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Abstract. Sea ice coverage is a key indicator of changes in the global climate. Estimates of sea ice area and extent are primarily

derived from satellite measurements of surface microwave emissions, from which local sea ice concentration (SIC) is derived.

Passive microwave (PM) satellite sensors remain the sole global product for understanding SIC variability, but may be sensitive

to consistent biases. In part I we explored these in a multi-sensor intercomparison of optical, passive microwave, and lidar data,

showing that a new , independent SIC product, the linear ice fraction (LIF), derived from ICESat-2 (IS2)laser altimetry, could5

be used to quantify and understand PM SIC biases. Here in part II, we develop and assess the reliability of larger-scale estimates

of SIC from IS2 LIF. We develop an LIF emulator that samples optical imagery using the distribution of possible orientation

angles for IS2 to understand the limitations of this one-dimensional product. We find that the error qualities of the LIF product

are improved when combining multiple IS2 tracks, and discuss intrinsic but correctable biases that emerge in the combination of

multiple IS2 measurements. We use these to develop a monthly LIF product, covering up to 54
::
46% of the Arctic sea ice cover,10

with
:::::
which

:
has similar-or-better error qualities compared to PM data,

:::::::
subject

::
to

:::::::::::
uncertainties

::
in

::::::
surface

:::::
type

:::::::::::
classification

::::::::
associated

::::
with

::::::
surface

:::::::
melting

:::
and

::::::::::
differences

:::::::
between

::::
IS2’s

:::::
weak

:::
and

::::::
strong

:::::
beams. We then discuss pathways to

:::::::::
improving

:::
LIF

::::
and

:
enhancing PM-SIC data with IS2 LIF in the future.

1 Introduction

Sea ice concentration (SIC), the fraction of an ocean area covered by sea ice, is critically important for understanding polar15

climate variability. SIC is estimated globally using passive microwave (PM) satellites at both hemispheres, with PM-derived

SIC the standard for assessing sea ice state and change (Meredith et al., 2022). Increasingly, SIC products are assimilated into

state-of-the-art forecast and climate models at both hemispheres (Mazloff et al., 2010; Sakov et al., 2012; Massonnet et al.,

2015; Verdy and Mazloff, 2017; Fritzner et al., 2019; Zhang et al., 2021), making potential improvements in global SIC obser-

vations important for accurate climate analysis and prediction. Local errors in PM-SIC are observed to have a compensating20

effect when integrated over the Arctic or Antarctic, thus hence the impact of algorithmic uncertainty or bias on estimates of

total (Arctic or Antarctic) sea ice area is
::
are

:
estimated to be less than 1%

::::
small, even in summer (Notz, 2015; Meier and Stewart,

2019; Kern et al., 2020). Still, no independent, unsupervised,
::::::
remote

::::::
sensing

:
alternatives to PM exists

:::
exist

:
for measuring SIC

from local to global scales
:::
that

::
do

:::
not

::::::
require

::::::::::
information

:::::
about

:::
the

::::
PM

:::::::
signature

:::
of

:::
sea

::
ice.
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In Part I of this two-part study (Buckley et al., 2024), we compared daily retrievals from state-of-the-art PM sensors and25

PM-SIC algorithms against high-resolution optical data from NASA’s operation IceBridge
::::::::
Operation

::::::::
IceBridge

::::::
(OIB). We

calculated SIC from the optical imagery by applying a surface type classification algorithm (Buckley et al., 2020) to the

images, defining each pixel as open water, sea ice, or melt pond, and determined a sea ice concentrtion
:::::::::::
concentration for each

400 m by 600 m image. We found that PM-SIC products demonstrated consistent positive biases (1-6%) over compact sea

ice, potentially because of the presence of small crack features in the sea ice mosaic that cover a limited portion of the overall30

surface and are challenging to capture with large PM grid sizes (6.25 to 25 km cells),
:::::::

similar
::
to

:::::::
findings

::
in

::::::
related

:::::::
studied

::
of

:::::::
PM-SIC

::::
and

::::::
optical

::::
data

:::::::::::::::
(Kern et al., 2019). However, these fractures may contribute greatly to air-sea exchange. This

intercomparison showed a wide uncertainty range for PM-SIC summer months (May-September), because of the well-known

challenges in retrieval of SIC over ponded sea ice. Part I includes details of these biases and limitations of PM products.

We showed sea ice surface type retrievals from
:
in
::::
part

:
I
::::
that NASA’s ICESat-2 satellite (IS2) can be used to develop a linear35

SIC estimate, which we call the linear ice fraction (LIF), that
:::::
which has reduced or similar bias compared to PM over a set

of imagery coincident with IS2 overflights
::
in

::::::
Arctic

:::::
winter

:::::::::
conditions. IS2 is a photon-counting laser altimeter with 0.7 m

along-track sampling, a 10-meter
::
an

::::::::
11-meter footprint, and high skill in differentiating sea ice and open water in non-summer

months (Farrell et al., 2020; Kwok et al., 2020, 2021). IS2 can resolve Arctic leads at the meter scale (Petty et al., 2021; Kwok

et al., 2021), especially in winter, when leads are the primary source of air-sea exchange. Importantly,
:::
The

:::::::::
geographic

::::::
extent40

::
of

:::
LIF

::::
can

::::::
depend

:::
on

:::::::
PM-SIC

:::::::
because

::::::
ATL07

::::::::
segments

:::
are

:::::
only

::::::::
produced

::
in

::::::
regions

::::::
where

::::
SIC

::::
from

:::
the

:::::::
NSIDC

:::::::
Climate

::::
Data

::::::
Record

:::::::::::::::::
(Meier et al., 2021)

::::::
exceeds

:::::
15%.

:::
LIF

:::::
itself

::
is

:::::::
derived

:::::::::
exclusively

:::::
from

:::
the

:::::::::::
classification

::
of

:
IS2

::::::
photon

::::::
returns

::
(at

::
a

:::::::::
wavelength

:::
of

::::::
532nm)

::::
and does not rely on the PM signature of sea ice or water

:::::::::
microwave

::::::::
emissions

:::::::::::
(wavelengths

:::
on

::
the

:::::
order

:::
of

:
1
::::

cm)
::
or

:::::::
related

:::::::::
algorithms,

:
and therefore has independent

:::
and

:::::::
separate

:
uncertainties from PM-SIC. Yet these

uncertainties are largely unconstrainedand could potentially be much larger than PM products
::::
Such

:::::::::::
uncertainties

:::
are

::::::::
presently45

::::::::::::
unconstrained,

:::
and

::::
thus

:::::::::
potentially

:::::
larger

::::
than

:::::::
PM-SIC

::::::::
products,

:::
the

:::::
focus

::
of

:::
this

:::::
work.

Here we explore error bounds with IS2 LIF, and the possibility of using multiple consecutive IS2 passes to build a gridded

LIF product on monthly timescales. We first discuss the uncertainties that arise in
:::
will

:::::
arise

:::::
when

:::::::
building

:
an IS2-derived

gridded product. To understand them, we develop an IS2 emulator which we apply to the optically classified sea ice data

explored in Buckley et al. (2024) in Sec. 2.1, using it to derive bounds on how unsupervised errors in SIC retrieval decay as a50

function of the number of
::::::::::
intersections

::
of

:::
the

:::
sea

:::
ice

::::::
surface

:::
by IS2passes.

By using the error bounds obtained from emulation, in Sec. 3 we build a monthly Arctic LIF product that covers roughly 60%

of Arctic seasonal sea ice extent, and explore differences between it and a set of commonly-used PM-SIC products at different

resolutions. Over these areas, PM-SIC is approximately 3-4% higher in winter
::::::::::
non-summer

:
months, with LIF estimating

approximately twice as much open water than PM-SIC products, similar to what was obtained from optical comparisons.55

Finally, we explore prospects for improving LIF skill, and how, either in single IS2 passes or as a gridded product, it could be

used to augment existing PM-SIC data in Sec. 4.
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2 ICESat-2 and the Linear Ice Fraction

ICESat-2 (IS2 ) is a 6-beam laser altimeter with high precision and skill in retrieving sea ice properties (e.g Kwok et al., 2019a).

In this work, and in Buckley et al. (2024), we use
::::::
Version

::
6

::
of

:
the sea ice height product, ATL07, which generates along-60

satellite-track “segments" from collections of sequential 150 photons
:::::::::::::::
(Kwok et al., 2023). Based on the statistical properties

of such photons retrievals, each segment is identified with a surface type (water, ice, or cloud covered) (Kwok et al., 2019b).

These segments are provided in locations where the local daily NSIDC-CDR sea ice concentration exceeds 15% and their

length averages ∼15 m for the 3 strong beams and ∼60 m for the 3 weak beams (Kwok et al., 2019a).

As detailed in Buckley et al. (2024), for
::
For

:
any collection of measured IS2 segments, we define the IS2 linear ice fraction65

(LIF) as:

LIF = 100×
::::

length of ice segments
length of all surface segments

. (1)

:::
We

:::::::
represent

:::
the

::::
LIF

::
as

:
a
::::::::::
percentage

::
for

::::::::::
consistency

::::
with

::::::
typical

:::::
usage

::
of

::::
SIC

::::
data.

:
The details of the ATL07 segment type

classification can be found in the Algorithm Theoretical Basis Document Kwok et al. (2019a) and we follow the preprocessing

methods in Horvat et al. (2020b). We exclude all cloud segments, sections with fewer than two segments within 1 km along-70

track, and all segments over 200 m long. Although LIF is calculated with a high precision instrument and not subject to the

passive microwave biases in SIC determination, we note other independent sources of uncertainty.

U1: Classification uncertainty The construction of LIF relies upon the IS2 ATL07 classification of along-track segments of

the ice-ocean surface as being ice or sea water. Uncertainty in this classification
:::
two

::::
types

::
of

:::::
open

:::::
water:

:::::::::
“specular"

:::::
leads,

:::
and

::::::
“dark"

:::::
leads.

:::::::::
Uncertainty

::::
and

:::::
errors

::
in

::
the

::::::::
ice-water

::::::::::::
discrimination, which is higher in summer Tilling et al. (2020); Farrell et al. (2020)75

, introduces the potential for
::
due

::
to

:::
the

::::::::
presence

::
of

::::::::
meltwater

::
on

:::
the

:::
ice

::::::
surface

::::::::::::::::::::::::::::::::::::::::::::::
(Tilling et al., 2020; Farrell et al., 2020; Koo et al., 2023)

:
,
::::
could

::::
lead

::
to

:
systematic error in LIF calculations.

U2: Orientation uncertainty The relative orientation of near-linear features in the sea ice mosaic is unknown with respect

to the satellite path. While the local azimuth of the IS2 satellite is constrained as a function of latitude (see Supporting

Figure S1
:::
Fig.

:
1
:

and Sec. 2.1), the orientation of sea ice features is not. This can distort the fraction of the observed80

surface that is ice or open water if the alignment of cracks and overflights
:::
IS2

::::::
ground

:::::
tracks

:
is correlated (Rothrock and

Thorndike, 1984; Horvat et al., 2020a; Hell and Horvat, 2024).

U3: Coverage uncertainty: PM satellites cover the entire Arctic approximately once per day and are not influenced by

clouds
::::::
satellite

::::::::
products

:::::
yield

::::
daily

::::
SIC

::::::::::::
observations,

::::
even

::
in

::::::
cloudy

:::::::::
conditions. IS2, however, makes approximately

15 orbits each day, with all six beams spanning a region 25 km wide
::
its

:::
six

::::::
beams

:::::::
covering

::
a
::::::
region

::::::::::::
approximately

:::
6.685

:::
km

:::::
across, and its photons do not reach the sea ice surface through cloud

:::::::
optically

:::::
thick

::::::
clouds. IS2 cannot be relied

upon to produce specific measurements of the sea ice surface at any one location over the short
::
at

:::
the

::::
daily

::
or

::::::::::
twice-daily

repeat time of PM satellites, and therefore gridded products may
:
.
:::::::
Gridded

::::::::
products

:::
can

::::
only

::::::::
therefore

:
be formed by

averaging temporally intermittent IS2 samples
:::
over

::::::
longer

::::::
periods

::::
than

:::
the

::::
daily

:::
or

:::::::::
twice-daily

:::
PM

::::::
repeat

::::::::
timescale.

3



Improving classification uncertainty (U1) is a significant area of ongoing research with
::
an

::::::::
important

::::
area

::
of

:::::::
research

::::::
within90

::
the

:
IS2 (Petty et al., 2021). As it pertains to LIF , in

::::::
science

:::::
team

::::::::::::::::::::::::::::::::::::::::::
(Petty et al., 2021; Koo et al., 2023; Liu et al., 2025)

:
.
::::
This

:::::
source

:::
of

::::::::::
uncertainty

::
is

:::
not

:::
the

:::::
focus

:::
of

::::
this

:::::
work

:::
but

:::::::::::
constraining

::
its

:::::::
impact

::
on

::::::::
LIF-SIC

:::::::::::
comparisons

::
is

:::::::::
important

:::
for

:::::::::::
understanding

:::
the

::::::
quality

::
of

::::
LIF

::::::::
estimates.

::
In Buckley et al. (2024), we explored U1 by intercomparing IS2 overflights and PM-

SIC measurements over four coincedent
:::::::::
coincident high-resolution optical images. The present classification scheme in ATL07

version 7
:
6
:
yields single-pass LIF (LIF0 :1

) values similar or better in their estimation of SIC than PM-SIC products (overall95

XX%). The three beams from the single pass of ICESat-2 -
:::::

with
:
a
:::::
single

:::::::::
overflight

::
of

:::
IS2

:
over an image produce a

::::::
leading

::
to

::
an

:::::::
average 2.4% bias, while the average PM bias

::::
with

:::::::
PM-SIC

:::::
biases

:
over the same area is 3.75% Buckley et al. (2024). Yet

::::
areas

::
of

:::::
2.9%

::
or

::::::
greater,

::::
and

::::::::
averaging

:::::
3.8%

:::::::::::::::::
Buckley et al. (2024).

:::::
Here

:
a
:::::::::
“crossing"

:::::
refers

::
to

:::
the

::::::::::
independent

::::::::
sampling

::
of

:::
the

:::
sea

::
ice

:::::::
surface

::
by

::::
one

:::
IS2

:::::
beam,

::::::::
whereas

::
an

::::::::::
“overflight"

:::::
refers

::
to

::
a

::::::
general

::::::::
sampling

::
of

:::
the

::::::
surface

:::
by

:::
the

:::
IS2

:::::::
satellite

:
-
::::
this

::::
leads

::
to

::
6

:::::::::
“crossings"

:::
by

:::
the

:::::
three

::::
weak

::::
and

::::
three

::::::
strong

::::::
beams.

:::::::
Because

:::
the

:::::::::
azimuthal

:::::
angles

::
of
:::::

beam
::::::::
crossings

:::
are

:::::::
heavily100

:::::::::
constrained

:::
as

:
a
:::::::
function

:::
of

::::::
latitude

::::
(see

::::
Fig.

:::
1),

:::
we

:::::::
consider

::::
each

:::::
beam

::
in
:::

an
::::::::
overflight

:::
as

::
an

::::::::::
independent

::::::::
sampling

:::
of

:::
the

::::::
surface,

::::
and

:::::
below

::
in

::::
Sec.

:
4
:::
we

::::::::
consider

:::::::::
differences

:::::::
between

:::::
weak

:::
and

::::::
strong

::::::
beams.

::::
Still,

:
even when IS2 classification is “perfect"(according to ,

:::
by

::::::::
sampling

:::
the

::::::
“true" classification data from the optical

imagery ), error associated with U2 from a single beam IS2 pass limits the best case error - in the selected imagery examinedin

Buckley et al. (2024), this was approximatdly
:::::
along

:::
the

::::::
ATL07

:::::::::
footprints,

:::
the

:::::::::
“best-case"

:::::
error

::
is 1.0

:
%

:::
in

:::
the

::
set

:::
of

:::::::
imagery105

::::::::
examined.

:::::
Thus

:::
the

:::::::::
uncertainty

:::
U1

:::::::::
introduces,

::
in

:::
this

:::::::
selected

:::
set

::
of

::::::::
imagery,

:
a
::::
bias

::
of

::::::::::::
approximately

::::::
1.4%.

::
In

:::
this

:::::
case,

:::
the

:::
1.0% . Because the

:::::::::
“best-case"

::::
error

::
is
:::
the

::::::::::
uncertainty

:::
U2,

::::::
which

::
is

::::::
related

::
to

:::
the

:::::::::
incomplete

::::::::
sampling

::
of

:::
the

::::
sea

::
ice

:::::::
surface

:::
due

::
to

:::
the

::::::::::::::
one-dimensional

::::::::
coverage

::
by

:::
the

::::
IS2

::::::
ground

::::::
tracks,

::
as

::::
well

::
as

:::
the

::::::::
unknown

:::::::
relative orientation of IS2 overflights

and crack features
::::::
ground

:::::
tracks

:::
and

:::::::::
geometric

:::::::
features

::
of

:::
the

:::
sea

:::
ice

::::::
mosaic.

