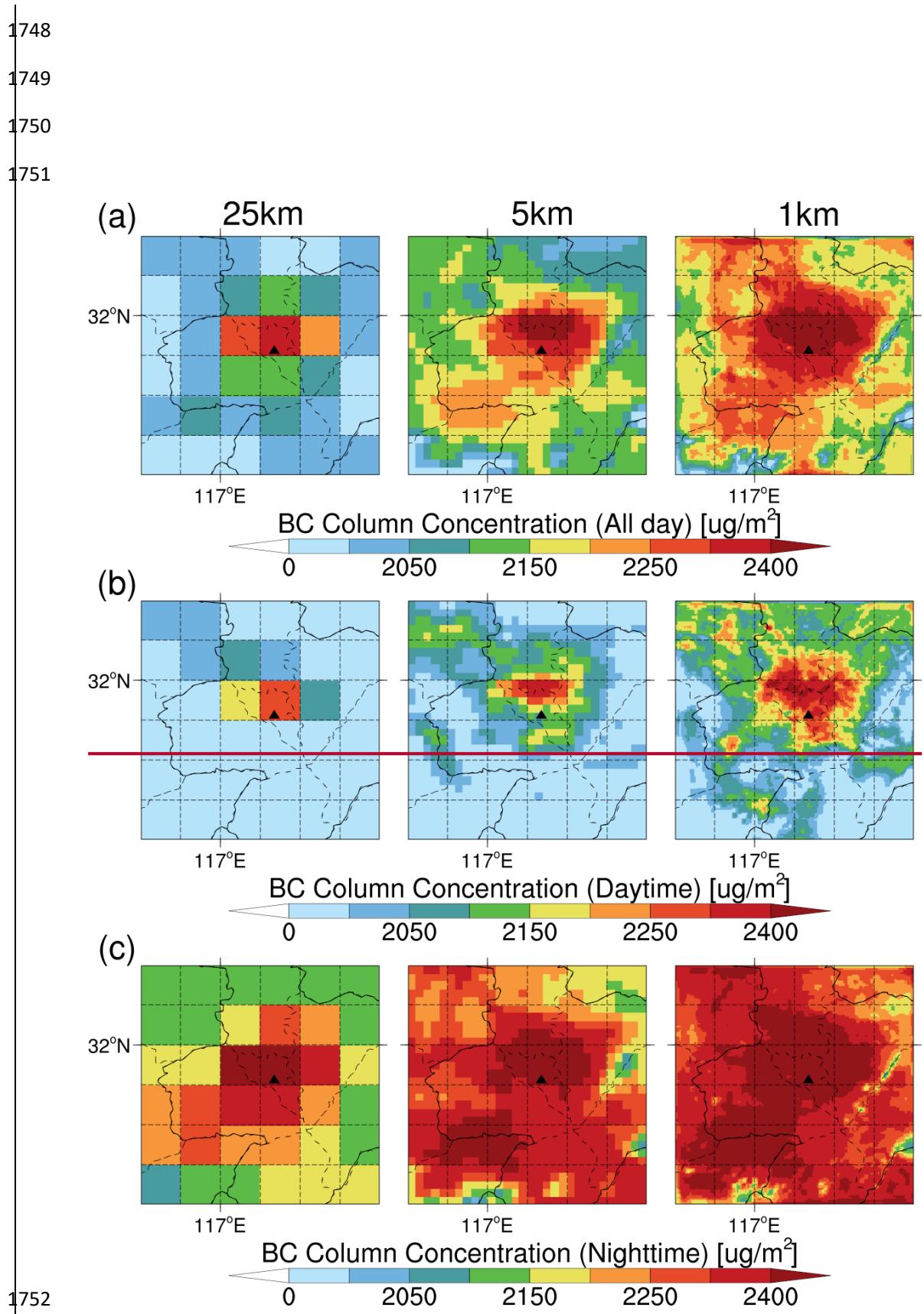
1689
1690 **Figure 5.** Diurnal variation of BC surface concentrations within 24 h averaged over
1691 the Hefei region (within the range of Figure 1a) during the study period for 25-km
1692 (solid red line), 5 km (solid blue line), and 1 km (solid green line) resolution
1693 simulations and observations (black dot). Both the simulated results and observations
1694 are sampled at the model output frequency, i.e., 3 hourly.
1695
1696
1697
1698
1699
1700
1701
1702
1703


Figure 6. Spatial distribution of the PBL height in the study area for 25 km (left), 5 km (middle), and 1 km (right) resolution simulations of the whole day (top), the

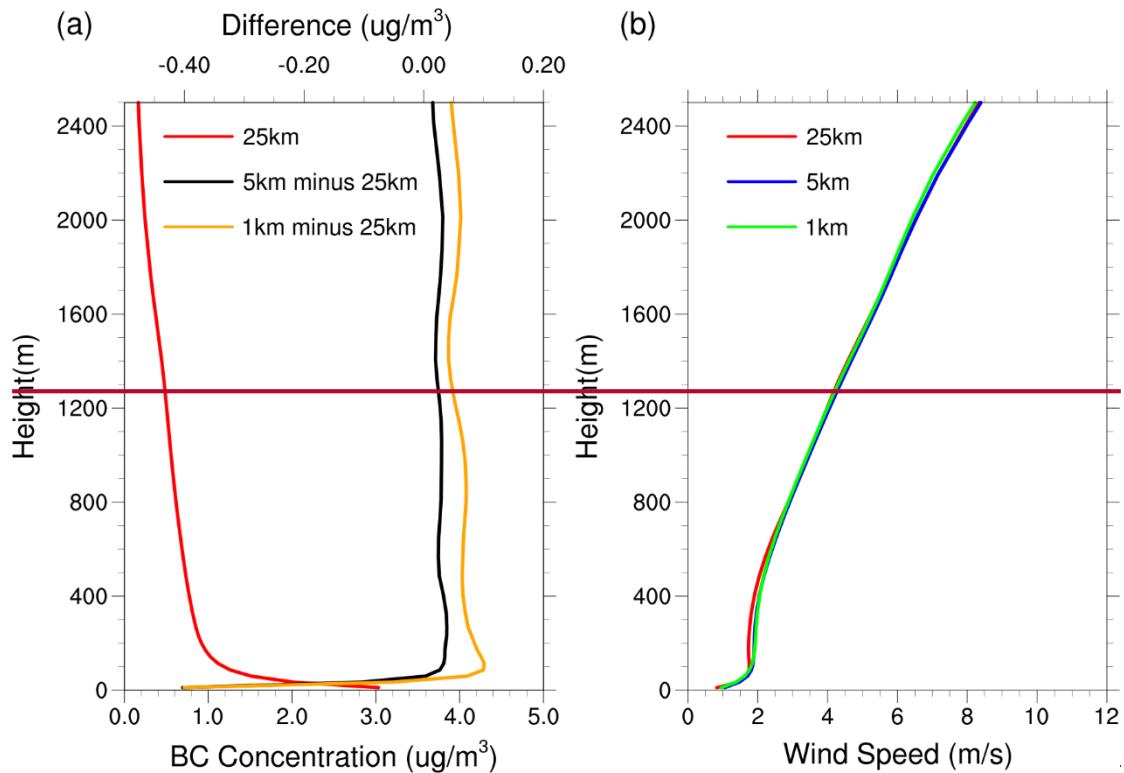
1711 daytime (middle), and the nighttime (bottom), respectively. The solid black triangle
1712 indicates the location of the USTC site.


1715
1716 **Figure 7.** Spatial distribution of PBL mixing coefficients in the study area for 25 km
1717 (left), 5 km (middle), and 1 km (right) resolution simulations of the whole day (top),

1718 the daytime (middle), and the nighttime (bottom), respectively. The solid black
1719 triangle indicates the location of the USTC site.


1723 **Figure 8.** The latitude-pressure cross section of BC concentrations and wind speed
1724 flux along the USTC site for 25 km (top), 5 km (middle), and 1 km (bottom)

1725 resolution simulations of the whole day, respectively. Vector arrows are the
1726 combination of wind speed fluxes v and w , with the vertical wind speed flux being
1727 multiplied by 100 for visibility. The shaded contours represent BC concentrations at
1728 each pressure level.


1729
1730 **Figure 9.** Spatial distribution of friction velocity in the study area for 25 km (left), 5
1731 km (middle), and 1 km (right) resolution simulations of the whole day, respectively.
1732 The solid black triangle indicates the location of the USTC site.

1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747

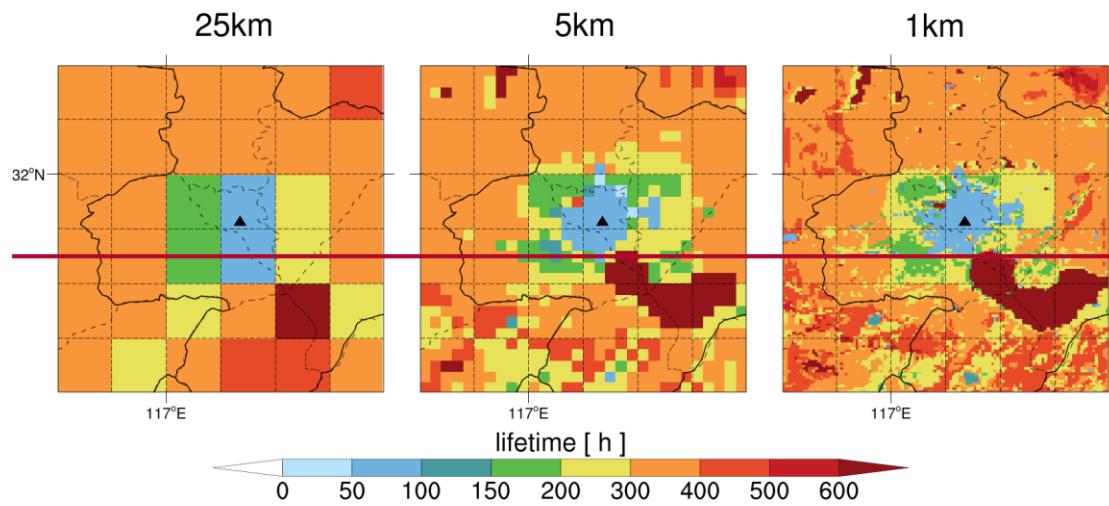
Figure 10. Spatial distribution of the BC column concentration in the study area for 25 km (left), 5 km (middle), and 1 km (right) resolution simulations of the whole day

1755 (top), the daytime (middle), and the nighttime (bottom), respectively. The solid black
1756 triangle indicates the location of the USTC site.

