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Abstract. In this work, we demonstrate the utilization of a compact, consumer-grade 360-degree camera for measuring the
in-ice spectral angular radiance distribution. This novel technique allows for the instantaneous acquisition of all radiometric
quantities at a given depth with a non-intrusive probe. This gives the opportunity to monitor the light field structure (mean
cosines) from the atmosphere to the underlying ocean beneath ice. In this study, we report vertical profiles of the light field
geometric distribution measured at two sites representative of distinct ice types: High Arctic multi-year ice and Chaleur Bay
(Quebec, Canada) landfast first-year ice. We also propose a technique to empirically retrieve the depth-resolved inherent
optical properties by matching simulated profiles of spectral irradiances calculated with the HydroLight radiative transfer
model to the observed ones. As reported in other studies, the derived reduced scattering coefficients were high (641.57 m™!,
72.85 m™') in the top (2 cm, 5 cm) for both sites (High Arctic, Chaleur Bay) and lower in the interior part of the ice (0.48 to
4.10 m™, 0.021 to 7.79 m™). Due to the inherent underdetermined nature of the inversion problem, we emphasize the
importance of using the similarity parameter that considers both the absorption and the reduced scattering coefficients. Finally,
we believe that this radiometric device, combined with the proposed inversion technique, will allow to scale up the
measurements of the inherent optical properties of different kinds of sea ice enabling to take better account of terrain variability

in radiative transfer models.

1 Introduction

The Arctic Ocean has undergone major transformations in the last few decades as perennial sea ice has largely been replaced
by thinner first-year ice (Comiso, 2002; Maslanik et al., 2011; Stroeve et al., 2012; Tschudi et al., 2016) and as a significant
decrease of the ice extent was observed (Comiso et al., 2008; Serreze et al., 2007; Stroeve and Notz, 2018). These changes
have critical impacts on the atmosphere-ice-ocean system, especially during the spring to summer melting season as sea ice is

transformed in a highly inhomogeneous cover of snow, bare ice, melt ponds and leads (Ehn et al., 2011; Frey et al., 2011;
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Horvat et al., 2020; Katlein et al., 2016; Perovich et al., 2002). Seasonal ice has higher melt pond fraction (Eicken et al., 2004;
Hunke et al., 2013; Li et al., 2020) and enables more solar shortwave radiation transmission and heat deposition through
absorption (Nicolaus et al., 2012; Stroeve and Notz, 2018). This new energy partition warms sea ice and the underlying ocean
leading to accelerated ice melt through a positive feedback loop (Arndt and Nicolaus, 2014; Curry et al., 1995; Perovich et al.,
2008) which impacts regional Arctic climates. Thinner ice cover promotes significant under-ice phytoplankton blooms earlier

in the season (Arrigo et al., 2012, 2014; Mundy et al., 2009).

The amount of shortwave radiation scattered or absorbed by a given medium is determined by its inherent optical properties
(IOPs). These material properties determine the propagation of light throughout the medium, which in bulk are often described
by the apparent optical properties (AOPs) like albedo and transmittance (Light et al., 2003). The apparent optical properties of
sea ice exhibit large seasonal and spatial variability due to the mosaic-like surface structure and variations in the physical
properties of sea ice (Katlein et al., 2019; Matthes et al., 2020; Perovich et al., 1998). An improved understanding of the links
between structural and optical properties is needed to predict the impacts of sea ice transformation on Arctic ecosystems. While
surface AOPs such as albedo (Ehn et al., 2006; Grenfell and Perovich, 2004; Perovich et al., 2002) and bulk transmittance
(Katlein et al., 2015; Nicolaus and Katlein, 2013; Perovich et al., 1993, 1998) have been well documented over the past
decades, very few in situ optical measurements have been made inside sea ice. These additional measurements are needed to
better constrain optical models. Vertical profiles of planar irradiances have been acquired with large probes—which are prone
to self-shadowing—Ilowered into bore holes of 5 to 10 cm in diameter (Ehn et al., 2008b; Light et al., 2008, 2015; Xu et al.,
2012a) or, alternatively, measured by digging holes from below the sea ice which required a diver (Ehn et al., 2008a). Efforts
to reduce perturbations on sea ice physical properties were made with the development of vertical arrangements of fiber optics
(Wang et al., 2014) or photodiodes having their normal axis 90° rotated from zenith direction (Katlein et al., 2021) taking
autonomous measurements of irradiance in refrozen holes. Acquiring either planar or scalar irradiance is not sufficient to fully
describe the internal light field because both quantities average the angular distribution of radiance. These measurements lack
information about the light field geometry within the ice. Measurements of radiance have previously been collected in sea ice
using single-direction radiance meters with a 3° to 7° field of view (FOV) (Pegau and Zaneveld, 2000; Perovich et al., 1998;
Xu et al., 2012a). This approach is, however, time consuming as it requires drilling holes in different zenith directions and
rotating the radiometer for azimuth measurements. This process results in full radiance distribution but suffer from low angular

resolution and high structural disturbance by the sampling method.

We present a solution to measure radiance using a camera assembly whose pixels instantaneously resolve angular radiance
distributions over a large portion of 4 m steradians. This enables the measurement of all radiometric quantities and,
consequently, all AOPs that can be calculated from angular radiance distribution (Mobley, 1994). Such instruments have been
used to study radiative transfer in the ocean (Antoine et al., 2013; Smith et al., 1970; Voss and Chapin, 1992, 2005; Voss and

Zibordi, 1989; Wei et al., 2012). The smallest of these radiometers, which measured radiance, was packaged inside a 9.6 cm
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X 26 cm (diameter x length) case (Antoine et al., 2013), making it unsuitable for in-ice applications due to self-shadowing and
the large hole that must be drilled. Recently, lens and imaging sensor miniaturization has led to the commercialization of
compact fisheye cameras. One of them is the Insta360 ONE (see Fig. lc. Insta360, Arashi Vision Inc.). After rigorous
radiometric calibrations (Larouche et al., 2024b) this low-cost camera becomes an easy-to-use instrument for measuring
radiance distributions within sea ice. This paper presents the first vertical profiles of the angular radiance distributions inside
sea ice at high angular resolution. The measurements were acquired in two different field sites, one in the High Arctic close to
the geographic North Pole and the other one in Chaleur Bay in the province of Quebec. First, we provide the vertical profile
of the radiometric quantities for High Arctic multi-year sea ice and then some depth resolved AOPs. For both field sites, we
present 10Ps inferred from the radiometric quantities calculated with the HydroLight (HL) radiative transfer simulation

software that best fit the observed ones.

2 Materials and methods
2.1 Field measurements

High-Arctic field measurements were made near the geographic North Pole on August 31, 2018 (89° 25.21°N, 63° 08.67°E)
during the AO18 expedition with the research icebreaker Oden (see Fig. 1a and 1d). The multi-year (MY) sea ice at the site
was 185 cm thick with a freeboard of 17 cm and covered by 2 cm of fresh dry snow. Profiles of angular radiance distributions
were collected inside a 5 cm diameter hole, snugly fitting the camera case. Measurements were made at a vertical resolution
of 20 cm. At the measurements site, three RAMSES-ACCVIS sensors (TriOS GmbH, Rastede, Germany) were positioned to
acquire the downward, reflected, and transmitted (under sea ice) planar irradiance (Fig. 1¢). Spectral irradiance was measured
from 320 to 950 nm with increments of 3.3 nm (Katlein et al., 2021; Nicolaus et al., 2010). As for the atmospheric conditions,
the incoming radiation was highly diffuse (see Fig. 1a) because of the presence of low stratus clouds (often observed in the

High Arctic) and the low sun elevation.

