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Abstract: Knowledge about seasonal snow accumulation is important for managing water resources, but accurate 

estimates of snow depth at a high spatiotemporal resolution are sparse, especially in mountainous regions. In this 

paper, we outline a novel approach to estimate snow depths using Sentinel-1 C-band synthetic aperture radar 

(SAR) and ICESat-2 LiDAR observations. Specifically, we estimate snow depths at 500-meter spatial resolution 15 

by correlating increase in Sentinel-1 volume scattering with snow depths derived using ICESat-2. Sentinel-1’s 

vast spatial coverage and frequent 6/12-day revisit cycle makes it promising for monitoring seasonal snow 

accumulation, but capturing the volume scattering signal within a dry snowpack and relating it to snow depth 

remains challenging. Using ICESat-2, we retrieve thousands of high accuracy snow depth observations covering 

the Southern Norwegian Mountains. ICESat-2 has a low revisit time of three months, but by matching 20 

observations with the temporally nearest Sentinel-1 scene, we significantly enhance spatiotemporal resolution. 

Our results demonstrate that our ICESat-2 calibrated Sentinel-1 snow depths can estimate snowfall magnitudes in 

deep dry snow (>0.6 meters), achieving an accuracy of 0.5-0.7 meters, significantly improving estimates made by 

the SeNorge snow model in remote mountainous regions. This study highlights the potential of utilizing ICESat-

2 to derive Sentinel-1 snow depths, improving snow monitoring capabilities in data-sparse regions. 25 

1 Introduction

Snow is an important factor in the hydrological cycle in mountainous regions across the world. In these areas, 

precipitation is often stored in snowpacks, effectively creating a delay before water is discharged as meltwater 

with large interannual variation in magnitude. As temperatures rise globally, the seasonal timing of snowmelt 

changes (Adam et al., 2009). Snowmelt contributes the majority of water resources in many mountainous areas. 30 

For instance, it sustains 17% of the world's population with drinking water (Bormann et al., 2018), supplies 

communities with water for irrigation (Qin et al., 2020) and plays a crucial role in hydropower generation 

(Magnusson et al., 2020). Generally, snow is quantified by its snow water equivalent (SWE) through information 

about snow depth and snow density (Harder et al., 2016). Due to the depth of snow varying more than its density, 

much of the spatial variability of SWE can be described by the spatial variability of snow depth (López-Moreno 35 

et al., 2013). As such, knowledge about the depth of snow and its spatial distribution is key for calculating the 

amount of snowmelt runoff that a watershed can expect. However, measurements of total snow volume stored in 

mountainous areas are difficult to acquire as these places are often remote and vast, with rough terrain and harsh 

weather conditions. As such, current snow depth models rely on either numerical weather predictions, which lack 
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accurate snowfall information in mountainous areas, or interpolation between sparse in situ measurement 40 

stations(Saloranta, 2012; Kongoli et al., 2019) 

Accurate snow depth estimations from remotely sensed laser altimetry (LiDAR) measurements are well 

documented (Deems et al., 2013; Nolan et al., 2015; Skaugen and Melvold, 2019). Airborne LiDAR campaigns 

can measure surface heights at centimeter precision, but cost and weather conditions limit the viability of this 

approach for regular snow depth estimates. The NASA Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) was 45 

launched in 2018 and has since provided global laser altimetry measurements. Treichler and Kääb (2017) tested 

the utility of the first ICESat mission (operating from 2003 to 2010) when used for snow depth measurements in 

southern Norway. They proved that the vertical accuracy of ICESat showed promising results for snow depth 

estimation with a snow-off DEM available, but also noted the significant temporal and spatial limitations of 

ICESat. ICESat-2 has similar limitations, as the satellite scans the surface in track-lines with a temporal resolution 50 

of around three months, meaning that ICESat-2 snow depths alone cannot provide adequate information for 

studying seasonal changes in snow depths. 