1759

1760 **Figure 11.** (a) Vertical profiles of BC concentrations simulated at 25 km resolution
1761 (solid red line), the difference between 5 km and 25 km resolutions (solid black line),
1762 and the difference between 1 km and 25 km resolutions (solid orange line) averaged
1763 over the study area for the whole day, respectively. (b) Vertical profiles of wind speed
1764 simulated at 25 km resolution (solid red line), 5 km resolution (solid blue line), and 1
1765 km resolution (solid green line) averaged over the study area for the whole day,
1766 respectively.

1767


1768

1769

1770

1771

1772

Figure 12. Spatial distribution of the lifetime in the study area for 25 km (left), 5 km (middle), and 1 km (right) resolution simulations of the whole day, respectively. The solid black triangle indicates the location of the USTC site.

1801 **Supporting information for:**

1802 **Modeling urban pollutant transport at multi-resolutions:**

1803 **Impacts of turbulent mixing**

1804 Zining Yang¹, Qiuyan Du¹, Qike Yang¹, Chun Zhao^{1,2,3*}, Gudongze Li¹, Zihan Xia¹,
1805 Mingyue Xu¹, Renmin Yuan¹, Yubin Li⁴, Kaihui Xia¹, Jun Gu¹, and Jiawang Feng¹

1806

1807 ¹Deep Space Exploration Laboratory/School of Earth and Space Sciences/CMA-
1808 USTC Laboratory of Fengyun Remote Sensing/State Key Laboratory of Fire
1809 Science/Institute of Advanced Interdisciplinary Research on High-Performance
1810 Computing Systems and Software, University of Science and Technology of China,
1811 Hefei, China

1812 ²Laoshan Laboratory, Qingdao, China

1813 ³CAS Center for Excellence in Comparative Planetology, University of Science and
1814 Technology of China, Hefei, China.

1815 ⁴School of Atmospheric Physics, Nanjing University of Information Science and
1816 Technology, Nanjing, China

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829 *Corresponding author: Chun Zhao (chunzhao@ustc.edu.cn)

1830 **Contents of this file**

1831 [Text S1: The process of grid refinement in this study.](#)

1832 [Table S1: Description of land cover data classifications.](#)

1833 [Figure S1: Three nested WRF-Chem domains.](#)

1834 [Figure S2: The spatial distributions of the default USGS land use category data in](#)

1835 [WRF across multi-resolutions.](#)

1836 [Figure S3: Conceptual subdivision in this study.](#)

1837 [Figure S4: The spatial distributions of BC emissions across multi-resolutions.](#)

1838 [Figure S5: The spatial distributions of observational sites from MEP and the AWSs.](#)

1839 [Figure S6. Time series averaged over 4 AWS sites in Hefei of observed and simulated](#)
1840 [wind speed and temperature across multi-resolutions.](#)

1841 [Figure S7: The spatial distributions of dry deposition velocity across multi-](#)
1842 [resolutions.](#)

1843 [Figure S8: The spatial distributions of BC surface concentration differences between](#)
1844 [high- and low-resolutions.](#)

1845 [Figure S9: The spatial distributions of BC surface concentration differences between](#)
1846 [the two higher-resolutions.](#)

1847 [Figure S10: Diurnal variation of PM_{2.5} surface concentrations across multi-resolutions](#)
1848 [simulations and observations.](#)

1849 [Figure S11. Diurnal variation of PM_{2.5} component surface concentrations across](#)
1850 [multi-resolutions simulations and observations.](#)

1851 [Figure S12: The spatial distributions of PBL mixing coefficient differences between](#)
1852 [high- and low-resolutions.](#)

1853 [Figure S13: The spatial distributions of PBL mixing coefficient differences between](#)
1854 [the two higher-resolutions.](#)

1855 [Figure S14: The latitude-pressure cross section of BC concentrations and wind flux](#)
1856 [across multi-resolutions along the USTC site.](#)

1857 [Figure S15: The spatial distributions of friction velocity differences between high-](#)
1858 [and low-resolutions.](#)

1859 [Figure S16: The spatial distributions of PBL mixing coefficient differences between](#)
1860 [high- and low-resolutions simulation results from the sensitivity experiments.](#)

1861 [Figure S17: The spatial distributions of PBL mixing coefficient differences between](#)
1862 [the two higher-resolutions simulation results from the sensitivity experiments.](#)

1863 [Figure S18: The latitude-pressure cross section of BC concentrations and wind flux](#)
1864 [across multi-resolutions from the sensitivity experiments along the USTC site.](#)

1865 [Figure S19: The spatial distributions of BC column concentration differences between](#)
1866 [high- and low-resolutions.](#)

1867 [Figure S20: The spatial distributions of BC column concentration differences between](#)
1868 [the two higher-resolutions.](#)

1870 **Text S1. The process of grid refinement in this study.**

1871 Due to the disparate grid sizes of the three resolution simulations impeding direct
1872 calculation of spatial distribution differences, we employ a grid refinement method to
1873 upscale the low-resolution grids to match the high-resolution grid cells. The grid
1874 refinement process involves dividing the cells in the original coarse grid into finer cells.
1875 Specifically, the 25 km grids are divided into 25 x 25 small grids and the 5 km grids are
1876 divided into 5 x 5 small grids. This approach ensures that the grid resolution of all three
1877 simulations is identical while preserving spatial details, thus allowing us to quantify the
1878 differences between the 25 km resolution simulations and the two higher-resolution
1879 simulations.

1899 **Table S1. Description of land cover data classifications**

<u>Number</u>	<u>Description</u>
<u>1</u>	<u>Urban</u>
<u>2</u>	<u>Dryland cropland/pasture</u>
<u>3</u>	<u>Irrigated cropland/pasture</u>
<u>4</u>	<u>Mixed Dryland/Irrigated Cropland</u>
<u>5</u>	<u>Cropland/Grassland Mosaic</u>
<u>6</u>	<u>Cropland/Woodland Mosaic</u>
<u>7</u>	<u>Grassland</u>
<u>8</u>	<u>Shrubland</u>
<u>9</u>	<u>Mixed Shrubland/Grassland</u>
<u>10</u>	<u>Savanna</u>
<u>11</u>	<u>Deciduous Broadleaf Forest</u>
<u>12</u>	<u>Deciduous Needleleaf Forest</u>
<u>13</u>	<u>Evergreen Broadleaf Forest</u>
<u>14</u>	<u>Evergreen Needleleaf Forest</u>
<u>15</u>	<u>Mixed Forest</u>
<u>16</u>	<u>Water</u>
<u>17</u>	<u>Herbaceous Wetland</u>
<u>18</u>	<u>Wooded Wetland</u>
<u>19</u>	<u>Barren or Sparsely Vegetated</u>
<u>20</u>	<u>Herbaceous Tundra</u>
<u>21</u>	<u>Wooded Tundra</u>
<u>22</u>	<u>Mixed Tundra</u>
<u>23</u>	<u>Bare Ground Tundra</u>
<u>24</u>	<u>Snow or Ice</u>

1900

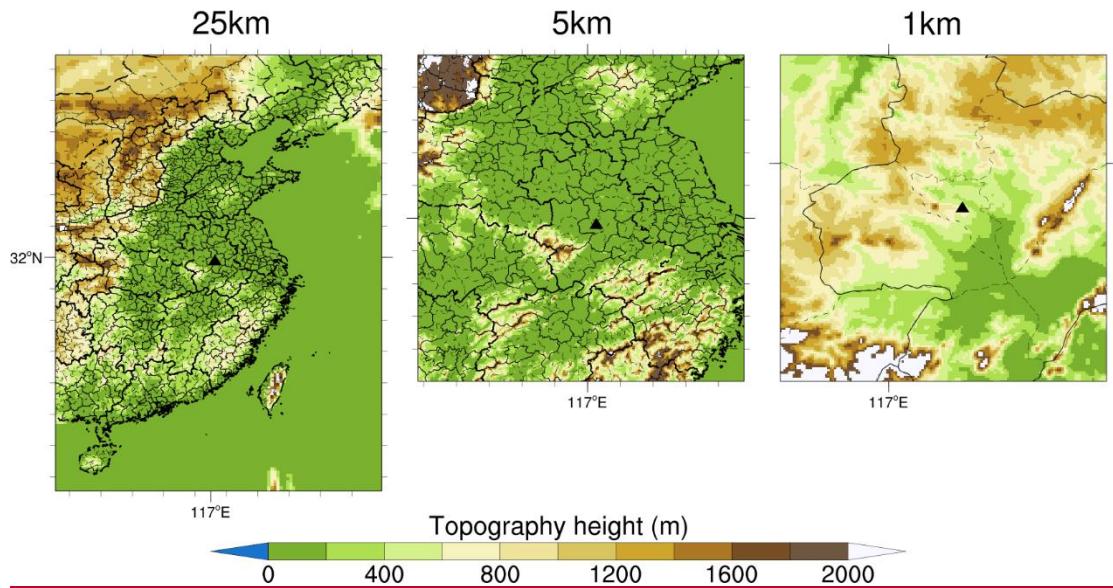
1901

1902

1903

1904

1905


1906

1907

1908

1909

1910

1913 **Figure S1.** The three domains in the WRF-Chem simulations and the terrain height (m)

1914 of each domain. Domain one (D1) has a horizontal grid spacing of 25 km, domain 2

1915 (D2) 5 km, and domain 3 (D3) 1 km. The solid black triangle indicates the location of

1916 the USTC site.