A second field campaign took place in Chaleur Bay, Quebec, Canada (48° 06.47° N, 66° 26.97° W) on March 23, 2022 (see
Fig. 1b). This place is located in the Gulf of St. Lawrence where seasonal sea ice forms during winter. The sampling site was
chosen close to land. Four different holes were drilled at the site. The thickness of the ice varied from 72 ¢cm to 80 cm, while
freeboard was within 15 cm to 20 cm. This unusually high freeboard is explained by the landfast ice attached to the coast, even
at low tide. The surface of the ice was covered with very granular snow, indistinguishable from sun-transformed ice. To
underline this ambiguity, this part of the ice is referred as “surface slab”. Vertical profiles of angular radiance distribution were
acquired in each hole with depth increments of 5 cm. The Compact-Optical Profiling System (C-OPS, Biospherical Instruments
Inc.) was used to continuously collect the downwelling irradiance (19 spectral bands between 380 and 875 nm; (Morrow et
al., 2010)) as surface reference during in-ice camera measurements. As seen from Fig. 1b, clear sky conditions prevailed at the

sampling site with a few passing clouds. The sun elevation at the time of measurements was between 40-43°. At both field
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100 locations, the experimenters paid particular attention to site selection in order to ensure the largest possible homogeneous area.
No keels or under-ice variability were observed. Each profile measurement took approximately 10 to 15 minutes, depending

on the vertical resolution and ice thickness.

Site 1: High Arctic Site 2: Chaleur Bay

(d) High Arctic Chaleur Bay
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Figure 1: Field sampling of the depth-resolved angular radiance distribution inside sea ice using the commercial 360-degrees camera
105 Insta360 ONE. In (a), the image taken with the omnidirectional camera at the site near the North Pole in High Arctic (89° 25.21°N, 63°
08.67°E) shows a sun near the horizon and a mostly overcast sky, which are conditions producing an incident light field close to isotropic.
(b) Sampling site at Chaleur Bay (48° 06.47°N, 66° 26.97°W), Quebec, Canada, with completely different meteorological conditions
(sunny day with very few clouds) where one can see the operator inserting inside sea ice the graduated stick with the camera attached to the
tip. Schematic of the acquisition method is illustrated in (c) with the camera inserted in the drilled hole (5 cm in diameter) for image capture
110 at multiple depths. In High Arctic, RAMSES-ACC-VIS sensors were used to measure irradiance at the surface and below sea ice, while a
C-OPS irradiance sensor was used (at surface only) at Chaleur Bay. (d) Structural model associated with the different ice layers used for

inversion of optical properties.
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2.2 Camera description and capture modes

The Insta360 ONE low-cost omnidirectional camera (see Fig. 1¢) has a diameter of 5 cm, includes two fixed-aperture (f# =
2.2) fisheye lenses. The imaging detectors are two Sony CMOS sensors (1/2.3" format, 6.95 mm in diagonal) with a total
number of 3456 x 3456 pixels (12 mega-pixel) covered in a repeated Bayer mosaic of 3 waveband filters (conventional RGB).
The analog to digital converter (ADC) has a resolution of 14 bits (16 384 possible values). When the camera is in air, each
imaging sensor can capture light from a hemispherical solid angle of 2 steradians. In water, this solid angle is reduced due to
a decrease in the field of view along the optical axis of each lens, from 90° to 76° (Larouche et al., 2024b). In our measurement
set-up, the optical axes (aligned with the zc axis in the zoomed region of Fig. 1¢) of both fisheye lenses are oriented 90° from
the zenith. An important feature of this camera is the availability of raw image capture at sensor-level allowing radiometry
utilization. The camera can be purchased with a waterproof enclosure, and thus can be used in wet environments such as holes
drilled in sea ice. With the camera attached to a depth-graduated stick, the acquisition strategy was to start a timer — set to the
maximum value of 10 s — and then quickly lower the camera to the desired location inside the drill hole (see Fig. 1¢). With the

raw option activated, the images were saved to a microSD card in Digital Negative format (DNG, developed by Adobe).

2.3 Image processing, radiometry, and optical properties

The image processing pipeline starts by performing demosaicing, where each spectral RGB component is downsampled from
the raw image. Then, after dark correction, we apply the measurement equation with the proper calibration parameters —
considering in-air/in-water utilization — to transform the digital numbers of each spectral i band into effective spectral radiance
values L; [W sr" m?nm']. For the dark subtraction, an average of the unexposed part of the CMOS sensor was used. The
measurement equation as well as the calibration and characterization methodologies of the variables involved in this formula
are fully described in (Larouche et al., 2024b). Lastly, the pixel wise L; (8., ¢.) — with 8., ¢, being the spherical coordinates

with respect to the optics reference systems — are re-mapped on a zenith (8) and azimuth (¢) grid of 1° in angular resolution.

The angular distribution of radiance carries a large amount of information; the integration of the radiant energy in every
direction (over a hemispherical solid angle) weighted by cos 6 gives the equivalent planar irradiance. This radiometric quantity
is used for energy budget calculation influencing sea ice mass balance (Ebert et al., 1995; Jin et al., 1994; Light et al., 2015).
Scalar irradiance is a more appropriate radiometric quantity for photosynthetically active organisms as they are equally

sensitive to every photon direction (Morel, 1991). Both quantities can be calculated given:

2m 02

E(z,;t):f ff(z,9,¢)d9d¢ (1)
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0
with E(z, 1) [W m™ nm'] being the irradiances at different depths z [cm]. For a planar irradiance of (E; or Ey,), f (2,0, ¢) =
L;(z,0,¢) |cos 8] sin 8. With a scalar irradiance of (EJ or E2), the integrand function is f(z, 8, ) = L;(z, 6, ¢) sin 8. For the
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radiation coming from either downward or upward directions (4 and u subscripts), the zenithal integration boundaries are set
to [04,0,] = [0,7/2] and [0,,0,] = [n/2, 7], respectively. We used the composite Simpson’s rule for the numerical
integrations in both dimensions (8, ¢). However, before calculating the irradiances, any missing radiance values—resulting
from the in-water reduced FOV—had to be extrapolated. This extrapolation was accomplished through a 5" degree Legendre
polynomial fit on the azimuthally averaged spectral radiance (see appendix A). The attenuation with depth of the planar
irradiance travelling in the downward hemisphere is calculated as:

B 2 Eq(z41) — Eq(21) )

Eq(zk+1) + Eq(2y) Ziy1 — Zi

where K;(z',2) [m!] are the downwelling diffuse attenuation coefficients at the central depths z' = 0.5 * (z41 + Zx),

Kd (Z"A) =

midway between two consecutive discrete measurements z;, and z,,; [m]. This function gives the rate at which light gets
attenuated due to scattering and absorption. In addition to being determined by the IOPs, the K,;(z', 1) profile is also influenced
by structure of the ambient light field determined by the environmental conditions such as the position of the sun in the sky.

Therefore, it is an apparent optical property.