To achieve full spatial coverage, several studies have used radar polarimetry to measure snow depth or SWE 

showing a positive correlation between snow depth/SWE and increased volume scattering within a dry snowpack 

(Kendra et al., 1998; Lievens et al., 2019; Rott et al., 2010; Ulaby et al., 1984).  Most studies researching the 55 

interaction between radar and snow have focused on the Ku- and X-bands as these frequencies are more sensitive 

to SWE changes and can be used in shallow snow (Du et al., 2010; King et al., 2015; Lievens et al., 2019; Rott et 

al., 2010). As C-band waves have a longer wavelength, and thus larger penetration depth, the received backscatter 

is predominantly influenced by soil properties from the ground surface under shallow snow (Pivot, 2012; Shi and 

Dozier, 2000). As a result, C-band Synthetic Aperture Radar (SAR) measurements have mostly been used for the 60 

detection of wet-snow (Longepe et al., 2009; Rott et al., 2010). However, the results of Lievens et al., (2019) 

suggest that C-band SAR can be used to estimate snow depths in deeper snow, where a gradual increase in 

backscatter is observed with the accumulation of dry snow. Lievens et al., (2022) applied C-band SAR from the 

Sentinel-1 satellites to create weekly snow depth maps in a sub-kilometer resolution over the European Alps, with 

the best results obtained in areas with snow depths between 1.5 m and 3 m. 65 

In the present study, we combine open access satellite data from ICESat-2 and Sentinel-1 (Figure 1a-b) to 

estimate snow depths at 500 m spatial resolution over the open alpine regions of the Southern Norwegian Mountains. 

Our Sentinel-1 methodology is based on the change in cross-polarized ratio (∆CR) as described in Lievens et al., 

(2019, 2022). ICESat-2 derived snow depths are used to calibrate the orbit-specific correlation between an increase 

in ∆CR and snow depths. Data is retrieved in the years 2019-2022 in snow accumulation months from January to 70 

April (Figure 1c). Results are compared on multiple scales; locally against snow depths measured at 12 alpine 

weather stations (Meteorologisk Institutt, 2024) and 279 in-situ measurements collected during a field excursion 

around Hardangervidda plateau from February 21 to 25, 2022. On a sub-regional scale with two ICESat-2 tracks 

covering a one of the most remote mountainous regions, in western Hardangervidda, and on a local to regional 

scale we compare our results with the numerical snow model “SeNorge” (NVE, 2024). 75 
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Figure 1: Concept and data inputs. (a) (b) ICESat-2 snow depths are derived based on the difference in height 

between the snow-on ICESat-2 surface height and a snow-off DEM. Sentinel-1 is used to extract the variable 

∆CR, a proxy for change in volume scatting within a dry snowpack. Through linear regression between ICESat-80 

2 and Sentinel-1, we retrieve continuous weekly snow depths in regions with little to no prior knowledge of snow 

depth. (c) Sentinel-1 orbits D37 (descending), A117 (ascending) and D110 (descending) from January to April, 

between 2019 to 2022. ICESat-2 reference ground tracks (RGT). ICESat-2 data was collected from January to 

April, between 2019 to 2021, with additional ICESat-2 data from 2022 used for validation alongside snow depth 

measurements from weather stations. 85 

2 Data and Methods 

2.1 Sentinel-1 ∆CR as a proxy for snow depth 

The Sentinel-1 mission is a two-satellite constellation, which was launched in 2014 (Sentinel-1A) and 2016 

(Sentinel-1B) respectively. The satellites carry a C-band SAR instrument, providing imagery of the earth’s surface 

in all weather conditions at approximately 20-meter resolution with a 6-day repeat-pass period (12-day repeat 90 

since the failure of Sentinel-1B in December 2021). The Sentinel-1 radar system transmits waves of a single 

polarization (horizontal or vertical) but receives both polarizations. Over most land areas, Sentinel-1 transmits 

vertically polarized waves, yielding co-polarized (VV) and cross-polarized (VH) images.  

