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Abstract. The human direct and indirect release of carbon dioxide (CO2) into the atmosphere is the main driver of the anthro-

pogenic change in climate since the industrial revolution. The Paris agreement from 2015 requires regular country-based reports

of greenhouse gas emissions. Inverse modeling of observed concentrations of greenhouse gases is one important approach to

verify the reported emissions. The future constellation of Copernicus Anthropogenic CO2 Monitoring (CO2M) satellites is

dedicated to greenhouse gas measurements with high spectral and spatial resolution and coverage. The requirements for the5

performance of the instruments and retrieval algorithms for the column-averaged dry-air mole fraction (XCO2) are stringent in

order to identify, assess and monitor the CO2 emissions from space. In this study, we analyze the impact of avoiding detector

saturation on the precision and sampling of XCO2. We use the Fast atmOspheric traCe gAs retrievaL (FOCAL) algorithm

which has been selected to be one of the operational greenhouse gas retrieval algorithms to be implemented within the CO2M

ground segment. In order to avoid saturation, the number of read-outs per sampling time can be increased and the signals can10

be co-added onboard, which we refer to as “temporal oversampling” in this study. We use a subsampled one-year dataset of

simulated radiances to define the temporal oversampling factors (OSFs) that are sufficient to avoid detector sarutarion and then

apply the defined OSF combinations globally. We find that OSFs larger than one will lead to a significant decrease in num-

ber of saturated observations with some impact on the median XCO2 precision, concluding that OSFs larger than one should

be considered for the satellite mission. These results are based on simulated radiances. Consequently, the real impact on the15

precision should be analyzed in more detail during the commissioning phase of the satellite.

1 Introduction

It is now well established that the direct and indirect human release of carbon dioxide (CO2), since the industrial revolution,

is the most important cause of the recent climate change (IPCC, 2023). Due to its long projected and irreversible impact on

global warming on a timescale of a millennium (e.g., Archer et al., 2009; Solomon et al., 2009) and its sources from fossil fuel20

combustion among others, reduction of CO2 emissions is an internationally agreed environmental policy goal, as stated e.g. in

the Paris Agreement from 2015 (UNFCCC, 2015). This agreement requires that countries report their emissions on a regular
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basis. Atmospheric measurements of the CO2 concentrations, including e.g. in-situ surface observations and satellite-based

remote sensing instruments, combined with inverse modeling to determine surface fluxes offer a unique opportunity to verify

and support these reported emissions.25

Space-borne total column CO2 measurements have a long history starting with those retrieved from the pioneering in-

strument SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY, Burrows et al., 1995;

Bovensmann et al., 1999; Buchwitz et al., 2005; Reuter et al., 2010; Schneising et al., 2011) and other satellites such as the

Greenhouse gases Observing SATellite (GOSAT) and GOSAT-2 (Kuze et al., 2009; Nakajima et al., 2012), the Orbiting Carbon

Observatory (OCO) version 2 and 3 (Crisp, 2015; Taylor et al., 2020) and TanSat (Liu et al., 2018).30

The Copernicus Anthropogenic CO2 Monitoring (CO2M) mission is a future constellation of three identical satellites in a

near-polar sun-synchronous orbit with an equator crossing time at 11:30 LT in a descending node (Janssens-Maenhout et al.,

2020; Sierk et al., 2021; Meijer et al., 2023). The first satellite is planned to be launched in 2026. The mission builds on the

concepts of CarbonSat with extended instrumentation (Bovensmann et al., 2010; Velazco et al., 2011; Buchwitz et al., 2013;

Broquet et al., 2018). Its primary instrument is a push-broom imaging spectrometer (CO2I) measuring solar radiances reflected35

at the Earth’s surface and scattered in the atmosphere in three spectral bands: a) the near infrared (NIR, 747− 773 nm),

used to retrieve information about scattering properties or the atmospheric dry-air column density, aerosols and solar-induced

fluorescence (SIF); b) and two bands in the short-wave infrared (SWIR1, 1590− 1675 nm and SWIR2, 1990− 2095 nm),

used to derive information about atmospheric CO2, CH4, aerosols and water vapor. As a result the satellites will enable the

determination of the column-averaged dry-air mole fraction of atmospheric CO2 and CH4, called XCO2 and XCH4 hereafter,40

at a total spatial sample size of about 4 km2 and a swath width of around 250 km. This resolution and swath width is a trade-

off between detection of local sources and a frequent global coverage, with some limitations, e.g. due to clouds covering the

tropospheric signal. In addition to CO2I, the CO2M mission will enable the measurement of the NO2 content in the atmosphere

with a spectrometer in the visible spectral range (NO2I) and information about clouds in the atmosphere with a Cloud Imager

(CLIM) and about aerosols with a Multi-Angle Polarimeter (MAP), see also Meijer et al. (2023) for an overview.45

The potential for CO2 emission verification with CO2M has been shown by studies using simulated radiances (e.g., Kuhlmann

et al., 2020) and using measurements of satellites already in operation (e.g., Reuter et al., 2019; Fuentes Andrade et al., 2024).

Three retrieval algorithms are considered for the operational greenhouse gas product of CO2M with differences especially

in the treatment of light scattering in the retrievals: the Remote sensing of Trace gas and Aerosol Product (RemoTAP, Lu

et al., 2022), the Flexible and Unified Spectral InversiON ALgorithm Platform (Fusional-P-UOL-FP) based on the algorithm50

described in Cogan et al. (2012) and the Fast atmOspheric traCe gAs retrievaL (FOCAL, Reuter et al., 2017a, b; Noël et al.,

2021, 2022, 2024).