The average cosine links together the planar and scalar irradiances for the downward and upward light field according to:
Eq(z, )  _ _EuzA)
ES(zh) T Ez )

fa(z,4) = 3

where i; and [, are respectively the average cosines for downwelling and upwelling light fields. They are geometric indices
of the radiance angular distribution and their evolution is driven by the medium inherent optical properties. For u 4, values of
0.5 and 1.0 correspond to isotropic and completely downward light fluxes, respectively. The average cosine of the complete
angular radiance distribution is calculated from the following relationship:

fozn fon Li(2,0,¢) - cos0 -sin0dod¢  Ey(z,2) — E,(z,1)

4)
fozn fonzi(Z, 0,®) - sin0 dod¢ E,(z,2)

i(z,A) = (cos ) =

where i and E, [W m™ nm™'] are respectively the average cosine and the scalar irradiance of the 4 steradians sphere. Apart
from understanding how the geometry of the light field evolves with depth, paring the average cosine fi(z, 1) with the net
irradiance Ey,;(z, 1) = E4(z,1) — E,(z, 1), gives an estimation of the depth resolved absorption coefficient a(z, 1) [m™']
under conservation of energy (Mobley, 1994):

_ A(Zp41) + [1(2) ) In[Eper (Zi41, )/ Ener (2, 1] (5)

a(z',1) =
2 Zr+1 — Zg

This equation, also known as Gershun’s law, resolves the transport equation explicitly assuming negligible contributions from
inelastic scattering or internal sources. It has been used to infer absorption coefficients in natural waters with an uncertainty in

the range of 21 % (Voss, 1989).
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The other inherent optical properties, the scattering coefficient b(z) [m™!] and the phase function p(8) [sr'!], cannot be
calculated explicitly. However, they can be estimated by carefully matching radiative transfer simulations outputs to the
measured radiometric quantities or apparent optical properties (Light et al., 2008; Mobley et al., 1998; Perovich, 1990; Xu et
al., 2012b). The phase function describes the probability density that a photon gets redirected at a certain angle after a single
scattering event. In sea ice (assuming negligible Rayleigh scattering) the scattering events occur mainly after a photon reaches
an interface between ice and air or brine. This scattering probability in sea ice is assumed spectrally invariant, a correct
simplification in Mie regime when the scatterers are large and distant as diffraction and interference effects are negligible
(Grenfell, 1983). For radiative transfer simulations in sea ice, the one-term Henyey-Greenstein (HG) function (Henyey and
Greenstein, 1941) is usually adopted to approximate the phase function (Light et al., 2003, 2004, 2008, 2015; Mobley et al.,
1998; Petrich et al., 2012):

1 1- g}ZIG
Puc (6, 9ue) = E

= 6)
(1 + gic — 29ug cos 6 )2

The asymmetry parameter (anisotropy coefficient) g varies between 0 (isotropic) and 1 (complete forward) and is equal to:
T
g = {(cos @) = anp(e) cos 6 sin 8d6 . (7
0

The one-term Henyey-Greenstein equation was proposed from observations of the scattering by interstellar matter and has
only one degree of freedom. It fails to accurately model complex phase functions; the latter being physically determined by
the shape, the size distributions, and the complex refractive index of the scatterers. In sea ice where most of the layers have
large scattering coefficients, the diffusion regime is often reached so that the detailed angular shape of the phase function
becomes irrelevant and only its first moment — driving the front-to-back scattering ratio — has relevance for the radiative
transfer (Jacques, 2013). The radiative transfer simulations presented in this work therefore uses the Henyey-Greenstein one-

term equation.

2.4 Inherent optical properties inversion

There is a wide variety of models used to solve the radiative transfer equation (RTE) (Preisendorfer, 1965) in scattering media.
In this study we chose the HydroLight (Mobley, 1994) radiative transfer model which solves the RTE using the invariant

embedding technique. This model takes as input any depth dependant set of IOPs and sky incident irradiance.

The two measurement sites were treated differently in HydroLight because they differ in many respects. For the High Arctic,
we set a diffuse sky illumination to simulate the stratus cloud cover that day (see. Fig. 1a). Several homogeneous layers were
used for the ice structural model (see Fig. 1d). At the surface, a 2 cm snow layer on top of ice was set, followed by a layer
from snow to water level. Interior ice was divided in slabs of 40 cm, except for the first layer below water level set to 37 cm,

to include at least one point of comparison with field measurements. The eight remaining centimeters above the ice-seawater
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interface were considered the skeletal layer. In the High Arctic, the sea floor reflectance effect was neglected, the water column
being simulated as infinitely deep. For the measurements taken under clear sky in Chaleur Bay, the geographic coordinates of
the sampling site and the UTC time of measurement were used to calculate the proper zenithal angle of the sun within the
model. For this site, we considered a 5 cm surface layer also followed by a layer down to freeboard level. Inner ice layers were
then determined by inspecting the profile of absorption coefficients calculated using Gershun's law and that of the diffuse
attenuation coefficient. Then, to properly represent the shallow waters of the bay, the simulations were run with a water column
beneath the ice of 5 meters with a sea floor reflectance of 10 %. This reflectance value is representative of coastal oceanic
bottom reflectance of intertidal ecosystems near Chaleur Bay (Légaré et al., 2022). For both measurement sites, the
downwelling spectral irradiance measurement at the surface was used as input in the simulations, while the shape of the
radiance was calculated with Hydrolight using atmospheric variables adapted to recreate the conditions observed in the field.
The changes in refractive indexes in the snow-ice-ocean system were not considered (Ehn et al., 2008a, b; Jin et al., 1994).
This simpler treatment avoids the problem of enhanced downward irradiance (EDI) at the atmosphere-sea ice interface (Jiang
et al., 2005). It also helps removing the ambiguity of choosing the position of the air-ice interface when there is a snow layer
on top. These interfaces are simply treated as additional scattering events in our simulations. We acknowledge that these are
assumptions and that more efforts would be required solely on understanding how to properly model the interfaces and their

refractive index in sea ice.

To constrain the optical properties, we decided to fix the absorption coefficients. In the case of the High Arctic, it is reasonable
to assume that the ice itself is responsible for most of the absorption. This assumption was also made in the inversions reported
by previous studies (Light et al., 2008, 2015). We used the absorption spectral coefficients reported by Grenfell and Perovich
(1981). In the case of Chaleur Bay, we observed the presence of impurities in sea ice, likely microalgae on-site. We therefore
used the absorption coefficients calculated by Gershun's law (Eq. (5)), taking the median of the values inside each layer. To
further constrain the problem, we also fixed the g parameter of the phase function. Below the surface layer, the HG function
was given a constant high asymmetry parameter of 0.99 (highly forward peak scattering) that is in accordance with previous
works on radiative transfer inside sea ice (Ehn et al., 2008b; Light et al., 2004; Maffione et al., 1998; Mobley et al., 1998;
Petrich et al., 2012). Near the surface, we set g to 0.85 based on literature (Light et al., 2004) as previous Mie calculations

give an asymmetry parameter in that vicinity from larger volume fraction of air bubbles in the layer.

To infer the scattering coefficient profile of the two sites, we developed a recursive inversion algorithm using the Nelder-Mead
downhill simplex algorithm (Nelder and Mead, 1965). The algorithm goes as follows and repeated N times until satisfactory

results are obtained.

1. Repeat N times:

a. For each layer in the profile:
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i. Run the Nelder-Mead algorithm varying the scattering coefficient until the layer’s measured and
simulated reflectance are within 1 % or reaching the maximum iteration number M.
2. Run the Nelder-Mead algorithm varying the entire profile of scattering coefficients, stops when loss £ < 0.01 (see

Eq. (8)) or reaching the maximum iteration number G.

This algorithm comprises two distinct steps. Firstly, it recursively uses each layer discrete reflectance as an indicator, this
apparent optical property approaches an intrinsic characteristic of the layer and is little influenced by the others. This reduces
the dimensionality of the problem in several small succinct steps, enabling the Nelder-Mead method to converge more rapidly.
With the first stage having converged to the vicinity of the global minimum, the second stage proceeds to the minimization
over all irradiance profiles. The loss £ [-] used at that second step is the sum of the relative error for the different irradiances

(E4, E,, and E,) for each spectral band i and at discrete measurement depth z; [cm]:

I K
r= Z Z |Eain(zi) — Eaipiea(zi)| + |Ewins (Zi) = Ewiriea(Zi0)| 4 |Eoin.(Z1) = Eopieia (i) | )
i L Eqin(zi) Evyin(zi) Eoin1(Zk)

i=0 k=0

where the subscripts HL and Field refer to the simulation and the measurement respectively. This way of calculating the error

enables fine-tuning of the inverted values to obtain the simulated irradiance profile closest to the measured one.

