
Impact of non-normal flow rule on linear kinematic features in
pan-Arctic ice-ocean simulations
Jean-François Lemieux1, Mathieu Plante1, Nils Hutter2, Damien Ringeisen3, Bruno Tremblay4,
François Roy1, and Philippe Blain5

1Recherche en Prévision Numérique Environnementale/Environnement et Changement Climatique Canada, 2121 route
Transcanadienne, Dorval QC, Canada.
2GEOMAR Helmholtz-Center for Ocean Research Kiel, Kiel, Germany.
3Canadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment and Climate Change
Canada, Victoria, British Columbia, Canada.
4Department of Atmospheric and Oceanic Sciences, McGill University, Montréal QC, Canada.
5Service Météorologique Canadien, Environnement et Changement Climatique Canada, 2121 route Transcanadienne, Dorval
QC, Canada.

Correspondence: Jean-François Lemieux (jean-francois.lemieux@ec.gc.ca)

Abstract.

One important conclusion of the Sea Ice Rheology Experiment (SIREx) is that continuum based sea ice models, with differ-

ent spatial discretizations and/or sea ice rheologies, all simulate intersection angles between linear kinematic features (LKFs)

that are too wide compared to observations. The peak of the probability density function (PDF) of simulated intersection angles

is around 90◦ while the PDF for observed angles rather exhibits a peak around 45◦. Ringeisen et al. (2021) proposed to remedy5

this issue for viscous-plastic (VP) and elastic-VP (EVP) models by introducing a non-normal flow rule specified by a plastic

potential. We implemented the plastic potential approach of Ringeisen et al. (2021) in the CICE sea ice model. In pan-Arctic

simulations, the non-normal flow rule also leads to a peak of the PDF around 90◦. We show that this peak at 90◦ is at least

partly a consequence of many LKFs that are aligned with the computational grid. Nevertheless, the non-normal flow rule brings

an interesting capability: it could be used to independently optimize simulated LKFs and more generally deformations while10

parameters defining the yield curve could serve for modifying simulated landfast ice and to a lesser extent sea ice drift.

1 Introduction

The ability of large-scale continuum-based sea ice models to simulate linear kinematic features (LKFs) and more generally

deformations was evaluated in the Sea Ice Rheology Experiment (SIREx, Bouchat et al., 2022; Hutter et al., 2022). Various15

methods and metrics were used to quantify the quality of simulated deformations. These included PDF of deformations, tem-

poral and spatial scaling, LKF density, length of LKFs, intersection angles and LKF lifetime. For most metrics, there were

notable differences in the quality of the simulations with some models that performed well while others struggled to properly

represent the deformations. However, all the models, whatever the rheology, failed to correctly represent the distribution of
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intersection angles between conjugate pairs of LKFs (i.e., LKFs that form simultaneously under compressive stresses). Indeed,20

the peak of the distribution is around 45◦ for SAR derived observed deformations (as recently confirmed, Ringeisen et al.,

2023) while the models lead to simulated intersection angles with a peak of the PDF around 90◦ (Hutter et al., 2022).

Prior to SIREx, there were already a few indications that viscous-plastic (VP) models tend to simulate too large intersection

angles. Ringeisen et al. (2019) demonstrated in uni-axial loading experiments that the standard VP rheology cannot simulate25

fracture angles smaller than 60◦ (i.e., 2×30◦). Hutter and Losch (2020) analyzed high-resolution MITgcm pan-Arctic simula-

tions and found that intersection angles are too wide compared to observations with a peak of the distribution around 90◦.

The yield curve and the flow rule are two important characteristics to define a VP rheology. The yield curve (e.g. in stress

invariant space) specifies the critical stresses associated with the failure of sea ice in shear/compression or shear/tension. The30

flow rule defines the post-failure deformations. It is expressed with the use of a plastic potential: the post-failure deformations

are normal to the plastic potential.

The standard VP rheology of Hibler (1979) is based on an elliptical yield curve and a normal flow rule. The normal flow rule

implies that the plastic potential is the same as the yield curve and that the post-failure deformations are normal to the yield35

curve. Ringeisen et al. (2021) attributed to the normal flow rule the inability of the VP model to simulate small intersection an-

gles. These authors proposed to define the plastic potential independently of the yield curve, therefore allowing a non-normal

flow rule. Uni-axial idealized compression experiments with a non-normal flow rule demonstrated that smaller intersection

angles, more in line with observations, can be obtained and that the intersection angles of LKFs can be precisely linked to the

shape of the yield curve and plastic potential following the Arthur angles (Arthur et al., 1977).40

We have implemented, in the CICE sea ice model, the plastic potential approach of Ringeisen et al. (2021). In this work,

using more realistic pan-Arctic simulations, we investigate the impact of a VP rheology with a non-normal flow rule on sim-

ulated LKFs and especially on intersection angles. The goal of this study is not to do a thorough assessment of the realism

of simulated LKFs against observations but rather to conduct a sensitivity study of the impact of non-normal flow rules in45

simulating LKFs and more generally on the simulated sea ice cover.

We will answer the following questions: 1) what is the impact of non-normal flow rules on statistics of LKFs such as length,

number, density and especially intersection angles? 2) are smaller intersection angles simulated in pan-Arctic experiments

when using a non-normal flow rule?50

This paper is structured as follow. A brief presentation of the plastic potential and the flow rule is given in section 2. Details

about the experimental setup and the methodology are respectively given in sections 3 and 4. Results are presented and anal-
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ysed in section 5. Broader implications are discussed in section 6 while concluding remarks are provided in section 7.

55

2 The plastic potential and the flow rule

This section provides a short overview of the non-normal flow rule and of the plastic potential for the VP rheology with an

elliptical yield curve. More details can be found in Ringeisen et al. (2021).

The yield curve in the VP rheology defines the critical stresses associated with plastic failure. To close the system of equa-60

tions, assumptions have to be made about the post-failure deformations, that is the flow rule. The flow rule can be formulated

with the use of a plastic potential. The idea is that post-failure deformations are normal to the plastic potential.

In the original VP rheology of Hibler (1979), the plastic potential is the same as the elliptical yield curve. This leads to a

normal flow rule: the post-failure deformations are normal to the yield curve. The constitutive equation can be expressed using65

ζ and η which are respectively the bulk and shear viscosities (Hibler, 1979). Given the ellipse ratio e of major to minor axes,

η = e−2ζ, with ζ expressed as

ζ =
P (1 + kt)

2∆
, (1)

where P is the ice strength, kt is a parameter between 0 and 1 that determines tensile strength (König Beatty and Holland, 2010)

and ∆ =
[
D2

d + e−2(D2
t + D2

s)
]1/2

with Dd = ϵ̇11 + ϵ̇22 the divergence, Dt = ϵ̇11− ϵ̇22 the horizontal tension and Ds = 2ϵ̇1270

the shearing strain rate. These deformations are defined from the components ϵ̇11, ϵ̇22 and ϵ̇12 of a symmetric strain rate tensor.