Sentinel-1 records backscatter with information about surface properties and cannot measure snow depth directly, 

but snow depth retrieval algorithms (Lievens et al., 2019, 2022) have been developed based on backscatter change 95 

detection. The algorithms attempt to capture changes in volume scattering within a dry snowpack, by assuming 

that the cross-polarized VH signal is more sensitive to volume scattering from the dry snowpack, relative to the 

VV signal, and that all other changes in backscatter, such as influence from soil moisture, temperature and liquid 

content, are mostly similar in both polarization channels (Lievens et al., 2019).  
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The increase in volume scattering is linked to snow depth by assuming that greater volume scattering between 100 

snowpack layers is more likely in deeper snowpacks. Consequently, changes in snow depth can be inferred from 

variations in volume scattering (Lievens et al., 2019). 

Like Lievens et al., (2019), we derive ∆CR from the Sentinel-1 Ground-Range Detected (GRD) Interferometric 

Wide Swath (IW) dataset in Google Earth Engine (Filipponi, 2019). Prior to analysis, the Sentinel-1 scenes have 

gone through a pre-processing routine including thermal noise removal, radiometric calibration and range-Doppler 105 

terrain correction. 

We use the equation from Lievens et al., (2022) to approximate the volume scattering within a dry snowpack 

(equation 1): 

CR = 2 * 𝑉𝐻 / 𝑉𝑉 (Equation 1)   

We then calculate the change in volume scattering ∆CR, by subtracting the measured volume scattering (CR) from 110 

any given Sentinel-1 scene in the snow accumulation season with the CR from the start of snow accumulation 

season (CRreference) (Figure 2) (Equation 2): 

∆CR = CR– CRreference (Equation 2) 

We define CRreference as the average CR within the first two weeks of Sentinel-1 images following the first day of 

snowfall detected by the MODIS Terra Snow Cover Daily dataset (Hall and Riggs, 2021). The snow mapping 115 

procedure of MODIS uses reflectance difference measurements from the Normalized Difference Snow Index 

(NDSI) which allows distinguishing the reflectance of snow from most other surface features (Hall and Riggs, 

2021; Parajka and Blöschl, 2008) 

To minimize the influence of soil moisture changes, which affects the scattering properties of the radar waves and 

hence ∆CR (Feng et al., 2021), we mask out vegetated areas using the normalized difference vegetation index 120 

(NDVI). Vegetated areas are detected from a threshold of 0.3> using an annual mean NDVI image composite 

derived from Sentinel-2. Pixels are classified as wet snow when the backscatter drops significantly (Longepe et 

al., 2009; Nagler et al., 2016; Rott et al., 2010), which we define as a drop in ∆CR above 2dB, while the land 

cover types of forests and water are detected and removed using the 100-meter Proba-V CGLS land cover dataset 

(Buchhorn et al., 2020). 125 

For the remaining low vegetation/bare rock pixels ∆CR is smoothed spatiotemporally to reduce the impact of 

observational noise and spurious fluctuations (Lievens et al., 2019), using a circular focal-mean kernel of two 

kilometers and pixels are resampled to 500 meters pixel spacing. The imagery is smoothed temporally by 

calculating the average ∆CR from two images (6 days or 12 days in 2022).  

In the Southern Scandinavian Mountains, Sentinel-1 orbit 37 and orbit 110 descend over the area every six days 130 

at approximately 5 am local time, while orbit 117 ascends at around 5 pm local time. For the descending orbits, 

the daily temperature is expected to be near its lowest, providing ideal conditions for measuring the backscatter 

from a dry snowpack. Warmer temperatures may cause surface melt, affecting backscatter retrievals. For each 

year from 2019 to 2022, during the months of January to April, orbit-specific ∆CR is derived from Sentinel-1 

scenes for the three orbits: D110 (descending), D37 (descending) and A117 (ascending). 135 
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Figure 2: Sentinel-1 ∆CR. Sentinel-1 ∆CR (change in cross-polarization ratio) is derived from backscatter to be 

used as a proxy for snow depth. As an example, ∆CR for 2022-02-18 is derived by subtracting CR with CRreference, 

where CRreference is the average CR of the two following Sentinel-1 images after the date snowfall is detected. Land 140 

covers where a change in CR is more likely influenced by other factors than snow accumulation are masked out 

using optical satellite imagery.  