This procedure, although leading to profiles very close to those observed, does not necessarily recover the actual inherent
optical properties of the ice. This procedure only allows finding one of the solutions among a larger ensemble. This ensemble
is defined as the sets of inherent optical properties leading to the same irradiance gradient. For example, we can imagine two
different media: one very absorbent but with low scattering and another with little absorption but high scattering. Both would
result in the same irradiance gradient. Van de Hulst introduced in 1980 a useful equation, Eq. (9), to compare the triplet of

IOPs that give rise to the same gradient (van de Hulst, 1980).
S = \/(1 - wo)/(l —Weg) = [1 +(b/a)-1- g)]_l/z ©)

Where S is the similarity parameter and w, = b/(a + b) is the single scattering albedo. This invariant is the geometric mean

of the two first moments of the diffusion pattern. The latter being valid for thick scattering slabs far from boundaries, it has
already been used to compare set of IOPs by Light and Ehn (Ehn et al., 2008b; Light et al., 2004). Recalling Eq. (9) with the
reduced scattering coefficient, if the ratio b'/a > 1 (mainly scattering medium), then the similarity parameter will tend
toward 0. Conversely, a ratio b’/a <« 1 (mainly absorbing medium) means that the S will get closer to unity. Also, one
medium that scatters isotropically may be equivalent radiometrically to another one with a higher scattering coefficient and an
asymmetry parameter closer to unity. This gives rise to:

b'=b(1-g) (10)
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with b’ corresponding to the reduced scattering coefficient, another similarity parameter. This quantity is often used for
comparisons of inverted IOPs in sea ice as two regions with the same reduced scattering coefficients are identical in term of

scattering.

2.5 Inversion uncertainties

The inversion described in the previous section certainly leads to errors when inferring inherent optical parameters. Therefore,
we developed an experiment to estimate the error level that percolates through the process. For that purpose, we used
HydroLight to generate the radiometric quantities of a set of fifty different ice conditions following the structural model
proposed in previous inversions (Light et al., 2008, 2015). In each case, the ice was 150 cm thick and consisted of a surface
scattering layer (5 cm), a drained (27.5 cm) and interior layer (117.5 cm). The conditions differed by their reduced scattering
coefficient profile, for each of the layers a random value was drawn from uniform distributions. The boundaries of these
distributions were b’ € [20,150] m™ (g = 0.85) for the surface scattering layer, [2.4, 12] m™! (g = 0.99) for the drained
layer, [0.5, 1.8] m™' (g = 0.99) for the interior layer and [0.1, 1.0] m™' (g = 0.90) for the seawater. These values correspond
to the expected values for the various layers for first-year ice (Light et al., 2008, 2015). Then, the inversion algorithm was used
to infer the random drawn scattering coefficients for all the layers. To increase the complexity of the problem, the starting
points for the inference were also sampled randomly. In this way, it was possible to check whether the distance between the

desired start and end points had any impact on the error.

3 Results
3.1 Field measurements
3.1.1 High Arctic

Figure 2 shows the spectral angular radiance distributions as measured by the camera for the three spectral bands. In the first
row (Fig. 2a-c), the spectral components of the geometric light field L(8, ¢) for a depth of 40 cm are shown while the second
row (Fig. 2d-f) displays normalized-radiance distributions vertically stacked for depths between 40-160 cm with increments
of 40 cm. These polar graphs show radiance angular distribution in spherical coordinates. The azimuth angle corresponds to a
fixed reference on the camera, with lens #1 arbitrarily set at 90 degrees and lens #2 at 270 degrees when transforming RAW
images into radiance. However, as the radiative field in sea ice is considered to be homogeneous as a function of azimuth
angle, the camera is not positioned in exactly the same way for each measurement. This could have an impact in ice with very
low scattering or under a melt pool, but not in the two cases studied. The zenith angle indicates where radiance comes from
relative to the vertical axis. It varies from 0 (center of graph, downward direction) to 160 degrees (outer ring, upward direction)
and indicates the elevation of the energy direction where 0 degrees indicates a downward direction (towards the ocean) and

180 degrees would indicate a perfectly upward direction (towards the atmosphere). The top panels (a, b and ¢) show radiance

10
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with the same color scale for the three channels centered at 480, 540 and 600 nm. The signal is predominantly blue in a
downward direction (center of graph), followed by green and red. In the bottom panels (d, e and f), radiance is normalized to
each depth, allowing us to better appreciate how its shape changes with depth. At higher elevations, the signal is much more
homogeneous, whereas deeper within the sea ice, the angular distribution of radiance becomes increasingly downward. This
effect is further accentuated at longer wavelengths. Because the loss (from top to bottom) of the radiation travelling upward (8
> 90°) is larger compared to the removal of photons below 90°. From 60 cm to 200 cm, f1, varies between 0.521-0.555 at 540
nm and between 0.531-0.562 at 600 nm (see full curves of Fig. 3d). For the upwelling light field, (, varies from 0.483-0.336
(540 nm) and 0.482-0.333 (600 nm) for the same depth interval (60-200 cm). As an average cosine for the upwelling photons
of 1.0 represents completely straight-upward light fluxes (6= 180°), reduction of j,, with depth suggests that we gradually
find less radiation at larger zenith angles. Another apparent optical property, the diffuse attenuation coefficient, gives insights
on the presence of different layers in the ice column. Figure 3h shows these coefficients for the downward light field. The bulk
diffuse attenuation coefficients for the total ice thickness are 1.35 m! (480 nm), 1.37 m™! (540 nm), and 1.58 m™ (600 nm). At
the top (0-20 cm), the average K,; are 4.24 m™' (480 nm), 4.39 m™! (540 nm), and 4.84 m™' (600 nm). Just below, an intermediate
layer sits from 20 to 80 cm, with average values of 1.69 m™!, 1.75 m™!, and 2.08 m™! for the blue, green, and red spectral bands,

while between 80-180 cm, these K,; decrease to averages of 0.56 m™!, 0.54 m’!, and 0.63 m! (see Fig. 3h).

11



305

310

315

(@) blue/480 nm (b) green/540 nm () red/600 nm

90° 90° 90°

1807 180° 1807

270° 270° 270°

Lagonm(40.0cm) [W-sr™t-m=2-nm~1] Lsaonm(40.0cm) [W-sr™-m~2-nm~1] Leoonm(40.0cm) [W-sr™t-m~2-nm~1
- ‘ T T T 14- -l ‘ T T T T - - T T T T -
¥ o3 03,0302 o0 o3 0d 02 0B, 03, 03,03 0303 02
6996% 516?93 156 ORee:gee® 69967?'\‘ 57,6A°g’5 1156 Ree gee® 69‘36’? e“g,lefg%eé’gA 1156 Roe gee®
blue/480 nm green/540 nm red/600 nm
(d) (e) . (") .
—_ 20 — 20 —
g ———— 40 g = 40 g
< 8 < 8 <
< P . < gy <
5 —— 100 & w100 B
a — 120 ~ T 120
=My 180
\/ %0
Lagonm [%] Lsaonm [%] Leoonm [%]
00 4690 3290 380 a0 00 o0 00 460 220 480 a0 00 o0 00 460 220 480 a0 00 pd

Figure 2: Angular spectral radiance distribution [W sr'' m? nm''] as measured by the camera in High Arctic (AO2018 expedition). The top
row (a), (b) and (c), displays the light fields at 40 cm depth for the blue (480 nm), green (540 nm), and red (600 nm) bands respectively. The
zenith coordinates 6 corresponds to the radial circular lines while the azimuth ¢ are the angular lines. The white regions are the missing
values over the 47 steradians sphere due to the field of view reduced to 76° in water. The second row presents the radiance distributions at
various depths (40, 80, 120 and 160 cm), but normalized to their respective maximum. The blue (480 nm), green (540 nm), and red (600
nm) bands are shown respectively in (d), (e), and (f).