Quantifying anthropogenic CO2 emissions from space is challenging because atmospheric signals resulting from these

emissions are usually less than 1 % larger than the background (global XCO2,bg ≈ 419 ppm in 2023, Copernicus Climate

Change Service, 2024). In addition, the natural variability during the year is of similar order of magnitude (e.g., Forkel et al.,55

2016). Therefore, the precision (0.7 ppm for CO2I) and accuracy requirements (0.5 ppm for CO2I) to the instrument calibration

and retrieval algorithms are stringent (ESA, 2020). Consequently, all aspects influencing the precision of the retrieved XCO2
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have to be considered and analyzed carefully in order to meet these requirements. Precision values between 0.4 and 0.6 ppm

could be inferred from several retrieval algorithms for CO2M using one read-out per integration time step (Lu et al., 2022;

Reuter et al., 2024). Noël et al. (2024) showed first performance assessments of the FOCAL version for CO2M with simulated60

radiances. Here, we consider the effect of detector saturation and investigate the impact of reducing the detector exposure time

in the nadir configuration where the instrument’s zenith angle is close to zero.

Detector saturation occurs when the number of photons collected by the detector is larger than the characteristic full well

capacity (FWC), e.g. due to a bright surface like a desert. Saturation of the detectors results in several negative impacts, which

lead to errors in the CO2 retrieval. At signal levels above the FWC the detector typically exhibits strong non-linearity with65

quickly fading response towards saturation (e.g., Staebell et al., 2021, for the airborne instrument MethaneAIR). Consequently,

saturation-affected measurements have to be removed (Yoshida et al., 2011; Kataoka et al., 2017; Tian et al., 2018; Shi et al.,

2021) and should generally be avoided. The GOSAT instrument has different gain modes to avoid detector saturation (Kataoka

et al., 2017; Reuter et al., 2012; Taylor et al., 2022). In glint geometry over ocean, where the satellite’s field of view is shifted

towards the sun-glint spot, it has been found that saturation can affect the measurements and can be avoided by looking near70

the glint spot but excluding it (Boesch et al., 2011; Eldering et al., 2012; Crisp et al., 2017). Saturation in general can also be

avoided by reducing the exposure time of the detector, thereby increasing the maximum detectable radiance in that spectral

band, but also impacting the retrieved XCO2 precision (Nakajima et al., 2015; Grossmann et al., 2018; Staebell et al., 2021;

Clavier et al., 2024). This is further discussed in Sect. 2.

The goal of this study is to define scenarios reducing the detector exposure time while maximizing the coverage and mini-75

mizing the negative impact of saturation on the XCO2 precision. For this, we use simulated radiances calculated at the CO2M

spatial samples with added noise corresponding to the respective detector setting. After defining detector saturation and its

relation to the reduction of the exposure time in Sect. 2, we describe the simulated radiances used in this study (Sect. 3). As a

next step, we define scenarios to determine the detector exposure time needed in each spectral band (see Sect. 4), then apply

these scenarios to simulated radiances and retrieve XCO2 using the FOCAL algorithm (Sect. 5). The impact of the scenarios80

on the global XCO2 precision is discussed in Sect. 6. Section 7 provides some concluding remarks.

2 Detector design, saturation, oversampling factor, signal-to-noise ratio

The design of the CO2I/NO2I is comprised of four grating spectrometers sharing a common telescope, entrance slit and

collimator, as described in Sierk et al. (2021). Here we briefly summarize the features that are relevant for the present study.

The multi-band spectrometer operates according to the push-broom imaging principle: The entrance slit is projected onto the85

Earth’s surface, defining the swath width in the across-track (ACT) direction. The CO2I design features a slit composed of a

number of rectangular optical fibers, which are aligned to form an array of apertures defining the spatial samples. The fiber core

dimensions define the spatial sample size in ACT direction (326 µm corresponding to 1.8 km on Earth) and the instantaneous

field-of-view (IFOV) in the along-track (ALT) direction (124 µm corresponding to 814 m on Earth). The spatial sampling in
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Figure 1. Illustration of the integration times (colored) for the oversampling factors that are foreseen for the detectors in the NIR and SWIR

bands of CO2M. White spaces are times for reading out the signal (about 37ms). The end of the integration time is denoted by solid black

lines at the end of each rectangle. Black dashed line: Sampling period tsamp of 308ms, see Eq. (2).

ALT direction is performed by the motion of the IFOV during the integration period tint, in which signal is accumulated on the90

detectors.

During the sampling time tsamp = 308 ms the slit projection on Earth moves by 2.2 km, which defines the ALT ground

sampling distance. A spatial sample therefore has the extent of about 1.8× 2.2≈ 4 km2 (with small variation across the swath

due to projection on the Earth’s surface). At any instant in time, the detector pixels sample the image spatially in ACT direction

and spectrally in the perpendicular direction. From the signal of the dispersed light (in electrons), integrated during the sampling95

period, radiance spectra are derived, one for each fiber comprising the entrance slit.

The number of electrons accumulated by a detector pixel sampling the wavelength λ, denoted as signal S(λ), depends on

the ground scene as well as the properties of the spectrometer, and can be as expressed as:

S(λ) = L(λ) · η · τ ·∆λ ·QE(λ) · tint (1)

Here, L(λ) is the top-of-atmosphere spectral radiance, η the étendue of the instrument (product of entrance pupil area and100

observation solid angle), τ the transmission of the optics, ∆λ the spectral bandwidth (or sampling interval) of the pixel, and

QE the quantum efficiency of the detector. tint is the time during which light is accumulated within the sampling period.