2.2 ICESat-2 snow depths retrieval algorithm 

ICESat-2 snow depths are derived from the ATL03 geolocated photon dataset (Neumann et al., 2021) (Figure 3) 

using a customized surface height algorithm. The geolocated photon heights are binned along-track and a surface 145 

height is derived based on photon density (Datta and Wouters, 2021). Initially, the ICESat-2 along-track surface 

height is set to 10-meter spatial resolution with an along-track window width of 20 meters. ICESat-2 surface 

height is converted to snow depth by sampling and subtracting the height from the snow-off reference digital 

elevation model (DEM). We use the 10-meter Norwegian national DEM as reference height. The DEM is made 

up of several projects that are established individually as either point clouds based on aerial LiDAR scanning or 150 

aerial photos that have been processed through image matching (Geonorge, 2024). Slopes below 1 degree are 

masked out to remove water bodies and slopes above 10 degrees are masked, while ICESat-2 observations over 

dynamic land-cover types (forests, water bodies and glaciers) are also removed, as we expect changes in CR to be 

more heavily affected by factors other than snow accumulation in these regions. 

The snow depths are smoothed along-track with a focal-mean filter over two kilometers and rescaled to 500-meter 155 

spatial resolution to match the Sentinel-1 ∆CR measurements. While ICESat-2 can provide accurate 

measurements at much higher spatial resolution (Besso et al., 2024; Deschamps-Berger et al., 2023) we trade 

spatial accuracy for vertical accuracy by averaging out measurement noise related to ICESat-2’s 13-meter 

footprint and local height difference errors between ICESat-2 and our reference DEM.   

These spatial resolution parameters were set based on a sensitivity analysis comparing the ICESat-2 surface 160 

heights with the Norwegian DEM and ArcticDEM (Morin et al., 2016) in snow-free conditions (S1). The 

sensitivity analysis in snow-off conditions was conducted to estimate the accuracy in snow-on conditions and 
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revealed a standard deviation between ICESat-2 surface height and the Norwegian DEM of 0.52 meters and a bias 

of -0.11 meters (S1). ICESat-2 surface heights are also compared to the 10-meter ArcticDEM mosaic, which 

covers the whole arctic region. Here we observed a standard deviation of 1.01 meters and a bias of -0.53 meters 165 

(S1).    

The ICESat-2 snow depth retrieval algorithm is used on 30 ICESat-2 tracks from January to April for the years 

2019-2021, retrieving 21309 snow depths point measurements spread across the Southern Norwegian Mountains 

(Figure 3).  

170 
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Figure 3: ICESat-2 snow depths. 21309 ICESat-2 snow depths derived between January-April, 2019-2021. 

Geolocated photons in the ATL03 dataset are converted into ICESat-2 surface heights, and a snow depth is 

calculated based on the difference in height between our ICESat-2 snow-on surface heights and the snow-off 

reference DEM. The snow depths are smoothed over two kilometers using a focal-mean filter and resampled to 175 

500 meters along-track. 
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2.3 Linear regression 

To estimate snow depths from Sentinel-1, we compare our stack of Sentinel-1 ∆CR images to the temporally 

nearest ICESat-2 track (Figure 4a). For each average ICESat-2 snow depth measured at 500-meter intervals along-

track, we extract the smoothed and resampled 500-meter value of ∆CR. To capture the spatiotemporal relationship 180 

between Sentinel-1 ∆CR and snow depth, we retrieve ∆CR from the 21309 ICESat-2 snow depths derived from 

the 30 ICESat-2 tracks between January – April, 2019-2021.  

Through ordinary least squared linear regression (OLS), we estimate Sentinel-1 snow depths based on the fit 

between ∆CR and snow depth. Sentinel-1 descending orbits D110 (Figure 4b) and D37 returns similar linear 

relationships with snow depth, with a slope of 0.21/0.23 meters/dB and intercept of 0.68/0.65 meters, whereas the 185 

slope and intercept are 0.15 meters/dB and 0.98 meters for the ascending orbit A117 (Figure S2). The Pearson 

correlation coefficient (Pearson-R) is used to measure the strength and direction of the linear correlation between 