Figure 3a-c present the planar downward, planar upward and total scalar irradiances used for IOPs inversion. We observe that
the simulated irradiances closely align with the measured ones. Notably, the average relative differences are 10.3, 7.2, and 6.3
% for the planar downwelling, planar upwelling and scalar total light fields, respectively. The relative differences spectrally
averaged are all below 15 % at depths between 20-200 cm for Ej, E,, and E,. Indeed, higher discrepancies are found as we get
closer to the upper and lower boundaries. This is particularly obvious when looking at average cosines < 20.0 cm for the
upwelling (Fig. 3e), and total (Fig. 3f) radiance distributions, where surface hole effects seem to have perturbed the
measurements (displayed as full lines). Table 1 shows the set of IOPs profiles associated with the modeled irradiances. The

absorption coefficient used in the simulations (full line) and the one calculated with the Gershun’s law (Eq. (5) are displayed

in Fig. 3i. The a(z) isolated from Gershun’s law are not constant as a function of depth, unlike the pure ice values used for
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HydroLight simulations at that site. At the top, this may be due to surface effects that contaminated our measurements. Some
of the Gershun’s law-inferred absorption coefficients are negatives (80-100 cm). These are caused by the increase of the net
irradiances between the two measurements at 80 and 100 cm. (see Fig. 3g). We decided not to show them in Fig. 3i as they
likely derive from large observational uncertainties. Nonetheless, we interestingly noticed — by taking the depth median of all
the Gershun’s law in-ice values — that the absorption coefficients of 0.061, 0.054, and 0.138 m™! for the blue, green, and red
channels are very close to those for pure bubble free ice of 0.043, 0.0683, 0.12 m™! (Grenfell and Perovich, 1981). Table 1
gives the fitted scattering properties, where we clearly observe distinctions between the layers. At the surface, the modeled
snow layer has the largest b’ of 641.57 m'. Just below, the reduced scattering coefficient drops significantly to 4.10 m™ and
remains roughly constant in the two subsequent layers with b’ being 3.96 and 2.92 m™! (20-57 and 57-97 c¢m). The inferred
coefficient then decreases to 0.98 and 0.48 m™' (97-137 and 137-177 cm). Lastly, we note an increase in scattering in the last

layer to 2.77 m™! (177-185 cm).

Table 1. Inherent optical properties (IOPs) inverted from HydroLight and depth-resolved angular radiance distributions measured
in High Arctic (AO2018 expedition). The absorption coefficients a [m™!], the scattering coefficients b [m-], the anisotropy coefficient
of the phase function g, the reduced scattering coefficient b(1 — g) are given for a ice slab splitted into one drained layer (DL) above
the freeboard and five layers below it. The layers are made of old interior ice (OII), young interior ice (YII) and skeletal layer (SL).
The dimensionless similarity parameters S combining all the IOPs, calculated from Eq. (9), are also given.

High Arctic
Depths
Layers a[m'] bm'l g  b(l-g)[m'] S
[cm]
480 nm 540 nm 600 nm 480nm 540nm 600 nm

Snow 0-2 0.043 0.0683 0.12 4277.1 0.85 641.57 0.008 0.010 0.014

DL 2-20 0.043 0.0683 0.12 41044 0.99 4.10 0.102 0.128 0.169

oIl 20 -57 0.043 0.0683 0.12 396.73 0.99 3.96 0.104 0.130 0.171

(@)1 57-97 0.043 0.0683 0.12 291.53  0.99 2.92 0.121 0.151 0.199

Y1I 97 — 137 0.043 0.0683 0.12 97.90 0.99 0.98 0.205 0.255 0.330

Y1I 137 -177 0.043 0.0683 0.12 4840 0.99 0.48 0.286 0.352 0.446

SL 177 — 185 0.043 0.0683 0.12 276.52  0.99 2.77 0.124 0.156 0.204
Seawa 185 — 0.0475 0.050 0.12 0.89 0.90 0.09 0.571 0.660 0.758

ter
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Figure 3: Irradiance measurements at the High Arctic site: vertical profiles of (a) downward planar irradiance, (b) upward planar irradiance,
and (c) scalar irradiance. The second row shows the average cosines for respectively the downward, the upward, and the complete radiance
values angularly defined (from left to right). In the last row, we see the net irradiance as a function of the depth in sea ice (g), the diffuse
attenuation coefficient for the downwelling irradiance, K; (in m™), (h), and the Gershun’s law derived absorption coefficient (i). For each
subfigure, the three spectral band curves are displayed according to their colour. The broken lines are the measurement results, while the
solid ones are the RT simulation outputs.
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The first row of Fig. 4 shows azimuthally averaged radiance measured and modeled at multiple depths inside sea ice.
Distributions at the surface are not shown as they were too much affected by hole effects and operator shadow. The angular
radiance distributions are also not displayed at 180 cm and 200 cm depths because of uncertain camera vertical positioning.
The left to right columns (Fig. 4a, b, ¢) correspond respectively to the 480, 540 and 600 nm spectral bands. For comparisons
of simulated and measured angular radiance distribution, we calculate statistical metrics such as the mean unbiased percent

difference (MUPD [%]):

MUPD; = 200 11 Z
i KN

K
k=1

N (- _
Z [Li,HL (2x, 0y) — L; Fieta (Zx» Hn)] (11)
= [Z: 11 (Zier 60) + L piera (2kr 6))

and the root-mean-square error (RMSE [%]):

K N _ 2
RMSE, = 100 - 11 Z Z [Li,HL(anén) — Lipieta(Zy, On) (12)
KN Liy1(Zk, 6n)

with L; 4, (2, 0,) being the HydroLight azimuthally averaged radiance while L;gieq(2, 6,) represents the field
measurements at each discrete depth z, [cm] and 6,, the zenith angles between 0° and 180°. The average errors, given from
Eq. (11) for the MUPD and Eq. (12) for the RMSE, are respectively 3.31 % and 10.33 % (blue channel), -3.90 % and 9.11 %
(green channel), and -0.80 % and 10.08 % (red channel). At depths < 60 cm, there are important differences between the
measured and simulated angular radiance distributions near both angular extremities (20° and 160°). As we progress deeper
inside the ice slab, these extremities errors seem to reduce as does the error curves at all zenith angles compared to their lower

depth counterpart.
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Figure 4: Depth resolved spectral angular radiance distributions azimuthally averaged. The first row represents the High Arctic radiance for
(a) 480, (b) 540, and (c) 600 nm spectral channels, while the second row shows the same bands (in order from left to right) but for the
Chaleur Bay site. The broken lines are the camera measurements and the full lines are the radiance data modeled with HydroLight (both at

1° angular resolution).
3.1.2  Chaleur Bay

One of the vertical profiles of spectral radiance captured at Chaleur Bay is displayed in the second row of Fig. 4. We show
only the light field below the freeboard as the measurements above were particularly contaminated by the hole's effect on the
light field. Radiances obtained with HydroLight RT simulations (see section 2.4 for the procedure) are presented in Fig. 4d, e,
and f as plain lines for each depth of measurement. Table 2 shows the inherent optical properties inferred for the ice geometry.