1917

1918

1919

1920

1921

1922

1923

1924

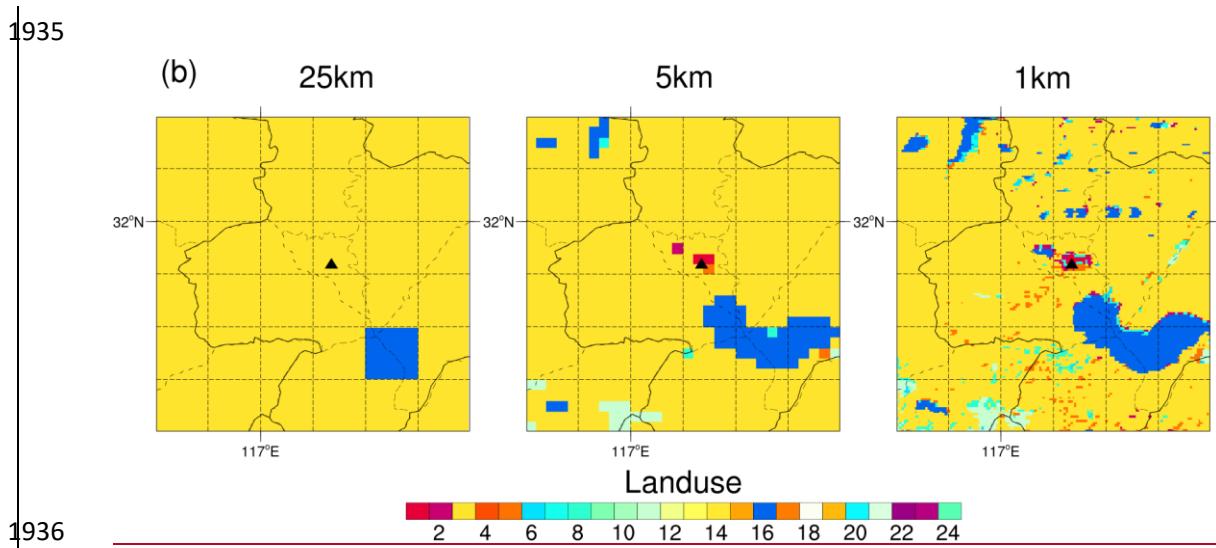
1925

1926

1927

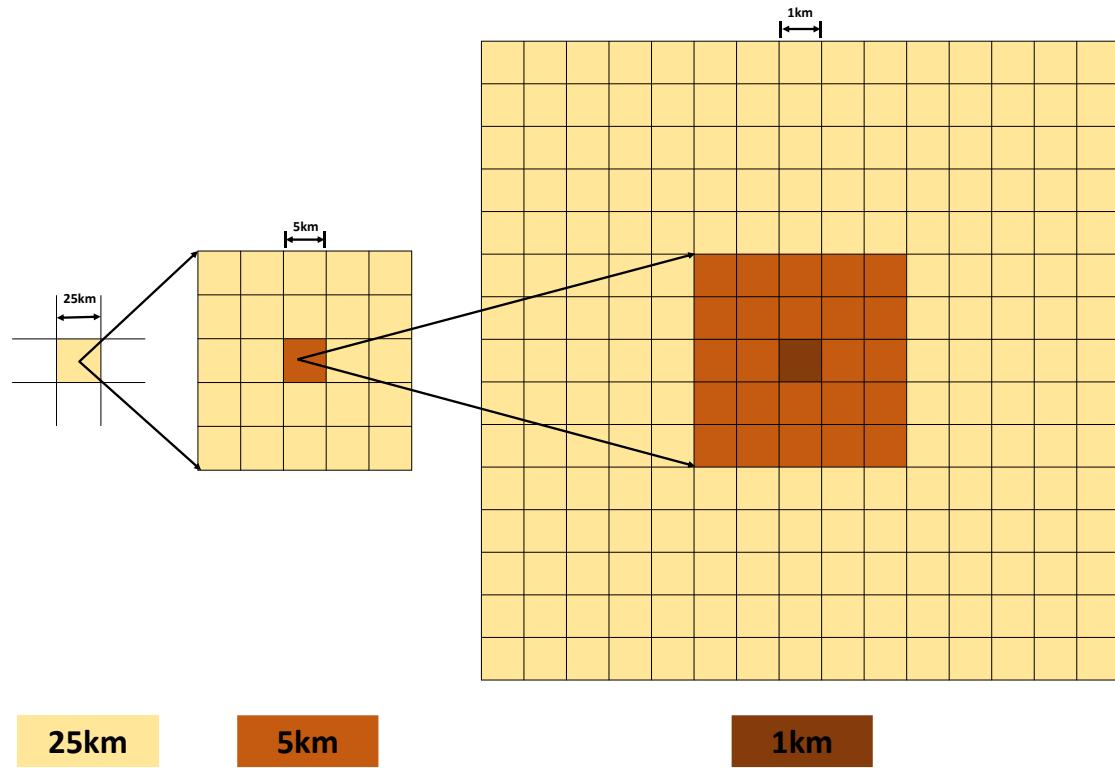
1928

1929

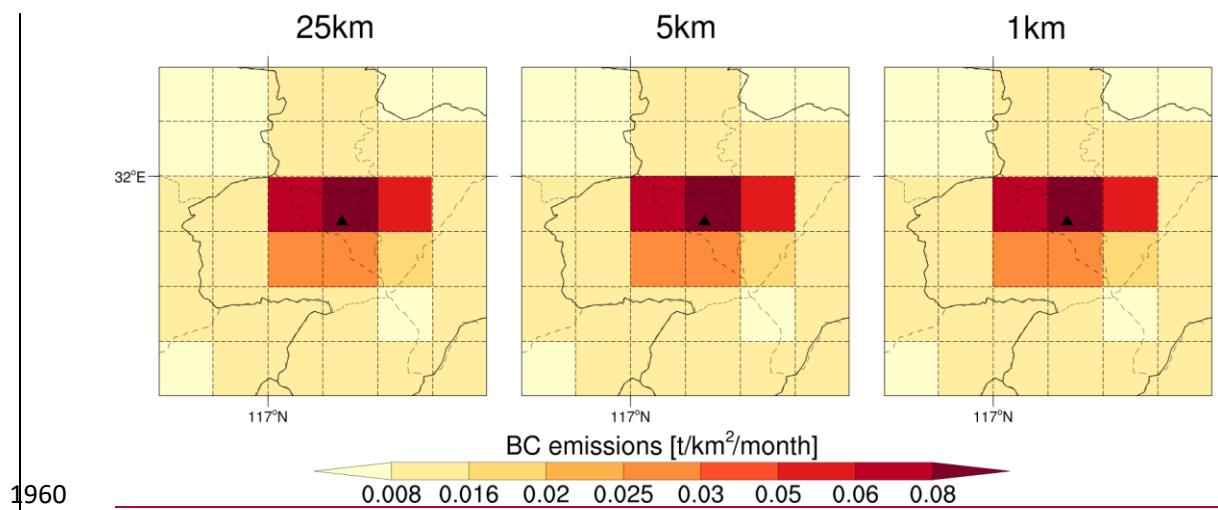

1930

1931

1932


1933

1934



1936 **Figure S2.** The spatial distribution of the default USGS land use category data in WRF
 1937 in the study area for 25-km (left), 5-km (middle), and 1-km (right) resolution
 1938 simulations, respectively. The solid black triangle indicates the location of the USTC
 1939 site.

1940
 1941
 1942
 1943
 1944
 1945

Figure S3. Conceptual subdivision of a coarse grid cell from the 25-km grid into smaller grid points for the finer grids. Each 25-km grid cell is subdivided into 25 5-km grid cells. Each of the 5-km grid cells are further refined into 25 1-km grid cells for a total of 625 1-km grid cells per 25-km cell. The solid black triangle indicates the location of the USTC site.

Figure S4. Spatial distribution of BC emissions in the study area for 25-km (left), 5-km (middle), and 1-km (right) resolution simulations, respectively. The solid black triangle indicates the location of the USTC site.

