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S1 Inversion system

We used a Bayesian approach to estimate net air-sea and air-land CO2 fluxes (Steinkamp et al., 2017; Gurney et al., 2004) for

25 geographic regions (Figure S1). The inversion was based on the Bayesian cost function J , calculated as (Tarantola, 2005):
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where T is the transport (jacobian) matrix, d is the data time series, x0 is the prior flux, while Cd and C0 are the data and5

prior covariance matrix, respectively. The function was minimized analytically to yield the posterior fluxes (x) and associated

posterior error covariance matrix (C) (Enting, 2002) :
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Equation 1 represents the sum of the modelled versus measured CO2 differences (Tx - d) and the optimized posterior versus

prior flux differences (x - x0). Each data and flux point is weighted by their uncertainty defined through the data and prior

covariance matrix Cd and C0. The main diagonal of the covariance matrices represents data and prior flux variance while

off-diagonal elements contain information about the temporal and spatial correlations of the uncertainties. The first term in Eq.

1 also includes a Gaussian smoother focusing on week-to-week flux changes as described by Steinkamp et al. (2017). We used15

a reduced chi test (2J divided by the number of observations) (Kountouris et al., 2018) to assess the fit of the inverse model

to the observations. The ideal chi-squared value equals 1, with values < 1 indicating that the uncertainties in Cd and/or C0 are

too large while values > 1 suggest that the uncertainties are underestimated (Nickless et al., 2017). Results from the reduced

chi test were used as a scaling factor to weight the data uncertainties in the inversion.

S2 Sites, measurements and background20

We used hourly mean surface measurements from Baring Head and Lauder, averaged over 13:00 to 14:00 and 15:00 to 16:00

local time, when the air is well-mixed so that the CO2 signal is representative of regional processes. We have used local
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Figure S1. Domain boundaries for the 25 inversion regions, New Zealand South Island (regions 1-8), New Zealand North Island (regions

9-15), Australia (region 16), coastal ocean (regions 17-19), open ocean (regions 20-25).

Figure S2. Difference between the 13:00-14:00 (yellow) and 15:00-16:00 (blue) local time CO2 measurements and the background values

at Baring Head (a) and Lauder (b).

time instead of standard local time to account for the shift in hours relative to daylight (i.e., shorter days during winter pe-

riods). We excluded data outside of 3 standard deviations of the whole measurement period to remove the influence of local

CO2 processes. The final data for the inversion was constructed by subtracting background measurements from the afternoon25

measurements at the two sites Fig. S2.

We use a background-sector method to classify the CO2 background values (Manning, 2011; Steinkamp et al., 2017; Uglietti

et al., 2011). Southerly background conditions at Baring Head are present during periods with southerly winds, no land contact

and low CO2 variability (standard deviation < 0.1 ppm, over a minimum of 6 hours) (Stephens et al., 2013), hence can be
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Figure S3. Timeseries of the background values at Baring Head and Lauder at 13-14 local time, estimated from Baring Head baseline values,

merged Baring Head and Trans Future 5 ship (TF5) measurements, as well as CarbonTracker CO2 mole fractions. Plots c and d show the

detrended values.

classified as oceanic air (Brailsford et al., 2012). Data points from the TF5 background CO2 values were selected when the air30

originated from directions away from coastal regions and typically for regions between 26 and 27◦S. Both background data

sets had gaps, hence we used the seasonal time series decomposition by the Loess (STL) algorithm to construct a continuous

background time series (Cleveland et al., 1990). The two backgrounds were then combined based on modelled back trajectories

for 13:00-14:00 and 15:00-16:00 local time at Baring Head and Lauder (Steinkamp et al., 2017). A time series of the detrended

background values can be found in Fig. S3. The background CO2 values were generally higher than measurements collected at35

13:00-14:00 and 15:00-16:00 local time (Fig. 2a and Fig. 2b), especially at Lauder, suggesting that overall, New Zealand acted

as a CO2 sink. However, during winter periods we also observed elevated CO2 values, at both sites, pointing to CO2 release.

Measurements at Baring Head are from the non-dispersive infrared (NDIR) analyser (Ultramat 3, Siemens, Brailsford et al.

(2012)) for the years 2011-2016. In 2016, the instrument was changed to a three-species greenhouse gas cavity ring down

spectroscopy analyzer (G2301, Picarro Inc.), and in 2018, the instrument was updated to a four-species analyzer (G2401,40

Picarro Inc.). The control and calibration procedures described in Brailsford et al. (2012) remained unchanged and were

applied for the calibration of each new analyser. The Lauder CO2 were collected using a dual cell NDIR in situ analyser

(LI-7000, LI-COR Inc.) with a similar control system as at Baring Head but using nafion drying instead of cryo drying. Baring

Head uses a suite of transfer gases provided by the World Meteorological Organization Central Calibration Lab (WMO CCL)

at the National Oceanic and Atmospheric Administration (NOAA), while Lauder uses a suite of gases defined at Baring Head45

against the same transfer suite. Hence the observations are made based on reference gases with the same lineage. To verify the

in situ observations a suite of four gases from the CCL known as the Aniwaniwa suite are measured as unknowns at each site

to assess site specific biases. Sample air at both sites were collected from a 10 m air inlet height. The analysers were calibrated

against a suite of standard reference gases with assigned mole fractions on the relevant World Meteorological Organization –
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Global Atmosphere Watch (WMO-GAW) scales - the WMO X2019. The Lauder measurements were not directly calibrated to50

the WMO X2019 scale. We have used the conversion from Equation 6 in Hall et al. (2021) to convert the X2007 to the X2019

scale.

S3 Atmospheric transport model

In our inversion, we used the NAME III vn6.5 dispersion model for the years 2014-2020 while for the period 2011-2013,

we retained the original NAME III vn6.1 simulations previously described in Steinkamp et al. (2017) (Fig. S4). We used55

NIWA’s operational NZLAM fields for the years 2011-2013 and NZCSM data for the period from mid-2016 to 2020. NAME

III required input data that was not routinely generated by NZCSM for the period 2014 to mid-2016. For this period, we

therefore configured a NZCSM-like model workflow that was run in hindcast mode, creating NAME III input fields for the

2014 to mid-2016 period.

Both NZLAM and NZCSM are New Zealand specific configurations of the UK Met Office Unified Model (UM) (Davies60

et al., 2005) and use the same semi-implicit semi-Lagrangian dynamical core, called "ENDGame" (Wood et al., 2014), but

they differ in their domain size, horizontal (Fig. S5) and vertical resolutions, as well their scientific configurations. NZLAM

provides meteorological outputs on a 324x324 grid point ≈12 km horizontal resolution with hourly forecast output resolution,

while NZCSM operates at a finer 1200x1350 grid point, ≈1.5 km spatial resolution, generating 30-minute temporal resolution

output. Both models utilise 70 vertical levels, with NZLAM extending to 80 km above the surface and NZCSM to 40 km.65

NZCSM thereby achieves a higher resolution through the boundary layer and lower troposphere. We note that the NZCSM

model from the mid 2016 to mid 2017 period was based on the "pre-ENDGAME" version of the model.