We inverted a 5 cm thick scattering surface layer with a b’ of 72.85 m*! which decreases significantly to 5.55 m™! in the region
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above freeboard. Next, two successive layers of interior ice (18—35 cm and 35—65 cm) with similar b' values of 5.59 m™" and
7.79 m™', respectively. These values, for interior ice, are larger than what was observed in High Arctic. The last layer (before
the water column) has a reduced scattering coefficient of 0.021 m™'. Apart from large scattering coefficients for interior ice,
we also inferred high absorption coefficients from Gershun’s law at that site. Above 35 cm, the coefficients are all higher than
1.80 m!. Spectrally, the absorption is larger at 600 nm compared to 540 nm for almost all the layers (except for the skeletal
layer), while the blue band coefficients surpass those in the red band in every layer. The high absorption of the medium is also
reflected in the K; coefficients which are higher than those of Arctic sea ice. The diffuse planar downwelling attenuation
coefficients are shown in the supplemental document along with all the same quantities as the ones presented in Fig. 4 (see
Fig. S1 and Fig. S2). The agreement between the RT simulated and measured zenithal radiances, quantified using the MUPD,
are of -22.49, -11.26, and -15.62 % respectively for the 480, 540, and 600 nm channels. For the root-mean square errors, which
gives a better idea of the residuals, we obtained 115.51, 91.48, and 106.86 % for the same spectral bands. These discrepancies
are larger than for the High Arctic inversion may be caused by more impact of the hole and self-shading on the measurements.
As seen in the second row of Fig. 4, greater errors appear at low and large zenithal angles; regions in the radiance data prone
to the impacts of the drilling hole and the shading of the stick we inserted in it. In addition, uncertainties associated with the
ice thickness measurements taken during the fieldwork, as well as those related to the ice-ocean interface position in the model,
may account for the notable differences at 70 cm. This is because the interface between the highly scattering sea ice and the
ocean causes a large change in the shape of the radiance. Inaccurate positioning of the interface in the simulation will therefore
lead to large differences in simulated and measured radiances. It should also be mentioned that the inherent optical properties
inversion algorithm is based on global error minimization, i.e. it achieves a compromise where a greater error at a given depth

may give rise to a smaller one in another region.

Table 2. Ice inherent optical properties obtained by fitting the HydroLight radiative transfer simulations to the radiance
measurements at Chaleur Bay site (on 23 March 2022). The table provides the absorption coefficients a [m™], the scattering
coefficients b [m], the anisotropy coefficient of the phase function g, the reduced scattering coefficient b(1 — g) as well as the
similarity parameter S for all the layers. Below the surface slab, sits the drained layer (DL) then the interior ice (II) and the skeletal
layer (SL).

Depths Chaleur Bay
[cm]
Layers a[m'] b [m] g b(l-g) S
[m™]
480 nm 540 nm 600 nm 480nm 540nm 600 nm

Surface 0-5 2.20 1.97 2.12 48436  0.85 72.85 0.171 0.162 0.169

DL 5-18 2.20 1.97 2.12 555.05  0.99 5.55 0.533 0.512 0.527

I 18-35 2.11 1.80 2.02 55886  0.99 5.59 0.523 0.494 0.515
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II 35-65 0.87 0.65 0.77 779.14  0.99 7.79 0.317 0.277 0.300

SL 65172 0.44 0.34 0.32 2.06 0.99 0.021 0.977 0.971 0.969
Seawat 72 - 0.22 0.11 0.18 0.87 0.90 0.09 0.847 0.748 0.821
er

3.2 Inversion errors

To evaluate any systematic error induced by the inversion procedure exposed in section 2.4, we generated a set of fifty artificial
in-ice irradiance profiles from realistic depth dependent IOPs. The algorithm was then used to invert the optical properties or
the different irradiance profiles using the following iteration numbers: N =5, M = 8, and G = 150 (see section 2.4). These
iterations numbers were determined empirically to reduce the error while limiting the computation time required to perform
an inversion. The error for each layer is shown in Fig. 5, comparing the reduced diffusion coefficients found with the
references. The mean absolute error for the inversion of the surface scattering layer, drained layer, interior layer, and sea water
coefficients are 3.55, 12.23, 2.62, and 3.78% respectively. During the inversions, we observed that the algorithm converged

towards the desired values, even if the starting values were far from the references.
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Figure 5: Estimation of the errors made by the inherent optical properties (IOPs) inversion algorithm. The figure links the reference reduced
scattering coefficients with ones estimated by the algorithm for the three layers ice model composed of a surface scattering layer, a drained
layer, and an interior ice layer.
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4 Discussion
4.1 Field measurements

Although we set several layers for each site (see section 2.4), it is interesting to note that subsequent layers merged into larger
regions of constant scattering properties, suggesting zones of similar microstructure. The first two centimetres of pack ice are
a special case, as they are made up of snow, the most scattering element, with the highest coefficient, b’ = 641.47 m'. Just
below, sits the drained layer (DL) constrained by the freeboard position. This layer is also known to cause significant scattering
as the inclusions are drained and the ice more porous. The value of the reduced scattering coefficient for this layer is 4.10 m
!, which fall within the previously reported range of 2.14-12.0 m™! (Light et al., 2008). The two subsequent slabs (20-57, 57-
97 cm) below freeboard have also considerable inverted b’ 0of 3.96 m™! and 2.91 m™!. These values are larger than those inferred
for multiyear interior ice during summer of 1998 in the Beaufort Sea, which range between 0.5-1.8 m™! (Light et al., 2008).
They however fall in the gaps of larger b’ of 2.1-4.4 m™! (between 6-76 ¢cm) and 2.8-7.1 m™! (between 10-100 ¢cm) measured
respectively for snow covered and bare first-year interior ice (Perron et al., 2021). Below 97 cm, we observed b’ inside the
Light et al. (2008) interior ice (II) interval as our values are within 0.48-0.98 m™!. In the last ice layer (177-185 cm), we notice
an increase of the scattering coefficient. This is probably the skeletal layer, formed by the advective exchange between ocean
and ice. This leads us to assume that the ice at that High Arctic site was probably composed of two types of more translucent
interior ice; an old interior ice (OII) from 20-97 cm and a younger interior ice (YII) from 97-185 cm. MY ice is known to have
large variations in its optical properties and in boundaries of its different layers due to multiple melt and growth cycles (Pegau
and Zaneveld, 2000). This likely means that the YII was recently formed, while the OII layer was shaped during previous
summers, giving time for brine pockets to be drained over one or multiple melt seasons (Perovich et al., 2002). It would indeed
have been very interesting to explain the number of seasons the ice had survived. However, this would have required
crystallographic investigations accompanied by oxygen isotope analyses and could be the subject of a future study. Higher
scattering in the upper half of the ice column was also evident in optical observations and investigations conducted a few
hundred meters away on the same ice floe (Katlein et al., 2021). From this last study, a four-layer model using DORT 2002
RT model (Edstrdm, 2005) helped inverting reduced scattering coefficients of 25 m*! for the surface scattering layer and 2.5

m™! for the interior ice. This latter b’ falls near the center value of 2.22 m™' of our inversion for interior ice (0.48 m™' 3.96 m™).

For the absorption coefficients of High Arctic MY sea ice derived through Gershun’s law (Fig. 31), the depth median absorption
coefficient of 0.061, 0.054, and 0.138 m™! are close to those for pure bubble-free ice of 0.043, 0.0683, and 0.12 m™! for the 480,
540, and 600 nm channels respectively. This would suggest that using the pure ice assumption would be valid, particularly in
this case, as it is reasonable to assume that sediment is unlikely to be found in multi-annual sea ice cores near the North Pole.
The larger median coefficient in the blue compared to the green spectral band may be surprising but agrees with previously
reported values found in landfast sea ice (Ehn et al., 2008b). In the upper region ranging to 80 cm, we notice larger a in the