:

::::
Since

:::
the

:::::::::
orientation

::::
and

:::::::
coverage

:::
of

::
an

::::
area

::
of

:::
sea

:::
ice is a priori random, repeat measurements can help to reduce

::::::::
crossings110

::
of

:::
the

::::
same

::::::
region

:::::
should

::::::
reduce

:::
the

::::
error

:::::::::
associated

::::
with

:::
the

:::::::::
uncertainty

:
U2by sampling a broader variety of sea ice geometric

variability. Yet sea ice motion can alter .
:::::::::
However,

:::
sea

:::
ice

:::::::
dynamic

:::
and

:::::::::::::
thermodynamic

:::::::::
variability

:::
can

:::::::
change the makeup of

sea ice in a region over the time period in
::
the

:::
sea

::::
ice

::::::
surface

::
in

::
a
::::::::
specified

::::
grid.

::::
The

::::::
repeat

::::
time

::
of

::::
IS2

::::::
ground

::::::
tracks

::
is

::
91

:::::
days,

:::
and

:::
the

:::::::::
frequency

::::
with

:
which IS2 would return. A compromise is necessary

::::
orbits

::::
will

:::::::
intersect

::
a

:::::
given

:::
grid

::::::
varies

::::
with

::::::
latitude

::::
and

:::
can

::
be

::::::
several

:::::
days.

::::::::::
Combining

:::::::
repeated

:::
and

::::::::::::
unsupervised

:::
IS2

:::::::::
overflights

::
at

:::::::
different

:::::
times

::
to

:::::
form

::
an

::::
LIF115

::::::
product

::::::::
therefore

::::
will

::::::::
introduce

::::::::::
uncertainty

:::
U3

::::::::
associated

::::
with

::::::::
unknown

:::::::::
coverage.

:::::
When

:::::::
building

::
a
:::::::
gridded

:::
LIF

::::::::
product,

::::
some

:::::::::::
compromise

::
is

:::::::
therefore

:::::::
needed between incorporating more repeat tracks and therefore

:
(reducing U2and the temporal

resolution of any gridded product, while still accounting for the fact that reducing the temporal resolution does not guarantee

increased repeat tracks
::
),

:::::::::::
incorporating

:::::
more

:::::::
variable

:::
ice

::::::::::
(increasing U3. The focus of our development of a gridded LIF

productwill not be on eliminating classification uncertainty. We hope to produce a product that
::
),

:::::
while

::::::::::
maintaining

:
a
::::::
useful120

:::::::
temporal

:::::::::
resolution

::
of

:::
the

::::::
gridded

:::::::
product.

:

::
In

:::
this

::::::
study,

:::
we

:::::::::
endeavour

::
to encompasses the largest sea-ice-covered-area as possible while still minimizing error U2.

To do this
::::::
evaluate

:::::
how

::::
such

:
a
:::::::

product
::::
can

::
be

:::::
built,

:
we build an IS2 emulator, which simulates IS2 passing over

::
the

:::::
same

optically-classified sea ice , which we will use to investigate LIF error bounds
:
as

::::
was

::::::::
examined

:::
in

:::::::::::::::::
Buckley et al. (2024)

:
.
:::
We

4



:::
use

:::
this

::::::::
emulator

::
to

:::::::::
investigate

::
the

::::::::
statistics

::
of

:::
U2 as a function of overflight

:::::::
crossing number in Sec. 2.1. To address

::::::::
minimize125

U3, we note that lower temporal resolution allows for more areas to be sampled sufficiently by IS2 although care must be taken

to ensure that the underlying sea ice comparison is appropriate between PM-SIC samples and IS2 samples. We discuss
:::::
design

:
a
:::::::
monthly

:::::::
product

:::
that

::::
only

::::::::
provides

::::
data

::
in

::::
areas

::::
with

:::::::
limited

::::::::::
intra-month

::::::::
variability

::
in

::::
SIC

::::::
derived

:::::
from

:::
PM

::::::::
satellites,

::::
and

::::
detail

:
the requirements of this product in Sec. 3

:::::
when

:::::::::
comparing

:::
the

::::::
gridded

::::
LIF

::::
data

::
to

:::::::
PM-SIC

:::::::
datasets.

2.1 Error bounds on IS2-SIC from
::::::::::
Estimating

::::::::::::::::::
ground-track-related

::::::::::
orientation

:::::::::::
uncertainty

::::
(U2)

::
in

::::
LIF

:::::
using130

emulation

To understand orientation uncertainty U2, we build an IS2 emulator, schematically shown in Fig. 3
:
2 over an example OIB

image. The emulator code is provided publicly at Horvat (2024b) (see Code and Data Availability). We describe the emulator

in detail below, but in summary, for each image we build a series of synthetic single-beam overflights
::::::::
crossings that match the

known orientation of IS2 reference ground tracks (RGTs) at the image location. The surface is then intersected with a number135

of such appropriately-oriented tracks, and LIF is calculated for each along-track intersection. We apply this technique to the

full set of 70,000+ optically-classified images described in Buckley et al. (2024). These images are 17,000 scenes from the

operation icebridge
:::
OIB

:
summer campaign in July 2016 and July 2017, and 53,000 scenes from the winter campaign in March

and April 2018. Using this extensive dataset we can investigate how LIF error changes with the number of passes and latitude.

We first identify each optically-classified image with its corresponding latitude. The distribution of RGT azimuths (angles140

with respect to local North) varies as function of latitude alone and is specified according to the IS2 91-day repeat cycle. Thus

at each latitude, we identify the distribution of possible RGT azimuths from the IS2 Technical Specifications (Neumann et al.,

2019), with the probability distribution shown in Fig. 1(a). We sample from this distribution at each latitude using inverse

transform sampling to obtain a distribution of RGT orientations for a Monte-Carlo-style emulation of the LIF computation. For

most latitudes, the RGT azimuth distribution has approximately only two possible directions (Fig. 1b), though because of the145

increased track density, the distribution widens approaching the pole (compare the azimuth PDF at 87N (red) to 70N (black)).

Fig. 2 shows the application of the emulator to an
::::::::
emulation

:::::::::
procedure

:::
and

::::::::
statistics

:::::::
obtained

:::::
using

:::
the

:::::::
emulator

::::::
applied

::
to
::
a

:::::
single image from the optically-classified dataset used in Buckley et al. (2024), an image with

:
.
:::
The

:::::::::
particular

:::::
image

::::::
shown

::
in

::
the

::::::
Figure

::::
was

:::::::
acquired

::
on

:::::
April

::
7,

::::
2018

:::::
north

::
of

:::
the

:::::::
Beaufort

:::
Sea

::
at

::::::::
75.51◦N,

::::::::
159.3◦W

:::
and

:::
has a sea ice concentration of 92%.

Given an azimuthal
::
We

::::
first

::::
take

:
a
::::::
sample

::::
from

:::
the

::::::::::
appropriate

::::
RGT

:::::::
azimuth

::::::::::
distribution

:::
for

:::
this

:::::::
latitude,

:::::
which

::
at

:::
this

:::::::
latitude150

::
are

:::::::::::::
approximately

::
at

:::::
8.75◦

:::
and

::::::
−9.1◦

::::
from

:::
due

::::::
North.

:::
For

:::::
each angle, we select a

::::
then

::::::::
randomly

:::::
select

:
a
::::::::::::
corresponding

:
“tie

point" in the image (red dots, a), and draw a straight-line synthetic RGT (SRGT)
:::::::
crossing

:
through that tie point at the specified

orientation angle (black lines). We then
::
For

:::::
each

::::
such

::::::::
synthetic

::::::
ground

::::
track

::::::::
(SGTk),

:::
we compute the length of ice-covered

points
::::
LI,k:

and ice-free pointsin the image that are intersected by the SRGT, storing
:
,
::::
LO,k::

it
::::::::
intersects,

::::
and

::::
store

:
them as a

function of each SRGT crossing
:::
the

::::
SGT

:
(Fig. 2b, blue and grey lines). This process is repeated to develop a series of SRGTs155

distributed according to the known IS2 RGT orientations for each image. We evaluate M=100 total crossings for each image,

though in practice any number is possible. For any SRGT, we can compute LIF0 as the fraction of “overflown" ice points to

overflown ice or ocean points for any individual SRGT (red dots, Fig. 2c). Because the classified imagery is provided on an

5
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Figure 1. Direction of IS2 transit with respect to a line of longitude (satellite azimuth) as a function of latitude. (a) Probability distribution

of azimuthal angle as a function of latitude for all Arctic IS2 RGTs. (b) Probability distribution for latitudes 70N (black), 80N (blue), or 87N

(red).

equal-area grid, we simply count the number of ice and ocean points overflown by the synthetic RGT
:::::::::
intersected

::
by

:::
the

:::::
SGT

when evaluating the along-track lengths. In application to real data (
:::::
When

::::::
applied

::
to

::::
real

:::
IS2

::::
data

::::
(see Eq. 1 , and applied in160

Buckley et al. (2024),
:::
and

::::
Sec.

::
3

::::::
below),

:::
we

::::::::
compute

:::
the

:::
LIF

:::
by

::::::::
weighing

::::::
ATL07

::::::::
segments

:::
by

::::
their

::::::
length.

::::
We

:::::
repeat

::::
this

::::::
process

::::::
M=100

:::::
times

:::
for

::::
each

::::::
image.

::::::
Every

::
of the LIF is computed by weighting each segment by its length. To recreate the

process of observing the LIF in reality, we evaluate LIFn, which is the cumulative sum of ice points divided by the cumulative

sum of all ice points
::
M

::::::
unique

:::::
SGTs

:::
has

:::
its

::::::::::::
corresponding

::::::::::::
single-crossing

::::
LIF,

::::::
which

:::
for

:::::
image

:
i
:::
we

::::
term

:::::::
LIFi,1 :::

(red
:::::
dots,

:::
Fig.

::::
2c).

::::::
Values

::
of

::::
LIF1::::

vary
:::::::::::
significantly

:::::
given

::
the

::::::::
complex

::::::::
geometry

::
of

:::
the

:::::
scene

:::
and

::::::::::
distribution

::
of

:::::::
possible

:::
tie

:::::
points

::::
and165

:::::::::
orientation

::::::
angles.

::::
This

::::::::::::
single-crossing

::::::::::
uncertainty for n SRGTs (solid black line).

A priori, there is significant variability in LIF0 measured by any one SRGT. Such single-pass error for individual images

was what was examined
:::
the

::::::
subject

::
of

:::::::
analysis

:::
for

::
a

::
set

:::
of

::::::::::::
high-resolution

:::::::
images in Buckley et al. (2024). For

::::
Here

:::
for the

example image (Fig. 2a), while the mean difference in LIF0 from
::::::
(across

::
all

::::::
SGTs)

::::::::
difference

::::::::
between

::::
LIF1:::

and
:

the true SIC

across all 100 SRGTs is -1.7%, the standard deviation is ± 13.55%. These different LIF0 measurements are scattered as red170

dots in (c). On pass 8 (red line,
:::
Fig.

::
2a), for example, the SRGT intersects almost entirely with a

::::
SGT

::::::::
intersects

::
a

::::
large

:
region

6
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Figure 2. Example application of IS2 emulator to a classified DMS image from IceBridge
:::
OIB. (a) Classified optical image from Operation

Icebridge
:::
OIB. Blue points are water, grey points are ice. Black lines are synthetic IS2 RGTs, which pass through randomly-generated tie

points (red dots)
::
at

::
the

:::::
angle

::::::::
distribution

:::::::::
appropriate

::::
from

:::::
Figure

::
1. The highest-bias SRGT

:::::
leading

::
to
:::
the

::::
most

::::::
extreme

::::
bias is shown as a

red line. (b) Total
:::
The

::::
total length of image

:
all

:::::
pixels

:
sampled (blue) compared to

::
and

:::
the

::::
total

:::::
length

::
of ice points

::::
pixels

:
sampled (grey)

for each SRGT crossing in (a). (c) Single-pass LIF (LIF0:1
) estimates from SRGT data

::::
each

::::::
crossing

:
in (b) (red dots), and

:::
with

:::::::::
cumulative

LIFn derived from cumulatively
::
by integrating the SRGT passes in the order in

:::::::
crossings

::::
from

:
(b)

::
in

::::
order (solid black line)compared to

:
.

:::
The true image SIC (

:
is

::::
given

::
as
::

a blue horizontal line). (d) Mean LIFn bias from true SIC
::
The

:::::
mean (black line) and standard deviation

(shaded region) across
:
of
:::
the

:::::
LIFn:::

bias
::::

from
::::

true
:::
SIC

:::::
(black

::::
line),

::::::::
evaluated

::::
using

:
all

::::::
possible permutations of SRGTs in

:::::::
crossings

::::
form

(a)
::
at

::::::::
cumulative

:::
step

::
n.

:::
Red

:::
line

::
is

:::
B∗

i ,
:::
the

:::::::
“best-case

::::
bias"

::::
after

:::::::
sampling

:::
all

::::::
possible

:::::::
crossings.

:::
For

:::
this

::::::
image,

:::::::::
B∗

i ≈ 0.8%

7



of open water, recording an LIF0 :1:
of just 75.1% (not shown in (c)). This high variance for single-passes is what necessitates

an accumulation of multiple SRGTs in an gridded

:::
The

::::::::
potential

::::
high

:::::::
variance

::
in

::::
LIF

::::::::
measured

::::
from

:::::
single

::::::::
crossings

:::
of

::
the

:::
ice

:::::::
surface

:
is
::::::::::
uncertainty

:::
U2,

::::
and

::::::::::
necessitates

:::
the

:::::::
inclusion

:::
of

:::::::
multiple

::::::::
crossings

::
in

::
an

:::::::
ultimate

::::
LIF product. To facilitate an understanding of how many intersections might be175

required to obtain a suitable estimate of SIC, we first define an optimal
:::::::::
understand

:::
the

::::::::::
relationship

:::::::
between

:::::::
crossing

:::::::
number

:::
and

:::
LIF

:::::
bias,

::
we

:::::::::
investigate

:::
the

:::::::::::
convergence

::
of

::::
LIF

:::::
values

:::::::
towards

::
an

:::::::::
“optimal" LIF for each image, LIF ∗

i , where

LIF ∗
i ≡ lim

n→∞
LIFn.

where LIFn is the LIF formed using
::::
given

:::
its

::::::
latitude

:::
and

:::
the

::::::::
preferred

:::::::::
orientation

::
of
::::
IS2

:::::
RGTs.

:::::
With

:
a
:::
set

::
of

:::
M

:::::
SGTs,

:::::
there

::
are

::::
M !

:::::::
different

:::::::::::
permutations

::
of

:::
the

:::
set

::
in

::::::
which

:::
the

:::::
SGTs

:::
can

::
be

:::::::
applied.

:::
At

:::::::
crossing

:::::::
number nconsecutive intersections of180

image i. Because the orientation of SRGTs can be correlated to the geometric features of a surface, LIF∗ is not necessarily

equal to the SIC. Thus we define the optimal bias, Bi = LIF ∗
i −SIC, which is the best-case U2 error in LIF for each

individual image. Below (see Fig. 3) we show Bi is tyically small with a near-zero mean across all classified imagery.
:
,

::::
there

:::
are

:::::::::::::

(
M
n

)
= M !

n!M−n! ::::::
unique

:::::::
possible

::::
SGT

::::::
choices

:::::
from

:::
this

:::::
initial

:::
set

::::
that

::::
could

:::::
yield

::
an

::::
LIF

:::::::
estimate.

::::::
Given

::
an

::::::
image,

::
i,

:::::::
crossing

::::::
number

::
n,

::::
and

::::::
ordered

:::
list

:::
of

::::
SGT

::::::
indices

:::
K,

:::
we

:::::
define

:::
the

::::
LIF

::
as:

:
185

The progression from LIF0 to Bi is path-dependent. While any suitably dense set of SRGTs will approach LIF ∗, this

progression is not monotonic. For example, accumulating across the SRGTs ordered as in (c, black line) yields an estimate

LIF8 that is 2.2% larger than the true SIC, although the difference from the true SIC is less than 1.9% for n > 8 and Bi is just

0.8%. Altering the order in which the SRGTs are accumulated can yield a faster or slower progression towards Bi. We can

make use of the emulator to constrain two components of the overall uncertainty U2:190

LIFi,n,K = 100×

∑
k∈K

LI,k∑
k∈K

LI,k +LO,k

:::::::::::::::::::::::::::::

(2)

Associated with differences between image geometries on convergence to Bi :
It

::
is

:::
not

::::::::
practical

::
to

::::::
explore

:::
the

::::::
entire

:::::
phase

::::
space

:::
of

::
all

:::::::
possible

::::
SGT

::::::::
crossings

:
-
::::::
instead

:::
for

::::
each

:::::
image

:::
we

:::::
select

::
a

::
set

::
of

::
P

::::::
unique

::::
sets

::::::
formed

::::
from

:::
the

::::
SGT

:::
list

::
of

::::::
length

:::
M ,

::
by

::::::::
sampling

::::
with

::::::::::
replacement

::
to
:::::
form

:::
sets

::::
Pi,k::

of
:::::
SGT

::::::
indices. Associated with the path-dependent convergence to Bi.