For CO2I, the sampling period (tsamp) is 308 ms. The signal integration for all CO2I detectors is paused during the read-out

process. Accordingly, tint as such is reduced by multiples of the read-out time tRO of about 37 ms:

tint = tsamp−OSF · tRO (2)105

The factor OSF denotes the temporal oversampling factor, which is the number of detector read-outs within the sampling

time. An illustration of the integration times for different OSFs can be found in Fig. 1. Multiple read-outs (OSF > 1) become

necessary when the number of electrons accumulated during integration time exceeds the FWC of the detector pixels (called
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saturation hereafter). Note that the gaps in signal integration indicated by the white spaces in Fig. 1 are short with respect to the

sampling time. They do not result in spatial under-sampling as the IFOV in ALT direction (approx. 800 m) is larger than the110

on-ground motion of the entrance slit image during the read-out time, which is about 200 m. An OSF larger than one increases

the maximum radiance that can be measured by the detector, which is proportional to the time of each individual integration

time (colored in Fig. 1).

The detectors used for the two SWIR spectrometers of CO2I (Lynred NGP) feature a FWC of approximately 650.000

electrons. If the signal acquired during integration time exceeds this limit, the respective detector pixel becomes saturated.115

Such pixels do not yield meaningful measurements, and a radiance spectrum with saturated pixels has to be discarded. In

order to avoid data loss, the detector can however be operated with OSF > 1, meaning that more than one read-out cycle

is performed within the sampling period of tsamp = 308 ms (Fig. 1). Apart from data loss over bright ground scenes, the

necessity for saturation avoidance by temporal oversampling (OSF > 1) arises from the inherent effect of instrument stray

light. Efficient correction of stray light from imperfect optical components (surface roughness and contamination), as well as120

parasitic reflections between them (ghosts) is mandatory to achieve compliance with the stringent radiometric requirements

of the CO2M mission. Stray light correction algorithms require accurate knowledge of the signal distribution across the focal

plane, which is derived from the measured signal image. In the presence of signal saturation, and hence invalid radiation

measurements, such correction becomes inaccurate, if not infeasible, since the largest stray light contribution from the brightest

signals cannot be reconstructed. For the reasons outlined above, the CO2I spectrometer is likely to be operated with temporal125

oversampling, leading to signal loss according to Eq. (2). In this study, we neglect the effect of saturation on neighbored spatial

samples and remove spatial samples in case of saturation in their spectrum.

A major drawback of oversampling is the loss of radiometric signal from the total read-out time OSF · tRO, which decreases

the signal-to-noise ratio (SNR) because the read-out noise increases with mutliple read-outs. In order to quantify the impact

of oversampling on SNR we further develop Eq. (1) to obtain an expression for the signal-to-noise ratio of the measured130

radiances: The shot noise of the measurement, given by the square root of the signal S(λ) combines with the signal-independent

components of the detection as

Ntotal =
√

S(λ) + (Idark + ITb) · tint + (N2
RO + N2

AD + N2
VC) ·OSF, (3)

where Idark is the dark current of the detector, ITb the shot noise from background thermal emission, NRO its read-out

noise, NAD the digitization noise, and NVC the video chain noise. The SNR can then be expressed as135

SNR =
A ·L√

A ·L + B
, (4)

in which the contributing noise sources are grouped into components scaling with the radiance L(λ) and read as

A = η · τ ·∆λ ·QE(λ) · [tsamp− (OSF · tRO)] , (5)

and signal-independent parameters determined by the detector and read-out-electronics

B = (Idark + ITb) · [tsamp− (OSF · tRO)] + (N2
RO + N2

AD + N2
VC) ·OSF. (6)140

5

https://doi.org/10.5194/egusphere-2024-3857
Preprint. Discussion started: 22 January 2025
c© Author(s) 2025. CC BY 4.0 License.



As can be seen, both the nominator and denominator in Eq. (4) are affected when the oversampling factor is increased: The

signal is decreased by the multiple read-out times, in which no signal electrons are integrated, and the total noise is increased,

as more read-out noise is accumulated. Both effects reduce the SNR of the measured radiance for OSF > 1.

In order to apply the different OSF scenarios to the radiances, we use A and B parameters provided to us by ESA (ESA,

private communication, 2023) to compute the SNR in the data using Eq. (4). In the files, these parameters are given for an edge145

spatial sample and a center spatial sample at discrete integer wavelengths so that they have to be interpolated to all detector

pixels. We used linear interpolation in both wavelength and across-track dimensions. The A and B parameters depend on the

number of read-outs and thus on the used OSF so that the SNR is OSF-specific at each wavelength.

Optimization of in-flight operation calls for avoidance of saturation on the one hand, while maintaining the largest possible

SNR of the measured radiance spectra on the other. This optimization requires a careful analysis of the expected radiance levels150

and their variation, based on the realistic simulation of ground scenes, which is the topic of this study.

3 Radiance spectra simulated with SCIATRAN

We base our investigations on simulated radiances at the CO2M spatial samples, which we use as input for the retrievals. With

simulated radiances, we have exact control over the noise that is added to the radiances so that the impact of increasing the

OSF can be separated from other instrumental effects. The same one-year subset radiances, simulated with the SCIATRAN155

radiative transfer model are used as described by Noël et al. (2024). Here, we provide a brief summary of the dataset.