To creata the NZCSM-like meteorological input, UK Met Office Global model analyses were retrieved for 00Z for each day

in the re-run period. A N768 horizontal resolution (approximately 17km at mid-latitudes) UM Global model forecast, running

the GA6.1 science configuration (Walters et al., 2017) was run for 30 hours, outputting at hourly intervals lateral boundary70

condition data for a one-way nested ≈12 km resolution NZLAM-like regional model. This model also used the GA6.1 science

configuration, which was very similar to the operational NZLAM model of the time and was also run for 30 hours, with lateral

boundary condition data generated to drive a one-way nested NZCSM-like ≈1.5 km horizontal resolution regional model. The

science configuration used in this ≈1.5 km resolution model was the mid-latitude Regional Atmosphere 2 (RAL2-M) set-up

favoured by convection-resolving regional UM configurations, featuring minor changes to the RA1-M configuration described75

in Bush et al. (2020). This nesting set-up mirrored the operational nesting of the NZLAM and NZCSM model of the time. Both

regional models were configured to output all necessary data to force a NAME III simulation. To allow for model spin-up,

the first 6 hours of each forecast were ignored when constructing a continuous time series of data from which the NAME III

simulations were run.
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Figure S4. Combined NAME III footprints based on Baring Head and Lauder for each year in 2011-2020 at 13-14 and 15-16 local release

time. 2011-2013 footprints are based on NZLAM while 2014-2020 is based on NZCSM meteorology input.

S3.1 Atmospheric transport model comparison80

In addition to the wind speed and direction (Fig. S7) we also compare the height of measured Planetary Boundary Layer (PBL)

at Lauder with modelled values (Fig. S6). The PBL dataset is based on radiosonde measurements as described in (Steinkamp
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Figure S5. New Zealand’s Topography in the NZLAM and NZCSM model.

Figure S6. Measured (red) and modelled (orange and green) Planetary Boundary Layer (PBL) height at Lauder. Modelled values are based

on 13:00-14 :00 and 15:00-16:00 local time. The measurements are from radiosonde observations and are shown for all available data

throughout the day. Lines represent the smoothed estimates of the measured and modelled data.

et al., 2017). Over or underestimated PBL in the model could lead to further biases in the estimated fluxes. The modelled PBL

heights are lower than the measurements during the whole inversion period, resulting in a shallower PBL. A shallower PBL and

limited vertical mixing could lead to amplified modelled CO2 mole fractions which could reduce the estimated CO2 uptake.85

We have found that all models underestimated the measured PBL.
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Figure S7. Annual modelled and measured wind roses at Baring Head and Lauder.
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Figure S7. Continued. Annual modelled and measured wind roses at Baring Head and Lauder.
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S4 Prior ocean fluxes

The prior oceanic fluxes in our inversion domain were extracted from monthly global open-ocean air-sea CO2 fluxes (Land-

schützer et al., 2016, 2020a). The product from Landschützer et al. (2020a) does not provide fluxes for coastal areas. We

therefore merged the open-ocean fluxes with coastal fluxes calculated from the climatology of ocean surface coastal pCO290

(Landschützer et al., 2020b).

We used year-specific monthly open-ocean CO2 fluxes up to 2019 (Landschützer et al., 2020a) while for year 2020 we

calculated the CO2 fluxes from 2019 pCO2 data following the method from Landschützer et al. (2016):

FCO2 = kw ·SCO2 · (1− fice) · (pCO2 − pCOatm
2 ) (4)

where FCO2
represent the resulting monthly air-sea flux of CO2 in mol C m−2 yr−1, kw refers to the gas transfer velocity of95

CO2 calculated based on (Sweeney et al., 2007):

kw = 0.27 · ( Sc

660
)−

1
2 ·u2 (5)

where Sc represents the dimensionless Schmidt number (Wanninkhof, 1992), estimated from year-specific (2011-2020) ERA5

monthly sea surface temperature (Hersbach et al., 2019) and u is the monthly mean wind speed from year specific hourly

ERA5 wind fields at a height of 10 m above the sea surface (Hersbach et al., 2018). In Eq. 4 SCO2
is the solubility of CO2 in100

seawater calculated according to Weiss (1974) using the same ERA5 temperature fields as for the Sc calculation and annual

climatology salinity fields from CARS (CSIRO Atlas of Regional Seas, (CARS, 2009)), fice is the ice cover. However, since

the flux calculation was only performed for our inversion domain that is ice-free we assume fice = 0, pCO2 is the sea surface

partial pressure taken from Landschützer et al. (2020a) for the coastal fluxes and Landschützer et al. (2016) for the 2020 open-

ocean fluxes while pCOatm
2 represents the partial pressure of atmospheric CO2 estimated from the baseline dry air mixing105

ratio xCO2 at Baring Head and taking into account the water vapor correction according to Dickson et al. (2007):

pCOatm
2 = xCO2 · (Patm,surf −PH2O) (6)

where Patm,surf is the mean sea level pressure from monthly ERA5 fields (Hersbach et al., 2019) and PH2O describes the

water vapour pressure (Weiss and Price, 1980).

The 2019 pCO2 values used for the calculation of the 2020 CO2 fluxes were additionally extrapolated to the year 2020110

based on the 2011-2019 trend of pCO2. The trend was estimated from monthly average pCO2 values inside of the inversion

domain. We used the same method for the calculation of the coastal CO2 fluxes. Since the coastal pCO2 values were based on

climatological data, we also scaled the monthly climatology values based on the open-ocean pCO2 trend.
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S5 Biome-BGCMuSo, calibration for New Zealand pasture systems

We calibrated 18 ecophysiological model parameters for New Zealand pasture systems (“dairy” and “sheep and beef” biomes)115

using eddy covariance (EC) data from five sites across New Zealand, with an additional five sites available for validation. All

sites had at least one full year of data available, and many had three years or more. The parameters were optimized to produce

the best match between observed and modelled weekly mean net ecosystem production (NEP), gross primary production

(GPP), Ecosystem Respiration (ER), evapotranspiration (ET), and 10 cm soil moisture content (SMC) using the PEST software

package: https://dev-sspa-pest.pantheonsite.io/ (Doherty, 2015). Overall, the model achieved a correlation coefficient R2 of120

0.34 and root mean square error (RMSE) of 1.89 g C m−2 day−1 at the calibration sites, and 0.37 and 2.01 at the validation

sites for modelled NEP against observations. However, these metrics varied significantly among sites, and R2 for components

of NEP (GPP and ER) is higher (0.48 and 0.37, respectively). A full description of the calibration methodology and results are

the subject of a forthcoming paper (Keller et al. in prep). Note, in the inversion we are using net ecosystem exchange (NEE)

fluxes which are obtained from NEP fluxes (same as NEE but with opposite sign depending on disciplinary convention).125

The main difference between the “dairy” and “sheep/beef” systems is the intensity of grazing and the use of fertiliser and

irrigation. Dairy farm systems in New Zealand are generally intensely grazed (mean stocking rate of 2.86 cows per hectare

in 2020-21; Livestock Improvement Corporation and Dairy NZ (2021)) and fertilised and/or irrigated as needed. The model

simulated a stocking rate of 3.0 livestock units (LSU) per hectare for dairy at a weight of 420 kg per LSU and 6.0 LSU

per hectare for sheep/beef with weight of 55 kg per LSU. Grazing was simulated by designating one week of grazing and130

leaving the following three weeks idle during spring, summer, and autumn. No grazing occurred during the winter months

(June, July and August). Four different grazing rotations were simulated for each pixel, each offset by one week. Fluxes from

each rotation were then averaged to produce a mean value for the pixel. Nitrogen fertiliser was applied twice per year in

September and March in dairy systems. Irrigation was simulated for dairy systems in areas where data indicates irrigation is

in use (MfE, 2017) . Sheep/beef systems received no fertiliser or irrigation in our simulations. The other Biome-BGCMuSo135

biomes (ungrazed grassland, shrub, and evergreen broadleaf forest, evergreen needleleaf forest) were not parameterized for

New Zealand due to lack of suitable data. Model default parameters were used. Parameter files can be downloaded from the

Biome-BGCMuSo website (https://nimbus.elte.hu/bbgc/). The final monthly contribution of the fluxes are shown in Fig. S8.