As SRGTs are randomly drawn, any permutation of SRGTs is equally likely and both the expected error at crossing n, and195

the variability in that error, can be quantified by exploring a range of paths to Bi. For each image , i, we generate a large set

of estimators of LIFi,n,k, where k is any of the possible orderings of the M SRGTs of length N , sampled with replacement .

Sampling without replacement leads to a convergence of each permutation to Bi as all SRGTs are accumulated. By sampling

with replacement, we form a bootstrap estimate of U2b, and one
:::::::
bootstrap

::::::::
estimates

:::
of

::::
LIF

:::::::
statistics

:
that can be deployed

::::::
applied in an operational context, where the number of RGT intersections will be limited. We define

::::
when

:::::
fewer

::::::::
crossings

::::
may200

::
be

::::::::
available.

:::::::
Without

::::
loss

::
of

:::::::::
generality,

:::
we

:::
use

::::
the

::::
same

:::
set

::
of

:::::::
indices

:::
for

::
all

:::::::
images

::
(as

::::
the

::::::::
individual

:::::
SGTs

:::
are

:::::::::
randomly

:::::::
sampled

::
in

::::
each

:::::::
image),

:::
and

::::
drop

:::
the

:
i
::::::::
subscript

:::::
from

::
P ,

::::::::
Pi,k = Pk.

:::::
Then

:::
for

::::
each

:::::::
crossing

:::::::
number

:::::::::
n ∈ [0,M ],

::::
and

:::
for

::::
each

::::::::
k ∈ [1,P],

:::
we

:::::
define

:::
the

::::
LIF

:::
as,

8



Ei,n,k ≡LIFi,n,k−SICi,= 100×

n∑
j=1

LI,Pk(j)

n∑
j=1

LI,Pk(j) +LI,Pk(j)

=
Length of ice points for the first n crossings in SGT permutation k
Length of all points for the first n crossings in SGT permutation k

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)

the error in SIC for image i after accumulating n crossings under SRGT orderingk. For
:::::
where

::
in

:::
this

::::::::
notation

:::::
Pk(j)::

is
:::
the205

:::
j-th

:::::
index

::
in

:::
the

:::
k-th

:::::
SGT

:::
list.

:::::
Each

::::::::
LIFi,n,Pk::

is
::::
also

::::::::
identified

::::
with

:
a
::::
bias

:::::
value,

:

Bi,n,k = LIFi,n,k −SIC.
:::::::::::::::::::::

(4)

::::
With

:::::::::
M = 100,

:::
we

:::::
select

::
a

::::
total

:::::::
number

::
of

::
P

::::::
unique

:::::
SGT

::::
lists,

::::
with

:::::::::
P = 1000

:::
for

:
each image -

::::
and

::::::::
therefore

:
a
:::

set
:::

of

::::::::::::::::
|P|×M = 100,000

::::::::
different

::::::::
estimates

::
of

::::
LIF,

:::::::
varying

:::
the

:::::::
crossing

:::::::
number

:::
and

::::
SGT

::::::::
ordering.

:::
In

::::
total

::::::
applied

::
to

:::
the

:::
70,we

sample M = 100 SRGTs from the distribution of RGTs at the image latitude (Figure 1b). From these, we generate P = 400210

ordered LIF estimates of length N = 100 by sampling with replacement from the SRGTs
:::
225

::::::::::
individually

::::::::
classified

:::::::
images,

::
we

:::::
have

:
7
::::::
billion

::::::::
emulated

:::
LIF

:::::::::::
calculations.

:::
For

:
a
:::::
given

::::::
image

:::
and

:::::::
crossing

:::::::
number,

:::
we

:::
use

:::
an

::::::
overbar

::
to

::::::
denote

:::
the

:::::::
average

:::
over

:::
all

::::
SGT

::::::::
replicates

::::
(the

::::
lists

::
of

::::
SGT

:::::::
indices).

::::
For

:::::::
example,

::
in
::::::
image

:
i
::::
after

::
n

::::::::
crossings,

:::
we

::::::
define

:::::::::
Bi,n =Bn::

as
:::
the

:::::
mean

::::
bias,

:::
and

:::::
Si,n

:::
the

:::::::
standard

::::::::
deviation

::
of

::::::::
LIFi,n,k :::::

across
:::
the

::
P

::::::::
replicates. For each image

::
we

::::::
define

:::
the

::::::::
“optimal"

::::
LIF,

::::::
LIF ∗

i ,

:::
that

::
is

:::::::
obtained

::
as

:::
the

::::::::
bootstrap

:::::
mean

::::
LIF

::::
using

:::
all

:::
M

:::::
RGTs,

:
215

LIF ∗
i ≡ LIFi,M,k = LIF i,M ,

::::::::::::::::::::::::
(5)

::::
From

:::
the

::::::::
“optimal

:::::
LIF",

:::
we

::::
also

:::::
define

:::
the

::::::::::::
corresponding

::::::::
“optimal

::::
bias", then, we have P ×N = 40,000 representations

of the LIF. Defining a mean over permutations by an overline, Figure 3(d) shows the evolution of Ei,n for the example scene

in (a), as well as the standard deviation ±Si,n (filled lines) computed across the bootstrapped samples at each intersection

number, which asymptotes to a value Si. For the image in (a) , the rapid convergence of Ei,n to Bi is expected given that Ei,1220

is the mean of P LIF0 measurements. There is a slower convergence of Si,n to a value of Si = 2.1% - the uncertainty U2b

associated with sampling variability for this image

B∗
i ≡ LIF ∗

i −SIC,
::::::::::::::::

(6)

:::::
which

:::
has

:
a
::::::::
bootstrap

::::::::
standard

::::
error

::::::::::::::
Ei = Si,M/

√
P .

:::
We

::::
treat

:::
B∗

i ::
as

:::
the

:::::::::
“best-case"

:::
U2

::::
error,

:::::::
obtained

:::
by

::::::::
compiling

::::::::
statistics

::::
from

:::
the

:::::
1000

::::::::
replicates

::
of

::::
100

::::::::
crossings

:::
of

:::
the

:::::::
surface.

:::
For

:::
the

::::::
image

::
in

::::::
Figure

::
2,

:::
the

:::::
value

:::
of

:::
B∗

i ::
is

:::::
0.8%,

:::
the

::::::::
standard225

:::::::
deviation

:::
of

::::::::
individual

:::::::::
estimates

::
of

:::
B∗

i ::
is

::::::::::::
Si,M = 0.6%,

:::
and

:::
the

:::::::::
bootstrap

:::::::
standard

:::::
error

::
in

::::
B∗s

::
is

::::::
0.02%.

:::
We

::::::::
examine

:::
the

:::::::
statistics

::
of

:::::
these

::::::::
quantities

:::::
across

:::
all

::::
OIB

::::::
images

:::::
below

::::
and

::
as

::::::
Figure

:
3.

We next explore the statistics of Bi
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2.2
::::::

Bounds
:::
on

::::::::::
orientation

::::::::::
uncertainty

::
as

::
a

:::::::
function

::
of

::::::::
crossing

:::::::
number

:::::::
Because

::::
each

::::::::
replicate

::
is

::::::::
different,

:::
the

::::::::::
progression

::::
from

:::
the

:::
set

:::
of

:::::::::::::
single-crossing

:::::
LIFs,

::::::::
LIFi,1,k,

::
to

::::::::::::::::
LIFi,1,M ≈ LIF ∗

i ::
is230

::
as

::::
well.

::::
This

::::::
means

::::
that

::::
even

:::::
when

:::
the

::::::::
best-case

::::
bias

:::::::
B∗

i ∼ 0,
::::
there

::
is

::::::::::
uncertainty

::
at

::::::
smaller

::::::
values

::
of

::
n

:::::::::
associated

::::
with

:::
the

::::::
variable

:::::::::::
convergence

::
to

:::
the

::::::::
best-case

::::
error.

::::
For

:::::::
example,

:::::
when

:::::::::::
accumulating

::::
SGT

:::::::
lengths

::
as

::::::
ordered

::
in
::::::
Figure

::::
2(b),

:::
we

::::::
obtain

:
a
::::::::
sequential

:::
list

::::::
LIFn ::::::::

(dropping
:
i and Ei,n, as well as the sampling uncertainty Si,n::

k)
::::::
values

::::::
plotted

::
as

:
a
:::::
black

:::
line

::
in

::::
Fig.

:::
2c.

:::
The

:::::
mean

:::::::
absolute

::::
bias

::
is

:::
less

:::::
than

::::
2.5%

::::
after

::::
four

:::::::::
crossings,

:::
and

::::
less

::::
than

:::::
2.0%

::::
after

:
8
:::::::::
crossings.

::::::::
However

:::
the

::::::::
approach

::
to

::::
LIF∗

::::::
differs

::::::::
depending

:::
on

:::
the

:::::::
replicate,

::::
and

::
we

::::
can

:::::::
estimate

:::
the

:::::::::
uncertainty

::
in

:::
the

:::::::
estimate

::
of

:::::
LIF ∗

:::
by

:::::::::
examining

:::
the

:::::::
standard235

:::::::
deviation

:
across the set of

::::::::
replicates

:::
for

::::
each

::
n,

::::
Sn.

::
In

:::::
panel

:::
(d)

::
of

::::::
Figure

::
2,

:::
we

:::
plot

::::
both

:::
the

::::::::
bootstrap

:::::
mean

::::
bias

:::
Bn::::::

(black

::::
line)

:::
and

:::
the

::::::::
envelope

:::::
±Sn :::::::

(shaded
::::::
curve).

::::
Here

:::
we

::::::::
visualize

:::
the

:::::::::::
convergence

::
to

:::::::::::
SM = 0.6%.

::::
For

::::::
smaller

::
n
:::::
there

:::
can

:::
be

:::::::::
substantial

::::::::
variability

::
in

::::
Sn:

::
for

::::::::
example

:
it
:::::
takes

:
5
::::::::
crossings

:::
for

:::::
2.5%

::
to

::
lie

:::::::
outside

::
of

:::
the

::::::::::
interquartile

:::::
range

::
of

:::::
Bn,k.

:

:::
The

::::::::::
uncertainty

::::::::
associated

:::::
with

:::
the

::::::::
unknown

::::::::
sampling

::::
order

:::::::
declines

:::::
with

::::::::
increasing

::
n
::::
and

::
for

::
a
:::::
given

:::::
image

:::
we

:::::::
capture

:
it
:::::
using

::::
the

:::::::
standard

::::::::
deviation

:::::::
among

:::::::::
replicates,

::::
Si,n.

:::
In

:
a
::::::::

practical
::::::::::

application,
::::

we
:::
will

:::::
want

:::
to

:::::
know

::::
after

::::
how

::::::
many240

::::::::::
intersections

::::::
would

::::
yield

:::
an

:::::::
accurate

::::::::
depiction

::
of

:::
the

::::
SIC,

:::::
given

::::
that

:::
we

::
do

:::
not

:::::
know

:::
the

::::::::::
underlying

:::
set

::
of

:::::
image

:::::::::
crossings.

::::
This

:::
will

:::
be

::::::::::
represented

::
by

:::
the

::::::::
expected

:::::
value

::
of

::::
Si,n::::::

across
::
as

:::::
many

::::::
scenes

::
as

::::::::
possible.

:::
We

::::
take

:::
the

:::
set

::
of

::
all

::::
OIB

:::::::
images

:::
and

:::::
apply

:::
the

::::
same

::::::::
sampling

:::::::::::
methodology

::
as

:::::::
detailed

:::::
above

::
in
:::
the

::::::::
example

::
of

:::::
Figure

::
2.
::::
This

:::::
leads

::
to

:::::
more

::::
than

:
7
::::::
billion

::::
total

:::::::
replicate

:::::::
LIFi,n,k:::

and
::::::

biases
::::::
Bi,n,k,

::::::
which

:::::
allows

:::
us

::
to

:::::::
compute

:::::::
700,000

:::::::::
sequential

::::::::
estimates

::
of

::::::::::
uncertainty

::
in

:::
the

::::
LIF

::::
Si,n

::
as

:
a
:::::::
function

:::
of

:::::::
crossing

:::::::
number,

:::::::::
associated

::::
with

::::::
70,000

::::::::::::
best-case-bias

::::::::
estimates

:::
B∗

i .
:::::
Here

::
we

::::
will

::::::
denote

::
an

:::::::
average

::::::
across245

::
all

::::::
images

:::::
using

:::::
angle

:::::::
brackets

::
-
::
in

:::
this

::::::::
notation,

::::::::::::::
⟨B∗

i ⟩=−0.06%
::
is

:::
the

:::::
mean

::::::::
best-case

::::
bias

:::::
across

:
all images. In Fig.

:::
The

::::::::
histogram

::
of

::::::::
best-case

:::::
biases

:::
B∗

i ::
is

:::::
shown

:::
as

:::::
Figure

:
3(a,b)we show the distribution of Bi and Si for all images considered here,

with interquartile ranges as solid black vertical lines . For purposes of calculating Si,we exclude imagery where the true SIC is

less than 10%or greater than 99%. The mean long-term bias Bi is -0.07 ± 1.4
::
),

:::::
which

::::::
shows

::
the

::::::::::::::
near-zero-mean

::::::::::
distribution,

::
as

:::::::
expected

:::::
given

::::
that

:::
the

:::::::::
orientation

::::::::
between

:::::
SGTs

::::
and

:::
sea

:::
ice

:::::::
features

::
is

:
a
:::::
priori

::::::::
random.

::::::::
Best-case

::::::
biases

:::
are

::::::::
generally250

:::::
small,

::::
with

:::
an

::::::::::
interquartile

:::::
range

::
of

::::::
(-0.60%,indicating that this method is suitable for capturing the large-scale statistics of

SIC to reasonable error, if suitably many RGTs intersect a region. The sampling uncertainty Si has a mean of 1.27%, and

::::::
0.48%)

::::::
(shown

::
as

:::::::
vertical

::::
solid

:::::
black

:::::
lines

::
in

::::
Fig.

:::
3a),

::::
and

:
a
:::
(5,95% of Si values are less than 1.77%

:
)
:::::::::
confidence

::::::
interval

:::
of

:::::::::::
(-2.2%,2.1%)

:::::::
(vertical

::::::
dashed

:::::
black

:::::
lines).

::::
The

:::::::
standard

::::::::
deviation

::
of

:::::
these

::::
data

::
is

::::::::::::::::::
⟨Si,M ⟩ ≡ S∗ = 0.8%,

:::::
which

:::
we

:::
will

::::
use

::
to

:::::::
represent

:::
the

:::::::::::
fundamental

:::::::::
uncertainty

::
in

:::
the

:::::::::
estimation

::
of

::::
SIC

::::
with

:::
IS2

::
at

::
a

:::::
single

:::::::
location,

:::
up

::
to

:::
100

::::::
image

::::::::
crossings.255

We show the two senses of uncertainty comprising U2
::
As

:
in Fig.

::
2d

::::::
(black

:::
and

::::
red

:::::
lines),

::
at
::::

any
:::::::
crossing

::::::::
number,

:::
the

::::::::::::
bootstrap-mean

::::
bias

:::
for

::::
each

:::::::::
individual

::::::
image

:::::::::::
approximates

:::
the

::::::::
best-case

::::
bias

:::
for

:::
that

::::::
image:

:::::::::::::::::
Bi,n,k ≡Bi,n ≈B∗

i :::
for

::
all

:::
n.

::
In

:::
Fig.

:
3(b). The solid line plots ⟨E⟩n, which has a near-zero mean , even for n= 1. Superimposed on ⟨E⟩n are two cones of

uncertainty. The first, in grey lines, shows a range of ±⟨S⟩n, or the mean sampling uncertainty at each crossingnumber across

all images. This is, as in
::
we

:::::
show

:::
the

:::::
mean

::::::
across

::
all

::::::
images

:::
of

::::
Bi,n::

as
::
a

:::::::
function

::
of

::::::::
crossing

:::::::
number,

::::::::::::::
⟨Bi,n,k⟩ ≡ ⟨B⟩n::

as
::
a260

::::
black

::::
line.

:::
As

::::::::
expected,

:::
the

::::::::::
distribution

::
of

:::
this

::::
field

:::::::
mirrors

:::
B∗

i ::
at

::
all

::::::::
crossing

:::::::
numbers,

::::
and

::
is

:::::
nearly

:::::
zero.