green band compared to the 480 nm channel, while for depths > 100 cm, the blue absorption coefficients surpass those in the
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green (see Fig. 31). This is apparent also in the color of the ice of Fig. 6b — extracted from jpeg images saved along the raw
ones — which displays blue colors becoming greener at 100 cm. The increase of a for shorter wavelength could be caused by
algal or non-algal particles (AP and NAP) that may be larger in concentrations as we progress toward the ice-ocean interface
(Ehn et al., 2008b). The larger surface values are hard to explain physically as the presence of air in the snow should slightly
reduce the absorption coefficient, a. We think that this may be due to hole effects, a bright one at the surface, increasing
downwelling irradiance and a dark spot down under decreasing the upwelling irradiance. Regarding the negatives inverted
absorption coefficients caused by the increase in net irradiance (see Fig. 3g), we believe that measurements artefacts may be
responsible. They include possible angular misalignment of the optics inside the hole or surface effects such as shadow of the
operator near the hole or snow displacement. The average cosine /I has the same spectral trends as the measured absorption
coefficients, as they are related through Gershun’s law, presented in Eq. (5. The increase of i with depth starting from 60 cm
(see Fig. 3f) reflects higher proportion of light rays that vanished at large angles the deeper we are in ice. This is explained by
being closer to the ice-ocean interface where there are less photons going upward due to the significantly less scattering in the
last ice layers and in the ocean. This is also why the gradient with depth for fi,, is larger than i, as the light rays in the
downwelling field are less affected by the proximity of the ice-ocean interface. No in-ice average cosine measurements were
found in the literature, but some reported i just below sea ice bottom ranging from 0.59 to 0.70 based on direct observations
(Katlein et al., 2014; Massicotte et al., 2018; Matthes et al., 2019) or models (Arrigo et al., 1991; Ehn and Mundy, 2013).
Downwelling average cosines measured by Matthes et al. (2019) show spectral g; < 0.59, 3.0 m below bottom for an ice
covered with snow. These measurements reported under ice are consistent with the one we report here at 15 centimetres under
ice 0.556, 0.555 and 0.562 for the 480, 540 and 600 nm bands respectively. Also, measurements of the mean cosine in the part
of the ice where several organisms live could have an impact on calculations of primary production in the ice. Primary
production models could gain in accuracy if they included the value of & in their calculations. Algae, like the radiometric tool

used in this study, are sensitive to the entire radiative field, whether it comes from above or below.

At the Chaleur Bay site (72 cm ice thickness), the first layer which includes the granular layer, has the largest reduced
coefficients b’ of 72.85 m™! which is significantly smaller what was observed in high Arctic for the same layer. Absence of
snow at the site may explain this lower value. The two interior ice layers (18 — 35 c¢cm, 35 — 65 c¢cm) have b’ of 5.59 m™! and
7.79 m! respectively. Those layers scattered in the same range of the layer above freeboard (b’ = 5.55 m™") and their values
are slightly higher than past observations in interior ice (and those presented in this work in High Arctic). From our discussions
with a local ice fisherman, we understood that heavy and multiple snowfalls during winter had come to melt and refreeze,
forming layers of coarse ice grains. These are snow ice layers (Ehn et al., 2008b) and would explain the larger scattering
coefficients inverted in the zones below the freeboard. Non-constant absorption coefficients with depth allowed good
agreements between the simulations and the radiometric observations. The ice color for each depth displayed in Fig. 7c also
supports variation of the coefficients with depth as the RGB vary greatly depending on position within the slab. The inferred

a ranges from 0.32 to 2.20 m™! across the entire ice column. Above water level (18 cm), the absorption coefficients stay
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constant in both simulated layers (0 — 5 cm, 5 — 18 cm) at 2.20 m™!, 1.97 m™!, and 2.12 m™' for respectively the blue, green, and
red bands. Although being quite large, we think that these values are plausible as some studies reported absorption coefficients
over 1.0 m™! in the visible spectrum inside sea ice of Liaodong Bay; region surrounded by some industrial, agricultural, and
residential zones (Xu et al., 2012b). In the first layer below freeboard, the absorption coefficients decrease slightly and then
more rapidly in the two last layers up to a in the range of 0.32 — 0.44 m™'. These latter inverted coefficients are higher than
what was reported for pure interior ice. This informs us that the ice at Chaleur Bay may have contained higher concentration
of algal and non-algal particles than the Arctic site. The higher absorption coefficients in the blue band compared to the green
channel (see Table 2) are consistent with Fig. 6¢, which shows greener colors compared to those observed for the High Arctic

(Fig. 6b).
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Figure 6: (a) Summary of the similarity parameter S inverted from measurements at both High Arctic (solid lines) and Chaleur Bay sites
(dashed lines), and those reported in previous studies for different types of sea ice. The background rectangles represent past measurements
(Ehn et al., 2008b; Light et al., 2008; Perron et al., 2021) while the curves are the depth dependent similarity parameters in each spectral
band and for both sites. To calculate the similarity parameters of Light et al. (2008) and Perron et al. (2021), we used the absorption
coefficient of pure ice at 540 nm (Grenfell and Perovich, 1981). The S of Ehn et al. (2008) are provided in their paper at 500 nm. (b)-(c)
RGB color of the High Arctic and Chaleur Bay ice respectively extracted from jpeg images saved along DNG files (see Fig. S4 in the
supplemental document for example of these rectilinear images). Obtaining these two 1D images involved: 1) taking the average pixel value
inside a square at the center of the image, 2) normalization by the diffuse planar downwelling attenuation coefficient spectrally averaged, 3)
normalization by the maximum.

For highly scattering media such as the ice of the studied sites, the inverted IOPs are only true under the similarity principle
as two different sets of IOPs with the same S give similar light fields. Following Eq. (9), if the ratio b’/a (or b/a given
constant asymmetry parameter) increases, the similarity parameter decreases. In other words, the higher the value of S, the
greater the energy loss in the layer concerned due to absorption. Figure 6a shows the similarity parameter profiles for the two
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field campaigns at the three measured wavelengths. The background shows the similarity parameters (540 nm) as calculated
using measurements found in the literature. Firstly, this visualization effectively summarizes the variation within the profile
of the optical properties of High Arctic ice. Indeed, low values of S can be seen at the top of the profile, reflecting the
dominance of scattering in this region. Throughout the profile, the value of the similarity parameter increases. Indeed,
scattering decreases and absorption increases in the lower layers. Spectrally, we can see that the value of S is greater for red
than for blue, which is to be expected as ice absorbs the blue part of the visible spectrum to a minimum. In short, the profile
of the similarity parameter for measurements in the High Arctic shows that the ice there appears to be rather pure, and that
scattering loses its importance significantly as we move down the profile. In the Chaleur Bay data analysis, the case is less that
of pure textbook sea ice. In this case, there are two distinct zones: the upper zone, where absorption dominates, and the lower
zone, where the value of S decreases. This behavior can be explained by the phenomenon of ice formation at this point. Indeed,
discussions with residents have confirmed that pack ice in this area forms in two stages. First, during the first sustained subzero
temperatures, a layer of ice about 30 cm thick forms. This would appear to be the layer with the lowest S values. As the winter
season progresses, heavy snow accumulations weigh on the pack ice, leading to the formation of snow ice. Presumably, when
this snow is flooded and frozen, it has already accumulated atmospheric deposits of dust. This would explain the second part
where the S values are lower. Spectrally, S values are arranged differently for the High Arctic. In fact, the S value for blue is
greater than for green and red, reflecting greater absorption in the shorter wavelengths of the visible spectrum. One possible
explanation for this spectral behavior could be the presence of chlorophyll, which absorbs most of the blue part of the spectrum,
as well as a little of the red, leaving out the green. This would explain why the value of the similarity parameter is highest for
blue, then red and finally green. Figure 6b shows that, as described above, the ice has a bluish hue, as would be expected for
ice from the High Arctic. Figure 6¢, on the other hand, shows a greyish hue that might be expected from dirty snow, followed
by an increasingly greenish tinge, as would be expected from the presence of large numbers of photosynthetic organisms. In
the future, analysis of particulate absorption and chlorophyll measurements could give rise to the possibility of confirming the

insight we obtain from the mean color of the ice.