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

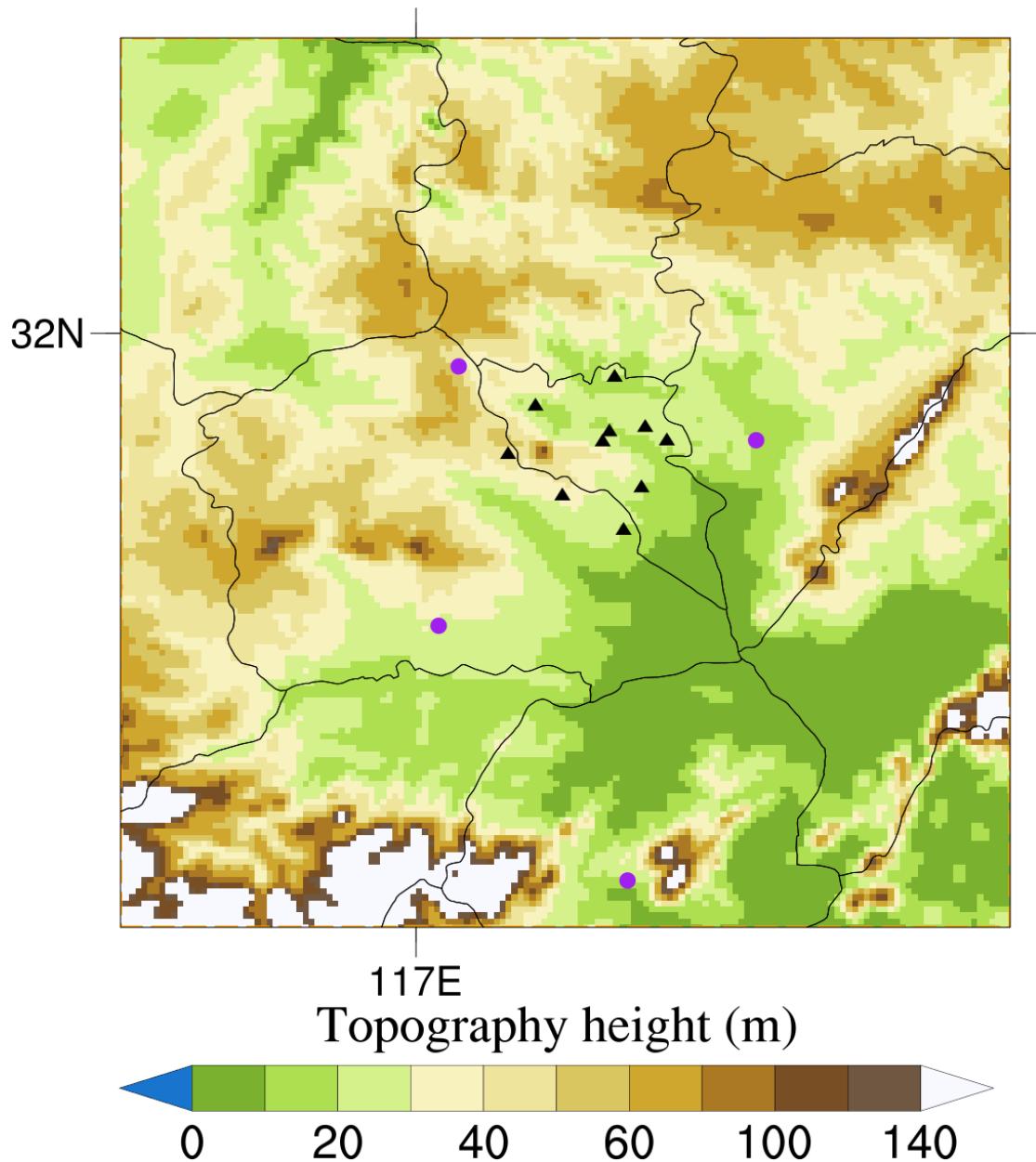
1971

1972

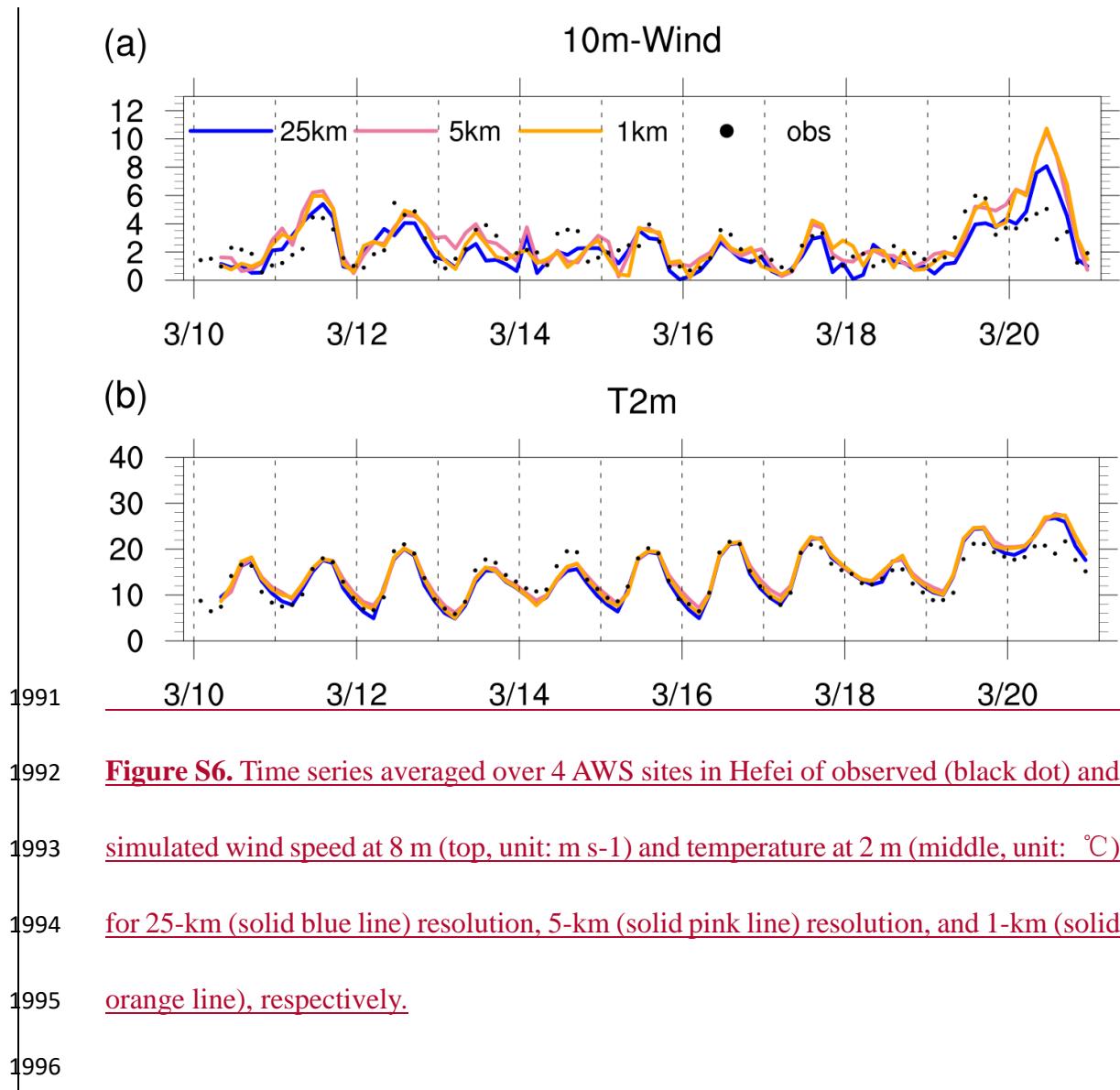
1973

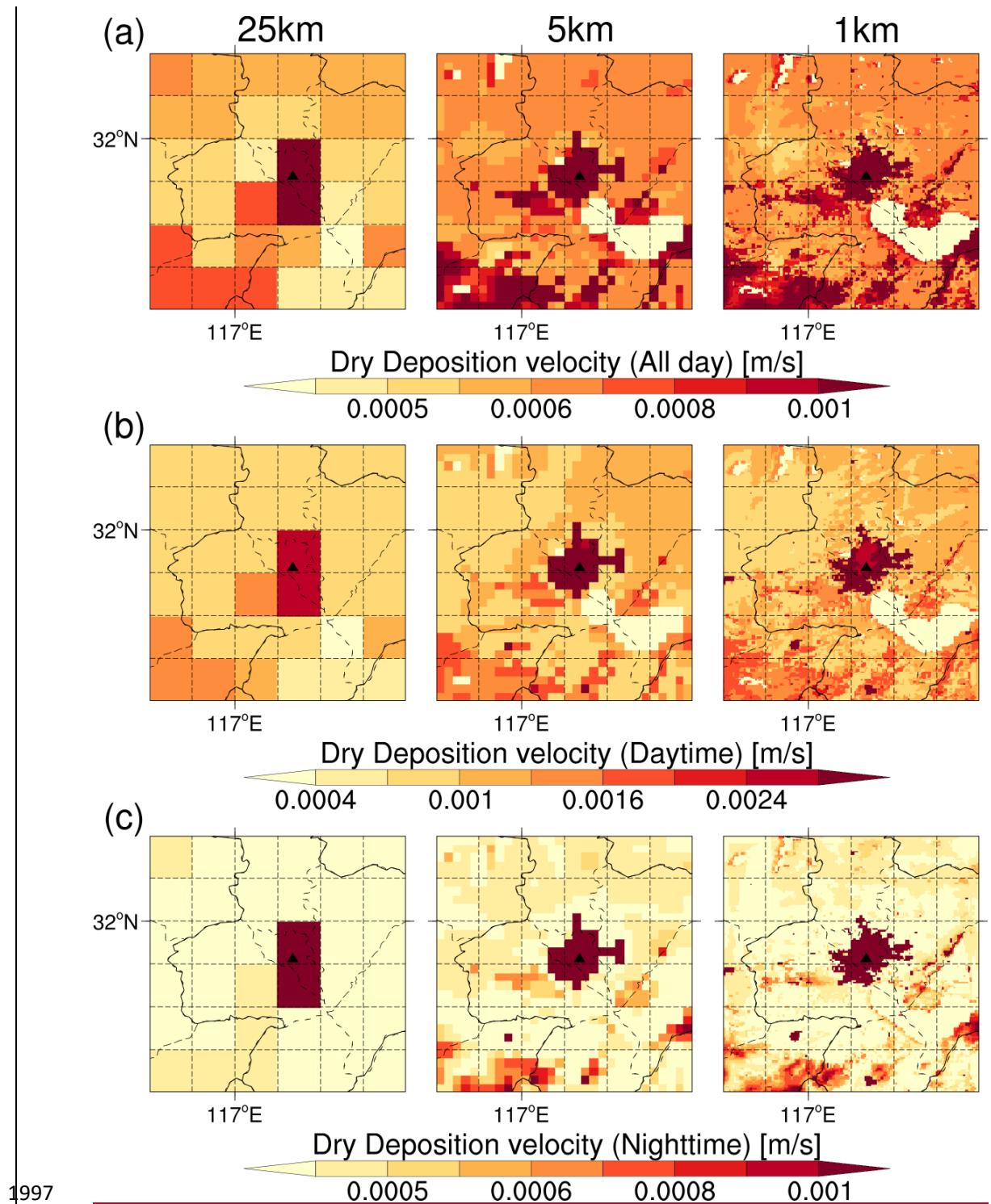
1974

1975


1976

1977


1978


1979

1980

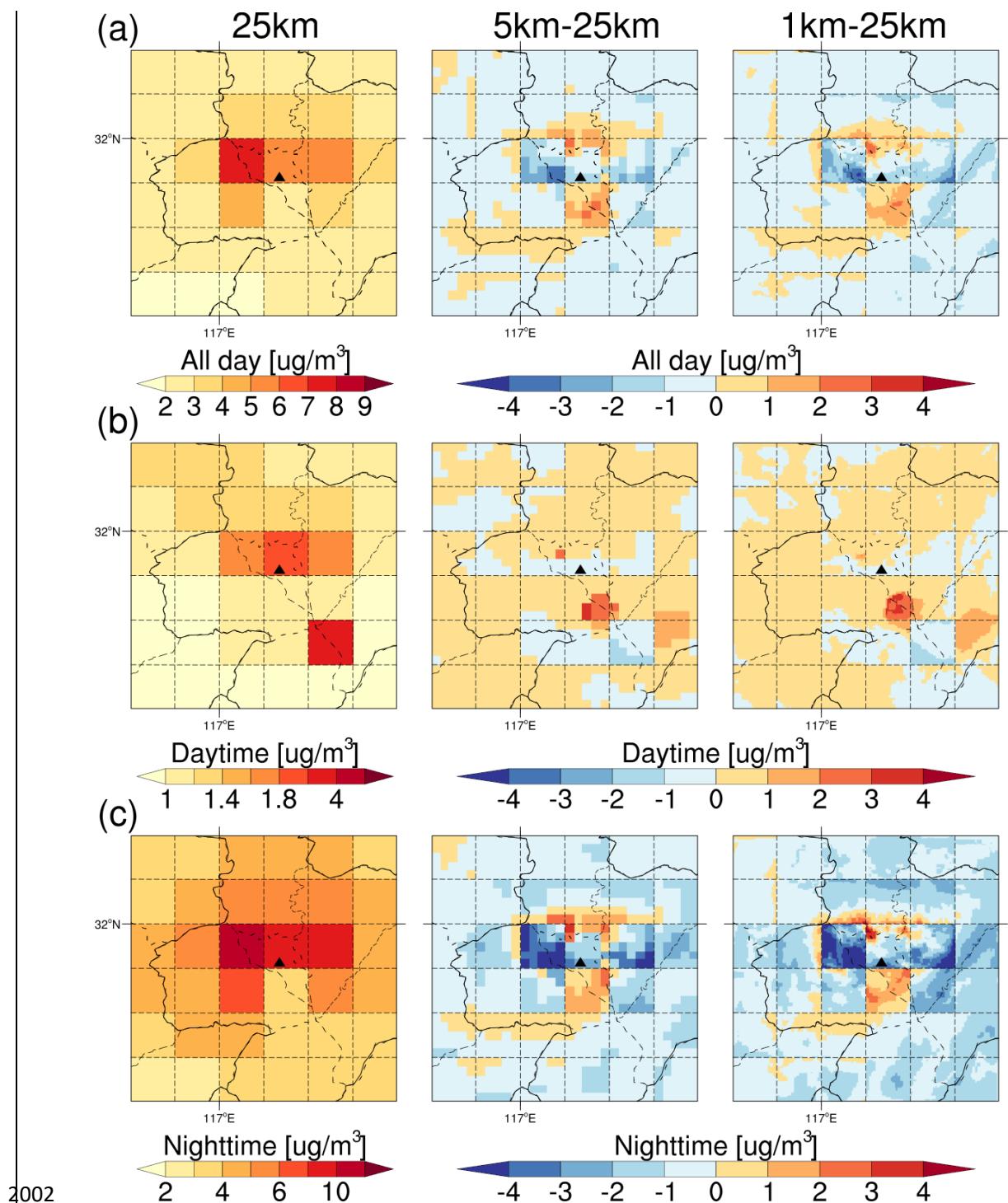
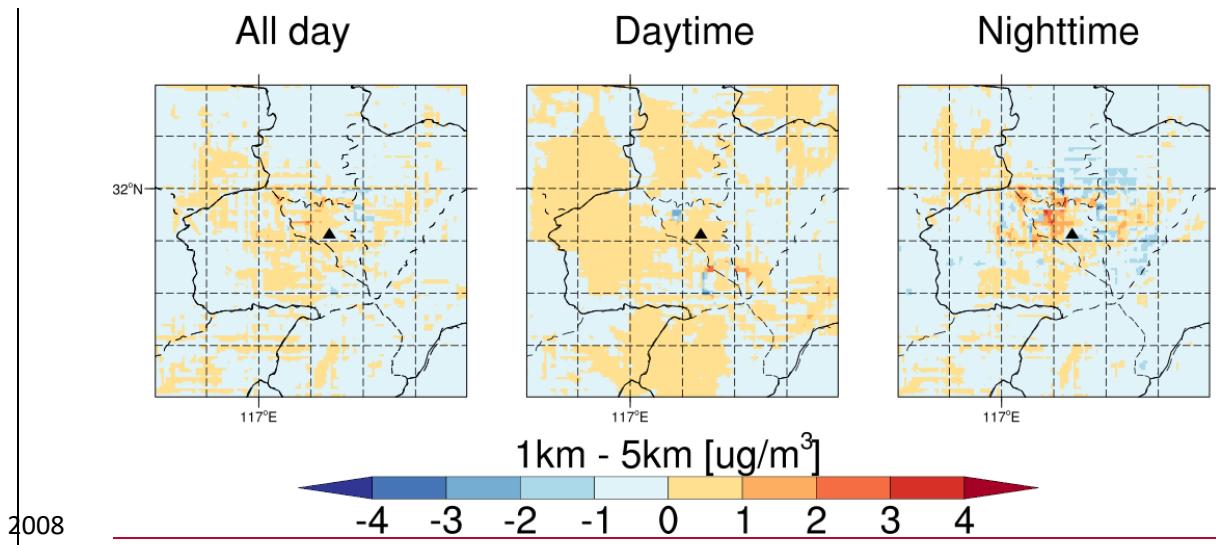


Figure S5. Spatial distributions of 4 MEP and 10 AWS sites used in this study. Solid black triangles indicate MEP monitoring sites, and purple solid dots indicate AWSs locations.



1997 **Figure S7.** Spatial distribution of the dry deposition velocity in the study area for 25-
 1998 km (left), 5-km (middle), and 1-km (right) resolution simulations of the whole day (top),
 1999 the daytime (middle), and the nighttime (bottom), respectively. The solid black triangle
 2000 indicates the location of the USTC site.
 2001

Figure S8. Spatial distribution of the BC surface concentration in the study area for 25-km resolution (left), the difference between 25-km and 5-km resolutions (middle), and the difference between 25-km and 1-km (right) resolutions of the whole day (top), the daytime (middle), and the nighttime (bottom), respectively. The solid black triangle indicates the location of the USTC site.

Figure S9. Spatial distribution of the differences in BC surface concentrations between 1-km and 5-km resolutions in the study area of the whole day (left), the daytime (middle), and the nighttime (right), respectively. The solid black triangle indicates the location of the USTC site.