Using an elliptical yield curve, Ringeisen et al. (2021) implemented a modified VP rheology that relies on another ellipse

defining the plastic potential. Following the notation of Ringeisen et al. (2021), eF defines the aspect ratio of the yield curve

while eG defines the one of the elliptical plastic potential. Setting eG = eF = e = 2, one recovers the VP rheology introduced75

by Hibler (1979).

With the non-normal flow rule, η is now equal to e−2
G ζ. The bulk viscosity ζ is in this case expressed as in Eq. (1) above but

with a slight modification to the definition of ∆, that is

∆ =
[
D2

d +
e2
F

e4
G

(D2
t + D2

s)
]1/2

. (2)80

Note that there is a sign that is incorrect in the definition of ∆ in Ringeisen et al. (2021, their Eq.15).
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When the deformation ∆ tends toward zero, ζ tends toward infinity. To prevent this singularity, ∆ is replaced by ∆∗

in Eq. (1). In the simulations presented in this article, ∆∗ is defined by the capping approach of Hibler (1979), that is

∆∗ = max(∆,∆min), where ∆min is a small deformation set here to 10−11s−1.85

3 Experimental setup

Our experimental setup is based on the CICEv6.5 sea ice model (Hunke et al., 2023) and the NEMOv3.6 ocean model (Madec,

2008). We use a regional configuration with a domain that covers the Arctic Ocean, the oceanic regions around Canada, the

North Atlantic and the North Pacific. This setup was developed as part of the Canadian Operational Network of Coupled90

Environmental Prediction Systems (CONCEPTS) initiative. The regional grid used for the simulations is the CONCEPTS

REGional 1/12◦ (CREG12) grid which is used in the Environment and Climate Change Canada (ECCC) operational system

RIOPS (Smith et al., 2021).

The ocean model is applied in a variable volume and nonlinear free surface formulation, using seventy-five vertical levels.95

Ocean mixing is parameterized with the NEMO k-epsilon approach. Oceanic boundary conditions for the North Pacific and

North Atlantic are taken from the GLORYS2 version 4 reanalysis (Garric et al., 2017). Monthly averages of vertical profiles

of ocean currents, temperature, and salinity are applied at the boundaries. A time-splitting technique with a sub–time step of

5 s is used for the treatment of the nonlinear free surface (including the tides). For the tides, vertically averaged velocities (13

harmonic components) were obtained from the Oregon State University tidal prediction model. At the open boundaries, the100

barotropic part of the velocity components are prescribed following the method of Flather (1976). Sea surface height forcing

includes the tidal potential, self-attraction and loading effects.

Ten sea ice thickness categories, as defined in Smith et al. (2016), are used for the simulations. The thermodynamics com-

ponent uses the approach of Bitz and Lipscomb (1999). The parameterization of Hibler (1979) is employed for the formulation105

of the ice strength. Grounding of ice keels in shallow water is parameterized with the scheme of Lemieux et al. (2016).

The ice-ocean simulations are forced by 33-km resolution ECCC atmospheric reforecasts (Smith et al., 2014). As the ECCC

atmospheric forcing dataset only covers the period from 2001 to 2010, this puts some constraints on the spinup and analysis

period. The analysis period is 25 September 2004 to 31 May 2008. The restart on 25 September 2004 was obtained following110

the approach described in Lemieux et al. (2018). It is obtained from a CICEv4-NEMOv3.6 simulation consisting of a pseudo-

spinup followed by a final spinup.

The pseudo-spinup is initialized with average (September – October 2001) sea ice concentration from the National Snow

and Ice Data Center (NSIDC, https://nsidc.org/data/seaice_index/) and the average (October-November 2003) sea ice thickness115
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Symbol Definition spinup exp

P ∗ ice strength parameter 27.5 kNm−1 22.5 kNm−1

C∗ concentration strength parameter 15 15

kt isotropic tensile strength parameter 0.05 0.00

z0ai air-ice roughness 5.7×10−4 m 5.4×10−4 m

z0oi ocean-ice roughness 0.0182 m 0.0180 m
Table 1. Relevant dynamical parameters for the spinup (and pseudo-spinup) and for the numerical experiments

eF eG

exp1 2.0 3.0

exp2 2.0 2.0

exp3 2.0 1.33

exp4 1.75 1.16

exp5 1.75 1.75

exp6 1.75 2.63

exp7 1.5 2.25

exp8 1.5 1.5

exp9 1.5 1.0

exp10 1.16 1.75

exp11 2.63 1.75
Table 2. List of numerical experiments with values of eF and eG.

field from ICESat data (https://nsidc.org/data/icesat). The initial temperature and salinity for the ocean are averages (Septem-

ber–October) of WOA13_95A4 fields (Locarnini et al., 2013; Zweng et al., 2013). The ocean starts at rest; the sea surface

height field and ocean currents are set to zero. The pseudo-spinup consisted in running the coupled model three times from 1

October 2001 to 30 September 2002.

120

The pseudo-spinup solution was then used to start the spinup again on 1 October 2001. CICEv4-NEMOv3.6 then ran up to

25 September 2004. The solution on 25 September 2004 is the restart that is used for the simulations. The sea ice part of the

restart was converted in order to be used by CICEv6.5.

For the pseudo-spinup and the spinup, we use the ’optimal’ parameters of Chikhar et al. (2019). Table 1 lists the values of125

the most relevant parameters for the spinup procedure, that is the ones associated with rheology and sea ice dynamics (note that

e=1.5 for the pseudo-spinup and spinup). The advective time step is 180 s for the spinup procedure and for all the simulations.
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Following the advice of Bouchat et al. (2022), a large number (900) of EVP subcycles were performed in order to ensure

numerical convergence of the solutions.

130

4 Methodology

4.1 Sensitivity analysis

From the ice-ocean restart described in section 3, we ran a series of numerical experiments with different values of eF and eG.

To simulate smaller intersection angles, Ringeisen et al. (2021) suggest to set eG < eF. Nevertheless, as this is a sensitivity

study, we also test for values of eG larger than eF keeping in mind that the most important results are for eG < eF. For each135

value of eF, eG is set to ∼ eF/1.5 or eF or ∼ 1.5eF (these are referred to experiments 1 to 9). As eF = 1.75 is between the

two other values tested (i.e., eF = 1.5 and eF = 2.0), we sometimes only show results associated with this value when the

conclusions are qualitatively the same for the other values of eF. We add two other experiments to see the impact of eF for

a constant eG of 1.75 (referred to as experiments 10 and 11). The values of eF and eG for the 11 numerical experiments are

given in table 2. Except for C∗ = 15, the other dynamical parameters for the experiments are slightly different than the ones140

used for the spinup procedure. P ∗, z0ai and z0oi are set to the values of the latest version of RIOPS (Smith et al., 2021). As in

Ringeisen et al. (2021), kt is set to zero. The last column of Table 1 provides the values of these parameters. Again, the number

of EVP subcycles is set to 900.