For this dataset, eight ACT (approximately every fifteenth) and every twentieth ALT spatial samples with solar zenith

angles (SZAs) smaller than 80◦ (consistent with ESA, 2020) were selected using CO2M orbit data of one year provided

by EUMETSAT to simulate nadir radiances over land at these CO2M spatial samples with SCIATRAN (Rozanov et al.,

2017). The subset is chosen to reduce computation time while keeping an annual dataset and representatively sampling the160

geophysical conditions. The SCIATRAN radiative transfer model can be used to simulate radiative transfer through the Earth’s

atmosphere, including multiple scattering, in a wide range of wavelengths. For the generation of the dataset for this study,

input pressure, temperature, clouds and water vapor profiles have been taken from the ECMWF re-analysis version 5 (ERA5,

Hersbach et al., 2020) and other trace gas profiles as well as input parameters for the simulation of aerosols are taken from

the Copernicus Atmosphere Monitoring Service (CAMS, Inness et al., 2019)) re-analysis data, both from the reference year165

2015. The surface reflectivity needed to calculate the radiances have been derived using satellite measurements of the Moderate

Resolution Imaging Spectroradiometer (MODIS). The simulation of solar chlorophyll fluorescence is based on Rascher et al.

(2009). The simulations are restricted to scenes over land in nadir geometry. Further details can be found in Noël et al. (2024).

4 Defining scenarios avoiding detector saturation

The goal of this section is to determine the maximum radiance in each spectral band and compare it with the OSF-specific170

saturation limit in order to estimate the OSF needed to avoid saturation. While different OSFs could be used along one orbit,

6
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Figure 2. Left column: spectral and temporal maximum radiance in the simulated 1-year subset nadir radiances, binned to a 0.4x0.4 degree

latitude-longitude grid. Clouds are removed for this analysis. The radiance limits corresponding to the OSFs in each wavelength band are

illustrated by white dashed lines in the color scales of the panels. Right column: OSF needed in order to avoid saturation for the maximum

radiances. The rows show the wavelength bands of CO2I: a, b NIR; c, d SWIR1 and e,f SWIR2. The simulated radiances are for nadir over

land, only. Therefore, the ocean is masked by white colors.
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Table 1. Fraction of cloud-free spatial samples (in %) for which the OSF in the first column is needed to avoid saturation in the 1-year dataset

of simulated radiances.

OSF NIR SWIR1 SWIR2

1 93.01 75.81 94.36

2 6.99 24.15 5.64

3 0.00 0.04 0.00

switching would make mission operations more complex and may lead to other challenges such as OSF-dependent calibration

(cf., Kataoka et al., 2017). Here, we investigate whether it is possible to use constant OSF settings all over the globe.

The left column of Fig. 2 shows the spectral and temporal maximum radiance occurring during the 1-year dataset of sim-

ulated radiances. They are binned to a 0.4x0.4 degree grid which corresponds roughly to the distance of every 15th spatial175

sample of CO2I on the Earth’s surface. As expected due to the solar irradiance spectrum, radiances are larger in the NIR

than in the SWIR bands. Largest maximum radiances are simulated over the desert regions like the Sahara and the Australian

deserts, especially in the SWIR bands which are sensitive to different surface types (e.g., Fasnacht et al., 2019; Manakkakudy

et al., 2023; Santamaría-López et al., 2024). Increases also occur over the tropical rain forests due to the red-edge of plants

(e.g., Ge et al., 2019; Zeng et al., 2021). The ice-covered surface of Greenland shows increases in NIR and small values in the180

SWIR bands.

The color scales in Fig. 2 also include the radiance limits for the OSFs in each band. The global maximum radiance in NIR

and SWIR1 correspond to values exceeding the limit of saturation for OSF 1, indicating that OSF > 1 might be needed to

avoid saturation. The right column of Fig. 2 shows which OSF is sufficient in each grid box. The limit for OSF 1 is exceeded

over most parts of the land surface in the NIR band. In SWIR1, the latitude regions roughly between 30◦ N/S that include the185

tropical forests and deserts are also exceeding the saturation limit for OSF 1. The only region where an OSF of 3 is needed in

the SWIR1 band is in the middle of Sahara where no significant anthropogenic sources of greenhouse gases exist. Therefore,

OSF 1 and 2 are the dominant OSFs that are sufficient for SWIR1. In SWIR2, only some of the deserts show exceedance of

the limit for OSF 1 where then OSF = 2 would be necessary to avoid saturation.

Table 1 shows the global fraction of spatial samples in the one-year subset dataset where the shown OSF is needed to avoid190

saturation. As can be seen, about 7 % of all spatial samples within the simulated year exceed the threshold for OSF 1 in the NIR

band. Although some spatial samples showed exceedance of the threshold for OSF = 2 in the NIR band (Fig. 2), the actual

fraction in the whole one-year dataset is negligible. In the SWIR1 band, about 24 % of all spatial samples require OSF = 2. The

locations requiring an OSF of three (yellow in panel d of Fig. 2) correspond only to a minor fraction of 0.04 %. As expected

from the previous analysis, the fraction for OSF of two is smaller for SWIR2 than for SWIR1 with a value smaller than 6 %.195

Therefore, a significant fraction of spatial samples exist that are affected by saturation with OSF = 1 in all bands so that

OSFs larger than one should be further investigated which is the subject of this study. As the main fraction of saturated spatial

samples are located over regions that are not known for large emission CO2 sources, like over deserts and snow, we consider

8
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Table 2. Oversampling factor (OSF) scenarios for the spectral bands of CO2M with their notation in this study. These OSFs are assumed to

be applied globally in this study, details see text.