::::
This

:::::::::::
demonstrates

:::
that,

::::::::
emulated

::::::
across

:::
the

:::
set

::
of

::::
OIB

:::::::
images,

:::
the

::::::::
expected

:::
bias

:::::
from

:::::::
applying

:::
the

::::
LIF

::
is

::::::::::::
approximately

::::
zero

:::
for

:::
any

::::::::
crossing
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:::::::
number.

::::
Thus

::
in

:
a
:::::
wide

:::::::::
application

::
of

:::
the

:::
LIF

::
to

:::::
many

::::::
scenes

::
or

:::::
many

::::::
gridded

::::::::
location,

:::::
errors

::
in

:::
the

:::
LIF

::::::
should

::::::::::::
approximately

::::::
cancel.

::::
Still,

:::
for

::::::::
accurately

:::::::::
estimating

::::
LIF

::
in

:
a
:::::
single

::::
area

::
or

::::::
scene,

:::
we

::::
note

::::
there

::
is

:::::::::
significant

:::::
spread

::
in
:::
the

::::
bias

::
as

::
a

:::::::
function

::
of

:::::::
crossing

:::::::
number,

:::::
which

::::::
results

::::
from

:::
the

:::::::::
variability

::
in

:::::::
sampling

:::
for

::::
each

::::::::
crossing.

::
In Fig. 3, high for several initial crossings265

before decaying and asymptoting to the long-term mean of 1.27% indicated above. In blue lines we plot the standard deviation

of Ei,n, the bias removing the uncertainty associated with sampling variability. Here, this value is approximately constant at the

long-term mean of Si, as each value of Ei,n is an average of many LIF measurements which should represent the standard error.

Thus
:::
(b),

::::::::
therefore,

:::
we

:::::
shade

:::
the

:::
the

:::::::
expected

::::::::::
uncertainty

::
as

:
a
:::::::
function

::
of

:::::::
crossing

:::::::
number,

:::::::::::::
⟨Si,n⟩ ≡ ⟨S⟩n,.:::::

Given
:::
the

::::::::
near-zero

:::::::
expected

::::
bias

:::::
⟨B⟩n,

:::::
⟨S⟩n,::

is
:::
also

:::
the

::::::::
expected

::::
error

::
in

::::
SIC

::
at

:::::::
crossing

::
n.

:::::::
Whereas

:::::
⟨B⟩n::::::::

quantifies
:::::::::
quantifies

:::
the

:::::::
expected

::::
bias270

::
for

::
a
::::::
typical

:::::
scene,

:::::
⟨S⟩n::::::::

quantifies
:::
the

::::::::::
uncertainty

::
in

:::
the

::::
bias

:::::::
estimate

:::
for

:::
that

::::::::
particular

::::::
scene.

:::
For

::
a

:::::
single

::::::::
crossing, we see

that in general, uncertainty associated with U2 can be characterized in terms of an intrinsic image-based uncertainty ⟨S⟩ plus

a path-dependent uncertainty that
:::::::::::::
⟨Si,1⟩= 9.02%

:
-
::::::
which,

:::::
while

:::::
lower

::::
than

:::
the

:::::::::::::
single-crossing

:::::::::
uncertainty

::::
from

:::
the

::::::::
example

:::::
image

::
in

::::
Fig.

::
2,

::
is

::::
still

:::::::::
significant.

::::
This

::::::::::
uncertainty

:
declines with increasing cross-number. The number of intersections we

choose to require when building an unsupervised product can be varied as required. For example, to reduce the uncertainty275

below a threshold of
::
n.

:::::
From

:::
the

:::::::
analysis

:::
of

:::::::::::::::::
Buckley et al. (2024)

:
,
:::
we

:::::
found

::::
that

:
a
::::::
typical

:::::::::::::
overestimation

::
of

::::
SIC

::::
from

::::
PM

:::::::
products

::::::::
compared

:::
to

:::
the

::::
OIB

::::
data

:::
was

:
2.5% requires more than 7 crossings. Since we use only single-beam estimates, and

the
::
%.

:::::
Thus

:::
we

:::
are

::::::::
interested

::
in

:::
the

:::::::
number

::
of

::::::::
crossings

::
so

::::
that

:::::::::
uncertainty

:::
in

:::
the

::::::
typical

:::
LIF

:::::::::::
measurement

::
is
::::
less

::::
than

::::
this.

::
In

::::
Fig.

::::
3(b),

:::
we

:::::
show

::
as

::
a
::::
solid

::::
line

:::
the

::::
first

:::::
value

::
of

:::
n,

:::::
which

:::
we

::::
call

:::
n∗,

::::
with

::::::::::::
⟨S⟩n < 2.5%.

:::::
This

:::::
occurs

:::::
when

::::::::
n∗ = 11

::::::::
crossings.

:::::
While

::
at
::::::::
n∗ = 11,

:::::::::::
⟨S⟩n < 2.5%,

:::
the

::::::::::
distribution

::
of

:::::
Si,n∗

::
is

:::::::::::
non-uniform.

:::
We

:::::
show

:::
the

::::::::
histogram

::
of

:::::
Si,n∗

::
as

::::::
Figure280

::::
3(c),

:::::
along

::::
with

:::
the

::::::::::
interquartile

:::::
range

:::
and

::::::
(5,95)

::::::::
intervals.

:::
The

::::::::::
uncertainty

::
in

:::
the

::::
bias

::
for

::::
any

:::::
scene

::
is

::::::::::::::
positive-definite,

::::
75%

:::::
(95%)

::
of

:::
all

::::
Si,n∗

::::::
values

:::
less

::::
than

::::::
3.63%

::::::::
(6.35%).

::
To

:::::::::
summarize

::::
our

:::::::
findings:

:::
we

::::::::::::
implemented

::
an

:::::::::
emulation

::::::
system

::
to

:::::
draw

::::::::::::::::
accurately-oriented

:
IS2 altimeter has 3 strong

beams and 3 weak beams,these 7 crossings could equally represent 2 or 3 IS2 overflights, depending on whether weak beam

measurements are included. In the application below, we require 8 total beam intersections when building an unsupervised285

monthly product to an error tolerance of
:::::::::
“crossings"

::::
over

:::::::
70,000

:::::::::
segmented

::::::
images

:::::
from

:::::
OIB.

:::
We

::::
find

::::
that

:::::
there

::
is

:::
no

::::::::
systematic

::::
bias

::
in
::::
LIF

:::::::::
associated

::::
with

:::
the

:::::::::
orientation

::
of

::::::
tracks,

:::
i.e.

::::::::::::::::
⟨B⟩n ∼ ⟨B∗⟩ ≈ 0.

:::::
While

::::
this

::::::
implies

::::
that

:::::
many

:::::::
separate

:::::::::::
measurements

:::
of

:::
LIF

::::
will

:::::
have

::
an

:::::::
average

::::
bias

::::
near

::::
zero,

::::
this

::
is

:::
not

::::
true

:::
for

:::::::::
individual

::::::
scenes.

::::
The

::::
error

::
in
:::::::::::::

approximating

:::
SIC

:::
for

:
a
:::::
given

:::::
scene

:::::::
declines

::::
with

:::::::
crossing

:::::::
number,

::::
and

::::
after

::
11

::::::::
crossings

:::
we

::::
find

:::
that

:::
the

::::::::::
uncertainty

::
in

:::::::::
estimating

:::
the

::::
SIC,

::::::
⟨Si,n∗⟩,

::
is
::::
less

::::
than 2.5%.

:::
The

:::::::::
distribution

:::
of

:::::
actual

:::::
errors

:::::
after

::
11

::::::::
crossings

:::
has

::
a
::::
long

::::
tail,

:::
but

::::
95%

::::
will

::::
have

:
a
::::

bias
::::::
below290

::::::
6.35%.

::::::
Below,

:::::
when

:::::::::
developing

:
a
:::::::
gridded

:::
LIF

::::::::
product,

::
we

::::
will

::::::
ensure

:::
that

::::
any

::::
grid

:::
cell

:::::
where

::::
LIF

::
is

:::::::
reported

:::
and

:::::::::
compared

::
to

:::::::
PM-SIC

:::
has

::
at

::::
least

:::
this

:::::
many

:::::::::
crossings.

3 A Global ICESat-2-based LIF
::::::
Linear

:::
Ice

::::::::
Fraction Product

Above, we showed that a sequential LIF-style approach can be used to reconstruct the surface sea ice concentration with

high precision and well-constrained error statistics, although important uncertainties remain (discussed in Sec. 2.1 and below).295
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Figure 3. Statistics of SIC reconstruction
:::
bias

:::
and

:::::::::
uncertainty

::::::::
associated with LIF

:::
when

:
using data from all 70,225 classified Operation

Icebridge
:::
OIB

:
images. (a) Histogram of best-case bias in SIC, LIF ∗

i −SIC
::::::::::::::
Bi = LIF ∗

i −SIC. Vertical lines are interquartile range of

:::::
(solid, -0.60% to 0.49%. )

:::
and

:
(b

:::
5,95) Histogram of variance in bias

::::::
interval

::::::
(dashed, Si. Vertical lines are interquartile range of 0.46

:::
-2.23% to

1.02
:::
2.10%). (c

:
b) Mean

:::::::::
Cross-image

::::::
average

::
of

::::::::::::::
bootstrap-averaged

:
bias (black line) as a function of intersection number

:
,
::::
⟨B⟩n. Interquartile

ranges are (blue) treating all images and path permutations separately or (black) averaging permutations for each image first
::::::
Shaded

:::::
region

:::::::::
encompasses

::::::::::::::::
cross-image-average

::
of

::::::::::::::
bootstrap-averaged

::::::
standard

:::::::
deviation

:::::
⟨S⟩n. (d) Same as (c) but for the mean bias. Vertical line shows

the
::::::
crossing

::::::
number,

:::::::
n∗ = 11

:::
after

:::::
which

::::
⟨S⟩n::

is
:::
less

::::
than 2.5%mean absolute error cutoff.

::
(c)

::::::::
Histogram

::
of

:::::
Si,n∗

:
at
:::::::
crossing

::::::
number

:::
n∗.

::::::
Vertical

:::
lines

:::
are

:::::::::
interquartile

:::::
range

:::::
(solid,

:::::
1.64%

::
to

:::::
3.63%)

:::
and

:::::
(5,95)

::::::
interval

:::::::
(dashed,

:::::
0.49%

::
to

:::::
6.35%)

:

Leveraging this uncertainty information ,
:::::::::
Leveraging

:::
the

::::::::::
uncertainty

::::::::::
information

:::::::
obtained

:::::::
through

:::::::::
emulation,

:::
we

::::
next

::::
seek

::
to

::::
build

::
an

::::
SIC

:::::::
product

::::
built

::::
from

:::
the

:::
IS2

::::
LIF.

:::
As

:::
the

:::
data

:::::::::
evaluation

::
of

::::::::::::::::::
Buckley et al. (2024)

::::::
focused

:::
on

:::::
Arctic

::::::
scenes,

:
we build

an IS2-based SIC product . Here we analyze only the Arctic product, but we
:::
will

:::::
focus

:::
on

::::::
Arctic

:::
data

:::::
only

:
-
::::::
though

:::
we

:::
do

provide Antarctic LIF data in Horvat (2024a). These data and code for generating a global gridded product of LIF-based SIC

are provided through the MATLAB-based package IS2-Grid version 0.4 (Horvat, 2024a). This software package is designed300

to produce modular gridded sea-ice-related products at requested temporal and spatial gridding through an accumulation of

multiple tracks, for comparison with climate model and observational data. It permits the rapid development of cumulative

statistics over chosen temporal windows, and currently provides estimates of the floe size distribution, significant wave height,

and sequential LIF along with other ancillary statistics. This code is modular and provides a simple way for creating gridded

products from along-track-calculated statistics. Here we examine
:::
use

:::
that

::::
code

::
to
::::::::
generate an LIF product using this code base,305

which generates a monthly LIF product on the
::
on

:
a
:::::::
monthly

::::::::
timescale

:::
on

:::
the 25km

:::::
Arctic

:::::
polar

:::::::::::
stereographic

::::
grid.

:

::::
This

:::::::
monthly

:::::
25km

:::
LIF

::::::
dataset

::
is
::::::::
evaluated

:::::::
against

:
6
::::::::::
widely-used

::::::::
PM-SIC

::::::::
products.

::::
Four

::::
rely

::
on

:::::::::
brightness

:::::::::::
temperatures

::::
from

:::
the

::::::
Special

::::::
Sensor

::::::::::
Microwave

:
-
::::::::::::::
Imager/Sounders

::::::::
(SSMI/S)

:::::::
onboard

:::
US

:::::::
Defense

:::::::::::::
Meteorological

:::::::
Satellite

:::::::
Program

:::::
flight

::::
units

:::::
16-18.

:::::
They

:::
are

::
(1)

:::
the

::::::::::
NASATeam

:::::
(NT)

::::::::::::::::::
(Cavalieri et al., 1984)

:::
and

:::
(2)

::::::::
Bootstrap

::::
(BT)

:::::::::
algorithms

::::::::::::::::::::::::
(Comiso and Sullivan, 1986)
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Figure 4. Comparison of coverage of IS2 LIF data to commonly-used PM-SIC products. (a) Arctic sea ice extent of 6 PM-SIC products

(dashed colored lines) compared to the area well-sampled by IS2 (black line) from October 2018-December 2022.
::::
2023.

::::::
Dashed

::::
dark

:::
line

::
is

::
the

:::
IS2

:::::
extent

::::
when

::::::::
excluding

::::
areas

:::
with

::::
more

::::
than

::::
2.5%

::::
dark

:::
lead

::::::
fraction,

:::::::
LIFND .

:::::::
“Summer

::::::
months"

::::
have

:::
red

:::::::::
background. (b) Percentage

of months from October 2018-December 2022
::::
2023 where PM-SIC record sea ice and IS2 tracks are sufficiently dense.

:::
Red

::::::
latitude

:::::
circle

::::
shows

:::::::
average

::::::
latitude

::
of

:::
grid

::::
cells

:::::
which

::::
have

::::
15%

::
or

::::
more

:::
SIC

::
in
:::
all

:::
PM

:::::::
products.

:::::
Black

::::::
latitude

::::
circle

:::::
shows

::::::
average

::::::
latitude

::
of
::::

LIF

:::::
extent.

::::::
Dashed

::::
black

::::
circle

:::::
shows

::::::
average

::::::
latitude

::
of

:::
LIF

:::::
extent

::
in

::::::
summer

::::::
months.

:
,
::
the

:::
(3)

::::::
NSIDC

:::::::
Climate

::::
Data

::::::
Record

:::::::
(CDR),

::::
equal

::
to
:::
the

:::::::::
maximum

::
of

:::
the

::::::::
Bootstrap

:::
and

::::::::::
NASATeam

:::::::::
algorithms

::::::::::::::::
(Meier et al., 2014)310

:
,
:::
and

:::
(4)

:::
the

:::::::
OSISAF

::::::
Global

:::
Sea

:::
Ice

::::::::::::
Concentration

::::::
climate

::::
data

::::::
record

:::::::::
(OSI450-a,

:::
up

::
to

::::::::::
12/31/2020)

:::
and

:::::::
interim

::::::
climate

::::
data

:::::
record

::::::::::
(OSI430-a,

:::
up

::
to

:::::
2023)

::::::::::::::::::::
(Lavergne et al., 2019a).

::::
We

::::
also

::::::
include

::::
two

:::::::::
algorithms

:::::
using

:::::::::
brightness

:::::::::::
temperature

::::
data

::::
from

:::
the

:::::::::
Advanced

:::::::::
Microwave

::::::::
Scanning

::::::::::
Radiometer

::
2
:::::::::
(AMSR2)

:::::
sensor

:::
on

:::::
board

:::
the

::::::
JAXA

:::::::::
GCOM-W

::::::::
satellite,

:::::
either

:::
(5)

::
the

:::::::::::
NASAteam2

:::::::::
algorithm

:::::::::::
(Meier, 2018)

:
,
::
or

:::
(6)

:::
the

:::::::::::
ASI-ARTIST

:::::::::
algorithm

::::::::::::::::
Spreen et al. (2008).

::::::
(1-3,5)

::::
are

:::::::
provided

:::
on

:::
the

::::::
NSIDC

:::::
25km

:
polar stereographic grid, which is the same resolution of most target

:
.
:::
We

:::
use

:::::::::::
OSI450/430

:::::::
products

:::
(4)

:::
on

:::
the315

:::::
25km

:::::
EASE

::::
grid

:::
and

:::
(6)

:::
the

:::::::::::
ASI-ARTIST

::::::
product

:::
on

:
a
::::::
6.25km

:::::
polar

:::::::::::
stereographic

::::
grid,

::::
both

::
of

::::::
which

::
we

:::::
regrid

::
to
:::
the

:::::::
NSIDC

:::::
25km

::::
polar

::::::::::::
stereographic

::::
grid.