These experiments cover the period 25 September 2004 to 31 May 2008. We focus on the formation of LKFs when the145

sea ice is compact in the Arctic Ocean. We therefore analyse the LKFs between January 1 to May 31 for the years 2005 to

2008. We focus our analysis on the first winter-spring period (i.e., 2005) because the sea ice thickness fields of the different

simulations are more similar. Nevertheless, we also analyze LKF statistics for the other winter-spring periods to verify that

the same conclusions apply. We use 00 UTC snapshots of sea ice deformations to investigate the simulated LKFs. Daily mean

of the sea ice volume are also stored to study the impact of the non-normal flow rule on total sea ice volume in the northern150

hemisphere.

4.2 LKF detection and analysis

To detect LKFs, we downloaded version 2.0 of Nils Hutter’s LKF package (https://github.com/nhutter/lkf_tools/releases/tag/

v2.0, Hutter et al. (2019)) and made a few minor modifications for our CICE outputs. A kernel value of seven is used for the155

detection algorithm. LKFs are detected only if the sea ice concentration is larger than 0.15 and if they are located in a region

in the central Arctic defined by a mask. We refer to this mask as the pack ice mask. It covers the region shown in gray in Fig.2.

It corresponds to all the CREG12 grid cells in the Arctic Ocean that are at least 250 km away from the nearest land cell. This
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mask ensures that LKFs are detected and analysed in compact ice, away from the coasts and from regions of landfast ice (i.e.

excluding coastal or flaw polynyi).160

Our analysis focuses on spatial characteristics of LKFs and leave aside temporal aspects such as the lifetime of LKFs. To

analyse the detected LKFs, we developed a set of tools written in Python. These tools can be obtained on GitHub (https:

//github.com/JFLemieux73/lkf_tools). Many of the metrics used to analyse the LKFs are the same ones introduced in Hutter

and Losch (2020) and Hutter et al. (2022). However, we introduce two new metrics: the width of LKFs and the angle with the165

grid.

The detection algorithm uses a morphological thinning method that reduces the width of LKFs to one pixel (Hutter et al.,

2019). In the most recent implementation a point of the thinned LKFs correspond to the largest total deformation along a

perpendicular transect (Hutter, 2023). Given the location of a LKF point with a total deformation of ϵ̇tot, our new Python170

algorithm for the width calculates the number of pixels (i.e. grid cells) required in both perpendicular search directions for

reducing the total deformation below αϵ̇tot where 0 < α < 1. The parameter α is set to 0.5 in this study. More details about the

LKF width algorithm are provided in Appendix A.

Our LKF analysis tool also estimates angles of LKFs with the computational grid at the intersection points of conjugate175

fault lines. As such, it first identifies pairs of intersecting LKFs. Following Hutter et al. (2022) and Ringeisen et al. (2023), the

vorticity of both intersecting LKFs is analysed. If the two LKFs have opposite signs of vorticity, the intersecting pair can be

interpreted as conjugate LKFs. As shown in Fig. B1 in Hutter et al. (2022), the stress direction can be determined from the

vorticity field; the intersection angle obtained is between 0 and 180◦. For each intersecting LKF, our Python tool then calculates

the acute angles θx and θy between a LKF and the (local) x and y axis of the computational grid. The metric that we use is the180

minimum angle with the grid, that is θmin = min(θx,θy). More details about our algorithm for calculating intersection angles

and angles with the grid are given in Appendix B.

4.3 Spatial scaling

As a complement to the LKF metrics described above, we investigate the spatial scaling response to the plastic potential. This185

metrics is not a direct measure of the organization of sea ice deformations into LKFs but measures the level of spatial local-

ization of the simulated deformations. While not as intuitive as the LKF characteristics, this metric has the benefit of being

independent from the LKF detection methods, thus generalizing the results.

The spatial scaling is performed by applying the same coarse-graining methods as described in Bouchat and Tremblay190

(2020) and Bouchat et al. (2022), but here applied to Eulerian sea ice deformations (i.e., without the initial step of computing

Lagrangian trajectories, Hutter et al. (2018)). That is, for a given coarsened scale L, the mean sea ice deformation is computed
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first by aggregating to scale the Finite Difference sea ice velocity gradients (using an area-weighted average), then computing

the field-average of these coarse-grained deformations. This method is repeated across multiple scales (multiples of the nomi-

nal resolution), and the spatial scaling is defined by the slope β of the regression line in logarithmic space that best represents195

the results.

Following Bouchat and Tremblay (2020) and Bouchat et al. (2022), the aggregated sea ice deformations are further weighted

by their signal-to-noise ratio. This method was designed to apply similar post-processing methods to model data as those ap-

plied to satellite observations, with the added benefit of presenting an enhanced sensitivity to the level of feature localization.200

This method is adapted to our Eulerian approach by setting the tracking error to zero and the sea ice velocity error to the model

precision, yielding a unique noise value for all deformations. The signal-to-noise weighting method therefore corresponds to

weighting the sea ice deformations by their own magnitude.

4.4 Ratio of divergence and shearing205

Because the post-failure deformations are normal to the plastic potential, a simulation with a large value of eG should exhibit

less convergence/divergence and more shear than a simulation with a smaller value of eG. To investigate the impact of the

plastic potential on the post-failure deformations, the amount of divergence compared to shear is quantified by calculating

θr = tan−1

(
ϵ̇I
ϵ̇II

)
, (3)

where ϵ̇I = Dd and ϵ̇II = (D2
t + D2

s)1/2 are the strain rate invariants. The angle θr varies between -90◦ (pure convergence) to210

90◦ (pure divergence) with pure shear deformation corresponding to θr =0◦.

This metric is calculated from 00 UTC snapshots ϵ̇I and ϵ̇II. Note that ϵ̇I and ϵ̇II are defined at the T-point (i.e., cell center)

in the CICE outputs.

215

5 Results

5.1 Impact of non-normal flow rule on simulated LKFs

Snapshots of the total deformation show that eG has a strong impact of the definition of LKFs. This is shown in Fig. 1 for 25

April 2005 for which eF is kept constant at 1.75. For eG = 2.63 (Fig. 1a), LKFs are blurry and not well defined. LKFs are better

defined as eG is reduced (Fig. 1b and c). As eG is reduced, the algorithm detects more LKFs for these very same snapshots220

(Fig. 2).
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Visually speaking, Figs 1 show that similar large-scale patterns of deformation are present for different values of eG. How-

ever, these panels indicate that a smaller eG leads to narrower LKFs. To verify this, we use our novel Python tool for calculating

the width of detected LKFs (see Appendix A for details). The mean width of detected LKFs in the pack ice region over the225

period 1 January to 31 may 2005 is indeed sensitive to the value of eG (see Fig. 3). For all the values tested of eF, a non-normal

flow rule with eG < eF leads to narrower LKFs compared to the normal flow rule (i.e., eG = eF).

Because LKFs are blurry for large values of eG (Fig. 1a), the number of detected LKFs is smaller. This is shown in Fig. 5

for eF = 1.75. The mean number of detected LKFs over the period 1 January to 31 may 2005 is 63.2 for eG = 2.63, 86.2 for230

eG = 1.75 and 106.5 for eG = 1.16. These conclusions also remain valid for the other values of eF (and associated eG) tested

and for the other winter-spring periods (2006-2008) of the simulations (not shown).