S5.1 Land cover

The dataset that was used to determine the land cover type for the prior was derived from the New Zealand Land Cover Database140

(LCDB) v5.0 (Landcare Research, 2020). Each of the LCDB categories was first mapped into five broad categories to construct

the prior (Table S1). The grassland category was further disaggregated into dairy, sheep/beef, or ungrazed subcategories based

on the LUCAS Land Use Map (MfE, 2016) and further analysis (Manderson et al., 2019) that used a fuzzy logic framework

to improve the classification of low- and high-producing grassland and to assign a general farm class (dairy, other livestock,

and ungrazed/not otherwise used for agriculture). The area of each category within each VCSN grid cell was translated into a145

percentage coverage. The land type with the largest percentage was considered the dominant land type and the whole grid cell
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Figure S8. Monthly and annual contribution of the fluxes based on the Biome-BGCMuSo biomes and CenW (top plot) and Biome-BGCMuSo

(bottom plot).

was set to that category. This resulted in 12 categories (Table S2) that were grouped into a final 10 category map following

the categories in Steinkamp et al. (2017) and matched with the Biome-BGCMuSo biomes (dairy pasture, sheep/beef pasture,

ungrazed grassland, shrub, evergreen broadleaf forest (EBF), and evergreen needleleaf forest (ENF)). In our base inversion, the

exotic forest category (i.e., ENF) was modelled using Pinus radiata fluxes from the CenW mode; however, we also performed150

inversion sensitivity tests to quantify the impact of Biome-BGCMuSo ENF on our results.
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Table S1. Land cover category merging and mapping in Biome-BGCMuSo.

LCDB v5.0 category Prior category

MANUKA AND / OR KANUKA

Shrub

SUB-ALPINE SHRUBLAND

MATAGOURI OR GREY SCRUB

MIXED EXOTIC SHRUBLAND

GORSE AND / OR BROOM

FLAXLAND

FERNLAND

LOW-PRODUCING GRASSLAND

Grassland (subcategories: dairy, sheep/beef, ungrazed)

DEPLETED GRASSLAND

HIGH-PRODUCING EXOTIC GRASSLAND

TALL TUSSOCK GRASSLAND

ALPINE GRASS HERBFIELD

GRASS OTHER

EXOTIC FOREST
Exotic forest (Pinus radiata or ENF)

FOREST HARVESTED

BROADLEAVED INDIGENOUS HARDWOODS

Indigenous forest (EBF)DECIDUOUS HARDWOODS

INDIGENOUS FOREST

OTHERS NOT LISTED Other (zero or non-existing prior flux)
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Table S2. Final land cover category merging and mapping.

Prior category Final Category Assigned flux

Shrub Scrub and Shrubland Biome-BGCMuSo v6.1 dairy pasture

Dairy grassland Grassland: Dairy pasture Biome-BGCMuSo v6.1 sheep and beef pasture

Sheep/Beef grassland Grassland: Sheep/Beef pasture Biome-BGCMuSo v6.1 shrub

Ungrazed grass Grassland: Other Biome-BGCMuSo v6.1 ungrazed grassland

Exotic forest Forest: Plantation CenW Pinus radiata

Indigenous forest Forest: Other Biome-BGCMuSo v6.1 evergreen broadleaf forest (EBF)

Cropland Cropland Set to non-existing*

Freshwater vegetation Bare or Lightly-vegetated Surfaces Set to zero*

Saline vegetation Bare or Lightly-vegetated Surfaces Set to zero*

No vegetation Bare or Lightly-vegetated Surfaces Set to zero*

Urban Artificial Surfaces Set to zero*

Water Water Bodies Set to zero*

*Note these categories at not modelled in Biome-BGCMuSo hence we assign a zero flux or set it as non-existing (NaN)

Table S3. Total area of each region and land type proportion in %

Region Artificial Bare or Water Cropland Grassland: Grassland: Grassland: Scrub and Forest Forest Area (m2) Area (ha)

Surfaces Lightly Bodies Dairy Sheep/Beef Other Shrubland Plantation Other

vegetated pasture pasture

Surfaces

1 0.12 0.37 0.0 0.0 7.27 34.61 0.12 3.45 7.64 11.21 20529072611.63 2052907.26

2 3.51 0.15 0.15 0.15 11.11 28.95 0.44 2.63 3.51 11.4 16780887356.77 1678088.74

3 0.38 0.26 3.33 0.51 24.87 38.08 0.0 0.13 4.62 17.95 19072300202.87 1907230.02

4 0.48 0.0 3.85 0.0 20.19 21.63 0.0 0.48 42.79 10.58 5049118787.61 504911.88

5 0.24 0.49 0.57 0.49 1.38 27.12 1.79 4.07 15.72 34.36 29778444837.37 2977844.48

6 0.25 0.0 0.0 0.0 14.32 26.76 0.75 0.5 2.64 34.42 19070144794.56 1907014.48

7 0.52 0.0 0.26 1.03 4.48 63.45 1.12 3.79 3.53 11.64 27296523600.79 2729652.36

8 4.63 0.0 0.46 0.0 0.46 12.5 0.46 8.33 0.46 15.74 5075744524.94 507574.45

9 0.16 1.18 0.08 0.39 2.51 5.25 3.84 0.94 5.56 63.32 29505096893.63 2950509.69

10 0.87 2.51 0.29 2.22 1.74 47.68 14.86 5.79 2.22 7.14 23554739296.96 2355473.93

11 0.0 20.02 0.43 0.0 2.6 6.82 13.96 1.62 0.65 41.88 20895528028.29 2089552.8

12 0.08 1.93 2.17 5.39 8.04 62.3 11.74 0.24 0.88 0.64 27629717909.83 2762971.79

13 0.0 2.43 2.0 0.0 0.3 13.17 17.05 1.7 0.42 41.81 35788733444.43 3578873.34

14 0.0 0.34 6.08 0.0 0.34 80.07 11.82 0.0 0.0 1.35 6523169736.95 652316.97

15 0.14 0.42 0.07 0.0 6.57 68.86 4.87 0.42 4.31 4.31 30510835736.26 3051083.57
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S6 Lateral transport and fjords

Lateral transport, erosion and deposition of organic material can be very important in montane regions and other steeplands

when accompanied by rapid re-establishment of productive vegetation on the disturbed landscape (Stallard, 1998; Berhe et al.,

2018). Episodic events associated with precipitation and tectonic activity induce landslides in the Fiordland/West Coast regions.155

Quantification of sediment flux from landslides(Hovius et al., 1997) has not been extended to carbon, but could be substantial

(Bianchi et al., 2020). However, these processes would not account for similar sink sizes in flatter land with lower rainfall, e.g.,

Southland. Globally, fjords such as those found on the southwest coast of New Zealand are known to be hotspots for organic

carbon buria (Smith et al., 2015). We observe that regions such as Fiordland and Westland (Southern Alps) provide ideal

conditions for erosion and burial as net carbon sinks, expanding on other published work (Scott et al., 2006; Dymond, 2010).160

A critical pre-conditioning of the sink potential is provided by the rapid colonisation of disturbed landslides and debris by the

prolific nitrogen-fixer Coriaria arborea. This species dominates for as long 20-30 years after disturbance, with nitrogen-fixation

estimates ranking among the highest observed internationally (Silvester, 1976). Rapid nitrogen accumulation is expected to

drive optimal photosynthetic rates in Fiordland’s and Westland’s cool, year-round maritime climate (Silvester, 1976), which

are known to exceed those used historically in successional models of New Zealand forest (Hall, 2001). Models such as Biome-165

BGCMuSo can account for nitrogen fixation and elevated nitrogen levels but our simulations do not include land disturbance

and the succession of nitrogen-fixing grasses to mature forest. This leads to a potential bias in carbon fluxes in disturbed

landscapes, missing the rapid accumulation of carbon accompanied by burial. The erosion processes are highly non-linear,

requiring special treatment. Nevertheless, hydrologic scaling models (Scott et al., 2006) or fractal landslide models for erosion

rates (Hovius et al., 1997) could enable correction terms to be incorporated into priors used for Observing System Simulation170

Experiment (OSSE) or final estimation in future studies.