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

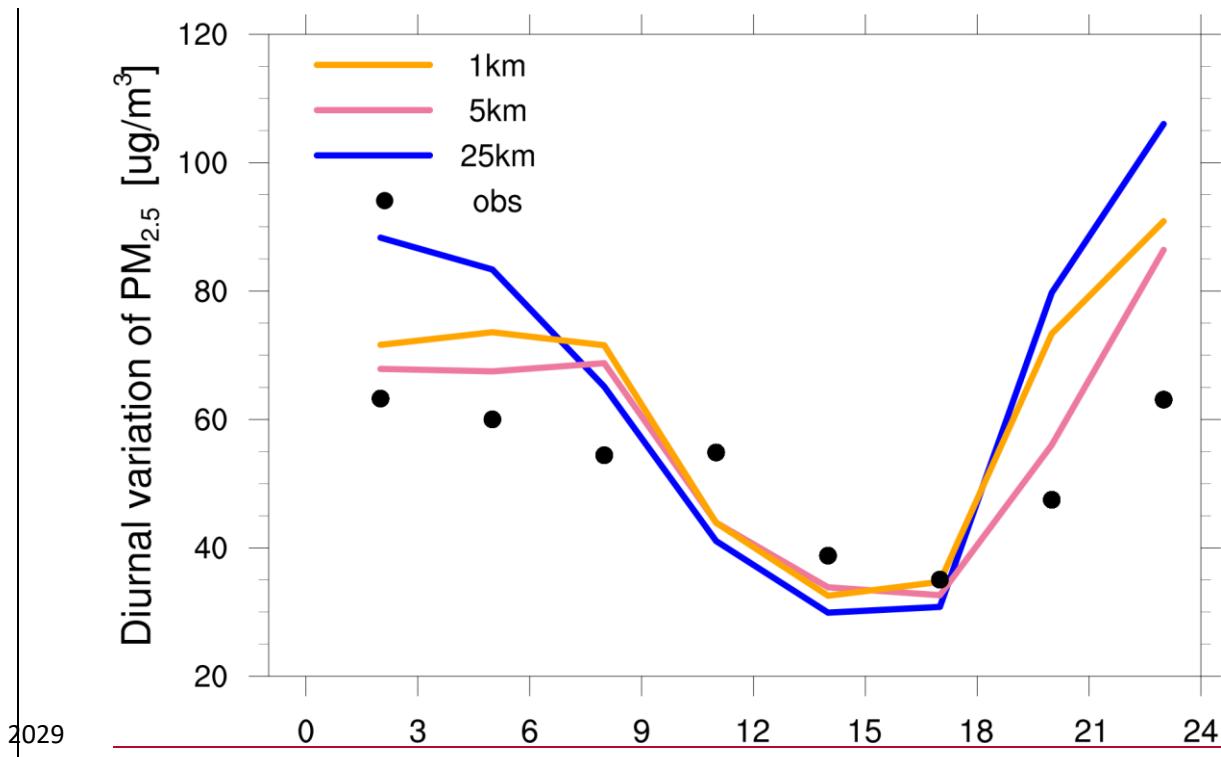
2019

2020

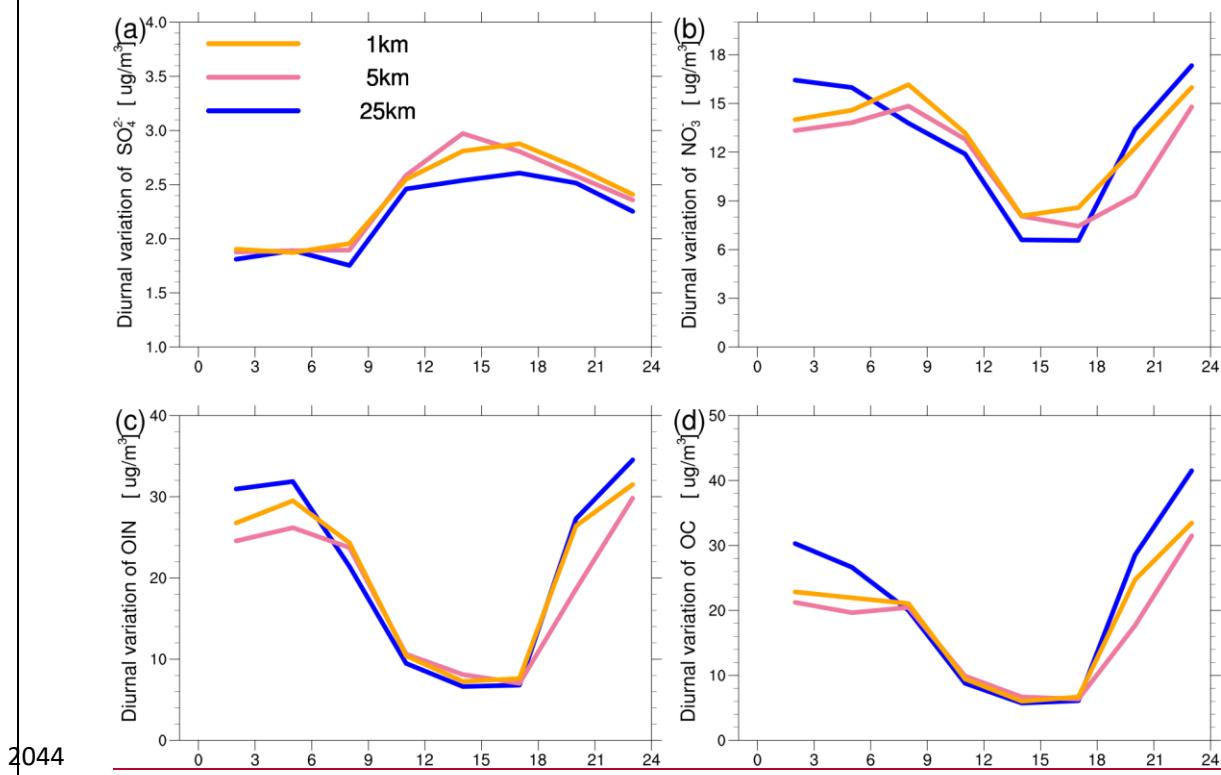
2021

2022

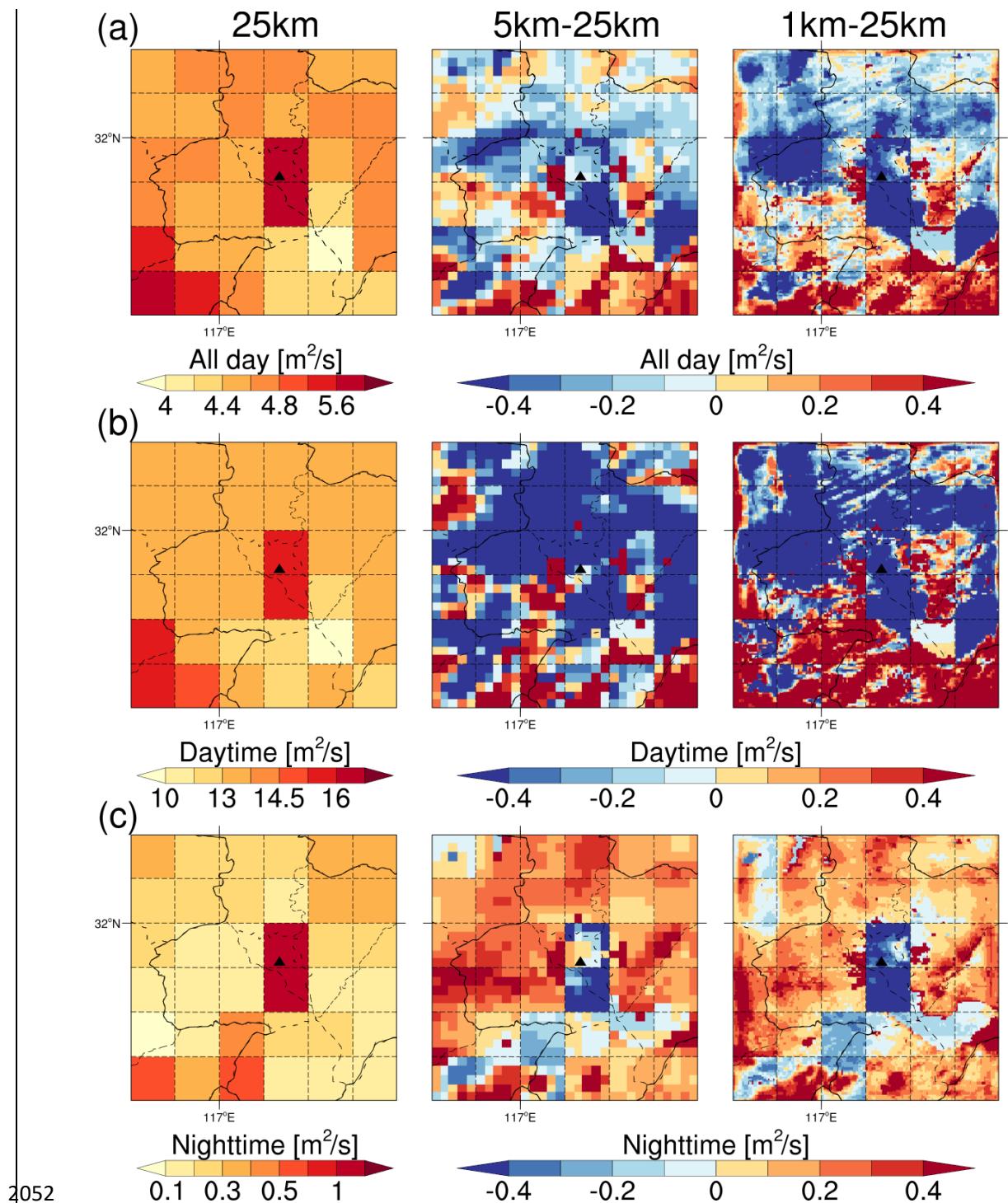
2023


2024

2025


2026

2027


2028

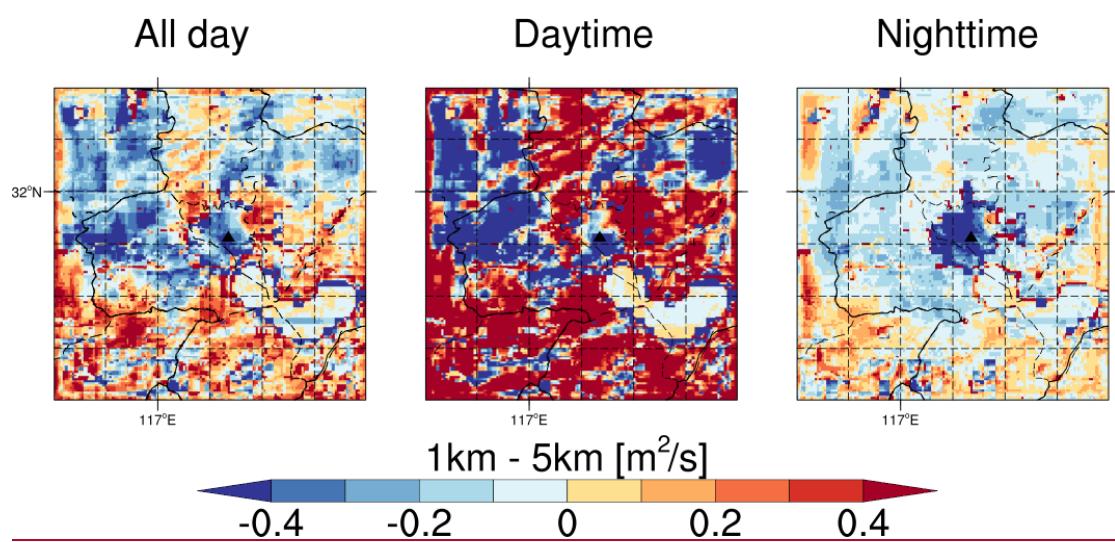
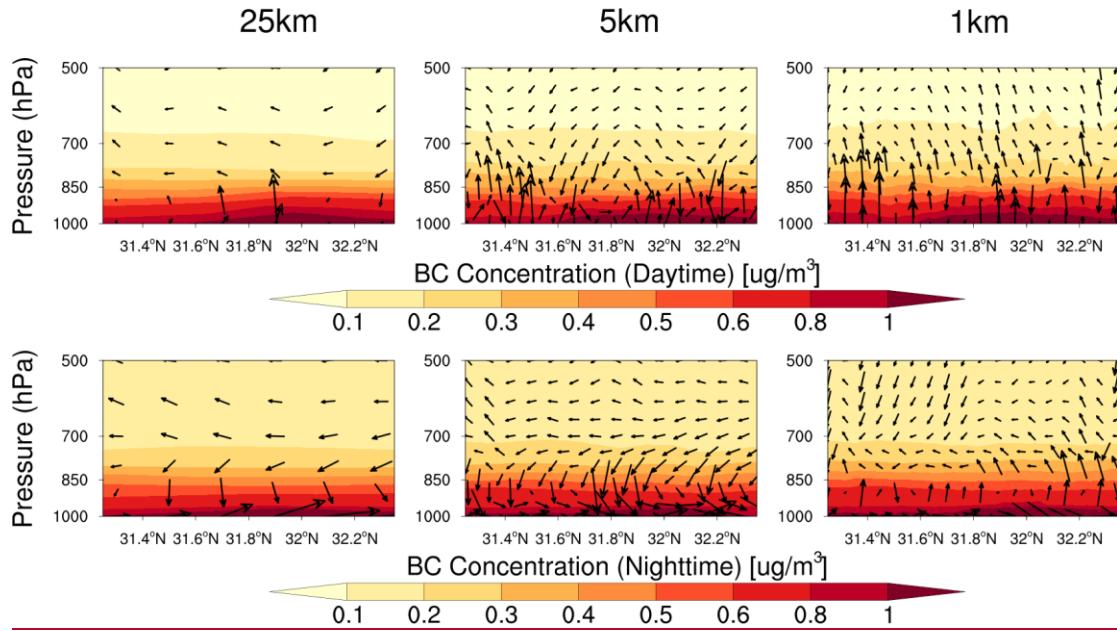
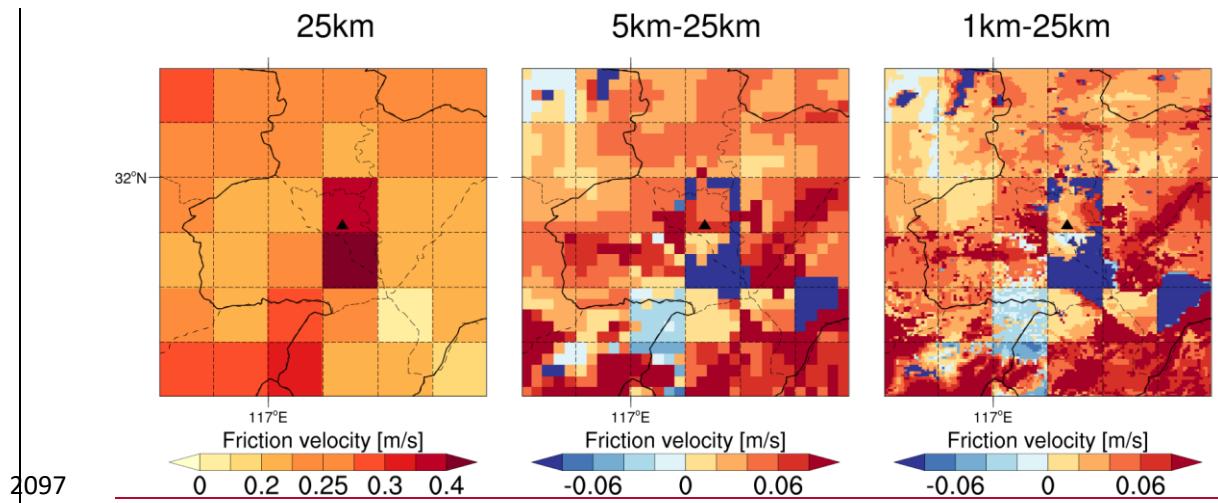

Figure S10. Diurnal variation of $\text{PM}_{2.5}$ surface concentrations within 24 h averaged over 10 MEP sites in Hefei during the study period for 25-km (solid blue line), 5-km (solid pink line), and 1-km (solid orange line) resolution simulations and observations (black dot). Both the simulated results and observations are sampled at the model output frequency, i.e., 3-hourly.