Detected LKFs also tend to be longer for a smaller eG. This is clearly displayed in Fig. 6. The increase in the mean length is

more pronounced going from eG=2.63 to eG=1.75 than from eG=1.75 to eG=1.16. The length of a detected LKF is obtained by235

summing the distances between two neighboring points. These distances are calculated with the haversine formula. The mean

of the mean length over the period 1 January to 31 may 2005 is respectively 167.4 km, 221.7 km and 257.4 km for eG=2.63,

eG=1.75 and eG=1.16. These conclusions remain valid for the other values of eF (and associated eG) tested and for the other

winter-spring periods (2006-2008) of the simulations (not shown). Because a smaller eG leads to longer and more numerous

LKFs, the total length of LKFs is also larger (see Fig. 7). The mean total length over the period 1 January to 31 may 2005 is240

respectively 10739 km, 18746 km and 26546 km for eG=2.63, eG=1.75 and eG=1.16.

The more numerous simulated LKFs when decreasing the value of eG is an ubiquitous phenomenon in the region defined by

our pack ice mask as demonstrated by the LKF density maps in Fig. 8. Given the ns = 151 snapshots (00 UTC) for the period

1 January to 31 May 2005 that were used for the LKF detection, the density is calculated as the number of incidences a pixel245

is crossed by a LFK divided by ns. The density clearly increases as eG is reduced. These conclusions remain the same for the

other values of eF tested (not shown).

One limitation of the LKF metrics discussed above is that they do not consider the smoother or shorter features excluded by

the LKF detection algorithm (see for instance the features in Fig. 1a in the region of the pack ice mask vs. the LKFs detected250

in Fig. 2a). As such, these metrics are likely unable to capture the model sensitivity at high eG values. This might explain the

ambiguous impact of eG > eF on the mean LKF width (Fig. 3). To generalize the results and characterize the level of localiza-

tion in the full sea ice deformation fields, we additionally calculate the spatial scaling from the nominal (∼4 km) to ∼500 km

scales (Fig. 4). This exercise confirms that the level of localization in the simulated sea ice deformation fields is sensitive to eF

but mostly sensitive to the eG parameter, with increased scaling (larger scaling exponent β) for lower eG.255
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5.2 Impact of non-normal flow rule on intersection angle

In idealized uniaxial compressive experiments, Ringeisen et al. (2021) demonstrated that, compared to eG = eF (the normal

flow rule case), a plastic potential with eG < eF leads to smaller intersection angles between conjugate fault lines (or conjugate

LKFs) for eF > 1. Here, we investigate the impact of non-normal flow rule on the intersection angles between conjugate LKFs260

in pan-Arctic simulations. Details about our Python algorithm for calculating the angle between conjugate LKFs (and angles

with the grid) are provided in Appendix B.

Fig. 9b shows the PDF of intersection angles for conjugate pairs (i.e., θc), for the period 1 January to 31 May 2005, for

eG = eF = 1.75. Note that short LKFs are excluded from this analysis; the intersection is not taken into account in the PDF265

if at least one of the two intersecting LKFs has less than Nmin =10 points. The peak of the distribution is at 90◦. This is un-

realistic compared to observations of intersection angles (Hutter and Losch, 2020; Hutter et al., 2022; Ringeisen et al., 2023).

Reducing (Fig. 9c) or increasing (Fig. 9a) eG does not improve the PDF. The PDFs in Fig. 9 are similar to the ones obtained

by Hutter et al. (2022) for SIREx.

270

Contrary to the results of Ringeisen et al. (2021) for idealized uni-axial compression experiments, the angles between con-

jugate fault lines are not reduced when setting eG < eF in our pan-Arctic simulations (see Fig. 9). Note that Ringeisen et al.

(2021) produced these idealized experiments with an implicit solver; in other words they obtained a VP solution as opposed

to our EVP results presented here. To verify that the too large intersection angles obtained here are not caused by the EVP for

eG < eF, we made use of a new capability of CICE: a Picard implicit solver similar to the one developed by Lemieux et al.275

(2008). The VP approach in CICE is based on the same spatial discretization on the B-grid as the EVP (Hunke and Dukowicz,

2002). Using 10 nonlinear iterations for the implicit solver, we ran experiments for eG = eF = 1.75, eG = 1.16,eF = 1.75, and

eG = 2.63,eF = 1.75. PDFs of the intersection angle of conjugate pairs resemble the ones obtained with the EVP: the peaks

are also at 90◦ for the three experiments (not shown).

280

As the peaks of all these distributions are close to 90◦, one might consider that many LKFs are aligned with the computa-

tional grid. Hutter and Losch (2020) briefly investigated this in their MITgcm simulations by comparing the mean orientation

of LKFs with grid orientation and could not find a clear correlation. Hutter et al. (2022) also argued that the peak at 90◦ is not

due to LKFs aligned with the grid because SIREx simulations from unstructured grid models also exhibit a peak of the PDF

close to 90◦.285

However, a visual inspection of simulated deformation fields produced by our CICE B-grid model (such as the ones shown

in Fig. 1) indicates that many LKFs are aligned with the grid. To investigate this more objectively, we use our novel Python

tool that calculates the angles of LKFs with the (local) x and y axis of the grid. The angles θx and θy with the x and y axis

are calculated at the intersection point of conjugate pairs. Fig. 10 shows the PDFs of the minimum angle θmin = min(θx,θy)290
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of all the conjugate LKFs for the period 1 January to 31 May 2005. Given eF = 1.75, the peak of the PDF is clearly at 0◦ for

the three values of eG tested (Fig. 10). Although decreasing eG slightly modifies the PDF toward more uniform values, there

is still clearly a tendency for LKFs to align (or nearly align) with the computational grid. Due to the continents and large-scale

sea ice drift patterns, the same PDF calculated using observed LKFs would not necessarily be uniform.

295

We finally verified whether the peak of the PDF of θc at 90◦ and of the one of θmin at 0◦ are not caused by short LKFs that

would align more easily with the grid. Increasing Nmin from 10 to 20 or 30 (i.e., analysing only longer and longer LKFs) does

not change, qualitatively, our conclusions (not shown). These conclusions remain valid for the other values of eF tested (not

shown).

300

6 Broader implications and discussion

Results from section 5 show there is an increase in LKF activity when reducing eG for a fixed value of eF (see for example

Fig. 7 and Fig. 8 ). This suggests this could have an impact on the sea ice formation in leads.

To verify this, we calculated the total sea ice volume in the Northern hemisphere, as a function of time, for different values305

of eF and eG. Fig. 11a shows the total simulated volume for a fixed eF = 1.75 for different values of eG. Compared to the

Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS, Schweiger et al., 2011), the simulations already start

on 25 September 2004 with a thicker sea ice cover. The impact of eG is striking; smaller values of eG lead to a thicker sea

ice cover. We anticipate that the impact of eG on the sea ice volume would be smaller in a coupled configuration with an

atmospheric model; the forced setup probably causes an overestimation of the sea ice growth as feedbacks between the ocean310

and the atmosphere are not represented. On the other hand, Fig. 11b demonstrates that the impact of eF on the total volume is

negligible compared to the one of eG.