:::
We

:::::::
analyze

:
PM-SIC products (see Buckley et al. (2024))

:::
and

:::
IS2

::::
data

::::::
across

:::
the

::::
time

::::::
period

::::
from

:::
the

::::::
launch

::
of

:::
the

:::
IS2

::::::
satellite

::
in
:::::::
October

:::::
2018

::::
until

::::::::
December

:::::
2023

:::
for

::
63

::::::
months

::::::::
including

::
5
:::
full

:::::::
calendar

:::::
years.

:::::::
Further

:::::
details

:::
on

:::
the

:::::::
PM-SIC

:::::::::
algorithms

:::
and

:::::::
satellite

::::::::
platforms

::::
used

::::
can

::
be

:::::
found

::
in

::::::::::::::::::
Buckley et al. (2024).

3.1 Tradeoffs
::::::::::
Uncertainty

:
in temporal sampling

::::
from

:::
IS2320

In addition to the uncertainties with orientation and surface classification, when building a longer-time-scale product, we must

consider that IS2 overflights exhibit temporal intermittency compared to PM measurements that are retrieved daily. At each

grid point, we define an “ICESat-2
:::
IS2 intermittent" PM-SIC, c̃, equal to the segment-averaged PM sea ice concentration using

the along-track defined PM-SIC. Two reference PM datasets are included along-track with the IS2 ATL07 product, the NSIDC
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CDR (all ATL07 versions) and the AMSR2-NT product (ATL06 v6 and later),
::::
and

:::
we

:::
use

::::
both

:::
for

:::
this

:::::::
purpose. We define the325

“temporal intermittency bias", BT from a monthly-average SIC, c, as,

BT = c̃− c. (7)

The value of BT is a measure of
::::::::
measures how different the

:::::::
monthly

:
PM-SIC product would be if sampled only

:
it
::::::::
included

::::
only

:::
data

:::::
from

::
the

::::
days

:
when IS2 flew overheadfrom the true PM-SIC monthly mean, and estimates the bias

:
.
::::
Thus

::
it

:::::::
estimates

::
a

:::::::
potential

::::
bias

::
in

:::
SIC

:
introduced by IS2’s intermittent temporal sampling. Conscious of the impact of examining a time-evolving330

SIC surface
:::
As

::
we

:::
do

:::
not

::::
want

::
to

:::::::
consider

:::
this

:::::::::
additional

:::::::::
uncertainty, we ignore any grid cell where ∥BT ∥ exceeds 5% , defined

using the NSIDC CDR product
::::
2.5%

:::
in

:::::
either

::
of

:::
the

:::::::::::
AMSR2-NT

::
or

:::::::::::
NSIDC-CDR

::::::::
products. This reduces the number of grid

cells over which we develop an LIF product. We combine this restriction with the requirement of 4 or more
:::
that

:::
the

::::
grid

:::
cell

::::
was

:::::::::
intersected

::
by

::
at

::::
least

:::
11

:::::::
separate

:
IS2 crossings discussed in Sec. 2.1.

::::
beam

:::::::::
crossings. We also require that all SIC estimates

report
:::::::
PM-SIC

::::::::
estimates

::::
have

:
greater than 15% SIC at a given location.

:::
any

:::::::
location,

::::::::::
eliminating

:::
any

::::::::
potential

::::::::::
dependency

::
of335

::::::::::::
intercompared

:::
LIF

::::
data

::
on

:::
the

:::::::
PM-SIC

:::::
15%

:::::
cutoff

::::
used

::
to

:::::
define

:::::::
ATL07.

::
In Figure 4(a)shows total ,

:::
we

::::
plot sea ice extent for

all PM products (dashed lines), compared to the area over which we can make an IS2-PM comparison (solid line). There are

data for nearly all months above 80◦N, as a consequence of the
:::::
equal

::
to

:::
the

::::
sum

::
of

::::
grid

:::::
areas

:::::
where

:::::
local

:::::::
PM-SIC

:::::::
exceeds

::::
15%.

:::
We

::::
use

:::
the

::::::
quality

::::::
control

::::::::::
restrictions

::
to

:::::
define

::::
two

:::::
furter

:::
sea

:::
ice

:::::::
extents.

:::
The

::::
first

::
is

:::
the

::::::::::::
“comparable"

:::
sea

:::
ice

::::::
extent,

:::::
which

::
is

:::
the

::::
sum

::
of

:::
all

::::
grid

::::
areas

::::::
where

::::
each

:::::
local

:::::::
PM-SIC

:::::
value

:::::::
exceeds

:::::
15%.

::
In

::::::
Figure

::
4

:::
this

::
is
::::::
plotted

:::
as

:
a
:::::
solid

:::::
black340

:::
line.

::::
We

:::::
show

:::
the

::::
“LIF

:::::::
extent"

::
as

:::
the

::::::::::
comparable

:::
sea

:::
ice

::::::
extent

::::
with

::
at
:::::

least
::
11

::::
IS2

:::::
beam

::::::::
crossings

::
as

::
a
:::::
solid

:::::
black

::::
line.

::::::::::
Comparable

:::
sea

:::
ice

:::::
extent

::::::
ranges

:::::
from

:::
3.7

:::
and

::::
14.1

:::::::
million

::::
km2.

::::
The

::::
LIF

:::::
extent

::
is

:::::::
smaller,

:::::::
ranging

::::
from

:::
0.9

::
to

:::
5.5

:::::::
million

::::
km2.

:::
As

:
a
:::::::::
percentage

::
of

:::
the

::::::::::
comparable

:::
sea

:::
ice

::::::
extent,

:::
this

::
is

:::::::
between

::::
21%

:::
and

:::::
46%

::
of

:::
the

::::
total.

:::
For

:::::::::::
comparison,

:
if
:::
we

:::
do

:::
not

::::::
impose

:
a
:::::::::
restriction

::
on

::::::
∥BT ∥,

:::
the

:::
LIF

:::::
extent

::::::
ranges

::::
from

:::
1.8

:::::::
million

::::
km2

::
to

::
5.8

:::::::
million

::::
km2

:::::
(from

::::
21%

::
to

::::
62%

::
of

::::::::::
comparable

:::
sea

::
ice

:::::::
extent),

::::
with

:::
the

::::
most

:::::::::
significant

::::::
impact

::
in

:::::::
summer

:::::::
months.345

:::::::
Because

::
of

:::
the higher track density near the pole, but this coverage declines with latitude. This dense coverage in the central

Arctic is particularly useful for quantifying lead detection by PM in areas of high SIC. We show in
::::
areas

::::
that

:::::
make

::
up

:::
the

::::
LIF

:::::
extent

:::
are

::::::::
typically

::
at

::::
high

:::::::
latitudes

::::
and

::::
have

::::::::::::::
correspondingly

::::
high

::::
SIC.

::
In

::::
Fig.

::
4(b)

:
,
::
we

::::
plot

:
the fraction of months during

the
::
all

:::::::
months

:::::
when

:
a
::::

grid
::::

cell
::
is

::::
both

::::::::::::
“comparable"

:::::
(with

::::::::
sufficient

::::
SIC

::
as

::::::::
recorded

:::
by

:::
PM

::::::::::
algorithms)

::::
and

:::
has

:::::::
enough

IS2 operational period (here from October 2018-December 2022) where there is sea ice recorded by PM-SIC and sufficiently350

dense IS2 tracks. In any given month the area with compatible IS2 coverage for comparison with PM-SIC is between 24%

and 54% (
::::::::
crossings

::
to

:::
be

:::::::::
compared.

:::
For

:::::::
regions

:::::
above

:::::
80◦N,

::::
this

::
is

::::::
nearly

::
all

:::::::
months.

::::::::
Whereas

:::
the

:::::::
average

::::::
latitude

:::
of

:::
the

:::::::::
comparable

:::
sea

:::
ice

:::::
points

::
is
:::::::
75.1◦N,

:::::::
denoted

::
by

:
a
:::::
solid

:::
red

:::
line

::
of

:::::::
latitude

::
in Fig. 4a) of Arctic sea ice extent.

:
b,
::
it

::
is

::::::
82.0◦N

:::
for

:::::
points

::::::
within

::
the

::::
LIF

::::::
extent,

:::::
which

::
is

:::::::
denoted

::
by

::
a
::::
solid

:::::
black

:::
line

:::
of

::::::
latitude

::::
and

:
is
:::::::::::
significantly

::::
more

:::::::::
poleward.

:::
The

:::::::
densest

:::::::
coverage

::
of

::::
IS2

::
is

::
at

::::
these

::::
high

::::::::
latitudes,

::
in
:::::
areas

::
of

::::::::
compact

:::
sea

:::
ice

::::
with

:::::
leads.

::::
This

::::::
makes

:::
LIF

::::::::::
particularly

::::::::::
appropriate

:::
for355

:::::::::
comparison

::::
with

::::::::
PM-SIC,

:::::
given

:::
the

::::
focus

::
of

::::::::::::::::::
Buckley et al. (2024)

::
on

:::
the

::::::::::::
overestimation

::
of

::::
SIC

::
by

::::
PM

::
in

::::
these

:::
sea

:::
ice

:::::::
regions.
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Figure 5. Histograms
::
(a)

::::::::
Histogram

:
of PM-SIC

::::::
IS2-LIF,

:::::
using

::::::
specular

::::::
returns

::::
only

:
in
::::::::

“summer"
::::
(July

:::
and

:::::::
August,

:::
red)

:::
and

::::::::::
non-summer

:::::
months

::::::
(blue).

::::
Gold

:::::
shows

:::
LIF

:::::::::
distribution

::
in

::::::
summer

::::::
months

:::::
when

:::::::
including

::::
dark

:::::
leads.

::::
(Top

:::
row,

::::
b-g)

::::
Same

:::
as

::
(a)

:
for

:::
the 6

::::::
PM-SIC

products
:
. (top

:::::
Bottom

:
row,

::::
h-m) and the difference from IS2

::::::
PM-SIC

:::::::
products

:::
and

:::
the

::::
three

:
LIF

::::::
products

::
in
:

(bottom row
:
a). Summary

statistics are provided in Table 1. Red colors are summer months, blue are winter months. Vertical lines and labels indicated median
::
are

:::::
mean

∆ values
::::::
between

::::::
PM-SIC

:::
and

:::
the

:::::::::::
corresponding

:::
LIF

::::::
product.

3.2 Comparison of gridded LIF data with passive microwave products

For a global comparison with PM-SIC, we evaluate the monthly 25km LIF dataset against 6 widely-used PM-SIC products.

Figure 4 shows the histogram
::::::
Figure

:
5
::::::
shows

:::::::::
histograms of SIC values (top row) and histogram of

:
,
::::
b-g),

:::
and

:::
the

:
differences360

from LIF
:
,
::
∆ (bottom row

::::
,h-m) for all datafor each product, with LIF values offset right. We segment

:
,
:::
for

::::
each

:::::::
PM-SIC

:::::::
product.

:::::::::
Supporting

::::::::::
Information

::::::
Figure

::
S1

::::::
shows

:::
the

:::::::::
distribution

:::
of

:::
LIF

::::::
values

::
in

::::
each

::::::
month

:::
for

:::
two

::::
LIF

:::::::
products.

:::::::::::
Qualitatively

::::
and

:::::::::::
quantitatively,

:::::
when

::::::::
including

:::
all

::::
dark

:::::
leads

::
as

::::
open

:::::
water

::::
(see

:::::::
below),

:::
the

:::
LIF

::::::::::
distribution

::
is

:::::::
different

::
in

:::
the

:::::::
months

::
of

::::
July

:::
and

::::::
August

:::::
from

:::
the

:::
rest

::
of

:::
the

:::::
year,

:::::
which

::
is

::::
also

:::
the

::::
case

:::
for

::::
some

::::::::
PM-SIC

:::::::
products.

:::::::::
Including

::::
dark

::::
leads

:::
in

::::
those

:::::::
months

::::
leads

::
to

::
a
::::::
median

::::
LIF

::
of

:::::
82%

:::
and

:::::
84%,

:::::::::
compared

::
to

:::::
above

::::
92%

:::
in

::
all

:::::
other

:::::::
months.

::::
July

::::
and

::::::
August

:::
are

::::
also

::::::
where

::::
melt365

:::::::
ponding

:
is
:::::::::

significant
::

at
:::

the
:::::

high
:::::::
latitudes

:::
we

:::::::
consider

::::
here

::::::::::::::::::
Istomina et al. (2025)

:
.
::
To

:::::::::::
differentiate

:::::::
between

:::::
these

:::::::::
potentially

:::::::::::
melt-affected

::::::
results,

:::
we

::::::::
segment

:::
the

::::
LIF data into “summer" data from June to September (red

:
or

::::::::::::
pond-affected

:::::::
months

:::::::
covering

::::
July

:::
and

:::::::
August

::::
(Fig.

::
5
:::
red

::::
and

::::
gold), and “non-summer" data covering October to May (blue). Statistics derived

from these distributions
::::::::
September

::
to

::::
June

:::::
(Fig.

::
5,

:::::
blue).

::::
The

::::::
months

::
of

:::::
June,

::::::::::
September,

:::
and

:::::::
October

::::
also

:::
are

::::::
distinct

:::::
from
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::
the

:::::
other

:::::::::::
non-summer

:::::::
months

::
in

::::
that

:::
the

:::::
modal

::::
LIF

::
is
:::
not

::::::
100%.

::::::
While

:::::
there

:::
are

::::::
distinct

::::::::::
histograms

::
of

:::::::
PM-SIC

::::
and

::::
LIF370

:::::
during

:::::
these

::::::
months

::::
(see

:::::
Table

:::
1),

::::
they

::::
have

:::::::::::
significantly

:::::
higher

::::
LIF

::::
than

::
in

::::
July

::::
and

:::::::
August,

:::
and

:::
the

::::::
overall

::::::
results

::
of

::::
this

::::
study

:::
are

:::
not

:::::::::
materially

:::::::
affected

::
by

::::
their

::::::::
inclusion

::
as
:::::::::::::
“non-summer"

:::::::
months.

3.3
::::
Dark

:::
vs.

::::::::
Specular

:::::
Leads

:::
in

:::
LIF

:::::::::
retrievals

:::
The

:::
IS2

:::::::
surface

:::
type

::::
field

::::::::
includes

:::
two

:::::::::::::::::::
radiometrically-derived

:::::::::::
classification

:::
for

::::
open

:::::
water

::::::
points:

:::::::::
“specular"

::
or

::::::
“dark"

:::::
leads.

::::
Each

:::::
could

:::::::::
potentially

:::
be

:::::::::
considered

:::::
open

:::::
water

::::::::
segments

::
in

::::
this

:::::
work.

:::::
Leads

::
in
::::::::

ICESat-2
::::

are
::::::::
identified

:::::
where

:::
the

:::::::
ATL07375

:::::::
segment

:::
has

::
a

::::
high

::::::
photon

::::
rate,

::
a
::::::
narrow

::::::
photon

:::::::::::
distribution,

:::
and

::::::::::
Lambertian

:::::::
surface

::::::::::::
characteristics

::
as

::::::::::
determined

:::
by

:::
the

::::
ratio

::
of

:::
the

::::::
photon

::::
rate

::
to

:::
the

::::::::::
background

::::::
photon

::::
rate

:::::::::
normalized

:::
by

:::
the

:::
sun

::::::::
elevation.

:::::
Dark

:::::
leads

:::
are

::::::::
identified

::
as

:::
the

:::::
leads

::::
with

::
the

::::::
lowest

::::::
photon

::::
rate.

:::::
These

:::::
“dark

::::::
leads"

:::
can

::
be

::
at
:::::
least

:::::::
partially

:::::::::::
contaminated

::::
with

::::
both

::::
open

:::::
water

::::
and

::::::
cloudy

::::::
returns

::::::::::::::
Saha et al. (2024)

:
,
:::
and

:::
are

::::::::::
responsible

:::
for

:
a
:::::::::
significant

:::::::::
difference

:::::::
between

:::::::
summer

::::
and

::::::::::
non-summer

::::
LIF

::::
data

::::
due

::
to

::::::
known

:::::
issues

::
in

:::::::::
classifying

::::::
surface

::::::::
meltwater

::
in

::::
both

:::
PM

::::
and

:::
IS2

:::::::
products

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kwok et al., 2019b; Tilling et al., 2020; Farrell et al., 2020; Herzfeld et al., 2023)380

:
.
::
In

:::::
Figure

::
5,

:::
we

::::
plot

:::::::::
histograms

::
in

:::::::
summer

::::::
months

::::
that

::::::
include

:::::
(gold)

::
or

:::::::
exclude

:::::
(blue)

::::
dark

::::
lead

::::::::
segments

::
as

::::
open

::::::
water.