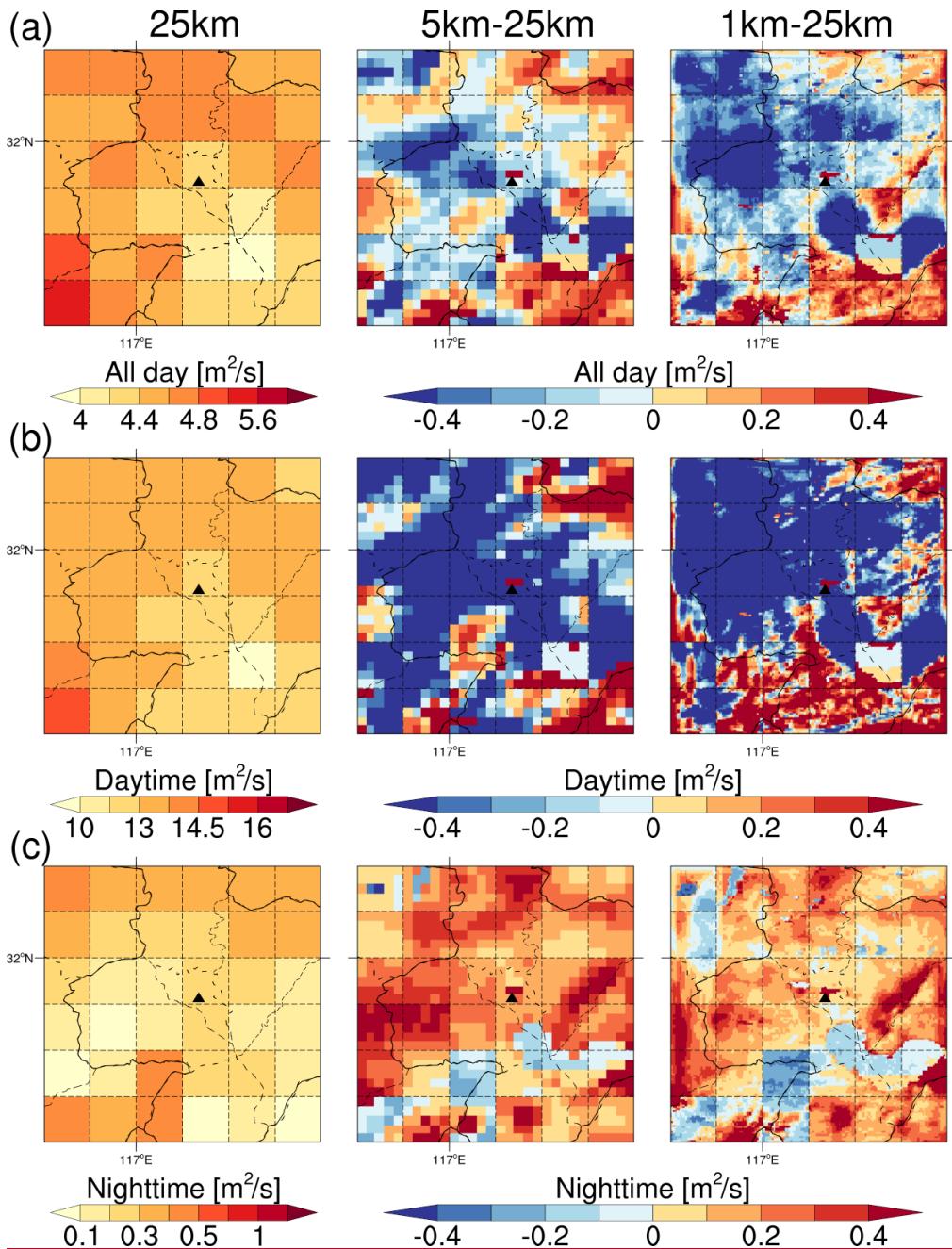
Figure S11. Diurnal variation of (a) SO_4^{2-} , (b) NO_3^- , (c) OIN, and (d) OC surface concentrations within 24 h averaged over 10 MEP sites in Hefei during the study period for 25-km (solid blue line), 5-km (solid pink line), and 1-km (solid orange line) resolution simulations. The simulated results are sampled at the model output frequency, i.e., 3-hourly.

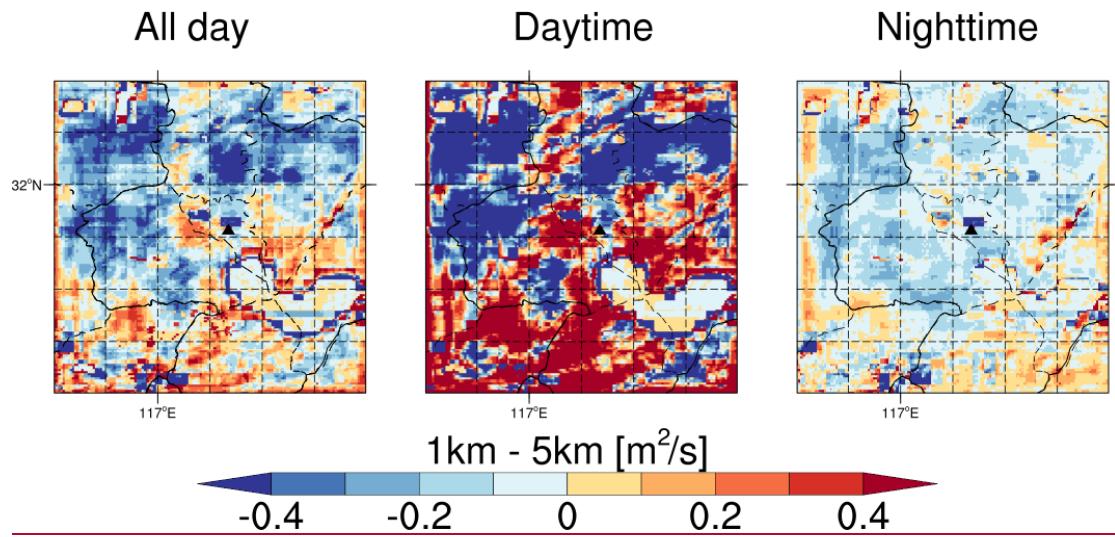


2052 **Figure S12.** Spatial distribution of PBL mixing coefficients in the study area for 25-km
 2053 resolution (left), the difference between 25-km and 5-km resolutions (middle), and the
 2054 difference between 25-km and 1-km (right) resolutions of the whole day (top), the
 2055 daytime (middle), and the nighttime (bottom), respectively. The solid black triangle
 2056 indicates the location of the USTC site.
 2057



2060 **Figure S13.** Spatial distribution of the differences in PBL mixing coefficients between
 2061 1-km and 5-km resolutions in the study area of the whole day (left), the daytime
 2062 (middle), and the nighttime (right), respectively. The solid black triangle indicates the
 2063 location of the USTC site.


2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078


Figure S14. The latitude-pressure cross section of BC concentrations and wind speed flux along the USTC site for 25-km (left), 5-km (middle), and 1-km (right) resolution simulations of the daytime (top), and the nighttime (bottom), respectively. Vector arrows are the combination of wind speed fluxes v and w , with the vertical wind speed flux being multiplied by 100 for visibility. The shaded contours represent BC concentrations at each pressure level.