We interpret this effect of eG on the sea ice volume to the amount of divergence associated with the flow rule: a smaller

eG leads to a more circular (or less elliptic) plastic potential and therefore normal vectors exhibiting more divergence. This315

enhanced lead formation with a smaller eG should be associated with an increased in the sea ice growth. We also argue that

the increased divergence associated with the non-normal flow rule (eG < eF) also explains the higher LKF density (see Fig. 8)

and the reduced mean width (see Fig. 3) of simulated LKFs compared to results with the normal flow rule (eG = eF). More

divergence decreases the ice strength, concentrates spatially the LKFs and favors their persistence.

320

To quantify the amount of divergence (ϵ̇I) compared to shear (ϵ̇II), we use the angle θr as introduced in Eq. (3). Given daily

snapshots at 00 UTC for the period 1 January to 31 May 2005, θr is calculated at all the ocean grid cells inside the pack ice

mask when ∆ > ∆min (i.e., the state of stress is plastic). Fig. 12a shows the PDF of θr for different eG (with a fixed eF).

11

https://doi.org/10.5194/egusphere-2024-3831
Preprint. Discussion started: 10 February 2025
c© Author(s) 2025. CC BY 4.0 License.



Similarly, Fig. 12b shows the PDF of θr for different eF (with a fixed eG). eG has a strong impact on the amount of divergence

compared to shear while the impact of eF is small when keeping eG fixed. The PDF for a large value of eG exhibits many pure325

shear events (i.e. θr = 0); decreasing eG augments the events of shear plus divergence (or convergence). For all PDFs, the pure

divergence or pure convergence events are rare.

Because the sea ice volume time series diverge more and more with time we only look at the impact of eF and eG on the

sea ice drift for the period 1 January to 31 may 2005. We choose this time interval because it is close to the beginning of330

our simulations and during a period (winter-spring) for which rheology has a strong impact on the drift. We interpolated daily

averaged velocity components from the U-point to the T-point where concentration is calculated. Using these, we calculated

the daily spatial averaged sea ice speed. This spatial average is computed for all the grid cells with a concentration larger than

0.15 inside the pack ice mask. Monthly mean values of the daily spatial averaged sea ice speed are then calculated. The results

are shown in Fig. 13.335

The impact on the drift of changing the size of the yield curve (i.e., eF) is more important than changing the flow rule (i.e.,

eG). In fact, compared to the normal flow rule (eG = eF, solid lines), setting eG < eF (dashed lines) as proposed by Ringeisen

et al. (2021) has a very small impact on the monthly averaged drift speed.

340

Even though the non-normal flow rule does not remedy the problem of too large intersection angles, defining the flow rule

independently from the yield curve offers clear advantages. Studies have shown the impact of modifying e = eF = eG (i.e., a

normal flow rule) on the simulation of landfast ice (Lemieux et al., 2016), ice arches (Dumont et al., 2009) and deformations

(Bouchat and Tremblay, 2017). But clearly, decreasing e to enhance simulated landfast ice in coastal area also impacts the

deformations, the drift and the sea ice production everywhere. Our results demonstrate that eF and eG could be used to opti-345

mize the representation of different physical processes. Modifying the yield curve by changing eF impacts simulated landfast

ice (and ice arches) and to a certain extent the drift of pack ice while modifying the flow rule by changing eG affects the

deformations (and their spatial scaling properties) and indirectly sea ice production through leads.

7 Concluding remarks350

As demonstrated in other studies, we find that the elastic-viscous-plastic (EVP) rheology with a normal flow rule (i.e., eG = eF)

leads to a PDF of intersection angles (for conjugate pairs) with a peak at 90◦. Using a non-normal flow rule with the elliptical

yield curve, as introduced by Ringeisen et al. (2021), does not remedy this problem. Either with eG < eF or eG > eF, the peak

is still at 90◦.

355
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From VP experiments with a normal flow rule, Hutter and Losch (2020) compared the mean orientation of LKFs with the

grid axis and could not find a clear correlation. For the SIREx project, Hutter et al. (2022) made the qualitative argument that

the peak of the PDF at 90◦ is not caused by LKFs aligned with the grid as models with an unstructured grid also lead to a peak

at 90◦. Our analysis, involving the computation of the intersection angle for all the conjugate pairs, clearly indicates a tendency

of simulated LKFs to be aligned with the grid.360

But why Ringeisen et al. (2021), consistent with theory, were able to simulate smaller fracture angles (by setting eG < eF)

in their idealized uniaxial compression experiments? We explain as follows this contradiction between our results with realistic

pan-Arctic experiments and the ones of Ringeisen et al. (2021). We don’t think it is related to the use of a C-grid and a VP

rheology by Ringeisen et al. (2021) as opposed to the B-grid with EVP dynamics used here. Note that our conclusions remain365

the same whether the implicit approach (VP) in CICE or the explicit one (EVP) is used. We speculate that in the pan-Arctic

simulations, a deformation (or fracture) that would be loosely aligned with a grid axis would tend to lock itself to that very

same grid axis. This locking mechanism was not observed by Ringeisen et al. (2021) because their simulated fractures exhibit

large angles with respect to the grid axis (see for example Fig. 6 in Ringeisen et al. (2021)). Understanding and proving the

existence of this locking mechanism is beyond the scope of this paper and will be investigated as part of future work. To obtain370

simulated LKF intersection angles more in line with observations, we argue that not only the rheology needs to be improved

but that more advanced numerical methods (i.e., spatial discretization, numerical solver, etc.) should be developed.

Although the non-normal flow rule does not remedy the problem of too wide simulated intersection angles, our results show

that eG could be an additional tuning knob (independent of eF) for adjusting statistics of LKFs and more generally deforma-375

tions. A smaller eG increases the amount of divergence/convergence in plastic deformations; LKFs are also more numerous

and better defined. As more leads are simulated with a smaller eG, there is more sea ice formation which notably impacts the

sea ice volume. We argue, however, that this impact would be mitigated in simulations using a coupled atmospheric model. On

the other hand, the parameter eF, which defines the shear strength associated with the yield curve, could be used to control the

formation of ice arches and more generally the simulated landfast ice area and to a smaller extent to optimize the pack ice drift.380

Appendix A: Algorithm for calculating LKF width

Given a detected LKF with N points (with indices n = 0 to n = N−1), the algorithm for calculating the LKF width is applied

for all these points. Coordinates i, j are associated with all these LKF points. Fig. A1 illustrates parts of the procedure.

385

For a certain point (in orange) along the LKF, the algorithm calculates the local slope of the LKF with respect to the i axis

in order to define a unit vector aligned with the LKF (pointing in the direction of increasing n). The dark blue cells in Fig. A1

are the ones used to determine the slope and the unit vector aligned with the LKF. Away from the start and end points of the
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LKF (panels a, b, c, e and f), two dark blues cells are used and the slope is obtained from a central finite difference. However,

at the start point, the orange and dark blue cell are used to calculate a one-sided first-order approximation of the slope in order390

to obtain the unit vector aligned with the LKF (panel d). Similar approaches are used for the end point and for diagonal LKFs

(not shown).