:::
We

::::
show

:::::::::
histograms

:::
of

::
the

:::::::::
difference

::
in

:::
the

:::
LIF

::::::::
between

::
the

::::
two

::
as

:::::::::
Supporting

::::::
Figure

:::
S2

::
as

:
a
:::::::
function

:::
of

::::::
month.

:::
We

::::::::::
additionally

::::
show

::
in
::::

Fig.
::::

6(a)
:::

the
:::::::::

difference
::::::::
between

::::::
LIFspec::::

and
::::
LIF

:::::
using

:::
all

::::
dark

:::::
leads

::
as

:::::
open

:::::
water

::
in

:::::::
summer

::::
and

:::::::::::
non-summer

::::::
months.

:::
As

::::
seen

:::
in

:::::
Figure

::::
S2,

:::
the

:::::::
inclusion

:::
of

::::
dark

:::::
leads

:::::::::::
classifications

::::
play

:::
an

::::::::
important

::::
role

::::
only

::
in

::::
July

::::
and

:::::::
August,

:::
but

:::
not

::
in

::::
other

:::::::
months.

::::
The

::::::
impact

::
of

::::
dark

::::
lead

::::::::
segments

:::
on

:::
the

::::::
overall

:::
LIF

::::::::::
distribution

::::
can

::
be

::::
seen

::
in

::::
Fig.

::
5,

::::::
where

:::
the

:::::
shape385

::
of

:::
the

:::
LIF

:::::::::
histogram

::::::::
including

:::
all

::::
dark

:::::
leads

::
in

:::::::
summer

::::::
months

:::::
(gold

::::::::::
histogram)

::
is

::::::
peaked

::
at

:::::
81%,

::::
with

::
no

:::::
areas

::
of

::::::
100%

:::
LIF.

:::
On

::::::::
average,

::::::::
including

::::
dark

::::
leads

:::
as

::::
open

:::::
water

:::::
leads

::
to

:
a
::::::::
reduction

::
in
::::
LIF

:::
by

::::
9.7%

::
in

::::
July

::::
and

::::::
August.

:::
By

::::::::
contrast,

:::
the

:::::::
specular

:::
LIF

::::::
(blue)

::
is

::::::::::
significantly

::::::
closer

::
to

:::::
100%

::::
and

::::
more

:::::::
closely

::::::::
resembles

:::::
both

:::
the

::::::::::
non-summer

::::
LIF

::::::
values

:::::
(blue)

::::
and

::::
those

:::::::
derived

::::
from

:::
PM

:::::::::
algorithms

::::
(top

:::::
row),

::
up

::
to

:::
the

::::::
biases

::::
seen

::
in

::::::::::
non-summer

:::::::
months.

:::::::
Outside

::
of

::::
July

:::
and

:::::::
August,

:::
the

:::
net

:::::
impact

:::
of

::::::::
including

::::
dark

:::::
leads

::
in

:::
the

:::
LIF

::::::::::
calculation

:
is
:::::

very
::::
small

:::
as

::::
there

:::
are

::::
few

::::
dark

::::
leads

:::::::::::
contributing

:
a
:::::
mean

:::::::::
difference390

::
in

:::
LIF

::
of

:::::
0.4%

::::
(Fig.

:::
6a,

::::
blue

::::::::::
histogram).

:::
The

::::::
peaked

::::::::::
distribution

:::
of

:::
LIF

:::::::::
including

::::
dark

:::::
leads

::::::::
contrasts

::::
with

:::
the

:::::::::
histogram

::
of

::::
LIF

:::::
values

:::
in

::
all

:::::
other

:::::::
months

::::
(see

::::::::::::
“non-summer"

::::::
months

::
in

::::
Fig.

:
5
:::
and

::::::::::
Supporting

::::::
Figures

:::
S1

:::
and

::::
S2),

:::::
where

:::
the

::::::::
histogram

::
of

::::
LIF

:::::
values

::::::::
increases

::::::::::::
monotonically

::
as

:::
LIF

:::::::::
increases.

::
As

:::
the

:::::::::::
characteristic

::::::::
response

::
of

:::::
leads

:::::
likely

::::
does

:::
not

::::::
change

::::::
season

::
to

::::::
season,

::::
this

:::::
points

::
to

::
a

:::::::
potential

::::
role

::
of

:::
sea

:::
ice

::::::
surface

:::::
melt

::
in

:::::::
altering

:::
the

::::::
surface

::::::
returns

::::
and

:::::::
possible

::::::::::::::
misidentification

::
of

::::::
“dark

::::
lead"

:::::::::
segments.

::::::::::::
Investigations395

::
of

:::::::
summer

:::
sea

:::
ice

::::
melt

:::
has

::::::
shown

::::
melt

:::::
ponds

::::::::
identified

::
as
:::::

both
::::
dark

:::
and

:::::::
specular

:::::
leads

::::::::::::::::
Farrell et al. (2020)

:
,
:::
and

:::
the

:::::::
melting

:::::::::
snow/slush

::::
layer

::::
may

::::
also

::
be

:::::::::::
misclassified

::
as

:::::
leads.

::::::::
Summer

::
∆

:::::
values

:::::
(right

::::::::
columns,

:::::
Table

::
1,

:::
and

:::::::
vertical

::::
lines,

::::
Fig.

:::::::
5)h-m))

::
are

::::::::
typically

::::
large

:::
and

:::::::
positive

:::::
when

::::::::
including

::::
these

::::
dark

::::
lead

::::::::
segments.

::::
Two

:::::::
PM-SIC

::::::::
products

:::
also

:::::
show

:
a
::::::
peaked

::::::::::
distribution

::
of

::::
SIC

:::::
values

:::
in

::::
July

:::
and

::::::::
August:

:::
the

::::::::::
NASATeam

::::
and

:::::::
OSI-430

::::::::::
algorithms,

::::::
which

::::
both

:::
are

::::::::::::
implemented

::
on

::::
the

:::::::
SSMI/S

:::::
sensor

::::::::
platform.

::::
The

:::::::
OSI-430

::::::::
algorithm

::::::::::::::::::::
(Lavergne et al., 2019a)

::
is

:::::
tuned

::
to

::::::::
represent

:::
the

::::::::::
NASATeam

::::::::
algorithm

:::
for

::::
high

::::
SIC400

:::::
values

::::::::::::::::::::::::::::::::
(Lavergne et al., 2019b, See Sec. 3.2.4)

:::
and

::::::::
therefore

::::
may

::::
also

:::::
reflect

::::::
similar

:::::
biases

::
in
:::
the

::::::::::::::::::::::::
Comiso and Sullivan (1986)

::::::::
algorithm.

::::::::
Analysis

::
of

:::::::::::::::
NASATeam-based

:::
SIC

::::
data

::
in

:::::
Arctic

:::::::
summer

::::
have

::::::
shown

::::
these

:::::::
months

::
to

::::
have

::::
both

:::::::
enhanced

:::::::::
variability

:::
and

:::::::::
uncertainty

::::::::::::::::::
Brucker et al. (2014)

::::::
related

::
to

::::
melt

::::::::
ponding.

:::
For

:::
the

:::::::
summer

:::::::::::
comparisons,

:::
the

:::::
mean

:::::::
latitude

::
of

::::::::::
comparable
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:::
LIF

::::
data

::
is

::::::
84.5◦N

:::::::
(dashed

::::
line,

:::
Fig.

:::
4).

:::
For

:::::
each

:::::::
calendar

::::::
month,

:::
we

::::
show

:::
as

:::::::::
Supporting

::::::
Figure

::
S4

:::
the

:::::::
fraction

::
of

:::
the

::::::
period

::::
when

::::
IS2

::
is

:::::::::
operational

::::
and

:::::
where

:::
we

::::
find

:::::::
sufficient

::::
IS2

::::::::
crossings

::
to

:::::::
produce

:::
the

:::
LIF

::::::::
product.

::
In

::::
most

:::::::
months

:::
this

::
is

::::::
highly405

:::::::
restricted

:::
to

:::
the

::::::
highest

::::::::
latitudes,

::::::::
especially

::
in
:::::::

summer
:::::::

months.
::::

Sea
:::
ice

::
in

:::
this

::::::
region

::
is

::::::::
typically

:::::::
compact.

::::::
Given

:::
the

::::::
known

:::::::::
uncertainty

::
in

::::
both

::::
lead

::::::::
detection

::::
and

:::::::
PM-SIC

::::::::
retrievals

::::
from

::::::::::
NASATeam

:::::
over

::::::
ponded

:::
sea

::::
ice,

:::
this

::::::
dually

:::::::
suggests

::::
that

:::
the

:::
low

:::::
mean

:::
SIC

::::
and

:::
LIF

::::::
values

::::::
during

::::
these

:::::::
months

::::
may

::
be

:::
due

::
to

::::::
errors

::::::
induced

:::
by

::::::
surface

:::::::
melting.

:

:::::::
Because

::
of

:::
the

:::::::
potential

::::::
errors

::::::::
associated

::::
with

::::
dark

::::
lead

::::::::::::
classification,

:::
the

::::::::
similarity

::
in

::::
SIC

:::::::::
histograms

::::
with

:::::
other

:::::::
PM-SIC

:::::::
products

:::
that

:::
are

::::::
known

::
to
:::
be

:::::
biased

:::
or

::::
more

::::::::::
uncertainty

::
in

:::::::
summer

:::::::
months,

:::
and

:::
the

:::::::
minimal

::::::
impact

:::
of

::::
dark

::::
leads

:::::::
outside

::
of410

::::::
months

::::
with

::::::
surface

:::::::
melting,

:::
we

::::::
provide

::::
here

::
as

:::
the

::::
core

::::
LIF

::::::
product

:::
the

:::
one

::::
that

:::::::
includes

::::
only

:::::::::
“specular"

::::
leads

:::
as

::::
open

:::::
water

::
in

::
all

:::::::
months,

:::::
which

:::
we

::::::
denote

:::::::
LIFspec.

::
In

:::
the

::::::::::
comparisons

::::
that

::::::
follow,

:::
we

:::
also

::::::::
generate

::
an

:::
LIF

:::::::
product

:::::
which

::::::
masks

:::
any

::::
grid

::::
cells

:::::
where

:::
the

::::
dark

::::
lead

:::::::
fraction

::::::
greater

::::
than

:::::
2.5%,

:::::
which

:::
we

::::
term

:::::::
LIFND.

::::
The

:::::::
coverage

::
of

::::
this

:::::::
reduced

::::::
dataset

::
is

::::::
plotted

::
as

:
a
::::::
dashed

:::::
black

:::
line

:::
in

:::
Fig.

:::::
4(a).

::::::::::
Eliminating

::::
areas

::::
with

:::::
high

::::
dark

::::
lead

::::::
fraction

:::::::
reduces

::::
LIF

:::::::
coverage

:::
by

::::
85%

::
in

::::::::
summer,

:::
but

:::
just

:::
3%

::::::
outside

::
of

:::
the

::::
melt

:::::::
season,

:::
and

::
in

::::
total

:::::::
reduces

:::
LIF

:::::
extent

:::
by

::::
18%

::
by

:::::::::::
significantly

:::::::
limiting

:::::::
summer

::::::::::::::
intercomparisons.

:
415

:::::
Some

:::
dark

::::
lead

::::::::
segments

:::
are

:::::::::::
appropriately

::::::::
classified

::
as

::::
open

:::::
water

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Petty et al., 2021; Koo et al., 2023; Liu et al., 2025; Buckley et al., 2024)

:::
and

::::::::
therefore

:::
LIF

::::
may

::
be

:::::::
reduced

:::
by

::
up

::
to

:::::
0.4%

::::::
outside

::
of

:::
the

::::
melt

::::::
season

::
or

:::::
9.7%

::
in

:::::::
summer

:::::::::
depending

::
on

:::::
what

:::::::
fraction

::
of

::::
these

::::
dark

:::::
leads

:::
are

::::
truly

::::::::::
non-sea-ice

::::::
points.

:::
As

::::::::
discussed

::
as

::::::::::
uncertainty

:::
U1

:::::::::::
(Classification

::::::::::
uncertainty)

:::::
some

:::::
areas

::
of

:::::
open

::::
water

:::::
may

::
be

:::::::::::::
inappropriately

::::::::
classified

::
as

::::
sea

:::
ice.

:::::::::
Improved

:::::::::::
classification

::
of

:::
IS2

:::::::::
segments,

::::::::
including

:::
by

::::::
adding

:::::::::
additional

:::::::::
radiometric

:::::::
features

:::
and

::::::::
machine

:::::::
learning

::::::::::::::::::
(Liu et al., 2025, e.g,)

:::
can

:::
lead

::
to
::::::::
enhanced

::::::::::
confidence

::
in

:::
LIF,

:::::::::
especially

::
in

:::::::
summer420

::::::
months.

::::
We

:::::
repeat

::::
Fig.

::
5

:::::
using

::::::
LIFND::

as
::::::::::

Supporting
::::::
Figure

:::
S3,

:::
but

::::
find

::::
this

::::
does

:::
not

:::::::::
materially

:::::
affect

:::
the

:::::::::
qualitative

::::
and

::::::::::
quantitiative

:::::::
analysis

::
of

::::::
biases

:::::::
between

::::
LIF

:::
and

:::::::
PM-SIC

::::::::
products

::::
that

:::::::
follows.

:::
We

:::::
focus

:::
our

:::::::
analysis

:::
on

:::::::
LIFspec :::::

alone
:::
but

::::::
discuss

:::
the

:::::::::
implication

::::
and

:::
use

::
of

::::::
LIFND::

in
::::
Sec.

::
4.
:

:::::::
Statistics

:::::::
derived

::::
from

:::
the

::::::::::
distributions

::::::
shown

::
in

::::
Fig.

:
4 is given in Table 1, along with interquartile ranges and median

:::::
mean

differences from LIF(shown using the symbol ∆̃. In total, there are approximately 41,
::
∆.

:::::
There

:::
are

:::::::::::::
approximately

:::
25,000425

“summer" comparison points, covering 27
::
17 million km2, and 290

:::
278,000 “non-summer" comparison points, covering 189

:::
182

:
million km2 - larger because of the larger spatial extent of sea ice and greater number of months included. We see that

:::
The

:::
sea

:::
ice

:::::
areas

:::::
being

::::::::::::
intercompared

::::
here

:::
are

::::::
highly

:::::::
compact

::
-
::::
with

:
a
:::::

mean
::::
SIC

:::
for

:::::::::::
NSIDC-CDR

:::
of

::::
98%

::
in

:::::::
summer

::::
and

::::
99%

:::::::::::
non-summer

:::::::
months,

::::::::
reflecting

::
a

::::::
similar

:::
sea

:::
ice

::::::
regime

:::
as

::::
was

::::::::
examined

::
in
:::::::::::::::::::

Buckley et al. (2024)
::
and

::::
the

:::::::::
possibility

::
of

::::::::::::
overestimation

:::
of

:::
SIC

:::
in

::::
both

:::::::
seasons.

::::
All PM-SIC products indicate a higher ice fraction than the LIF in all seasons.430

Wintertime
::::::::::
Non-summer

:
biases are similar to that found in OIB data as well as in classified optical data, with a median

positive difference of 0.5-2.1% for sea ice that recorded by LIF as being 94.3% ice-covered on average. Considering only

specular returns as leads resulted in a better agreement between LIF and ,
::::
and

:::::
98.2%

:::
on

:::::::
average

::
for

:::
the

::::::::::::
NSIDC-CDR PM-SIC

products in both seasons. This presents to the possibility that non-specular or “dark lead" returns obtained by
::::::
product.

:

3.4
:::::

Strong
:::
vs.

:::::
Weak

::::::
Beam

:::::::::
Retrievals435

IS2 are open water areas missed by passive microwave satellites, or also thin sea ice that is misclassified by
:::
has

:::
six

:::::::
separate

::::::
beams,

::
of

:::::
which

:::
the

:::::
three

:::::
strong

::::::
beams

::::
have

::::
four

:::::
times

:::
the

:::::
energy

:::
of

:::
the

::::
weak

::::::
beam,

:::
and

:::::::::::
consequently

::::
four

:::::
times

:::
the

::::::
photon
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Period July-Aug Sep-Jun

Number 25 ×103, 288 ×103,

Area 17×106 km2 189×106 km2

Product SIC ∆ (25%,75%) SIC ∆ (25%,75%)

IS2

Lead Type
All leads 81.3% -9.7% (-13.8,3.8) 94.8 -.4% (-.02,0.0)

Specular leads 90.9% ∅ 95.2% ∅

Beam Type (coverage)
Strong beam (55%) 85.2% -6.7% (-9.1,-3.8) 90.8% -4.8 (-6.8,-1.9)

Weak beam (51%) 94.6% 2.3% (1.1,3.1) 97.3% 1.5% (0.5,2.0)

PM-SIC

SSMI/S

Bootstrap 97.8% 6.9% (1.5,9.5) 98.6% 3.4% (-0.3,4.8)

NASATeam 85.0% -5.9% (-11.8,-1.8) 96.2% 1.0 (-2.0,3.3)

NSIDC-CDR 97.8% 6.9% (1.5,9.5) 98.9% 3.7% (0.1,5.1)

OSI-430 90.6% -0.4% (-5.7,3.3) 97.8% 2.6% (-0.6,4.4)

AMSR2
AMSR2-NT 97.5% 6.6% (1.3,9.0) 98.8% 3.7% (-0.1,4.9)

AMSR2-ASI 96.4% 5.5% (0.1,8.4) 98.3% 3.2% (-0.3,4.8)
Table 1.