∆CR and ICESat-2 snow depth. We choose only to compute Sentinel-1 derived snow depths from the descending 

orbits, as they showed a stronger correlation than the ascending orbit. The Pearson-R is 0.56/0.62 for the 

descending orbits and 0.36 for the ascending orbit (Figure S3).  190 
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Figure 4: Multitemporal sampling and OLS linear regression. (a)  Illustrates location and date of three ICESat-

2 tracks (blue dots), and how they are matched with the temporally nearest imagery of Sentinel-1 ∆CR. (b) 

Relationship between ICESat-2 snow depths and Sentinel-1 ∆CR for orbit D110. Ordinary Least Squares (OLS) 

is used to fit and retrieve Sentinel-1 snow depths. 195 
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2.4 Validation data 200 

We evaluate our snow depth estimates against point-scale snow depth observations from 12 weather stations from 

the Norwegian Meteorological Institute (MET) and the snow model seNorge from the Norwegian Water Resources 

and Energy Directorate between January and April, 2019-2022. The seNorge model provides snow depths in a 

1km2 grid based on precipitation and air temperature data from the national observation network of MET weather 

stations (Saloranta, 2016). Before modelling snow depths, the input data is interpolated into a nationwide grid of 1 205 

km cells which are height-corrected using a DTM (Saloranta, 2016). A temperature threshold determines whether 

precipitation is classified as snow or rain. If the temperature is below 0.5° C, the model assumes that the 

precipitation comes as snow, while anything above this temperature is interpreted as rain (NVE, 2024). 

Temperature also determines whether or not the model predicts snowmelt, using a threshold value of 0° C (NVE, 

2024).  210 

Results are also compared with two ICESat-2 tracks from January and March 2022 in the high mountains of 

western Hardangervidda, to investigate the accuracy in one of the most remote regions of our study area. Lastly, 

we investigate local snow depth variability through 279 snow depth measurements obtained during a field 

excursion to the Hardangervidda plateau from February 21 to 25, 2022 in the three regions, Dyranut, Røldalsfjellet 

and Haukeliseter. Snow depths were measured using an avalanche probe every ~10 m in a cross-formation. We 215 

chose this interval and formation to be able to capture local variations in landscape aspect in multiple directions. 

Using the Android app SW Maps to record the location of each observation, we detected a horizontal positional 

accuracy of up to 5 m. 

3 Results and discussion 

In the Southern Norwegian Mountains, precipitation is dominated by frontal storm events most of the year with 220 

inland regions also influenced by convective precipitation (Rizzi et al., 2017). Increased precipitation is found in 

the westeren coastal mountains, as this mountain range works as a significant orographic feature for the dominant 

westerly winds (Skaugen and Melvold, 2019). Precipitation falls as snow in the high mountains from around mid-

September, reaching maximum snow depth in mid to late April (Skaugen and Melvold, 2019). 

Figure 5a-b shows how our Sentinel-1 ∆CR captures the accumulation of snow between January and April 2022, 225 

where a strong increase in snow depth can be observed in the westeren part of the mountain range. In the same 

region, a strong decrease in ∆CR is observed and flagged as wet snow starting in March 2022 (Figure 5b). Similar 

spatial snow depth distributions are observed on a large scale across our study region, with the deepest snow 

observed in the years of 2020 and 2022 (Figure 5c). 

https://doi.org/10.5194/egusphere-2024-3850
Preprint. Discussion started: 17 January 2025
c© Author(s) 2025. CC BY 4.0 License.



11 

230 

Figure 5: Sentinel-1 snow depth time-series in 2022 and maximum snow depth. (a) Change in snow depth 

compared to previous Sentinel-1 scene and (b) total snow depth derived from Sentinel-1 orbit D110, January 

through April 2022. A strong accumulation of snow can be observed in the western parts of the southeren 

Norwegian mountains from January until mid-March, where snow melt is detected. (c) Maximum Sentinel-1 

derived snow depth for 2019-2022. 235 

3.1 Regional comparison with snow model 

Maximum composites of snow depths from Sentinel-1 (Figure 6a) and the SeNorge snow model for 2022 reveal 

a large discrepancy of several meters along the western coastal mountains (Figure 6b-c). Studies evaluating the 