Notation OSFNIR OSFSWIR1 OSFSWIR2

111 1 1 1

222 2 2 2

232 2 3 2

333 3 3 3

the OSF scenario OSF = 1 in all wavelength channels not only as a reference but also as one of the likely scenarios for CO2M.

In addition, scenarios with OSF = 2 in all channels is considered in this study. As we use only a sub-sampled dataset for the200

global analysis we also add an OSF scenario with OSFs of 2 (NIR), 3 (SWIR1) and 2 (SWIR2) and a scenario with an OSF of

3 in all bands in case the missing spatial samples show larger radiances. The scenarios are summarized in Table 2 and denoted

as OSF 111, 222, 232 and 333, respectively.

5 The FOCAL greenhouse gas retrieval algorithm

In this study, we use the updated version 1.1 of FOCAL-CO2M which is similar to the version used by Noël et al. (2024)205

with minor updates of coding optimizations. Therefore, we provide a brief summary of FOCAL here, with further details to be

found in Noël et al. (2024) and references therein.

FOCAL is a radiative transfer and trace gas retrieval code approximating scattering in the atmosphere by a single scattering

layer whose height, optical thickness and Ångström exponent are retrieved as part of the algorithm using optimal estimation.

This approximation leads to an analytic expression for the calculation of scattering (Reuter et al., 2017b) making FOCAL a fast210

algorithm for the inversion of greenhouse gas concentrations from spectral measurements in the NIR and SWIR. FOCAL has

been successfully applied to many satellites measuring greenhouse gases, such as OCO-2 (Reuter et al., 2017a, b) and GOSAT

and GOSAT-2 (Noël et al., 2021, 2022), and is one of the three operational algorithms to retrieve greenhouse gases from the

future CO2M mission.

The FOCAL algorithm comprises pre-processing (i.e. filtering of measurements with bad quality and difficult scenes such as215

high SZAs), inversion and forward model (i.e. optimal estimation with an iterative approach starting with a-priori knowledge)

and post-processing (i.e. convergence and variance filtering and bias correction). The setup of these steps here is similar to that

used by Noël et al. (2024), which is why we refer to this publication for the details and describe here the adaptions made for

this study.

As the noise model and the post-processing are specific to the setup of the instrument, e.g. the OSF, and we assume the220

application of one OSF scenario all over the globe, we use different noise models and post-processing for each OSF scenario.

The post-processing uses a variance minimization process and filters data that have the largest impact on the scatter of the

9
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Figure 3. Signal-to-noise ratios compared to an OSF of one in (a) the NIR, (b) the SWIR1 and (c) the SWIR2 bands. The black dashed line

illustrates the one-to-one line. In addition, the minimum and maximum of the ratio between the SNR to SNR for OSF = 1 is labeled in each

panel for each OSF.

difference to the truth so that, in average, the differences to the truth are minimized. This means that variables and their limits

to minimize the variance differ between the OSF scenarios, while keeping the total fraction of measurements that are removed,

which makes the OSF scenarios comparable to each other. Note that post-processing is based on 10 % of the whole year’s data.225

The setup of the noise model and the post-processing can be found in Appendix A.

In this study, we apply FOCAL-CO2M version 1.1 to the one year of simulated subset nadir radiances over land, filtered for

clouds, a SZA larger than 75◦ and saturation, and retrieve XCO2 using the OSF scenarios of Table 2. The impact on XCO2 is

discussed in the following section.

We will use the retrieval’s random noise error arising from the different components discussed in Sect. 2 to investigate the230

impact on the XCO2 precision. In addition, we will analyze the retrieval’s smoothing error, which arises from the smoothing of

the state connected to the averaging kernels (Rodgers, 2000), in combination with the noise error to make statements about the

impact on the overall noise error. Remaining systematic errors after post-processing due to the different OSF settings should

be small because the post-processing is calculated individually for each OSF scenario and will be analyzed in terms of overall

standard deviations of the retrieval residuals.235

6 Impact of increasing the OSF

6.1 Impact on SNR

We first analyze how the SNR of the continuum radiance is affected by an increased OSF. Figure 3 shows the reduction of the

SNR compared to OSF = 1 for the three spectral bands. While the maximum SNR for OSF = 1 is about 1000 in the NIR and

1600 in the SWIR bands, it is smaller for larger OSFs. For large SNRs, i.e. large radiances, A dominates Eq. (4) leading to a240

constant slope in all cases. The non-linear part corresponding to B leads to changes of the slope at the lower end of SNRs so

that all lines converge to the origin. Ratios of SNR to OSF 1 are printed for each spectral band and are between 67 and 89 %

for OSF = 2 and between 47 and 83 % for OSF = 3 in all bands, see Fig. 3.
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In the next step, we investigate the impact of the SNR changes, made in the previous analysis, on the retrieved a posteriori

noise of FOCAL. This could be used in the future to estimate the XCO2 precision with the knowledge of the SNR change. In245

the easiest case, relative changes of the SNR (Φ) are proportional to relative changes of the a posteriori noise error (N ), which

can be written as

dN

N
= C

dΦ
Φ

(7)

with C as constant translating SNR changes to changes in XCO2 a posteriori noise, i.e. precision. This assumption is tested in

this section. Integrating Eq. 7 yields250

lnN = C · ln(Φ) + k, (8)

where k is an integration constant and the knowledge that N and Φ are positive numbers has been applied.