::::::::
Comparison

::
of
::::::::
“summer"

::::
(July

:::
and

:::::::
August)

:::
and

:::::::::::
“non-summer"

:::
(all

::::
other

::::::
months)

:::::::
statistics

::
of

:::
IS2

:::::
global

:::
LIF

::::::
product

:::
and

::::::
related

:::::::
products,

:::
and

:::
the

::
set

::
of

::
6

:::::::
examined

:::::::
PM-SIC

:::::::
products.

::
∆

:::::
values

:::
are

::::::::
differences

::::
from

:::::::
standard

:::
LIF

:::::::
product,

:::::
which

::::::
includes

::::
only

:::::::
specular

::::
leads

::
in

::::::
summer

:::
and

::
all

::::
leads

::
in

::::::::::
non-summer

::::::
months.

:::::
Values

::
in

:::::::::
parentheses

:::
next

::
to

:::::::::
strong/weak

:::::
beam

:::
LIF

::::::
products

:::::::
indicate

::::::
fraction

::
of

:::
LIF

::::
extent

::::
with

:::::::
sufficient

::::
data.

::
∆

:
is
:::::
mean

:::::::
difference

::::
from

:::
the

:::
LIF

::::::
product

::::::
LIFspec.

:::::
Values

::
in

:::::::::
parentheses

::
the

::::::::::
interquartile

::::
range

::
of

:::
∆s

::::::::
(25%-75%

:::::::
intervals).

:::::::::
Percentages

:::
for

:::
LIF

:::::::
products

:
is
:::
the

::::::
fraction

::
of

::::
total

:::
LIF

:::::::
coverage

::
for

::::
each

::::::
product.

:::::
return

:::
and

::::::::::::
approximately

::::
four

:::::
times

:::
the

::::::::::
along-track

:::::::::
resolution

:::::::::::::::::
(Markus et al., 2017).

::::
The

:::::::::
difference

::
in

:::::
beam

::::::
energy

:::::
leads

::
to

:::::::::
differences

::
in

:::
the

::::::::::::
classifications

:::
of

::::
lead

::::::::
segments.

::::
We

:::::::
compute

::::::::
summary

::::::::
statistics

::
of

::::
LIF

::::
data

::::::::
evaluated

:::::
using

::::::
strong

::::
and

::::
weak

::::::
beams

:::::
alone

::
in

:::::
Table

:
1.
:::
To

:::::::::
determine

::
the

::::
LIF

:::::
using

:::
just

:
a
::::::
single

:::::
beam

:::::::
strength,

:::
we

:::::
apply

:::
the

::::
same

::::::
quality

::::::
control

:::
on

:::
the440

::::::
reduced

::::::
subset

::
of IS2 .

Summer ∆ values are more variable, and with known issues in classifying surface meltwater in both PM and IS2 products

(Kwok et al., 2019b; Tilling et al., 2020; Buckley et al., 2023; Herzfeld et al., 2023), caution should be exercised in the application

of either in these months. In general we find a positively-skewed distribution of summer values in the PM products which ranges

from 0.9% to 10.4% on average. This overestimation is considerably more sensitive to the inclusion or exclusion of “dark"445

leads from the ATL07 product, which account for approximately 6.3
::::::::
crossings:

:::
for

:::::::
example

:::
we

::::::
require

::
at

::::
least

::
11

::::::
strong

:::::
beam

:::::::
crossings

:::
to

:::::::
produce

::
an

::::
LIF

::::::
product

::
in
::
a
:::::
given

:::::
month

::::
and

:::::::
location.

::::::
Doing

::
so

:::::::
restricts

:::
the

::::
area

::::
over

::::::
which

::::
such

:::::::
products

::::
can

::
be

:::::::::
compared,

::::
with

:::
the

:::::
strong

:::::
beam

::::::::
coverage

:::
just

:::
55% of sea ice in usable grid cells in these months. Interestingly,

:::
the

::::::
overall
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Figure 6.
::
(a)

::::::::
Histogram

::
in
::::::::
“summer"

:::::::
(Jul-Aug,

::::
red)

:::
and

:::::::::::
“non-summer"

:::::::
(Sep-Jun,

::::
blue)

::
of
::::::::
difference

::::::
between

::::
LIF

:::::::
evaluated

::::
using

:::::::
specular

:::::
returns

::::
only

:::::::
(LIFspec)

:::
and

:::::::
including

::::
dark

::::
leads

::
as

::::
open

:::::
water.

::
(b)

:::::
Same,

:::
but

::
for

:::
the

:::
LIF

::::::::
calculated

::::
using

::::
only

::::
weak

:::::
beams

:::::
minus

::::
using

::::
only

:::::
strong

::::::
beams.

::::::::::
Calculations

::
for

:::
(a)

::
are

:::::
taken

::::
over

::
the

:::::
entire

:::
LIF

:::::
extent.

::::::::::
Calculations

:::
for

::
(b)

:::
are

::::
taken

::::
over

:::
the

:::
area

:::::
where

::::
there

:::
are

::
at

::::
least

::
11

::::::
separate

:::::
strong

::::
beam

:::
and

:::::
weak

::::
beam

::::::::
crossings,

::::
which

::
is

:::::::::::
approximately

::::
50%

:
of
:::
the

:::
LIF

:::::
extent.

:::
(c)

:::::::::
Comparison

::
of

::::
dark

::::
(blue)

::
or
:::::::
specular

::::::
(orange)

::::
lead

::::::
fraction

::
for

:::::
strong

:::::
beams

::::
only

::
(y

::::
axis)

::
or

::::
weak

:::::
beams

:::
only

::
(x
:::::
axis).

::::::
Dashed

::::
black

:::
line

::
is

:::
1-1

:::
line.

::::
Solid

:::
red

::::
lines

:::
are

::::
linear

:::
fits

:
to
::::
each

::::::::
respective

::
set

::
of

::::
data

::
for

::
all

:::::
points

::::
with

::::::
nonzero

::::
lead

::::::
fraction.

:::
LIF

:::::
extent

::::
and

:::
the

:::::
weak

:::::
beam

::::::::
coverage

:::
just

:::::
51%.

::
In

:::::
these

:::::
areas,

:::
we

:::
see

:::::::::
significant

::::::
biases

:::::::
between

:::::
each,

:::
and

:::::::
between

:::::
each

:::
and

:::
the

::::::
overall

:::
LIF

:::::::
product

:::::
which

::::::
blends

:::
the

::::
two.

:::::
From

::::::::::::::
September-June,

:::
the

:::::
strong

:::::
beam

:::
has

::
an

:::::
offset

:::
of

:::::
-4.8%

::::
from

:
LIFand450

NASATeam
:::spec::::::

wheras
:::
the

:::::
weak

:::::
beam

:::
has

:
a
:::::::
positive

:::::
offset

::
of

::::::
1.5%.

::
In

:::
this

::::::
period,

:::::::
months,

:::::::::
weak-only

::::
LIF

::::::
reports

::
an

::::
SIC

::
of

::::::
97.3%,

:::::
which

::
is

::::::
similar

::
in

:::::::::
magnitude

::
to

:::
that

:::::
from

:::
the PM-SIC algorithms are most similar , with the smallest mean difference

and an interquartile range that includes zero, as in winter months. Using only summer leads classified as specular resulted

in similar distributions of LIF values to those from the PM-SIC products, though errors in the retrieval of summer sea ice

properties from IS2 should continue to be the object of future study, to establish whether PM-SIC products are overestimating455

SIC in the melt season on average or not.
:::::::
whereas

:::
the

::::::::::
strong-only

:::
LIF

::
is

::::::::::
significantly

::::::
lower.

∆̃ (25
::::
Since

:::::::
LIFspec:::

can
:::::::

include
::::
both

:::::
weak

:::
and

::::::
strong

::::::
beams

::
to

:::::
reach

::
11

:::::::::
crossings,

::
to

::::::::::
additionally

:::::::
compare

::
a
::::::::::
strong-only

:::
and

:::::::::
weak-only

::::
LIF

:::::::
product,

:::
we

:::::::
examine

::::
only

:::::
those

:::::
areas

:::::
where

:::::
there

:::
are

::::
both

::
11

:::::
weak

:::::
beam

::::::::
crossings

::::
and

::
11

::::::
strong

:::::
beam

::::::::
crossings.

::
In

:::::
those

::::
areas

::::::
areas,

::
we

::::
plot

:::
the

:::::::
summer

:::
and

:::::::::::
non-summer

:::::::::
histograms

:::
of

:::
LIF

:::::::::
calculated

:::::
using

:::
just

:::::
weak

:::::
beams

::::
and

:::
just

:::::
strong

::::::
beams

::
as

::::::
Figure

:::
6b.

:::::::
Overall,

:::
this

::
is

::
an

::::
area

::::::::
covering

::::
50%

::
of

:::
the

:::
LIF

::::::
extent.

::
In

::::
this

::::
area,

::::::::::::::
weak-beam-only

:::
LIF

::
is
:::
on460

::::::
average

::::::
10.6%

::::::
higher

::::
than

:::::::::::::::
strong-beam-only

:::
LIF

:::::
from

::::::::::
July-August

::::
and

::::
6.3%

::::::
higher

:::::
from

::::::::::::::
September-June.

::
In

:::::::::::
non-summer

::::::
months

:::
the

:::::
modal

:::::::::::
weak-strong

:::::
offset

:
is
::::
near

::
0%, 75%) ∆̃ (25%,75%) LIF ∅ ∅ LIF (specular leads) 3.1% (0.8

:::
but

::::
there

::
is
:
a
:::::
peak

::
in

:::
July

::::
and

::::::
August

::::::
around

:::
the

:::::
mean

:::::
offset

::
of

:::::
6.3%.

:
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:::
The

:::::::::
difference

:::::::
between

::::::
strong

:::
and

:::::
weak

::::::
beams

::
is

::::::
caused

:::
by

::
an

:::::::::
increased

::::::
fraction

:::
of

:::::::
specular

::::
lead

::::::::::::
classifications

:::
by

:::
the

:::::
strong

:::::
beam.

::::
The

:::::::
specular

::::
lead

:::::::::::
classification

:::::::
requires

::
a
:::::
higher

:::::::
photon

:::
rate

:::::::::
compared

::
to

:::
the

::::
dark

::::
lead

:::::::::::
classification,

::::
and

::::
thus465

:
is
:::::
more

::::::::
common

::
in

:::
the

::::::
beams

::::
with

:::::
higher

:::::::
energy.

::
In

::::
Fig.

::::
6(c)

:::
we

:::::
scatter

:::::
dark

:::::
(blue)

:::
and

::::::::
specular

:::::::
(orange)

::::
lead

:::::::
fraction

:::
for

::
the

::::::::::
strong-only

::
(y

:::::
axis)

::
or

:::::::::
weak-only

::::
(blue

:::::
axis)

:::
LIF

:::::
data.

::
As

::
in

:::
(b), 9.1) 0.0% (0.0

::::
these

:::
data

:::
are

:::::::::
presented

::::
only

::
for

::::
grid

:::::
areas

:::::
where

::::
there

:::
are

:::::
more

::::
than

:::
11

:::::
strong

:::
and

:::::
more

::::
than

:::
11

::::
weak

:::::
beam

:::::::::
crossings,

:
a
::::
total

::
of

:::::::
157,000

:::::::
distinct

::::::::::::
measurements

::::::
points.

:::
For

::::
those

::::::
points,

:::::
there

:
is
::
a
::::
high

:::::::::
correlation

:::
(r2

:
=
:::::
0.97)

:::::::
between

:::
the

::::
dark

::::
lead

::::::
fraction

::
in
:::
the

::::
two

:::::::
datasets,

::::
with

:::
the

::::
best

:::::
linear

::
fit

:::
(red

::::
line,

:::::
slope

:::::
1.06)

:::::
nearly

:::
1-1

:::::::
(dashed

:::::
black

:::::
line).

::
In

:::::::
contrast,

:::::
there

:
is
::::
still

:
a
:::::::
weaker

:::::::::
correlation

:::::::
between

:::::::::
respective

:::::::
specular470

:::
lead

::::::::
fractions

::::::::::
(r2 = 0.89),

::::
and

:::
the

::::
best

:::::
linear

::
fit

::
is
::::::
closer

::
to

:::
2-1

:::::
(blue

::::
line,

:::::
slope

:::::
2.18).

::::
Out

::
of

:::
the

:::::::
157,000

::::::
points,

::::
133,0.2)

Bootstrap 10.3 (2.8, 18.0) 1.8% (-0.2,5.6)NASATeam 0.9% (-2.5, 6.7) 0.5% (-1.9, 3.8) NSIDC-CDR 10.4% (3.0,18.0) 2.1%

(0.1, 5.8) OSI-SAF 4.8% (1.0,11.9) 2.1% (-0.4, 4.9) AMSR2-NT 10.2% (3.0, 17.8)2.1% (0.0, 5.8)AMSR2-ASI 9.0% (1.9,16.7)

1.6%
:::
000 (-0.4, 5.4) Comparison of “summer" (May-Sep) and “winter" (all other months) statistics of IS2 global LIF product

and the set of 6 examined PM-SIC products. ∆ values are differences from standard LIF product. ∆̃ is median difference, and475

values in parentheses the interquartile range of ∆ (25%-75% intervals).
:::::
85%)

::::
have

:::::::
nonzero

::::
dark

:::
and

:::::::
specular

::::
lead

::::::::
fractions

::
in

::::
both

:::::
strong

::::
and

::::
weak

::::::::
products.

:::
Of

:::::
these,

:::
the

:::::::
median

:::::
strong

:::::
beam

::::
LIF

:::::::::::
measurement

:::
has

:
a
::::::::

specular
::::
lead

::::::
fraction

:::::
5.3%

::::::
higher

:::
than

:::
its

::::::::::::
corresponding

::::
weak

:::::
beam

::::
LIF,

:::
but

:::
the

:::::::
median

::::
dark

:::
lead

:::::::
fraction

:::::::::
difference

::
is

:::
just

::::::
0.06%.

:

4 Conclusions

In this study, we developed a new gridded data product from the ICESat-2
:::
IS2

:
laser altimeter, which we used to represent480

monthly maps of sea ice concentration
:::
the

:::
LIF. We evaluated errors in the representation of the sea ice surface using an emulator

which is run on a set of classified optical images from NASA’s Operation IceBridge
::::
OIB. We showed that, in general, PM-

SIC measurements were positively biased against IS2 estimates, particularly in winter
::::::::::
non-summer

:::::::
months, as was the case

when compared to imagery in Buckley et al. (2024) and in previous literature (Kern et al., 2019)
::::::::::::::::::
(e.g. Kern et al., 2019). IS2

is particularly effective at estimating SIC, even with a limited number of overflights
:::::
beam

::::::::
crossings, especially in regions of485

compact sea ice with leads. With further validation of the ATL07 surface classification scheme, this product may help reduce

open water biases significantly.

The IS2 linear ice fraction (LIF
::::::
IS2-LIF

:
product is provided as a global, monthly product covering 25-54

:::::
21-46% of the

Arctic sea ice zone. This data product is available through December 2024 (see Data Availability). Because of the available

comparative data from Operation IceBridge
::::
OIB, we only included Arctic comparisons in this work, though the data product490

is
:::
has

::::
been

:::::
made available in both hemispheres. In months from October-May (“winter

:::::::::::::
September-June

::::::::::::
(“non-summer"), we

found that the offset between LIF data and PM-SIC product data was of the same order of the bias between the OIB optically

classified imagery and PM-SIC data we found in Buckley et al. (2024). Because of this consistency, we suggest that this captures

an overestimation bias in the PM-SIC products, and this offset is not from misclassification error in the ATL07 product.