SeNorge model found that the model is overestimating snow depth in the Southern Norwegian Mountains by 50-

54%, while overestimating SWE in the range of 86-100 %, increasing with elevation (Saloranta, 2012). While our 240 

Sentinel-1 maximum composite from 2022 reaches depths of up to 4 meters, SeNorge predicts 7-8 meters of snow 

depth. 
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Figure 6: Sentinel-1 maximum snow depth of 2022 compared to SeNorge snow model in 2022. (a) 

Comparison of maximum snow depth in 2022 using Sentinel-1 and SeNorge snow model. (b) Spatial distribution 245 

of Sentinel-1 snows depth (c) Spatial deviation of maximum snow depth between Sentinel-1 and SeNorge snow 

model.  

3.2 Subregional comparison with ICESat-2 

The largest discrepancies between Sentinel-1 and SeNorge are found in the remote mountainous regions, furthest 

from the weather stations (Figure 1c and Figure 6c). To evaluate the performance in these regions we compared 250 

it with two ICESat-2 tracks covering the western part of the Hardangervidda plateau at two timestamps, 6. January 

and 9. March 2022 (Figure 7). Though ICESat-2 snow depths should not be considered as ground truth (Figure 

S1) and will be positively biased towards our ICESat-2 calibrated Sentinel-1 snow depths, we observe a similar 

pattern to previous studies (Melvold and Skaugen, 2013; Saloranta, 2012), as SeNorge overpredicts snow depths 

with 89% (Bias = 155 cm), while Sentinel-1 only overestimates by 12% (Bias = 21 cm).  255 
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Figure 7: Comparing Sentinel-1 derived snow depths with ICESat-2 tracks over western Hardangervidda. 

(a) Coverage of two ICESat-2 tracks from 2022 over western Hardangervidda mountains, where strong deviations

between the SeNorge snow model Sentinel-1 are observed. (b) Plot of Sentinel-1 and SeNorge predicted snow 

depths compared to the two ICESat-2 tracks.  260 

3.3 Local comparison to weather stations and in-situ measurements 

Local scale snow depth measurements obtained by weather stations and in-situ measurements were compared 

against Sentinel-1 and SeNorge. The mean absolute error (MAE) consistently ranging at approximately 60 cm 

between Sentinel-1, weather stations and SeNorge with no clear patterns across the four years (Table 1). The 

SeNorge snow model consistently overpredicts snow depths compared to the weather stations, with an average 265 

bias of 52 cm between January and April, 2019-2022, whereas Sentinel-1 has a lower average bias of 19 cm. 

SeNorge has a much stronger linear relationship with the weather stations, presumably because the model uses 

the weather station data as input, with an average Pearson-R  coefficient of 0.83 and p-values ranging between 0-

0.13 compared to an average Pearson-R of 0.33 and p-value between 0.15-0.48 for Sentinel-1. Sentinel-1 performs 

slightly better in 2020 (Pearson-R of 0.39) and 2022 (Pearson-R of 0.53), where deeper snow is present on average 270 

across the weather stations. The accuracy of Sentinel-1 varies significantly between each weather station (Figure 

S4). One source of error is that we are comparing snow depths averaged over two kilometers with a snow depth 

point-measurement, which is heavily influenced by the weather stations topographic position in the landscape. On 

the Hardangervidda plateau, snow depths can vary between 0 and 10 meters on hillslope scale, but this variability 

is either strongly reduced or not captured when the averaging area increases to one kilometer (Melvold and 275 

Skaugen, 2013). 

280 

285 
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Table 1: Comparing Sentinel-1 derived snow depths with weather station measurements. Local scale 290 

validation against twelve weather stations across the Southern Norwegian mountains. At each location, the 

weather stations snow depth measurements Sentinel-1 and SeNorge are compared. The values are based on the 

average MAE, bias, Pearson-R coefficient and p-value derived at each weather station, aggregated per year in the 

months of January through April, for the years 2019-2022. 