Equation 8 describes a linear relationship between N and Φ in a double-logarithmic space. It has been tested for all scenarios

and bands which are shown in Fig. 4. This figure shows histograms of binned logarithmic SNR and a posteriori noise error

values with linear regressions as dashed lines and formulas in the respective legends. The assumption of linearity does not255

apply to the NIR band because some high SNR values also have a large noise error. On the other hand, there is a clear linear

relationship in the two SWIR bands. While the slopes of the regression lines differ among the OSF scenarios the negative

values are largest in the NIR (average -0.69), smaller in SWIR1 (average -0.62) and smallest in SWIR2 (average -0.45). The

smaller slope in SWIR2 compared to SWIR1 can probably be explained by the different number of spectral detector pixels in

the CO2 absorption region within the FOCAL fit windows: about 473 in SWIR1 and 770 in SWIR2 which makes single noisy260

measurements less sensitive to changes in XCO2 in SWIR2. In addition, the sensitivity of the absorption lines to CO2 changes

are different in SWIR1 and SWIR2.

In summary, the SWIR2 band is less sensitive to changes in the SNR than SWIR1 where both the double-logarithmic linear

relationship could be confirmed. Apart from values with high SNR and large noise for which the assumption of linearity does

not hold, the slope in the NIR band is similar to that in the SWIR1 band, suggesting that the NIR band is of similar importance265

for the retrieval of XCO2.

6.2 Impact on coverage

Tests showed that if saturation occurs it usually does not happen only at one spectral detector pixel but for more than 60 pixels.

Therefore, it can be expected that a large fraction of the continuum range of the spectrum is affected by saturation so that the

measurement is not useful for the retrieval and has to be deleted from the record which will reduce the coverage on Earth. In270

order to analyze the impact of filtering for saturation, the simulated radiances are binned to a 0.4x0.4-degree latitude-longitude

grid and the fraction of remaining data is shown in the first column of Fig. 5. As discussed above, the desert regions have

large reflectances that will lead to saturation for all measurements in OSF 111 (panel a) e.g. over the Saharan region, the

Arabian Peninsula and the deserts in Australia. In addition, the surface covered by ice such as Greenland and the Himalayas

are filtered out as a result of saturation using OSF 111. In total, a fraction of 72.7 % remains globally when adding an additional275

pre-processing filter for saturation in OSF 111.
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Figure 4. Logarithm of the continuum SNR versus logarithm of the FOCAL XCO2 a posteriori noise error for all combinations of OSF

scenarios and wavelength bands. Orange dashed lines show linear regressions for each panel with its parameters in their legend. Note the

different values on the x-axes of each panel.

As expected from the analysis of Sect. 4, increasing the OSF to values larger than one leads to better coverage. For instance,

with OSF 222 (panel c), saturation only occurs at localized spots on the Sahara leading to an overall remaining fraction of data

larger than 99 %. For the scenarios with larger OSFs (232 and 333), 100 % of the values remain, i.e. no saturation or saturation

in the sub-% range is simulated in these cases. On the other hand, the majority of locations affected by saturation are in regions280
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Figure 5. Throughput of the saturation filter during pre-processing (left column) and after post-processing (right column).The data are binned

to a 0.4x0.4-degree latitude-longitude grid based on the CO2M spatial sample center coordinates. Note that the saturation filter is applied

as the last filter and 100% means the data after filtering for SZA > 75◦ and cloud fraction > 0.2. The global fraction of remaining data is

labeled as “Total” in the panels. The filters applied during post-processing can be found in Table A1 of Appendix A.

where no significant emission sources exist so that OSF 111 could still be sufficient for the goal of estimation of localized

emission sources.

Another aspect is post-processing which filters parts of the data, independent of saturation, and the fraction of data remaining

after saturation filter and post-processing is shown in the second column of Fig. 5. The filters applied during post-processing
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Figure 6. Histograms of the global distribution of the a posteriori XCO2 retrieval error (first column), the a posteriori XCO2 noise error

(second column) and the differences between FOCAL XCO2 after post-processing and the true XCO2 (third column) for the whole year

of simulated subset radiances. The rows show OSF 111, 222, 232 and 333, respectively. Median (q0.5) and standard deviation (σ) of the

distributions are added to each panel in units of ppm. Note that the standard deviation of XCO2 −XCO2,true includes both systematic and

random noise contributions.

depend on the scenario and can be found in Table A1 of Appendix A. While the post-processing filters part of the data over the285

Sahara and the Arabian Peninsula also for OSF > 1, data are additionally lost at the high latitudes. The patterns are similar for

all OSF scenarios. In total, about 58 % are left for OSF 111 and about 73 % for the other scenarios.

6.3 Impact on XCO2

While the overall coverage increases with OSFs larger than one the precision is reduced due to read-out noise. We determine

the impact on the precision by calculating FOCAL’s a posteriori XCO2 retrieval noise. Histograms of the a posteriori error290
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(which is the root sum squares of the noise and smoothing errors), noise error and the difference of retrieved XCO2 minus a

priori (equal to true) XCO2 for the whole one-year dataset and all OSF scenarios of Table 2 are shown in Fig. 6. All panels

include median, q0.5, and standard deviation, σ, of the respective histogram. Both a posteriori error and noise error increase

with larger OSFs. For OSF 333 errors are estimated to be a factor of about 1.2 larger than the OSF 111 errors in the median.

For OSF 222, this factor is 1.06. Note that this value refers to the median noise and can be larger for single measurements, see295

distributions of middle column in Fig. 6. A discussion where the impact on precision is largest for the respective OSF scenarios

follows later in this section. In addition, the variance, which is the square of these values, is connected to the information

reduction, which is 39 % for OSF 333 and 12 % for OSF 222, compared to OSF 111.