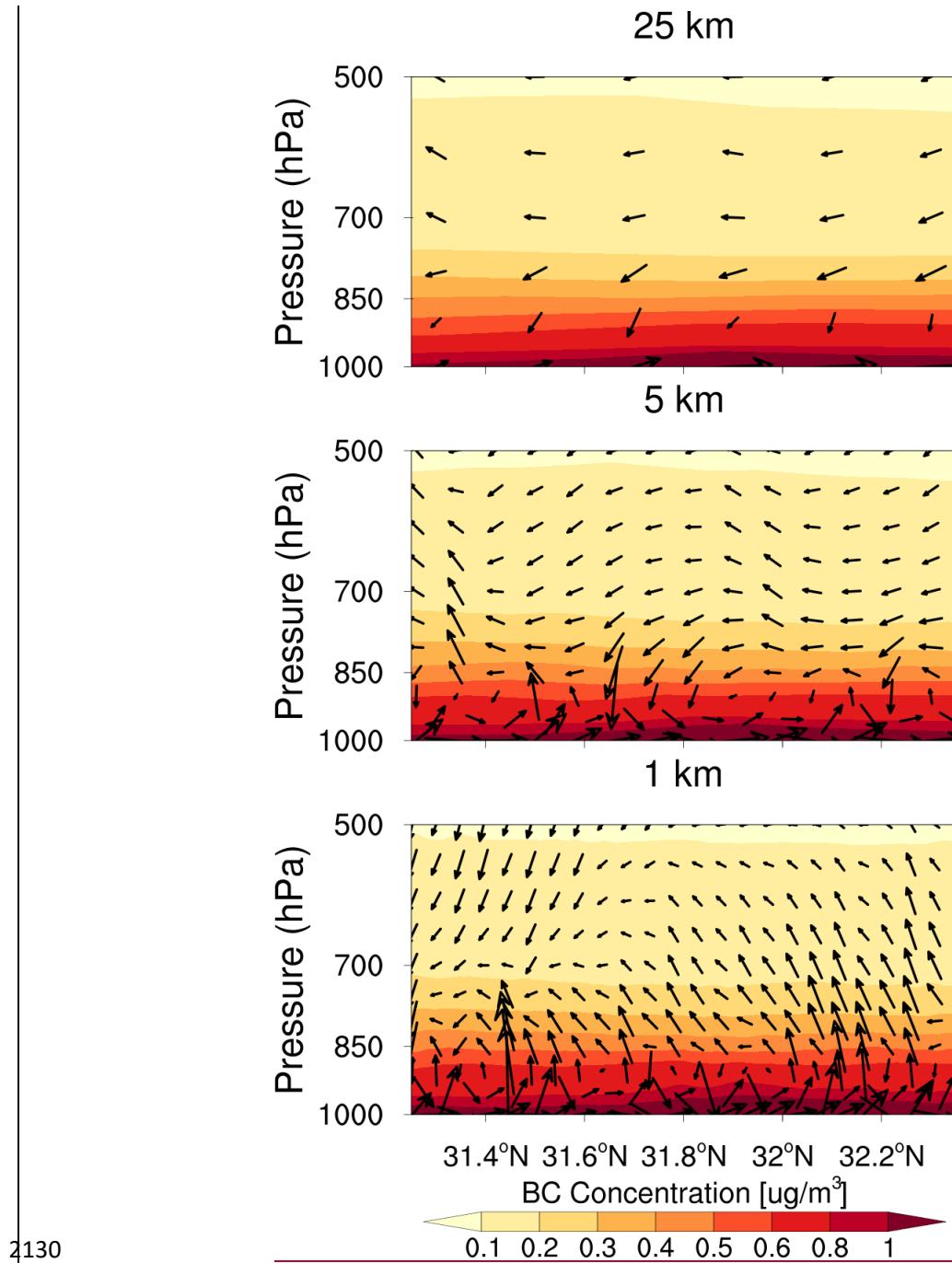

2097 **Figure S15.** Spatial distribution of the friction velocity in the study area for 25-km
 2098 resolution (left), the difference between 25-km and 5-km resolutions (middle), and the
 2099 difference between 25-km and 1-km resolutions (right) simulations of the whole day,
 2100 respectively. The solid black triangle indicates the location of the USTC site.
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116

Figure S16. Spatial distribution of PBL mixing coefficients in the study area for 25-km resolution (left), the difference between 25-km and 5-km resolutions (middle), and the difference between 25-km and 1-km (right) resolutions of the whole day (top), the daytime (middle), and the nighttime (bottom), respectively. The solid black triangle indicates the location of the USTC site. The simulation results are from the sensitivity experiments.

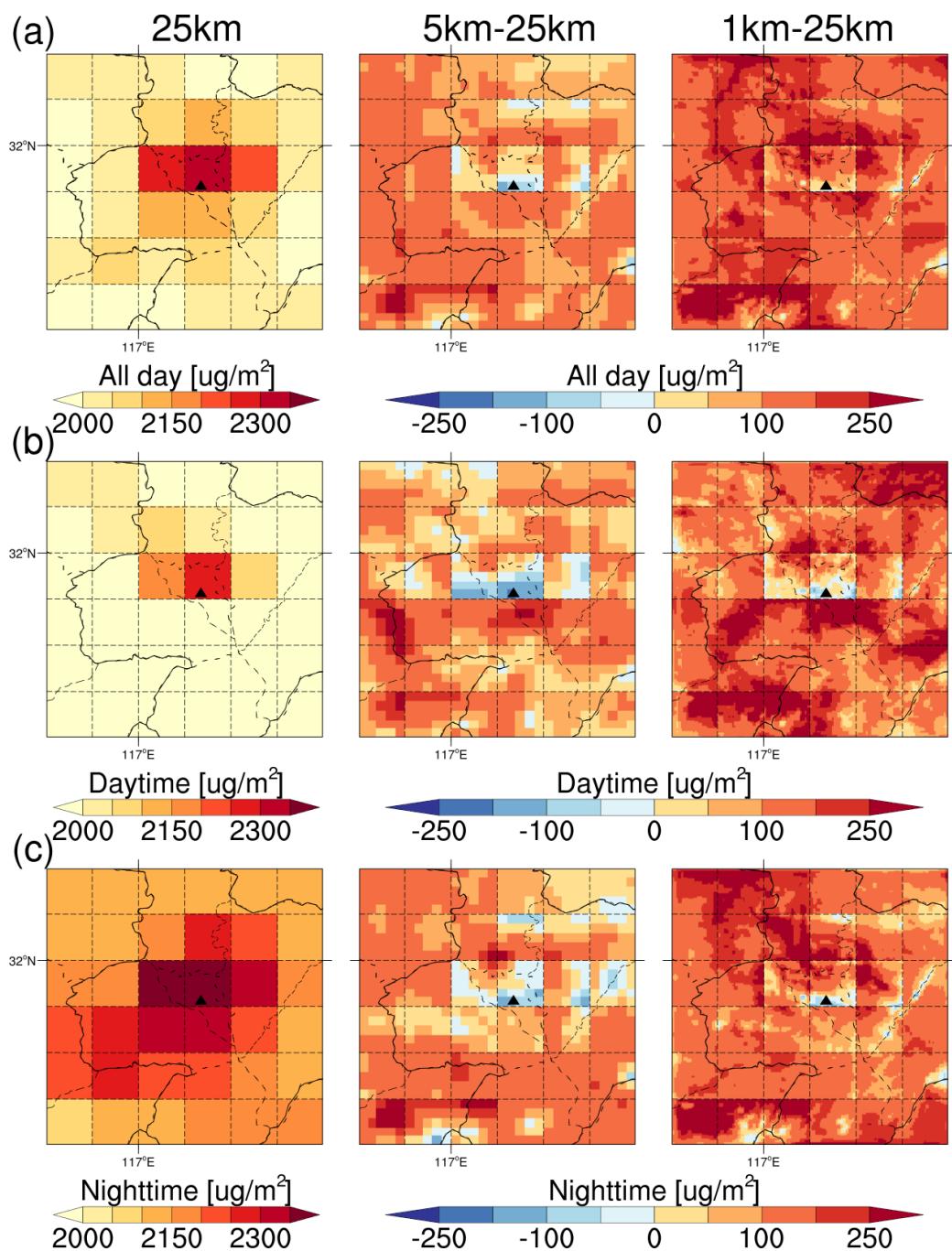
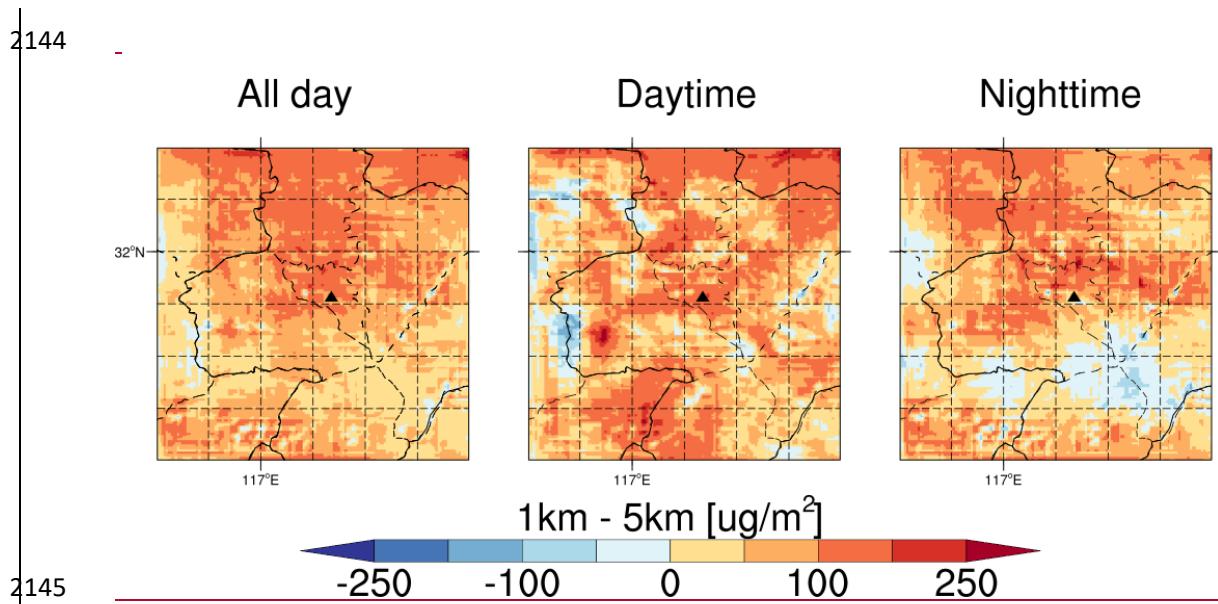


Figure S17. Spatial distribution of the differences in PBL mixing coefficients between 1-km and 5-km resolutions in the study area of the whole day (left), the daytime (middle), and the nighttime (right), respectively. The solid black triangle indicates the location of the USTC site. The simulation results are from the sensitivity experiments.


2130
2131 **Figure S18.** The latitude-pressure cross section of BC concentrations and wind speed
2132 flux along the USTC site for 25-km (top), 5-km (middle), and 1-km (bottom) resolution
2133 simulations of the whole day, respectively. Vector arrows are the combination of wind
2134 speed fluxes v and w , with the vertical wind speed flux being multiplied by 100 for
2135 visibility. The shaded contours represent BC concentrations at each pressure level. The
2136 simulation results are from the sensitivity experiments.

2137

2138

Figure S19. Spatial distribution of the BC column concentration in the study area for 25-km resolution (left), the difference between 25-km and 5-km resolutions (middle), and the difference between 25-km and 1-km (right) resolutions of the whole day (top), the daytime (middle), and the nighttime (bottom), respectively. The solid black triangle indicates the location of the USTC site.

2146 **Figure S20.** Spatial distribution of the differences in BC column concentrations
 2147 between 1-km and 5-km resolutions in the study area of the whole day (left), the
 2148 daytime (middle), and the nighttime (right), respectively. The solid black triangle
 2149 indicates the location of the USTC site.

2150

2151