2019 2020 2021 2022 

Average snow depth across stations (cm) 88 170 90 140 

Sentinel-1 compared to weather stations 

MAE 78 67 62 70 

Bias 31 -5 32 18 

Pearson-R 0.21 0.39 0.19 0.53 

P-value 0.48 0.15 0.47 0.16 

Sentinel-1 compared to SeNorge snow 

model 

MAE 40 78 76 69 

Bias 2 -43 -42 -40

Pearson-R 0.13 0.49 0.27 0.68 

P-value 0.21 0.08 0.37 0.06 

SeNorge snow model compared to 

weather stations 

MAE 61 58 70 76 

Bias 40 38 69 61 

Pearson-R 0.83 0.87 0.82 0.81 

P-value 0.13 0.09 0 0.01 

295 

We studied local snow depth variability through our 279 snow depth measurements obtained during the field 

excursion around the Hardangervidda plateau (Figure 8a). At six sites, the mean in-situ snow depth was compared 

to the snow depth from Sentinel-1 and the SeNorge snow model (Figure 8b). Sentinel-1 has a MAE of 47 cm with 

a Bias of -18 cm, while SeNorge has a MAE of 100 cm and bias of 100 cm. While our in-situ measurements are 

only recorded at one point in time, we can observe the same trend of SeNorge overpredictions as documented 300 

(Melvold and Skaugen, 2013; Saloranta, 2012) and observed on local and subregional scales. Our Sentinel-1 snow 

depth seems to more accurately predict the magnitude of snowfall at these sites, however large deviations can still 

be observed, as Sentinel-1 predicts around 140 cm of snow depth at both sites, D3 and H1, while the average site 

snow depth is 95 cm for D3 and 226 cm for H1 (Figure 8b).  

In 2022, Røldalsfjellet had a large accumulation of snow from mid-January to early March, captured at various 305 

spatial resolutions by the weather station, Sentinel-1 and SeNorge (Figure 8c). On 2022-02-23, we measured 48 

snow depths in Røldalsfjellet about 300 to 600 m from the local weather station (Figure 8d). The snow depths 

varied between 1.7 meters and four meters, with up to 1.5 meters difference in snow depth between measurements 

ten meters apart. The average snow depth was 257 cm with a standard deviation of 57 cm. The different datasets 

disagree about the magnitude of snow accumulation, with the weather station recording a snow depth of 205 cm, 310 

while SeNorge predicted 340 cm snow depth, and the nearest Sentinel-1 derived snow depth was 312 cm.  
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Figure 8: In-situ measurements around Hardangervidda. (a) Locations of the in-situ measurement sites around 

Hardangervidda. Measurements were recorded from February 21 to 25, 2022 in the three regions, Dyranut, 

Røldalsfjellet and Haukeliseter. (b) Mean snow depth at in-situ measurement sites compared to Sentinel-1 (orange) 315 

and the SeNorge snow model (red). (c-d) At site Røldalsfjellet-2 (R2), in-situ snow depth measurements are 

compared to the nearby weather station, Sentinel-1 and SeNorge. 
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3.4 Sentinel-1 snow depths 

The Sentinel-1 ∆CR measure captures changes in volume scattering, which correlate with snow depth (i.e., a 

deeper snow layer causes a higher proportion of volume scattering). However, ∆CR is also influenced by density, 320 

microstructures within the snowpack, and freeze-thaw events (Bernier and Fortin, 1998; Brangers et al., 2024; 

Lievens et al., 2022), which complicates the retrieval of snow depth. Furthermore C-band backscatters may also 

be influenced by temperature, soil moisture, and wet snow. (Bergstedt et al., 2018; Feng et al., 2021; Shi and 

Dozier, 2000). Dunmire et al., (2024) found a statistically significant relationship between CR and snow depths 

between 1-3 m, while Hoppinen et al., (2024) reported poor performance between Sentinel-1 and snow depths 325 

from airborne lidar surveys, with moderate improvements for snow depths exceeding 1.5 m. 