The median of the a posteriori error is 0.56 ppm for OSF 111 compared to a 0.44 ppm noise error and similar for the other

OSF scenarios. Therefore, the error of XCO2 is dominated by the noise component of the error induced by changing the OSF300

in each scenario.

As expected from adapting the post-processing to each OSF scenario, the distributions of XCO2−XCO2,true in the right

column of Fig. 6 are nearly symmetric around 0 ppm, as demonstrated by median values close to zero. Note that the post-

processing is based on 10 % of all available data. Due to slightly larger noise errors for OSF > 111, the standard deviations

increase slightly from 0.70 ppm for OSF 111 to 0.74 ppm for OSF 333. Note that this value includes both systematic and noise305

errors that was not done in this analysis.

The OSF scenarios 111 and 222 show an increase of median noise errors in the order of 0.03 ppm so that the decrease in

global XCO2 precision is estimated to be small in the setup of this study.

We also analyzed the monthly evolution of the error and the number of spectral samples for all OSF scenarios after post-

processing, see Fig. 7. Timeseries of the global monthly median XCO2 noise error for all OSF scenarios can be found in panel310

a. The noise increases by a constant factor between scenarios OSF 222, 232 and 333. This is different for OSF 111 because

the number of data (panel b) is decreased by about 20 % in this scenario. The noise error shows a semi-annual cycle with

maximum values in June and December, the respective summer months on the hemispheres. These peaks can be seen in the

individual latitude bands shown in the rows of Fig. 7. In addition, most of the data loss in the OSF 111 scenario occurs in

latitudes between 40◦S and 40◦N where most of the deserts are located, consistent with the previous findings. In all other315

latitudes, the median XCO2 noise error increases with increased OSF in the SWIR bands, which are sensitive to changes in

CO2. The results of the northern mid-latitudes in Fig. 7e are the best approximation of the VEG50 scenario which is based on

typical mid-latitude vegetation conditions like albedos and a solar zenith angle of 50◦ and which defines the requirements for

CO2M (ESA, 2020). Tests with VEG50 (not shown) showed similar values of the XCO2 noise as in the winter months of the

panel: approx. 0.7 ppm for OSF 111, 0.77 ppm for OSF 222 and about 0.88 ppm for OSF 333. Therefore, these results are320

consistent with this experiment.

As calculations of emissions depend linearly on the XCO2 enhancement to some background value (e.g., Fuentes Andrade

et al., 2024), the error of emission estimates scales linearly with the XCO2 a posteriori noise of single soundings. Thus, the

relative change in XCO2 a posteriori noise is the same for uncertainties in the emissions. This was tested with a simple emission

model in the scope of this study. As an example, using mid-latitude summer conditions where the median XCO2 a posteriori325
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Figure 7. Timeseries of the monthly values for various latitude bands (rows) of the following for all OSF scenarios of Table 2: The panels

in the left column show the monthly median (q0.5) of the XCO2 noise error. The panels in the right column illustrate the number of data

that are left after filtering for saturation in the pre-processing and after post-processing, i.e. data that have converged and are not filtered out

during post-processing. In the latitude band between 60 and 90◦S, data coverage is small so that it is not shown here.

noise error increases from 0.45 ppm (OSF 111) to 0.5 ppm (OSF 222), see panel e of Fig. 7 in June, it can be expected that

the relative increase in the uncertainty of the emission due to noise is the same: 1.11 in the median which can be larger for

individual emission estimates.
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Figure 8. Fraction of spatial samples whose XCO2 a posteriori noise error is larger than 0.7 ppm (left column), based on the precision

requirement in ESA (2020), and 1 ppm (right column). The data are binned to a 0.4x0.4-degree latitude-longitude grid based on the CO2M

spatial sample center coordinates. Note that the fraction is related the data after postprocessing in this figure. The global fraction is labeled

as “Total” in the panels.

For the estimation of emissions, high precision of the measurements is needed which decreases with larger OSF. Therefore,

the columns of Fig. 8 show the fraction of post-processed data that are affected by a precision threshold of 0.7 ppm and 1 ppm.330

This mostly affects the Northern mid and high latitudes. Most of the post-processed data have an a posteriori noise error
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smaller than 1 ppm. The global fraction of affected spatial samples is smaller than 3.2 % for all OSF scenarios and is largest

on Greenland where no significant sources of CO2 exist. Furthermore, the possibility of glint mode could change these results

especially over the snow-covered regions on Earth because snow has generally an enhanced forward scattering component

(e.g., Mikkonen et al., 2024). On the other hand, 6 % of the post-processed data have a noise error larger than 0.7 ppm in335

OSF 111, about 9 % in the OSF scenario 222, more than 11 % in OSF 232 and about 16 % in OSF 333. Hence, estimates of

emissions over Scandinavia, Canada and Northern Russia might be difficult when using an OSF larger than 2 because of the

precision degradation there.

In summary, these results imply that increasing the OSF globally to values larger than one leads to minor decreases in the

global median precision while increasing the coverage. Based on the simulated one-year subset of radiance data used here, the340

scenarios 111 and 222 seem to be favorable for CO2M in the future: Although OSF 111 will lead to saturation over the deserts

and some snow-covered regions, the precision impact is smallest among the scenarios which might be of importance for the

mid-latitudes. With the OSF scenario 222, we found nearly global coverage with respect to saturation, but a larger impact on

the precision in the mid and high latitudes.