Lateral transport of carbon in rivers in the form of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and

particulate organic carbon (POC) can be substantial (Lauerwald et al., 2023). The flux of DOC from any land area can represent

a localised carbon sink from the atmospheric perspective but may be neutralised if respired following hydrologic transfers to

downstream environments. While a substantial amount of CO2 is emitted to the atmosphere during transport (Lauerwald175

et al., 2023), some of this carbon is exported to coastal systems and the ocean. The recent Australasia regional carbon budget

assessment Villalobos et al. (2023) estimated that rivers over the whole of New Zealand transport on average 5.5 ± 2.6 Tg

CO2 yr−1 of DOC, 4 ± 2.2 Tg CO2 yr−1 POC and 5.1 ± 2.6 Tg CO2 yr−1 DIC (including the flux from weathering) to

estuaries and coastal wetlands. The same study estimated a net flux of 2.2 ± 1.1 Tg CO2 yr−1 from New Zealand’s rivers to

the atmosphere. After further exchange with the atmosphere through coastal vegetation and estuaries, 8.8 ± 15.4 Tg CO2 yr−1180

eventually makes its way to the continental shelves in the ocean. This is not spread evenly over all regions, as some regions

have more river surface area than others, and fluxes in individual catchments and different environments can vary widely.

Other studies have estimated that riverine export of DOC and POC is significant at 4 ± 1.1 Tg CO2 yr−1 and 9.9 ± 3.6 Tg

CO2 yr−1 (Scott et al., 2006), and the majority of this export is happening along the South Island’s West Coast, Southern

Alps and Fiordland (Scott et al., 2006; McGroddy et al., 2008; Dymond, 2010), including certain regions where our results185
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indicate stronger CO2 removal from the atmosphere (Fiordland region -39 ± 10 Tg CO2 yr−1, Fig. 9). These studies suggest

topography, drainage, vegetation type, and lithology are important controls and agree adequately with intensive catchment

scale studies (Moore, 1989).

Fjords and other coastal ecosystems are thought to be overall global carbon sinks. In particular, fjords are important sinks,

absorbing much more carbon per unit area than other coastal and estuarine environments. Globally, fjords comprise about 0.1%190

of the ocean surface area and account for 11% of carbon sequestered into ocean sediment (Smith et al., 2015). The sparse data

suggest that Fiordland’s fjords have some of the highest carbon sequestration rates of any fjords globally (Bianchi et al., 2020).

Using global median estimates (-0.12 kg CO2 m−2 yr−1, Rosentreter et al. (2023)) and an estimated total surface area of 779

km2, New Zealand’s fjords are a sink of -0.097 Tg CO2 yr−1 (Rosentreter et al., 2023; Villalobos et al., 2023). This would

only explain a very small portion of the sink that we infer from the inversion. However, the global average is partly derived195

from measurements taken at high latitudes in Europe and North America, where fjords are mostly or entirely glaciated. There

is evidence that New Zealand fjords have high rates of organic carbon burial (Ramirez et al., 2016) relative to glaciated fjords

in other parts of the world due to vegetation, temperate climate and frequent, heavy rainfall. We expect that CO2 fluxes from

New Zealand’s fjords would be at the higher end of the range of that observed globally, but more local observations are needed

to verify this, and the bottom-up CO2 uptake (Rosentreter et al., 2023; Villalobos et al., 2023) would have to be an order of200

magnitude greater to make a 5% contribution to the observed sink in Fiordland.
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Table S4. Annual prior and posterior regional flux estimates with uncertainties and 2011-2020 average values in units of Tg CO2 yr−1.

Prior Post

Region 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2011-2020 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2011-2020

Fluxes

1 -13.71 -10.95 -4.85 -11.78 -9.01 -12.29 -7.04 -11.75 -8.74 -4.08 -9.42 -12.25 -9.86 -4.04 -11.89 -7.97 -9.4 -6.74 -12.58 -7.55 -4.09 -8.64

2 -8.05 -6.89 -2.83 -7.43 -4.53 -5.55 -3.06 -6.74 -6.17 -2.11 -5.34 -6.38 -5.45 -2.21 -7.14 -3.54 -2.99 -2.43 -6.33 -5.16 -1.97 -4.36

3 -11.78 -12.09 -5.61 -8.36 -7.01 -9.28 -7.5 -10.47 -10.45 -6.68 -8.92 -4.76 -7.75 -3.97 -8.49 1.05 -0.1 -6.88 -9.11 -12.16 -9.35 -6.15

4 -11.07 -11.48 -10.1 -10.92 -9.86 -10.47 -9.97 -10.69 -10.69 -9.35 -10.46 -10.5 -11.17 -9.87 -10.67 -9.63 -10.09 -9.96 -10.39 -10.97 -9.5 -10.28

5 -26.56 -32.51 -27.43 -31.02 -27.08 -26.8 -27.34 -27.82 -28.38 -27.46 -28.24 -22.94 -28.47 -26.51 -29.85 -21.11 -22.04 -25.77 -18.62 -28.87 -30.48 -25.47

6 -8.57 -9.48 -6.72 -4.45 -3.6 -4.01 -6.08 -4.95 -7.6 -5.24 -6.07 1.4 -2.02 -1.63 -1.58 10.74 4.03 -1.93 -4.67 -8.55 -1.58 -0.58

7 -9.0 -10.74 -5.96 -10.75 -1.17 -8.4 -9.6 -9.65 -12.14 -2.78 -8.02 0.92 -6.95 -3.72 -6.36 3.0 -2.43 -4.47 -6.4 -12.65 -6.43 -4.55

8 -0.62 -1.06 -0.41 -1.05 -0.27 -0.26 -0.75 -0.35 -0.57 -0.03 -0.54 0.06 0.05 -0.46 -1.29 -0.03 0.76 0.66 0.38 -0.18 -0.43 -0.05

9 -21.36 -20.1 -17.41 -12.83 -9.39 -10.81 -17.91 -12.59 -11.99 -15.19 -14.96 -32.34 -28.07 -19.83 -25.35 -24.61 -25.58 -31.68 -23.94 -23.39 -18.81 -25.36

10 -4.68 -3.92 -1.91 -1.56 4.49 -4.55 -2.92 -7.41 -2.3 -2.94 -2.77 4.29 2.98 3.17 1.22 5.24 -2.58 -1.95 0.63 8.49 -0.81 2.07