Two other unit vectors are then defined at 90◦ from the unit vector aligned with the LKF. These two vectors define the search

direction for calculating the LKF width. Note that some points of a detected LKF can lead to ambiguous search directions. An395

example of this is in panel f of Fig. A1. For these points, the width is not calculated and is not used to calculate metrics such

as the mean width of LKFs.

The thinning procedure of the LKF detection algorithm identifies the LKF as a series of points each corresponding to the

largest total deformation along a perpendicular transect. Given the location of a LKF point with a total deformation of ϵ̇tot, the400

width calculation algorithm calculates the number of grid cells (or pixels) required in both perpendicular search directions for

reducing the total deformation below αϵ̇tot where 0 < α < 1. The parameter α is set to 0.5 in this study.

The width of the LKF at a certain point is then the sum of the two half-widths associated with the two search directions.

Consider a point i, j of a LKF along the x axis (with search directions along the y axis). If ϵ̇tot(i, j + 1) > αϵ̇tot(i, j) and405

ϵ̇tot(i, j + 2) < αϵ̇tot(i, j), the half-width is 2 pixels along this search direction. Similarly, for a point i, j of an oblique LKF,

ϵ̇tot values at i + 1, j + 1, i + 2, j + 2, ... are compared to ϵ̇tot(i, j). If ϵ̇tot(i + 2, j + 2) is the first value below αϵ̇tot(i, j), the

half-width is 2
√

2 pixels. Note that for each search direction, ϵ̇tot is compared to αϵ̇tot(i, j) up to a maximum number of grids

cells defined by cmax. Hence, as an example for the horizontal LKF, if ϵ̇tot(i, j + cmax) > αϵ̇tot(i, j), the procedure is stopped

and the half-width is set to cmax pixels. The parameter cmax is set to 5 is this study.410

Appendix B: Algorithm for calculating intersection angles and angles with the grid

The algorithm for calculating intersection angles of conjugate pairs first identifies intersecting LKFs. Consider the example in

Fig. B1 which shows two intersecting LKFs: LKF1 in blue and LKF2 in yellow. LKF1 has N1 detected points (with indices

n = 0 to n = N1− 1) and LKF2 has N2 points (with indices n = 0 to n = N2− 1). The intersection point (the orange cell)415

has index n = ni1 for LKF1 and n = ni2 for LKF2. To determine if LKF1 and LKF2 represent a conjugate pair, the algorithm

defines local regions for both LKFs for calculating the mean vorticity and for fitting a polynomial of degree 1 (i.e., a line). The

region for the polynomial fits are defined by nmin1,nmax1 for LKF1 (same idea for LKF2) with nmin1 = max(0,ni1−∆n)

and nmax1 = min(ni1 +∆n,N1− 1). This local region is represented by the dark blue cells for LKF1 and by the dark yellow

cells for LKF2. While ∆n is set to 10 for the results of this article, it is for simplicity assumed to be equal to 4 in the example420

displayed on Fig. B1. Because the top-right cell of LKF2 is the last detected point of this LKF, there are only three LKF points
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on the ’right side’ of the orange cell for the polynomial fit of LKF2. The polynomial fits are represented by the dashed gray lines.

The vorticity is then analyzed for LKF1 in the region of intersection (defined by nmin1,nmax1) and for LKF2 for nmin2 to

nmax2. If LKF1 and LKF2 have mean vorticities of opposite sign, they are interpreted as a conjugate pair of LKFs. The angle425

θc is then calculated counterclockwise from the fitted LKF with positive vorticity to the fitted LKF with negative vorticity. In

our example, LKF1 (in blue) has a positive mean vorticity while LKF2 (in yellow) has a negative mean vorticity. The angle θc

is acute in this case.

Given an identified conjugate pair as described above, the second part of the algorithm calculates the angles of the conjugate430

LKFs with a x− y coordinate system defined at the intersection point. The x and y axis of this coordinate system are locally

aligned with the computational grid (at the tracer point). Fig. B2 explains how these angles are calculated. The LKF (yellow

cells) is LKF2 in the example above for the conjugate angle. Again, the orange cell represents the intersection point between

the conjugate pair LKF1 and LKF2. The dashed gray line is the polynomial fit for LKF2 in the local region of the intersection

point. Given the slope m2 of the polynomial fit of LKF2, the acute angle θx is computed as435

θx = tan−1

∣∣∣∣
m2−m

1 +m2m

∣∣∣∣ , (B1)

where m = 0 is the slope of a line on the x axis.

A similar calculation is done for θy . We finally calculate θmin, the minimum angle, which is simply equal to min(θx,θy).

The same process is then repeated for the other conjugate LKF (i.e., LKF1).440

Code and data availability. The simulations for this article were done with release 6.5.0 of the CICE sea ice model which can be obtained

at https://github.com/CICE-Consortium/CICE/releases/tag/CICE6.5.0 and on Zenodo at https://doi.org/10.5281/zenodo.10056499. Release

6.5.0 includes Icepack 1.4.0. The LKF detection and analysis package can be downloaded from https://github.com/JFLemieux73/lkf_tools.

The PIOMAS sea ice volume dataset can be obtained at https://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data.445

Author contributions.

JFL implemented the plastic potential approach in CICE. FR, PB and JFL setup the ice-ocean model configuration. JFL, MP,

BT, NH and DR designed the numerical experiments. JFL ran the numerical experiments. NH provided guidance on the use

of the LKF detection algorithm. JFL developed the LKF analysis package with contributions from NH and MP. MP developed

15

https://doi.org/10.5194/egusphere-2024-3831
Preprint. Discussion started: 10 February 2025
c© Author(s) 2025. CC BY 4.0 License.



the code and produced the figure for the spatial scaling analysis. JFL wrote the article with contributions from all the co-authors.450

Competing interests. no competing interests are present

16

https://doi.org/10.5194/egusphere-2024-3831
Preprint. Discussion started: 10 February 2025
c© Author(s) 2025. CC BY 4.0 License.



References

Arthur, J. R. F., Dunstan, T., Al-Ani, Q. a. J. L., and Assadi, A.: Plastic deformation and failure in granular media, Géotechnique, 27, 53–74,455

https://doi.org/10.1680/geot.1977.27.1.53, 1977.

Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res., 104, 15 669–15 677, 1999.

Bouchat, A. and Tremblay, B.: Using sea-ice deformation fields to constrain the mechanical strength parameters of geophysical sea ice, J.

Geophys. Res. Oceans, 122, 5802–5825, https://doi.org/10.1002/2017JC013020, 2017.

Bouchat, A. and Tremblay, B.: Reassessing the Quality of Sea-Ice Deformation Estimates Derived From the RADARSAT Geophysical Pro-460

cessor System and Its Impact on the Spatiotemporal Scaling Statistics, Journal of Geophysical Research: Oceans, 125, e2019JC015 944,

https://doi.org/https://doi.org/10.1029/2019JC015944, 2020.