7 Summary and Conclusions345

The Copernicus Anthropogenic CO2 Monitoring (CO2M) mission is a satellite constellation with the first satellite expected

to be launched in 2026. One of the operational greenhouse gas retrieval algorithms for CO2M will be the Fast atmOspheric

traCe gAs retrievaL (FOCAL) algorithm. In this study, we analyzed the impact of scenarios avoiding saturation of the detector

which may occur for instance at bright scenes on the Earth’s surface and which have to be filtered out during the retrieval

so that the coverage is decreased. This can be avoided by increasing the number of read-outs per integration time step, i.e.350

increasing the oversampling factor (OSF) which, on the other hand, decreases the SNR of the measurement. We used idealized

simulated radiances for this study with the goal being to investigate the long-term impact of using different OSFs. This was

done by examining spatial-sample-wise saturation without considering any effect from either nearby bright scenes from the

surrounding spatial samples or from nearby bright scenes outside the swath that could lead to saturation as well, such as stray

light from nearby clouds. Clouds can lead to saturation as well so that the OSF might have to be increased for that scene.355

We used a one-year subset dataset of simulated radiances for conditions of 2015 to define scenarios of OSFs and then to

investigate the impact on XCO2 using FOCAL. The post-processing was adapted depending on the used OSF because changing

the OSF changes the retrieval-related detector properties. Our assumption was to keep one OSF setting for the whole globe

and year to avoid possible calibration difficulties due to changing OSFs during the operation and to keep the operation of the

satellite as simple as possible.360

We compared the maximum radiances with the OSF-specific maximum radiance that can be detected in all spectral bands in

order to define scenarios of OSFs to be used in the long-term analysis. We found that saturation especially occurs over deserts

and the parts covered by rocks. Scenarios increasing the OSF for all CO2M spatial samples to values between two and three in
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the near-infrared (NIR) and short-wave infrared (SWIR) bands were defined which were called OSF 111 (baseline), 222, 232

and 333 in the order of OSFs set in the NIR, SWIR1 and SWIR2 bands, respectively.365

We found that the decrease in signal-to-noise ratio (SNR) due to different OSFs has a wavelength-band-dependent impact

on the XCO2 a posteriori noise error, with smallest sensitivity in the SWIR2 band. The impact on XCO2 was analyzed with

distributions of the global noise error estimates which increased by a factor of 1.18 between OSF scenarios 111 and 333 and

1.06 between OSF 111 and 222, which in the median is not large but which leads to precision degradation in the Northern

high-latitudes at the edge of emission estimation. The results showed that the filtered regions mostly include regions that are370

not known to have large emission sources. Therefore, the degradation of precision in these regions might be acceptable so that

the assumption of a uniform OSF might also be relaxed and the OSF could be switched to OSF 222 over regions like the deserts

and OSF 111 elsewhere.

These results are based on idealized simulation of surface properties and assuming a perfect instrument. Thus, errors might

be larger for real measurements and the results shown here can only provide a first insight towards the actual impact of375

changing the OSF when applied to real measurements. The analysis is limited to the nadir configuration over land and further

investigations for other forseen geometries like ocean glint are needed in the future. In addition, the impact on emissions,

especially in the northern high latitudes such as Scandinavia, Russia and Canada, should be further investigated in more detail

in the future. While the analysis of the saturation filtering is independent of the retrieval method used, the further results will

depend on the retrieval algorithm and are likely to be different for Fusional-P-UOL-FP and RemoTAP. As discussed e.g. by380

Noël et al. (2024), the requirements concerning CH4 are not as stringent as for CO2 which is why we restricted the analysis to

CO2 in this study.

Overall, we found increases in the coverage when using OSFs larger than one and decreases in precision. Based on the

idealized simulated radiances, the scenarios OSF 111 and 222 could be considered as possible OSF scenarios for CO2M for

XCO2 and under the assumption of a fixed OSF setting independent of the location.385

Data availability. The data used in this study is available by the authors on request.

Appendix A: Retrieval setup for the OSF scenarios

As discussed in Sect. 5, the retrieval setup depends on the OSF scenario. For the forward model error, we strictly followed the

concepts outlined by Reuter et al. (2017a) and Noël et al. (2024). Table A1 summarizes the variables used and the corresponding

limits of the variance filter applied during post-processing.390
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Table A1. OSF-dependent limits of retrieval variables applied during post-processing to minimize the overall variance, sorted by their

relevance. The variables are albedo coefficients Ai,band of second-order polynomial and the cost function χ2. No limit is denoted as dash.

Note that the variable notation comes from Reuter et al. (2017a) and is not to be confused with the parameter A of the SNR in the main text.

OSF Scenario Parameter lower limit upper limit

111

A3,SWIR1 −2.5619 · 10−5 −
A0,SWIR1 0.1115 −
A3,SWIR2 − 3.6136 · 10−5

χ2 − 1.0669

222

χ2 − 1.0568

A0,NIR 0.1037 −
A0,SWIR1 0.1100 −
A3,SWIR2 − 5.1109 · 10−5

A2,SWIR1 −4.1952 · 10−5 −
A2,SWIR2 − 3.5254 · 10−5

232

A2,SWIR1 −4.3646 · 10−5 −
A2,SWIR2 −0.0002 3.1977 · 10−5

A0,SWIR1 0.1127 −
χ2 − 1.0282

333

A2,SWIR1 −4.5681 · 10−5 −
A0,SWIR1 0.1090 −
A3,SWIR2 − 6.7002 · 10−5

χ2 − 1.0026
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