11 -8.69 -8.64 -7.34 -2.78 -6.13 -4.26 -6.93 -2.44 -0.81 -3.84 -5.19 -18.37 -11.15 -9.01 -4.08 -7.52 -13.9 -15.54 -8.39 -14.6 -12.0 -11.46

12 -11.4 -4.19 -1.79 -1.16 3.08 -10.81 -3.27 -7.46 -3.58 -6.12 -4.67 -12.01 -5.21 0.0 -4.54 3.75 -9.67 -11.52 -5.75 -2.02 -11.37 -5.83

13 -8.22 -9.46 -7.41 -0.41 -4.06 -2.47 -6.85 4.54 1.98 -3.95 -3.63 -53.38 -32.04 -22.73 -36.09 -36.92 -53.88 -52.13 -40.76 -32.56 -28.48 -38.9

14 -3.2 -0.44 -0.23 0.94 0.03 -1.49 -0.23 -0.26 -1.29 -0.86 -0.7 -9.75 -6.48 -4.71 -6.69 -4.43 -7.83 -6.73 -9.84 -8.79 -6.18 -7.14

15 -14.59 -8.42 -8.7 -9.22 -3.41 -10.38 -11.17 -7.44 -11.71 -10.39 -9.54 -23.9 -8.47 -15.69 -36.07 -26.89 -23.45 -28.48 -38.95 -17.73 -23.47 -24.31

Uncertainties

1 5.43 5.34 5.16 5.19 5.24 5.56 5.32 5.52 5.44 5.11 5.33 5.37 5.3 5.12 5.16 5.19 5.47 5.26 5.4 5.25 5.05 5.26

2 4.27 4.15 4.07 4.06 4.04 4.19 4.05 4.16 4.15 3.88 4.1 4.2 4.1 4.03 4.02 3.99 4.13 4.0 4.05 4.06 3.79 4.04

3 6.6 6.43 6.4 6.17 6.21 6.45 6.37 6.46 6.48 6.26 6.38 6.32 6.13 6.23 5.85 6.01 6.14 6.15 6.12 6.08 5.77 6.08

4 2.25 2.19 2.17 2.16 2.12 2.2 2.16 2.21 2.21 2.12 2.18 2.2 2.16 2.14 2.12 2.06 2.16 2.1 2.17 2.16 2.07 2.13

5 12.71 12.25 12.51 12.19 12.15 12.45 12.4 12.52 12.56 12.36 12.41 12.38 11.91 12.22 11.86 11.82 11.96 11.86 11.89 12.05 11.88 11.98

6 7.62 7.29 7.55 7.03 7.03 7.15 7.07 7.05 7.19 6.98 7.2 6.54 6.65 6.83 6.47 6.48 6.39 5.94 5.87 5.94 5.3 6.24

7 8.36 8.17 8.23 7.92 7.7 8.02 8.09 8.21 8.21 7.86 8.08 7.47 7.06 7.45 7.42 7.3 6.91 7.03 6.68 7.22 6.67 7.12

8 1.2 1.19 1.24 1.19 1.14 1.18 1.17 1.19 1.18 1.15 1.18 1.02 1.04 1.08 0.93 0.8 0.85 0.82 0.85 0.89 0.82 0.91

9 14.38 13.66 13.8 12.7 12.55 12.86 12.82 12.92 12.55 12.73 13.1 11.0 10.14 10.25 10.72 10.68 9.22 8.39 8.84 7.81 8.45 9.55

10 6.32 6.13 6.29 5.82 5.36 5.85 5.88 6.29 6.01 5.86 5.98 5.67 5.6 5.86 5.55 4.99 5.51 5.37 5.93 5.56 5.33 5.54

11 6.93 6.82 6.89 6.19 6.39 6.3 6.18 6.07 5.77 5.87 6.34 6.16 5.85 6.4 5.06 5.2 5.26 5.0 5.32 4.98 5.0 5.42

12 6.23 5.92 5.8 5.38 5.02 5.89 5.76 6.46 5.98 5.69 5.81 5.24 5.24 5.44 5.06 4.6 5.5 5.12 5.8 5.49 5.04 5.25

13 13.03 12.63 12.8 11.53 11.68 11.45 11.15 10.7 10.34 10.6 11.59 11.1 10.08 11.43 8.38 8.88 9.03 8.16 8.7 8.0 7.79 9.15

14 1.65 1.5 1.46 1.32 1.31 1.46 1.39 1.54 1.51 1.46 1.46 0.87 0.88 1.08 0.93 1.03 0.98 0.91 1.0 0.96 0.88 0.95

15 9.08 8.64 8.64 8.53 8.26 8.6 8.62 8.94 8.87 8.72 8.69 6.78 7.12 7.44 6.98 6.89 6.62 6.34 6.93 6.34 5.92 6.74
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Table S5. Annual prior and posterior regional flux estimates with uncertainties and 2011-2020 average values in units of t C ha−1 yr−1.

Prior Post

Region 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2011-2020 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2011-2020

Fluxes

1 -1.82 -1.45 -0.64 -1.56 -1.2 -1.63 -0.94 -1.56 -1.16 -0.54 -1.25 -1.63 -1.31 -0.54 -1.58 -1.06 -1.25 -0.9 -1.67 -1.0 -0.54 -1.15

2 -1.31 -1.12 -0.46 -1.21 -0.74 -0.9 -0.5 -1.1 -1.0 -0.34 -0.87 -1.04 -0.89 -0.36 -1.16 -0.58 -0.49 -0.39 -1.03 -0.84 -0.32 -0.71

3 -1.68 -1.73 -0.8 -1.2 -1.0 -1.33 -1.07 -1.5 -1.49 -0.95 -1.28 -0.68 -1.11 -0.57 -1.21 0.15 -0.01 -0.98 -1.3 -1.74 -1.34 -0.88

4 -5.98 -6.2 -5.46 -5.9 -5.32 -5.65 -5.38 -5.77 -5.78 -5.05 -5.65 -5.67 -6.03 -5.33 -5.76 -5.2 -5.45 -5.38 -5.61 -5.92 -5.13 -5.55

5 -2.43 -2.98 -2.51 -2.84 -2.48 -2.45 -2.5 -2.55 -2.6 -2.51 -2.59 -2.1 -2.61 -2.43 -2.73 -1.93 -2.02 -2.36 -1.71 -2.64 -2.79 -2.33

6 -1.23 -1.36 -0.96 -0.64 -0.51 -0.57 -0.87 -0.71 -1.09 -0.75 -0.87 0.2 -0.29 -0.23 -0.23 1.54 0.58 -0.28 -0.67 -1.22 -0.23 -0.08

7 -0.9 -1.07 -0.6 -1.07 -0.12 -0.84 -0.96 -0.96 -1.21 -0.28 -0.8 0.09 -0.69 -0.37 -0.64 0.3 -0.24 -0.45 -0.64 -1.26 -0.64 -0.45

8 -0.34 -0.57 -0.22 -0.57 -0.15 -0.14 -0.4 -0.19 -0.31 -0.01 -0.29 0.03 0.03 -0.25 -0.7 -0.01 0.41 0.35 0.2 -0.1 -0.23 -0.03

9 -1.97 -1.86 -1.61 -1.19 -0.87 -1.0 -1.66 -1.16 -1.11 -1.4 -1.38 -2.99 -2.59 -1.83 -2.34 -2.27 -2.36 -2.93 -2.21 -2.16 -1.74 -2.34