In summer, lower LIF values compared to
::
In

::::::
periods

:::
of

:::
the

::::
year

:::::::::
associated

::::
with

::::::
surface

:::::::
melting

:::::
(here,

::::
July

::::
and

:::::::
August,495

::::
when

:::::::::::
high-latitude

::::
sea

:::
ice

::
is

:::::::::::
experiencing

:::::
peak

:::::
melt),

::::
we

:::::
found

::::
that

::::
high

::::::
levels

::
of

:::::::
possible

:::::::::::::::
misclassification

::
of

:::::::
surface
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::::
water

:::
in

:::
the

:::::
form

::
of

:::::
“dark

::::::
leads"

:::
can

:::::::
degrade

::::
the

::::::
quality

::
of

::::
the

:::
LIF

:::::::
product

:::
in

::::::
similar

:::::
ways

::
to

:
PM-SIC contrasted with

expectations for heavily ponded sea ice in OIB imagery, where we found SSMI/S-based PM-SIC productsunderestimated SIC

Buckley et al. (2024). As in winter, the classification of specular returns alone as open water resulted in a similar distribution

of SIC values as PM-based products. We .
::::::::
Because

:::
the

::::::
impact

::
of

::::
dark

::::
lead

::::::::::::
classifications

::
on

::::
LIF

::
is

:::::::::
significant

::::
only

::
in

:::::
these500

::::::
months,

:::
we

:::::::
suggest

:::
the

:::
use

:::
of

::::
only

:::::::
specular

:::::
leads

:::
for

:::::::::
calculating

::::
LIF,

:::::::::
especially

::
in

:::::::
months

:::::
where

:::::
there

::
is

:::
the

::::::::
potential

:::
for

::::::
surface

:::::::
melting.

:::::::
Because

:::
of

:::
the

:::::::::
ambiguity

::
in

::::
dark

::::::
leads,

:::
we

::::
also

::::::::
examined

::
a
:::::::
product

:::::
which

:::::::::
eliminated

::::
grid

:::::
cells

::::
with

:::
an

:::::::::
appreciable

::::
dark

::::
lead

:::::::
fraction,

:::::::
LIFND.

::::
This

:::::
leads

::
to

:
a
:::::::::
substantial

::::::::
reduction

:::
in

:::
LIF

:::::
extent

::
in
:::::::

summer
:::::::
months,

:::
but

:::::
little

::::::
change

::
in

::::::::::
non-summer

:::::::
months.

::::::::
Overall,

::::::::::
non-summer

::::::
month

::::::::
statistics

:::
are

::::::
similar

::::::::
compared

:::
to

::::::
LIFspec::::

(see
::::::::::

Supporting
::::::
Figure

::::
S3),

::::
with

:::::
larger

::::::
positive

::::::
offsets

::
in

:::
the

::::
PM

:::
data

::
in
::::::::
summer.

::
In

:::::::
general,

:::::::
because

::
of

:::
the

:::::::::
association

::
of

::::
dark

:::::
leads

::::
with

::::::
surface

:::::::
melting505

:::
and

:::::
errors

::
in

::::::::::::
classification,

::
we

::::::
advise

::::::::
excluding

::::
dark

:::::
leads

::::
from

:::
the

:::::::
analysis

:::
by

:::::
using

:::
the

::::::::
“specular"

::::
LIF

:::::::
product

:::::::
LIFspec.

:

::
In

:::::::::
examining

:::::::::
differences

::::::::
between

::::
IS2’s

:::::
weak

::::
and

:::::
strong

:::::::
beams,

:::
we found that the LIF product was most comparable to

the NASATeam algorithm applied to SSMI
:::::::::::
classification

::
of

::::::
“dark"

:::::
leads

::
by

:::::
weak

::::
and

::::::
strong

:::::
beams

::::
was

::::::
nearly

:::::::
identical

:::
as

:
a
::::::
portion

:::
of

::::::
overall

:::
sea

:::
ice

::::::::
segment

::::::
length,

:::
but

::::
that

::::::::
specular

::::
leads

:::::
were

::::::::::::
approximately

:::::
twice

:::
as

::::::::
common

::
in

::::::
strong

:::::
beam

::::::
samples

::::
than

:::::
weak

:::::
beam

::::::::
samples,

::::::
similar

:::::::
findings

::
in

:::::::::::::::
Petty et al. (2021).

::::
This

:::::
leads

::
to

::::::::
consistent

:::::::::::
weak-strong

:::
LIF

::::::::::
differences510

::
of

::
up

::
to
:::::

10%
::
in

:::::::
summer

:::::::
months.

:::::
Since

:::::
weak

:::
and

::::::
strong

::::::
beams

:::
are

::::::::
sampling

::::::::::::
approximately

:::
the

::::
same

::::
sea

:::
ice,

:::
the

:::::::::
difference

:
is
:::::
likely

::
a
:::::::::::
consequence

::
of

::::::::::
differences

::
in

:::
the

:::::::::
processing

::
of

:::
sea

:::
ice

:::::::
surface

::::::
returns

:::::::
between

:::
the

::::
two

::::::::
products.

::::
The

:::::::::
weak-only

:::
LIF

:::::::
product

:::::
aligns

::::
with

::::::::
estimates

:::
of

:::
SIC

:::::
from

:::::::
PM-SIC

::::::::
products,

:::
but

::::
with

::
a
:::::
power

::::
and

:::::::::
resolution

:
1/S data in these months,

a data product which had the largest biases compared to “ground-truth
:
4
::::
that

::
of

:::
the

:::::
strong

:::::::
beams,

:
it
::
is
:::::::
possible

::::
that

::::::::
openings

::
in

:::
the

:::
sea

:::
ice

:::::
cover

:::
are

::::::
missed

::
or

::::::::
averaged

::::
over

::::
that

:::
are

:::::::
captured

:::
by

:::
the

::::::
strong

:::::
beam.

::
In

:::::
other

:::::::
studies,

::::
weak

:::::
beam

::::
data

::::
can515

::
be

::::::::
degraded

::::::
relative

:::
to

:::::
strong

:::::
beam

::::
data

:::::
when

:::::::::
evaluating

:::::::
variable

::::::::::
along-track

:::::::
statistics

::::::::::::::
Zhu et al. (2020)

:
,
::::
with

::::::
strong

:::::
beam

:::::::::::
measurements

::::::
higher

::::::
quality

:::
for

::::::::::::
reconstructing

::::::
surface

:::::
types

:::::
from

::::::::
classified

:::::::
imagery

:::::::::::::
Liu et al. (2025)

:
.
::::::
Future

::::
work

::::::
aimed

::
at

:::::::::::
understanding

:::::::::::
weak-strong

:::::::::
differences

::
in

:::::::::
collocated

:::::::
imagery

::::
will

::
be

:::::::::
important

::
in

::::::::::::
understanding

:::::::
whether

:::::
weak

:::::
beam

::::::
returns

:::::
should

:::
be

::::::::::
disregarded,

::::::
strong

::::
beam

::::::::
retrievals

:::::::::::
overestimate

:::
the

:::::::
fraction

::
of

::::
open

:::::
water

::::::::::
along-track,

::
or

::
a

::::::::::
combination

::
of

:::::
both.

:::::
While

:::
we

::::
have

::::::::::
constrained

:::
the

:::::
errors

::
in

:::
LIF

::::::
arising

:::::
from

::::::::
uncertain

:::::::
temporal

::::
and

::::::
spatial

:::::::
sampling

:::::::
through

:::::::::
emulation,

:::::
there520

:
is
:::::::::

significant
:::::

room
:::
to

:::::::
improve

:::
the

::::
LIF

:::::::
product

::::::
through

:::::::
surface

::::
type

::::::::::::
classification.

::::
This

::::::
comes

:::::
about

::
in

::::
two

:::::
ways:

::::
first

:::
by

::::::::
improving

:::
the

:::::::::::
classification

:::
of

:::::
“dark

::::
lead" OIB imagery in summer. The current IS2 algorithm does not distinguish between

melt ponds and open water
:::::::
segments

:::
in

:::::::
summer,

::::
and

::::::
second

::
by

:::::::::::
constraining

:::
the

:::::::::
differences

::::::::
between

:::::
weak

:::
and

::::::
strong

:::::
beam

::::::::::::
reconstructions

::
of

:::
the

:::::::
surface.

::::::
Typical

:::::::
summer

::::
dark

::::
lead

::::::::
fractions

:::
are

:::::
9.7%,

:::
and

:::::::
whether

:::
this

:::::::::
represents

::::
melt

:::::::
ponding,

:::::::
surface

::::
melt,

::
or

:::::
open

:::::
water

:::
can

:::
be

::::::
further

::::::::::
constrained.

::::
The

:::::::
variable

:::::::
inclusion

:::
of

:::::
weak

::
or

:::::
strong

::::::
beams

:::::
alters

::::
LIF

::::::::::
significantly

::
in

:::
all525

::::::
months,

::::
due

::
to

:::
an

::::::::::
approximate

::::::::
doubling

::
of

::::::::
specular

::::
leads

:::
in

:::
the

:::::
strong

::::::
beams

:::::::
relative

::
to

:::
the

:::::
weak

::::::
beams.

:::::
Both

:::::::::
weak-only

:::
and

::::::::::
strong-only

:::::::
products

:::::
show

::
an

::::::::::::
overestimation

::
of

::::
SIC

::
by

::::
PM

::::::::
products,

:::
but

::
the

::::::
degree

::::
and

:::::::::
importance

::
of

:::
this

:::::::::::::
overestimation

:::::
should

:::
be

::::::
further

:::::::::
understood

:::
and

:::::::
rectified

:::
by

::::::::
assessing

:::::
which

::
of
:::
the

::::
two

:::::::::
accurately

::::::
depicts

:::
the

:::
sea

:::
ice

::::::
surface.

:

:::
The

:::::::::
evaluation

::
of

::::
LIF

::
in

::::::::::
representing

::::
local

::::
SIC

::::::::
primarily

:::::::
focused

::
on

:::::
areas

::
of

:::::::
compact

::::
sea

::
ice

::
in
::::::::::::::::::
Buckley et al. (2024),

::::
and

::::::
because

:::
of

:::
the

:::::::::::
preprocessing

:::::
steps

::::::::
employed

:::
in

:::::::::
generating

:::
the

:::::::
monthly

::::
LIF

:::::::
product,

:::::
nearly

:::
all

::::::::
locations

::
of

::::::::::::::
intercomparison530

::
in

::::
Sec.

:
3
:::::
were

::::
also

:::::::
compact

:::
ice.

::::
For

::::::::
example,

::
as

::::::::
indicated

::
in

:::::
Table

::
1,
:::::

mean
::::::::::::

NSIDC-CDR
::
in

:::
the

::::::::::::
intercompared

:::::::
regions

:::
for
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::::::::
producing

::::::
Figure

::
5

::::::
exceeds

:::::
98%

:
-
:::
just

::::::
0.07%

:::
of

:::::
points

::::
had

::
an

:::::::::::
NSIDC-CDR

::::
less

::::
than

:::::
80%.

::::
This

:::::
limits

:::
the

::::::
degree

::
to

::::::
which

::
the

:::::
15%

:::::::::::
NSIDC-CDR

:::::
mask

::::
used

:::
to

:::::
define

:::
the

:::::::
ATL07

:::
can

::::::::
influence

::::
LIF

::::
data.

::::
The

::::
LIF

:::::::
product

:::
has

:::
not

:::
yet

:::::
been

::::::::
validated

::
for

:::::::::::::::
low-concentration

:::
ice

:::
or

:::
the

:::::::::::
CDR-defined

::::::::
marginal

:::
ice

::::::
zones,

:::
and

:::
its

:::::
utility

::
in

:::::
those

:::::::
regions

:::::::
remains

::
an

:::::
open

::::::::
question,

:::::::
although

:::::
these

::::
areas

:::
are

::::::
critical

:::
for

:::::::::::
understanding

::::::
overall

:::
sea

:::
ice

:::::::::
variability

:::::::::::::::::::::::::::::::::::::::::
(Bennetts et al., 2022; Squire, 2022; Horvat, 2022)535

:
.
:::
The

::::
LIF

::::::
product

::::::::
therefore

::::
may

::::::
provide

:::
an

::::::::::
independent

:::
and

:::::::
possibly

::::::::
improved

::::::::
estimate

::
of

:::
SIC

::
in
::::::::::::::::
high-concentration, and the

LIF product is likely not yet capable of enhancing
::::::::::::::
non-melt-affected

:::::::
months,

::::::
though

::
it

:::
has

:::
not

::::
been

:::::::::
examined

::
in

::::
areas

::::::
where

::
the

:::
sea

:::
ice

::
is
:::::::::::::::
low-concentration

::
or

::::::::::::::
highly-variable.

::
In

:::::::
general,

::::::::
evaluating

:::::::
LIFspec::::::::

including
::::
both

:::::
weak

::::
and

:::::
strong

:::::
beam

:::::::::
crossings,

:::
we

:::
find

::
a
:::::::::::::::
positively-skewed

:::::::::
distribution

:::
of

::::::::::
July-August

:::
SIC

::::::
values

::
in

::
all

:
PM-SIC products

:::::
except

:::
the

::::::::::
NASATeam

:::
and

::::::::
OSI-430.

:::
As

::::::::
discussed,

:::::
these

:::
two

:::::::
PM-SIC

::::::::
products540

:::
may

:::
be

::::::
overly

:::::::
sensitive

::
to

:::::::
surface

:::::::
melting.

:::::
Other

::::::::
products

::
all

::::::
report

:::::::
compact

:::
sea

:::
ice

::::
and

::::::::::
distributions

:::
of

:::
SIC

::::
that

::::::::
resemble

::::::::::
non-summer

:::::::
months,

::::
with

:::::::
positive

:::::
biases

::
of

:::::
5.5%

::
to

:::::
6.9%.

:::
For

::::::::
example,

::::::::
compared

::
to

:::
the

:::::::::::
NSIDC-CDR,

:::::::
LIFspec:::::::

suggests
:::::
there

:
is
:::::
more

::::
than

:::::
400%

:::::
more

::::
open

:::::
water

:
in these months. Further work on the classification of ponded surfaces is needed before

using a summer LIF-based SIC product.
::
In

:::::::::::
non-summer

:::::::
months,

::
we

::::
see

::::::::::::
overestimation

::::::
biases

::
in

::
all

::::::::
PM-SIC

::::::::
products,

::::
with

::::
from

:::::
1.0%

:::::::::::
(NASATeam)

:::
to

::::
3.7%

:::::::::::::
(NSIDC-CDR)

:::::
more

::::
SIC

::
in

:::
the

::::
PM

::::::::
products,

::::::
which

:::::
varies

:::::::::
depending

:::
on

:::::::
whether

:::::
weak545

::::
beam

::::
data

::
is
::::::::

included
::
or

:::::::::
excluded.

::::::
Again,

::::::::
compared

:::
to

:::
the

::::::::::::
NSIDC-CDR,

::::::
LIFspec::::::::

suggests
:::::
there

::
is

::::
more

:::::
than

:::::
400%

:::::
more

::::
open

:::::
water

::
in

:::::::
compact

:::
ice

:::::
zones

::
at

::::
high

:::::::
latitudes

::
in
:::
the

:::::::::::
non-summer

:::::::
months.

:::::
These

:::::::::::::
overestimations

::::::
match

::
in

:::::::::
magnitude

::::
with

::
the

:::::::::::
comparisons

:::::::
between

::::
IS2

:::
and

:::::::
PM-SIC

::::
data

::
as

::::
well

:::
as

::::::::::
comparisons

::::::::
between

:::::::
PM-SIC

:::
and

::::::::
optically

::::::::
classified

::::
OIB

::::
data

::
in

:::::::::::::::::
Buckley et al. (2024)

::
as

::::
well

::
as

:::::
other

::::::::::::::
intercomparisons

::::::::::::::::::::::::::::::::
Ivanova et al. (2015); Kern et al. (2019)

:
.

As it illuminates biases, particularly in compact sea ice in winter
::::::::::
non-summer

::::::
months, LIF derived from IS2 offers an550

independent and unique opportunity to enhance estimates of sea ice concentration. Underestimations of SIC in the wintertime

Arctic may be small:
::::::
outside

:::
of

:::
the

::::
melt

::::::
season

::::
may

::::
not

::
be

::::::
large,

:
but these differences correspond to large increases in

open water fraction, which can drive ocean and atmospheric variability. Climate models that are tuned to reproduce SIA from

PM satellites, or that assimilate PM-SIC for forecasts, may underestimate the magnitude of this air-sea exchange. We have

provided validative data for LIF by using
:::
used

:::::::::
validative

::::
data

::::
from

:
high-resolution optical imagery and an emulation tool.555

It will be necessary to enrich this LIF data with more constraints to ascertain the year-round and repeat skill of LIF and its

potential for developing a new SIC data product on shorter timescales. IS2 offers a high-resolution and repeatable opportunity

to provide improved PM-SIC measurements and greater understanding of overall sea ice variability in the polar seas.

Data availability. The monthly LIF product, and statistics from OIB and worldview imagery will be provided as a Zenodo repository upon

paper acceptance. A release of the IS2 emulator is archived at Horvat (2024b) and accessible at github.com/antipodalclimate/IS2-Emulator. A560

release of the IS2 gridded product generation code is archived at Horvat (2024a) and accessible at github.com/antipodalclimate/IS2-Gridded-

Products. Code to reproduce paper figures and statistics is archived as Horvat (2025) and available at https://github.com/antipodalclimate/IS2-

LIF-paper-2024.
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