Bouchat, A., Hutter, N., Chanut, J., Dupont, F., Dukhovskoy, D., Garric, G., Lee, Y. J., Lemieux, J.-F., Lique, C., Losch, M., Maslowski, W.,

Myers, P. G., Ólason, E., Rampal, P., Rasmussen, T., Talandier, C., Tremblay, B., and Wang, Q.: Sea Ice Rheology Experiment (SIREx):

1. Scaling and Statistical Properties of Sea-Ice Deformation Fields, Journal of Geophysical Research: Oceans, 127, e2021JC017 667,465

https://doi.org/https://doi.org/10.1029/2021JC017667, 2022.

Chikhar, K., Lemieux, J.-F., Dupont, F., Roy, F., Smith, G. C., Brady, M., Howell, S. E. L., and Beaini, R.: Sensitivity of

Ice Drift to Form Drag and Ice Strength Parameterization in a Coupled Ice–Ocean Model, Atmosphere-Ocean, 57, 329–349,

https://doi.org/10.1080/07055900.2019.1694859, 2019.

Dumont, D., Gratton, Y., and Arbetter, T. E.: Modeling the dynamics of the North Water polynya ice bridge, J. Phys. Oceanogr., 39, 1448–470

1461, https://doi.org/10.1175/2008JPO3965.1, 2009.

Flather, R. A.: A tidal model of the northwest European continental shelf, Mem. Soc. Roy. Sci. Liege, 10, 141–164, 1976.

Garric, G., Parent, L., Greiner, E., Drévillon, M., Hamon, M., Lellouche, J.-M., Régnier, C., Desportes, C., Le Galloudec, O., Bricaud,

C., Drillet, Y., Hernandez, F., and Le Traon, P.-Y.: Performance and quality assessment of the global ocean eddy-permitting physical

reanalysis GLORYS2V4., in: EGU General Assembly Conference Abstracts, vol. 19 of EGU General Assembly Conference Abstracts, p.475

18776, 2017.

Hibler, W. D.: A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9, 815–846, 1979.

Hunke, E., Allard, R., Bailey, D. A., Blain, P., Craig, A., Dupont, F., DuVivier, A., Grumbine, R., Hebert, D., Holland, M., Jeffery, N.,

Lemieux, J.-F., Osinski, R., Rasmussen, T., Ribergaard, M., Roach, L., Roberts, A., Turner, M., Winton, M., and Worthen, D.: CICE-

Consortium/CICE: CICE Version 6.5.0, https://doi.org/10.5281/zenodo.10056499, 2023.480

Hunke, E. C. and Dukowicz, J. K.: The Elastic-Viscous-Plastic Sea Ice Dynamics Model in General Orthogonal Curvilinear Coordinates on

a Sphere - Incorporation of Metric Terms, Mon. Wea. Rev., 130, 1848–1865, 2002.

Hutter, N.: lkf_tools: a code to detect and track Linear Kinematic Features (LKFs) in sea-ice deformation data (Version v2.0),

https://doi.org/10.5281/zenodo.8107224, 2023.

Hutter, N. and Losch, M.: Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations, The Cryosphere, 14,485

93–113, https://doi.org/https://doi.org/10.5194/tc-14-93-2020, 2020.

Hutter, N., Losch, M., and Menemenlis, D.: Scaling properties of Arctic sea ice deformation in a high-resolution viscous-plastic sea ice

model and in satellite observations, J. Geophys. Res. Oceans, 123, https://doi.org/https://doi.org/10.1002/2017JC013119, 2018.

Hutter, N., Zampieri, L., and Losch, M.: Leads and ridges in Arctic sea ice from RGPS data and a new tracking algorithm, The Cryosphere,

13, 627–645, https://doi.org/10.5194/tc-13-627-2019, 2019.490

17

https://doi.org/10.5194/egusphere-2024-3831
Preprint. Discussion started: 10 February 2025
c© Author(s) 2025. CC BY 4.0 License.



Hutter, N., Bouchat, A., Dupont, F., Dukhovskoy, D., Koldunov, N., Lee, Y. J., Lemieux, J.-F., Lique, C., Losch, M., Maslowski, W., Myers,

P. G., Ólason, E., Rampal, P., Rasmussen, T., Talandier, C., Tremblay, B., and Wang, Q.: Sea Ice Rheology Experiment (SIREx): 2. Evalu-

ating Linear Kinematic Features in High-Resolution Sea Ice Simulations, Journal of Geophysical Research: Oceans, 127, e2021JC017 666,

https://doi.org/https://doi.org/10.1029/2021JC017666, 2022.

König Beatty, C. and Holland, D. M.: Modeling landfast sea ice by adding tensile strength, J. Phys. Oceanogr., 40, 185–198,495

https://doi.org/10.1175/2009JPO4105.1, 2010.

Lemieux, J.-F., Tremblay, B., Thomas, S., Sedláček, J., and Mysak, L. A.: Using the preconditioned Generalized Minimum RESidual (GM-

RES) method to solve the sea-ice momentum equation, J. Geophys. Res., 113, C10 004, https://doi.org/10.1029/2007JC004680, 2008.

Lemieux, J.-F., Dupont, F., Blain, P., Roy, F., Smith, G. C., and Flato, G. M.: Improving the simulation of landfast ice by combining tensile

strength and a parameterization for grounded ridges, J. Geophys. Res. Oceans, 121, 7354–7368, https://doi.org/10.1002/2016JC012006,500

2016.

Lemieux, J.-F., Lei, J., Dupont, F., Roy, F., Losch, M., Lique, C., and Laliberté, F.: The impact of tides on simulated landfast ice in a

Pan-Arctic ice-ocean model, J. Geophys. Res. Oceans, 123, https://doi.org/10.1002/2018JC014080, 2018.

Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R.,

Johnson, D. R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1: Temperature., Tech. rep., s. Levitus, Ed., A. Mishonov505

Technical Ed.; NOAA Atlas NESDIS 73, 40 pp., 2013.

Madec, G.: NEMO ocean engine, Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619,

2008.

Ringeisen, D., Losch, M., Tremblay, L., and Hutter, N.: Simulating intersection angles between conjugate faults in sea ice with different

viscous–plastic rheologies, The Cryosphere, 13, 1167–1186, https://doi.org/https://doi.org/10.5194/tc-13-1167-2019, 2019.510

Ringeisen, D., Tremblay, L. B., and Losch, M.: Non-normal flow rules affect fracture angles in sea ice viscous–plastic rheologies, The

Cryosphere, 15, 2873–2888, https://doi.org/10.5194/tc-15-2873-2021, 2021.

Ringeisen, D., Hutter, N., and von Albedyll, L.: Deformation lines in Arctic sea ice: intersection angle distribution and mechanical properties,

The Cryosphere, 17, 4047–4061, https://doi.org/https://doi.org/10.5194/tc-17-4047-2023, 2023.

Schweiger, A., Lindsay, R., Zhang, J., Steele, M., and Stern, H.: Uncertainty in modeled Arctic sea ice volume, J. Geophys. Res., 116,515

https://doi.org/10.1029/2011JC007084, 2011.