10 -0.54 -0.45 -0.22 -0.18 0.52 -0.53 -0.34 -0.86 -0.27 -0.34 -0.32 0.5 0.35 0.37 0.14 0.61 -0.3 -0.23 0.07 0.98 -0.09 0.24

11 -1.13 -1.13 -0.96 -0.36 -0.8 -0.56 -0.9 -0.32 -0.11 -0.5 -0.68 -2.4 -1.45 -1.18 -0.53 -0.98 -1.81 -2.03 -1.1 -1.91 -1.57 -1.5

12 -1.12 -0.41 -0.18 -0.11 0.3 -1.07 -0.32 -0.74 -0.35 -0.6 -0.46 -1.19 -0.51 0.0 -0.45 0.37 -0.95 -1.14 -0.57 -0.2 -1.12 -0.58

13 -0.63 -0.72 -0.56 -0.03 -0.31 -0.19 -0.52 0.35 0.15 -0.3 -0.28 -4.07 -2.44 -1.73 -2.75 -2.81 -4.11 -3.97 -3.11 -2.48 -2.17 -2.96

14 -1.34 -0.18 -0.1 0.39 0.01 -0.62 -0.1 -0.11 -0.54 -0.36 -0.29 -4.08 -2.71 -1.97 -2.8 -1.85 -3.28 -2.81 -4.11 -3.68 -2.58 -2.99

15 -1.3 -0.75 -0.78 -0.82 -0.3 -0.93 -1.0 -0.66 -1.05 -0.93 -0.85 -2.14 -0.76 -1.4 -3.22 -2.4 -2.1 -2.55 -3.48 -1.59 -2.1 -2.17

Uncertainties

1 0.72 0.71 0.69 0.69 0.7 0.74 0.71 0.73 0.72 0.68 0.71 0.71 0.7 0.68 0.69 0.69 0.73 0.7 0.72 0.7 0.67 0.7

2 0.69 0.67 0.66 0.66 0.66 0.68 0.66 0.68 0.67 0.63 0.67 0.68 0.67 0.65 0.65 0.65 0.67 0.65 0.66 0.66 0.62 0.66

3 0.94 0.92 0.92 0.88 0.89 0.92 0.91 0.92 0.93 0.9 0.91 0.9 0.88 0.89 0.84 0.86 0.88 0.88 0.87 0.87 0.82 0.87

4 1.21 1.19 1.17 1.17 1.14 1.19 1.17 1.19 1.19 1.14 1.18 1.19 1.17 1.15 1.15 1.11 1.17 1.14 1.17 1.17 1.12 1.15

5 1.16 1.12 1.15 1.12 1.11 1.14 1.14 1.15 1.15 1.13 1.14 1.13 1.09 1.12 1.09 1.08 1.1 1.09 1.09 1.1 1.09 1.1

6 1.09 1.04 1.08 1.0 1.01 1.02 1.01 1.01 1.03 1.0 1.03 0.94 0.95 0.98 0.93 0.93 0.91 0.85 0.84 0.85 0.76 0.89

7 0.84 0.82 0.82 0.79 0.77 0.8 0.81 0.82 0.82 0.79 0.81 0.75 0.71 0.74 0.74 0.73 0.69 0.7 0.67 0.72 0.67 0.71

8 0.64 0.64 0.66 0.64 0.61 0.63 0.63 0.64 0.64 0.62 0.63 0.55 0.56 0.58 0.5 0.43 0.46 0.44 0.46 0.48 0.44 0.49

9 1.33 1.26 1.28 1.17 1.16 1.19 1.19 1.19 1.16 1.18 1.21 1.02 0.94 0.95 0.99 0.99 0.85 0.78 0.82 0.72 0.78 0.88

10 0.73 0.71 0.73 0.67 0.62 0.68 0.68 0.73 0.7 0.68 0.69 0.66 0.65 0.68 0.64 0.58 0.64 0.62 0.69 0.64 0.62 0.64

11 0.9 0.89 0.9 0.81 0.83 0.82 0.81 0.79 0.75 0.77 0.83 0.8 0.76 0.83 0.66 0.68 0.69 0.65 0.69 0.65 0.65 0.71

12 0.61 0.58 0.57 0.53 0.5 0.58 0.57 0.64 0.59 0.56 0.57 0.52 0.52 0.54 0.5 0.45 0.54 0.51 0.57 0.54 0.5 0.52

13 0.99 0.96 0.98 0.88 0.89 0.87 0.85 0.82 0.79 0.81 0.88 0.85 0.77 0.87 0.64 0.68 0.69 0.62 0.66 0.61 0.59 0.7

14 0.69 0.63 0.61 0.55 0.55 0.61 0.58 0.65 0.63 0.61 0.61 0.36 0.37 0.45 0.39 0.43 0.41 0.38 0.42 0.4 0.37 0.4

15 0.81 0.77 0.77 0.76 0.74 0.77 0.77 0.8 0.79 0.78 0.78 0.61 0.64 0.66 0.62 0.62 0.59 0.57 0.62 0.57 0.53 0.6
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Table S6. Annual prior and posterior regional flux estimates with uncertainties and 2011-2020 average values in units of g C m−2 yr−1.

Prior Post

Region 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2011-2020 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2011-2020

Fluxes

1 -182.14 -145.41 -64.38 -156.47 -119.74 -163.24 -93.59 -156.13 -116.13 -54.24 -125.15 -162.71 -131.02 -53.62 -157.9 -105.85 -124.91 -89.59 -167.14 -100.28 -54.37 -114.74

2 -130.91 -111.96 -46.07 -120.74 -73.58 -90.19 -49.66 -109.5 -100.26 -34.29 -86.72 -103.68 -88.57 -35.93 -116.07 -57.5 -48.54 -39.49 -102.82 -83.84 -32.09 -70.85

3 -168.45 -172.81 -80.17 -119.58 -100.27 -132.71 -107.32 -149.71 -149.48 -95.49 -127.6 -68.13 -110.88 -56.81 -121.42 15.05 -1.38 -98.42 -130.3 -173.9 -133.73 -87.99

4 -597.98 -619.91 -545.69 -589.82 -532.47 -565.28 -538.49 -577.46 -577.59 -504.9 -564.96 -567.21 -603.2 -533.39 -576.24 -520.06 -544.93 -538.21 -561.32 -592.48 -513.06 -555.01

5 -243.22 -297.74 -251.26 -284.14 -248.02 -245.48 -250.35 -254.82 -259.88 -251.45 -258.64 -210.11 -260.7 -242.83 -273.39 -193.3 -201.88 -235.99 -170.55 -264.43 -279.19 -233.24

6 -122.52 -135.54 -96.05 -63.67 -51.49 -57.35 -86.94 -70.84 -108.73 -74.93 -86.81 20.08 -28.92 -23.31 -22.54 153.61 57.67 -27.61 -66.81 -122.2 -22.63 -8.27

7 -89.91 -107.33 -59.56 -107.46 -11.67 -83.95 -95.91 -96.38 -121.31 -27.77 -80.12 9.18 -69.44 -37.17 -63.57 29.99 -24.25 -44.68 -63.9 -126.38 -64.28 -45.45

8 -33.56 -57.16 -22.21 -56.6 -14.71 -13.87 -40.14 -18.81 -30.74 -1.48 -28.93 3.2 2.76 -24.56 -69.55 -1.37 40.87 35.33 20.19 -9.79 -23.33 -2.63

9 -197.47 -185.82 -160.95 -118.55 -86.8 -99.91 -165.54 -116.36 -110.81 -140.38 -138.26 -298.97 -259.5 -183.32 -234.31 -227.48 -236.48 -292.85 -221.28 -216.21 -173.84 -234.42