Our calibration with ICESat-2 observations revealed that Sentinel-1 can observe changes in ∆CR when snow 

depth exceeds 60 cm (for descending orbit 110) (Figure 4b). Similarly, Sentinel-1 had the best performance in the 

years when the average snow depth exceeded 1 meter across weather stations (Pearson-R = 0.39-0.68) with an 

MAE of approximately 70 cm, similar to the SeNorge snow model. Furthermore, our subregional comparison 330 

with ICESat-2 revealed that Sentinel-1 outperforms the SeNorge snow model’s ability to accurately estimate 

magnitude of snowfall (S1 bias = 21 cm; SeNorge bias = 100 cm), but that limitation persists in Sentinel-1’s ability 

to capture the snow variability (MAE = 44 cm) (Figure 7). The same pattern was observed when evaluated against 

the six sites of in-situ snow depth measurements (Figure 8).  

With Sentinel-1, we can estimate the magnitude of snow depths more accurately in remote regions, because our 335 

estimates are calibrated with ICESat-2 observations that cover these areas. On the contrary, the overestimation of 

snow depths from the SeNorge snow model (Melvold and Skaugen, 2013; Saloranta, 2012) is expected, as the 

models input is sparse ground observations. The large discrepancies of several meters in some regions between 

our snow depth estimates and SeNorge (Figure 6) reveal a knowledge gap that is hard to capture if you only have 

sparse ground observations. It further explains how calibration and validation of Sentinel-1 snow depths can be 340 

bias if either or both modelled and weather station data is used in the calibration and evaluation phases, and might 

explain why Sentinel-1 derived snow depths have performed worse when evaluated with photogrammetric surveys 

(Dunmire et al., 2024) and airborne LiDAR (Hoppinen et al., 2024).  

ICESat-2 offers an improved way to estimate the relationship between an increase in ∆CR and snow depth. Instead 

of relying on data from weather stations, modelled data or surveys, the correlation is based on thousands of 345 

multitemporal snow depth measurements captured by ICESat-2 in remote regions where little to no prior 

information about snow depth has been measured before, therefore offering a more robust and less biased 

opportunity to calibrate Sentinel-1 derived snow depths. Future endeavors could expand this methodology to other 

regions. Since ICESat-2 has global coverage, the current limitation is the availability of a suitable reference DEM. 

In polar regions ICESat-2 has repeat track coverage, removing the need for reference DEMs. The expansion of 350 

this research into other remote regions, where in-situ measurements are few and far between, would further 

contextualize its large-scale, operational applicability.  
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355 

360 

365 

370 

375 

380 

4 Conclusion 

In this study, we developed a satellite-based algorithm to derive timely estimates of snow depths in deep dry 

snow at 500-meter spatial resolution using Sentinel-1 volume scattering and ICESat-2. Specifically, we found 

that Sentinel-1 ∆CR can capture snow depth changes in dry snow above 0.6 meters with an MAE of 0.5-0.7 

meters and moderate correlations for descending orbits (Pearson-R: 0.56/0.62) over the Southern Norwegian 

Mountains. 

Our ICESat-2 calibrated Sentinel-1 snow depths demonstrates improved accuracy in predicting snow depth 

compared to the SeNorge snow model, by relying on thousands of ICESat-2 observations, which serves as a 

robust calibration dataset to estimate the relationship between an increase in Sentinel-1 volume scattering 

and snow depth. Across in-situ sites, our estimates achieved an MAE of 47 cm and a bias of -18 cm, while 

SeNorge showed larger errors (MAE and Bias = 100 cm). Compared to ICESat-2, we achieved an MAE of 44 

cm and a bias of 21 cm, whereas SeNorge exhibited significant overestimation (MAE and Bias = 155 cm). In 

some remote regions, discrepancies of several meters were observed between Sentinel-1 and the SeNorge snow 

model, emphasizing the value of ICESat-2 observations in improving snow depth estimation. 

While Sentinel-1 has inherent limitations, this methodology could be integrated to improve snow model 

accuracy in remote regions that experience heavy snowfall. Timely snow depth estimates are critical for 

hydropower management in Norway and for monitoring changes in seasonal snowfall under a changing climate. 

This study demonstrates how ICESat-2 observations enhance the accuracy and utility of Sentinel-1-derived 

snow depths, improving snow monitoring in data-sparse regions with potential global applications. 
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