Smith, G. C., Roy, F., Mann, P., Dupont, F., Brasnett, B., Lemieux, J.-F., Laroche, S., and Bélair, S.: A new atmospheric dataset for forcing

ice-ocean models: evaluation of reforecasts using the Canadian global deterministic prediction system, Q. J. R. Meteorol. Soc., 140,

881–894, https://doi.org/10.1002/qj.2194, 2014.

Smith, G. C., Roy, F., Reszka, M., Surcel Colan, D., He, Z., Deacu, D., Belanger, J.-M., Skachko, S., Liu, Y., Dupont, F., Lemieux, J.-F.,520

Beaudoin, C., Tranchant, B., Drevillon, M., Garric, G., Testut, C.-E., Lellouche, J.-M., Pellerin, P., Ritchie, H., Lu, Y., Davidson, F.,

Buehner, M., Caya, A., and Lajoie, M.: Sea ice forecast verification in the Canadian Global Ice Ocan Preduction Sesteem, Quarterly

Journal of the Royal Meteorological Society, 142, 659–671, https://doi.org/10.1002/qj.2555, 2016.

Smith, G. C., Liu, Y., Benkiran, M., Chikhar, K., Surcel Colan, D., Gauthier, A.-A., Testut, C.-E., Dupont, F., Lei, J., Roy, F., Lemieux, J.-F.,

and Davidson, F.: The Regional Ice Ocean Prediction System v2: a pan-Canadian ocean analysis system using an online tidal harmonic525

analysis, Geoscientific Model Development, 14, 1445–1467, https://doi.org/10.5194/gmd-14-1445-2021, 2021.

18

https://doi.org/10.5194/egusphere-2024-3831
Preprint. Discussion started: 10 February 2025
c© Author(s) 2025. CC BY 4.0 License.



Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V., , Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson,

D. R., Seidov, D., and Biddle, M. M.: World Ocean Atlas 2013, Volume 2: Salinity., Tech. rep., s. Levitus, Ed., A. Mishonov Technical

Ed.; NOAA Atlas NESDIS 74, 39 pp., 2013.

19

https://doi.org/10.5194/egusphere-2024-3831
Preprint. Discussion started: 10 February 2025
c© Author(s) 2025. CC BY 4.0 License.



a)

b)

c)

Figure 1. Total deformation in day−1 on 25 April 2005 for eF = 1.75 and eG = 2.63 (a), eG = 1.75 (b) and eG = 1.16 (c). Deformations

are not displayed for a concentration smaller than 0.15.
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a)

b)

c)

Figure 2. Detected LKFs on 25 April 2005 for eF = 1.75 and eG = 2.63 (a), eG = 1.75 (b) and eG = 1.16 (c). The Arctic mask defining

the region for the LKF detection is clearly visible in these panels.
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Figure 3. Mean width of detected LKFs for the period 1 January to 31 May 2005.

Figure 4. Spatial scaling of the total deformation rates for each of the main experiments (a) and corresponding scaling exponents as function

of eG (b), for the period 1 January to 31 May 2005.
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Figure 5. Number of detected LKFs as a function of time for different values of eF and eG.

Figure 6. Mean length in km of detected LKFs as a function of time for the period 1 January to 31 may 2005.
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Figure 7. Total length in km of detected LKFs as a function of time for the period 1 January to 31 may 2005.
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a)

b)

c)

Figure 8. LKF density for the period 1 January to 31 may 2005 for eF = 1.75 and eG = 2.63 (a), eG = 1.75 (b) and eG = 1.16 (c).
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a)

b)

c)

Figure 9. PDF of θc, the intersection angle of conjugate pairs, for eF = 1.75 and eG = 2.63 (a), eG = 1.75 (b) and eG = 1.16 (c). The PDF

is calculated from daily snapshots at 00 UTC for the period 1 January to 31 May 2005.
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a)

b)

c)

Figure 10. PDF of θmin, the minimum angle between detected LKFs of conjugate pairs and the x and y axis for eF = 1.75 and eG = 2.63

(a), eG = 1.75 (b) and eG = 1.16 (c). The angles are calculated at the intersection point of a conjugate pairs. The PDF is calculated from

daily snapshots at 00 UTC for the period 1 January to 31 May 2005. The orange dashed line shows what would be the PDF if LKFs did not

have a preferred orientation with respect to the grid.
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a)

b)

Figure 11. Total simulated daily mean sea ice volume as a function of time for different values of eF and eG. As a comparison, the dashed

black line shows the sea ice volume simulated by the PIOMAS system.28
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a)

b)

Figure 12. a) PDF of θr for a fixed value of eF = 1.75 and eG = 1.16 (blue), eG = 1.75 (orange), and eG = 2.63 (violet) and eF = 1.5

(blue). b) PDF of θr for a fixed value of eG = 1.75 and eF = 1.5 (blue), eF = 1.75 (orange), and eF = 2.0 (violet). θr characterizes the ratio

of div over shear (need to be defined). The PDFs are calculated from daily snapshots at 00 UTC for the period 1 January to 31 May 2005.
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Figure 13. Monthly mean of daily averaged sea ice speed for the period 1 January to 31 May 2005 calculated over the pack ice mask region.

The daily averaged sea ice speed is calculated where the daily averaged concentration is larger than 0.15.
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Figure A1. Schematic explaining the search direction algorithm for estimating LKF width for different LKF shapes and orientations. For a

given case, the width is calculated from the orange cell. The dark blue cells are used to determine the local direction of the LKF; Light blue

cells are not involved. Given a vector locally aligned with the LKF, the search directions (black arrows) are defined at 90◦ from this vector.

There is a case similar to (c) (i.e. at 90◦) that is not shown. There are also similar cases to (d) and (e) that are not displayed. The width is not

calculated for case (f) (same idea for similar cases) because the search directions are ambiguous.
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Figure B1. Schematic explaining the algorithm for measuring intersection angles for conjugate pairs. The orange cell represents the inter-

section point between LKF1 (in blue) and LKF2 (in yellow). The dark blues cells are used for the local polynomial fit for LKF1 while the

dark yellow ones are used for LKF2. Light blue and light yellow cells are part of the detected LKFs but are not used for the polynomial

fits. ∆n = 4 points are used for LKF1 on each side of the intersection points. However, only 3 points are used for LKF2 on one side as the

top-right cell is the last point of this LKF. The dashed gray lines are the two polynomial fits. In this example, it is assumed that LKF1 has a

positive mean vorticity while LKF2 has a negative mean vorticity (in the local region). The angle θc is measured from the polynomial fit for

LKF1 to the polynomial fit for LKF2; the angle is acute in this example.
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Figure B2. Schematic explaining the algorithm for measuring the angle of conjugate pair LKFs with the x axis (θx) and with the y axis (θx).

The orange cell represents the intersection point between the conjugate pair LKF1 and LKF2. For clarity, only LKF2 is shown (in yellow).

The dashed gray line is the polynomial fit for LKF2 in the local region of the intersection point. The acute angles θx and θy are measured

with respect to a local coordinates system with its origin at the intersection point of the conjugate pair. The same process is repeated for the

other conjugate LKF (i.e., LKF1).
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