10 -54.15 -45.37 -22.07 -18.01 52.01 -52.63 -33.81 -85.83 -26.58 -34.01 -32.04 49.64 34.54 36.67 14.1 60.62 -29.84 -22.53 7.25 98.24 -9.33 23.94

11 -113.45 -112.81 -95.83 -36.24 -79.95 -55.56 -90.47 -31.8 -10.61 -50.08 -67.68 -239.73 -145.48 -117.61 -53.25 -98.1 -181.46 -202.87 -109.52 -190.6 -156.59 -149.52

12 -112.48 -41.39 -17.69 -11.44 30.38 -106.67 -32.26 -73.62 -35.35 -60.43 -46.1 -118.52 -51.44 0.04 -44.82 37.04 -95.45 -113.69 -56.76 -19.92 -112.23 -57.58

13 -62.66 -72.1 -56.45 -3.1 -30.94 -18.83 -52.19 34.63 15.06 -30.07 -27.66 -406.75 -244.13 -173.23 -275.01 -281.37 -410.58 -397.25 -310.58 -248.1 -217.0 -296.4

14 -133.83 -18.36 -9.52 39.31 1.42 -62.18 -9.57 -11.05 -54.02 -36.1 -29.39 -407.67 -270.99 -197.02 -279.63 -185.19 -327.57 -281.27 -411.42 -367.71 -258.2 -298.67

15 -130.41 -75.27 -77.77 -82.38 -30.49 -92.8 -99.83 -66.46 -104.66 -92.9 -85.3 -213.64 -75.67 -140.21 -322.45 -240.35 -209.64 -254.53 -348.19 -158.52 -209.79 -217.3

Uncertainties

1 72.18 70.98 68.6 69.01 69.67 73.82 70.67 73.37 72.32 67.94 70.86 71.35 70.36 68.05 68.51 68.93 72.72 69.94 71.7 69.74 67.12 69.84

2 69.45 67.49 66.14 66.04 65.6 68.09 65.87 67.54 67.47 63.11 66.68 68.22 66.69 65.46 65.38 64.8 67.12 65.03 65.81 66.05 61.57 65.61

3 94.44 91.88 91.53 88.18 88.79 92.29 91.06 92.44 92.73 89.5 91.28 90.38 87.62 89.02 83.69 85.93 87.83 87.94 87.49 86.9 82.48 86.93

4 121.29 118.55 117.45 116.69 114.37 119.03 116.91 119.47 119.29 114.3 117.74 118.71 116.66 115.47 114.68 111.43 116.87 113.52 117.21 116.71 111.54 115.28

5 116.42 112.16 114.57 111.63 111.32 114.02 113.6 114.66 115.02 113.23 113.66 113.41 109.09 111.89 108.62 108.26 109.51 108.59 108.86 110.39 108.81 109.74

6 108.97 104.27 107.94 100.49 100.58 102.25 101.07 100.87 102.86 99.89 102.92 93.6 95.03 97.72 92.53 92.73 91.45 84.88 83.92 85.01 75.76 89.26

7 83.56 81.58 82.21 79.09 76.91 80.12 80.81 82.05 82.06 78.51 80.69 74.59 70.57 74.39 74.11 72.98 68.99 70.21 66.75 72.18 66.6 71.14

8 64.27 63.9 66.41 63.94 61.11 63.17 62.69 63.92 63.65 61.54 63.46 54.78 56.15 58.29 49.81 42.79 45.83 44.13 45.72 47.66 44.04 48.92

9 132.94 126.27 127.53 117.38 116.02 118.87 118.52 119.43 115.96 117.63 121.06 101.68 93.7 94.79 99.11 98.75 85.24 77.58 81.73 72.2 78.12 88.29

10 73.15 70.92 72.87 67.38 62.09 67.72 68.05 72.87 69.58 67.79 69.24 65.68 64.83 67.91 64.3 57.73 63.79 62.15 68.62 64.36 61.72 64.11

11 90.4 89.0 89.99 80.75 83.42 82.26 80.71 79.21 75.32 76.59 82.77 80.45 76.31 83.48 66.0 67.84 68.62 65.23 69.47 65.05 65.3 70.77

12 61.5 58.46 57.28 53.15 49.52 58.16 56.84 63.81 59.04 56.15 57.39 51.76 51.76 53.66 49.98 45.43 54.28 50.55 57.25 54.19 49.76 51.86

13 99.31 96.26 97.56 87.83 89.04 87.25 84.93 81.51 78.77 80.8 88.33 84.58 76.81 87.1 63.83 67.7 68.85 62.2 66.3 60.94 59.33 69.76

14 68.87 62.84 60.88 55.13 54.74 60.91 57.95 64.57 63.23 61.0 61.01 36.44 36.99 45.34 38.7 43.17 40.84 38.19 41.64 40.32 36.79 39.84

15 81.18 77.25 77.26 76.25 73.85 76.88 77.02 79.9 79.28 77.91 77.68 60.64 63.69 66.49 62.37 61.57 59.18 56.63 61.98 56.65 52.88 60.21
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Table S7. Annual prior and posterior regional flux estimates with uncertainties and 2011-2020 average values in units of kg CO2 m−2 yr−1.

Prior Post

Region 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2011-2020 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2011-2020

Fluxes

1 -0.67 -0.53 -0.24 -0.57 -0.44 -0.6 -0.34 -0.57 -0.43 -0.2 -0.46 -0.6 -0.48 -0.2 -0.58 -0.39 -0.46 -0.33 -0.61 -0.37 -0.2 -0.42

2 -0.48 -0.41 -0.17 -0.44 -0.27 -0.33 -0.18 -0.4 -0.37 -0.13 -0.32 -0.38 -0.32 -0.13 -0.43 -0.21 -0.18 -0.14 -0.38 -0.31 -0.12 -0.26

3 -0.62 -0.63 -0.29 -0.44 -0.37 -0.49 -0.39 -0.55 -0.55 -0.35 -0.47 -0.25 -0.41 -0.21 -0.45 0.06 -0.01 -0.36 -0.48 -0.64 -0.49 -0.32

4 -2.19 -2.27 -2.0 -2.16 -1.95 -2.07 -1.97 -2.12 -2.12 -1.85 -2.07 -2.08 -2.21 -1.96 -2.11 -1.91 -2.0 -1.97 -2.06 -2.17 -1.88 -2.04

5 -0.89 -1.09 -0.92 -1.04 -0.91 -0.9 -0.92 -0.93 -0.95 -0.92 -0.95 -0.77 -0.96 -0.89 -1.0 -0.71 -0.74 -0.87 -0.63 -0.97 -1.02 -0.86

6 -0.45 -0.5 -0.35 -0.23 -0.19 -0.21 -0.32 -0.26 -0.4 -0.27 -0.32 0.07 -0.11 -0.09 -0.08 0.56 0.21 -0.1 -0.24 -0.45 -0.08 -0.03

7 -0.33 -0.39 -0.22 -0.39 -0.04 -0.31 -0.35 -0.35 -0.44 -0.1 -0.29 0.03 -0.25 -0.14 -0.23 0.11 -0.09 -0.16 -0.23 -0.46 -0.24 -0.17

8 -0.12 -0.21 -0.08 -0.21 -0.05 -0.05 -0.15 -0.07 -0.11 -0.01 -0.11 0.01 0.01 -0.09 -0.26 -0.01 0.15 0.13 0.07 -0.04 -0.09 -0.01

9 -0.72 -0.68 -0.59 -0.43 -0.32 -0.37 -0.61 -0.43 -0.41 -0.51 -0.51 -1.1 -0.95 -0.67 -0.86 -0.83 -0.87 -1.07 -0.81 -0.79 -0.64 -0.86

10 -0.2 -0.17 -0.08 -0.07 0.19 -0.19 -0.12 -0.31 -0.1 -0.12 -0.12 0.18 0.13 0.13 0.05 0.22 -0.11 -0.08 0.03 0.36 -0.03 0.09

11 -0.42 -0.41 -0.35 -0.13 -0.29 -0.2 -0.33 -0.12 -0.04 -0.18 -0.25 -0.88 -0.53 -0.43 -0.2 -0.36 -0.67 -0.74 -0.4 -0.7 -0.57 -0.55

12 -0.41 -0.15 -0.06 -0.04 0.11 -0.39 -0.12 -0.27 -0.13 -0.22 -0.17 -0.43 -0.19 0.0 -0.16 0.14 -0.35 -0.42 -0.21 -0.07 -0.41 -0.21

13 -0.23 -0.26 -0.21 -0.01 -0.11 -0.07 -0.19 0.13 0.06 -0.11 -0.1 -1.49 -0.9 -0.64 -1.01 -1.03 -1.51 -1.46 -1.14 -0.91 -0.8 -1.09

14 -0.49 -0.07 -0.03 0.14 0.01 -0.23 -0.04 -0.04 -0.2 -0.13 -0.11 -1.49 -0.99 -0.72 -1.03 -0.68 -1.2 -1.03 -1.51 -1.35 -0.95 -1.1

15 -0.48 -0.28 -0.29 -0.3 -0.11 -0.34 -0.37 -0.24 -0.38 -0.34 -0.31 -0.78 -0.28 -0.51 -1.18 -0.88 -0.77 -0.93 -1.28 -0.58 -0.77 -0.8

Uncertainties

1 0.26 0.26 0.25 0.25 0.26 0.27 0.26 0.27 0.27 0.25 0.26 0.26 0.26 0.25 0.25 0.25 0.27 0.26 0.26 0.26 0.25 0.26

2 0.25 0.25 0.24 0.24 0.24 0.25 0.24 0.25 0.25 0.23 0.24 0.25 0.24 0.24 0.24 0.24 0.25 0.24 0.24 0.24 0.23 0.24

3 0.35 0.34 0.34 0.32 0.33 0.34 0.33 0.34 0.34 0.33 0.33 0.33 0.32 0.33 0.31 0.32 0.32 0.32 0.32 0.32 0.3 0.32

4 0.44 0.43 0.43 0.43 0.42 0.44 0.43 0.44 0.44 0.42 0.43 0.44 0.43 0.42 0.42 0.41 0.43 0.42 0.43 0.43 0.41 0.42

5 0.43 0.41 0.42 0.41 0.41 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.4 0.41 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

6 0.4 0.38 0.4 0.37 0.37 0.37 0.37 0.37 0.38 0.37 0.38 0.34 0.35 0.36 0.34 0.34 0.34 0.31 0.31 0.31 0.28 0.33

7 0.31 0.3 0.3 0.29 0.28 0.29 0.3 0.3 0.3 0.29 0.3 0.27 0.26 0.27 0.27 0.27 0.25 0.26 0.24 0.26 0.24 0.26

8 0.24 0.23 0.24 0.23 0.22 0.23 0.23 0.23 0.23 0.23 0.23 0.2 0.21 0.21 0.18 0.16 0.17 0.16 0.17 0.17 0.16 0.18

9 0.49 0.46 0.47 0.43 0.43 0.44 0.43 0.44 0.43 0.43 0.44 0.37 0.34 0.35 0.36 0.36 0.31 0.28 0.3 0.26 0.29 0.32

10 0.27 0.26 0.27 0.25 0.23 0.25 0.25 0.27 0.26 0.25 0.25 0.24 0.24 0.25 0.24 0.21 0.23 0.23 0.25 0.24 0.23 0.24

11 0.33 0.33 0.33 0.3 0.31 0.3 0.3 0.29 0.28 0.28 0.3 0.29 0.28 0.31 0.24 0.25 0.25 0.24 0.25 0.24 0.24 0.26

12 0.23 0.21 0.21 0.19 0.18 0.21 0.21 0.23 0.22 0.21 0.21 0.19 0.19 0.2 0.18 0.17 0.2 0.19 0.21 0.2 0.18 0.19

13 0.36 0.35 0.36 0.32 0.33 0.32 0.31 0.3 0.29 0.3 0.32 0.31 0.28 0.32 0.23 0.25 0.25 0.23 0.24 0.22 0.22 0.26

14 0.25 0.23 0.22 0.2 0.2 0.22 0.21 0.24 0.23 0.22 0.22 0.13 0.14 0.17 0.14 0.16 0.15 0.14 0.15 0.15 0.13 0.15

15 0.3 0.28 0.28 0.28 0.27 0.28 0.28 0.29 0.29 0.29 0.28 0.22 0.23 0.24 0.23 0.23 0.22 0.21 0.23 0.21 0.19 0.22
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Figure S9. Spatial distribution of the prior fluxes averaged for each year between 2011 and 2020.
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Figure S10. Regional posterior fluxes averaged for each year between 2011 and 2020.

21



Figure S11. Spatial distribution of the posterior fluxes by scaling the prior flux maps with the regional posterior estimates and averaged for

each year between 2011 and 2020.
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Figure S12. Monthly (left) and annual (right) CO2 prior (black) and posterior (green) net air-land flux estimates for all land inversion regions.
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Figure S13. Mean North-Island annual seasonal (summer – December to February, autumn – March to May, winter – June to August, spring

– September to November) CO2 prior (a) and posterior (c) net air-land flux estimates. Subplots b) and d) show the 2011-2020 average values

for each season. The first and last season is removed from the plot and calculation due to insufficient number of months to calculate the

seasonal average.
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Figure S14. Mean annual seasonal (summer – December to February, autumn – March to May, winter – June to August, spring – September

to November) CO2 prior (a) and posterior (c) net air-land flux estimates for the land regions. Subplots b) and d) show the 2011-2020 average

values for each season. The first and last season is removed from the plot and calculation due to insufficient number of months to calculate

the seasonal average.
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Figure S14. Continued.
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Figure S14. Continued.
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Figure S14. Continued.
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Figure S15. Time-series of the transport model sensitivity test for each inversion region.
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Figure S16. Time-series of the sensitivity tests for New Zealand (top plot) and difference relative to the base inversion results (bottom plot).

A detailed description of the setup in each test can be found in Tabel 3.
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Figure S17. Diurnal cycle test results for the land inversion regions.
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Figure S18. Mean annual seasonal (summer – December to February, autumn – March to May, winter – June to August, spring – September

to November) CO2 prior (a) and posterior (c) net air-land flux estimates for the North (left) and South Island (right) from the diurnal cycle

test. Subplots b) and d) show the 2011-2020 average values for each season. The first and last season is removed from the plot and calculation

due to insufficient number of months to calculate the seasonal average.

Figure S19. Timseries of the prior fluxes (black), diurnal cycle (green) and base inversion (red) posterior fluxes.
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Figure S20. Timeseries of Monthly mean Degrees of Freedom (DOFs) for each inversion region.
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Figure S21. Posterior annual covariance matrix for individual years in 2011-2020.
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