4.2 Errors analysis

Certain sources of uncertainties may have affected the IOPs inversion from the set of measurements presented in this study.
These included uncertainties due to the measuring device and its manipulation on-field, source of errors due to the 3-D
variability in ice structure itself, and HydroLight inversion uncertainties. First, the absolute calibration of the radiance camera
bears uncertainties, discussed in details in Larouche et al., 2024b. Second, potential manipulation errors that could have
occurred during fieldwork are the following: misalignment of the optics inside of the hole leading to misaligned angular
coordinates of the radiance values, shadow of the manipulators affecting surface measurements, and unprecise depth
determination as sometimes the holding stick came up folded. Another instrument artifact affecting the geometric light field is
the presence of the camera-stick assembly inside the ice (Picard et al., 2016). We did a brief investigation of self-shading

effects that reveals that radiance distributions are affected more strongly at small and large zenithal angles. This likely explains
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why the simulated and measured angular radiance distributions are more distant at the two extremities of the curves as seen in
Fig. 4. In addition, the solid nature of the ice leaves no choice but to dig a hole for internal measurements. From above or
below the camera position, the hole creates path for light to easily propagate and add to the fluxes that there would be without
the opening. These hole effects increase when the camera is positioned near the boundaries, as the hole is seen inside a larger
portion of the FOV. A second source of errors due to ice itself is the large spatial variation in its structure (micro and macro
scale) over only a few meters (Frey et al., 2011; Pegau and Zaneveld, 2000; Perovich and Gow, 1996). The light field from a
nearby region can affect the radiance at the position of interest. This is difficult to discern from our radiance measurements
and cannot be simulated in HydroLight. To be able to characterize horizontal variability effect, several measurements with the
camera could be taken. For example, it would be interesting to perform a transect with the camera, gradually approaching a
melt pond, and observe the distance at which the light field begins to deviate from azimuthal homogeneity. Finally, there is
also the anisotropic scattering coefficient that was neglected in this study — as poorly known and not configurable in the

HydroLight RT model — and which might have permitted better IOPs inversion and fitting of the field observations.

The scattering coefficient inversion algorithm performed well for the evaluation dataset. The error for the layers is around 3%,
except for the drained layer where the average error of the algorithm is four times larger at 12%. This error is probably due to
the sensitivity of the loss function to scattering events occurring in this layer. Indeed, although scattering less, this layer is
smaller (27.5 cm) than the inner layer (117.5 cm) and is ten times less scattering than the surface scattering layer. It is
reasonable to assume that the weight of the inner and surface layers dominates the loss function because they have greater
optical depth, which explains the lower performance for the drained layer. Nonetheless, the algorithm we developed was able
to find the values we were looking for, even if they were very far from the starting values. This performance is due to the
algorithm ability to explore the solution space and find the global minimum. This exploration of the space is made possible by
the iterative process, where the search is repeated several times. The use of reflectance as a loss function in that first step also
helps to explain the algorithm good performance. In fact, the reflectance of a layer is little influenced by other surrounding
layers, making this measure more robust. Unlike reflectance, irradiance measured at a given location is highly dependent on
the layers above and below it. This strong inter-layer dependence makes inversion very difficult, as the loss for the different
layers is interdependent. To sum up, using the recursive method with reflectance provides a good global exploration and
enables us to find the vicinity of the global minimum. The second more sensitive step enables fine convergence when the first

step provides a profile very close to the desired solution.

On the relevance of angular radiance distribution measurements, it has been determined that we could successfully invert the
IOPs having simultaneous measurements of Ej, E,,, and E,. Ultimately, by making the observed and simulated irradiances
match, we noticed correspondences when verifying radiances distributions. This is typical of the diffusion regime where the
zenithal radiances approach an asymptotic shape decaying with depth at the same rate as the irradiances (Preisendorfer, 1958).

The usefulness of radiance over almost 4x steradians resides in that we can collect all the possible irradiance quantities (Ey,
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E,, E3, E2, and E,)) simultaneously from one capture of the 360-degree camera. To gather all these quantities from currently
available radiometers at the same time would be a complicated task as they are usually designed to measure only one type of
irradiance. Packaging this into a single profiler would require large assemblies of tens of centimeters. In addition, as we would
capture radiance closer to boundaries with non-isotropic incident light field, in layers with small scattering coefficients, the
azimuthal and zenithal angular shape of the light field would be of great interest. These conditions could happen in the marine
environment, for instance inside blue ice of glacier crevasses and icebergs (Warren et al., 2019). For future studies, it would
also be interesting to investigate in more detail the range of scattering coefficients for which the shape of the phase function
has an impact on angular radiance distributions. This would lead to a better understanding of the need to increase the number
of phase function moments in radiative transfer simulations in order to correctly model the observations. In these cases, the

angular shape of the radiance would contain information on the phase function.

5 Summary

In this paper, we successfully demonstrate the utility of 360-degree cameras to study in-ice radiative transfer. Those compact
optical systems enable capture of full radiance angular distributions at fixed point in space and inside three spectral bands
centered on 480, 540, and 600 nm. We would like to emphasize this new possibility to recover of all the irradiance radiometric
quantities (Ey4, E,,, EJ, ES, and E,)) from unique captures of this low-cost camera. Subsequently, from these irradiances, we
were able to retrieve profiles of IOPs using an inversion algorithm that matched HydroLight simulated radiometric quantities
to those measured at two sites: in High Arctic and Chaleur Bay (Quebec). In the 1.85 m thick High Arctic MY ice, we inferred
reduced scattering coefficient of 641.57 m! at the surface, and three distinct regions of interior ice: older interior ice (OII) with
b’ between 2.92 — 3.96 m’!, younger interior ice (YII) with b’ within 0.48 — 0.98 m™!, and a skeletal layer with a reduced
scattering coefficient of 2.77 m™!. Inside the seasonal Chaleur Bay interior ice, significantly higher light attenuation was
assessed, due to both larger absorption, 0.32 — 2.11 m™!, and more scattering, 0.021 — 7.79 m"!, compared to the High Arctic
site. Those results may be attributed to the presence of snow ice as well as absorbing particles (AP and NAP). The inversion
problem faced in this work was greatly underdetermined. We had very little complementary information about the ice that
forced assumptions for the absorption coefficients and the asymmetry parameters g. Combined with instrumental and
manipulation errors on the field, the optimization algorithm — although being quite accurate for perfectly generated angular
radiance distributions with relative errors between 2.62 and 12.23 % — may have converge toward erroneous scattering
coefficients. This is why we prefer reporting the similarity parameter S which is right for the observed radiometric quantities.
Much more effort continues to be required in order to improve the inversion. For future fieldwork, we intend to use independent
measurements of absorption coefficients (total, algal and non-algal particulate matters) from melted co-localized sea ice layers
as well as in situ measurements of b’ with a diffuse reflectance probe (Perron et al., 2021). These measures could enable
significant improvement of the inversion process. Measurements of ice core temperature, salinity, and birefringence image of

the crystals could also be captured. This would give us a more complete story of the sea ice microstructure and allow better
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assessments of separated a, b, g. Finally, two engineering challenges remain. Since each camera is currently calibrated
individually, it would be valuable to purchase a batch (e.g., more than 10) of identical cameras to assess the variability
introduced during manufacturing. If this variability proves to be low, it could reduce or even eliminate the need for systematic
calibration, making the camera easier to use and enabling widespread adoption within the research community. Additionally,
the camera must be removed from the hole between each measurement to allow time for image acquisition. Under normal
conditions, it could be controlled remotely via radiofrequency signal (Wi-Fi or Bluetooth) sent from a smartphone. However,
the ice pack completely absorbs these frequencies. It would therefore be valuable to develop a solution, that remains as compact
as possible, to control the camera from the surface. Such a system would accelerate data acquisition and minimize the risk of

disturbing the environment.

This study has demonstrated the potential offered by the new 360-degree cameras available on the market. These cameras can
replace the research prototypes very cumbersome to develop, and potentially presenting lower performance. The commercial
camera used here was, among those available on the market, one of the most suitable for our application. The smartphone
industry continuing to strongly stimulate innovation in optical imaging, new camera models will undoubtedly become available
in the future, smaller, more sensitive, and perhaps more effective in their spectral resolution. Our study has opened the door to

the use of these highly advanced commercial technologies for characterizing the optical properties of sea ice.

Appendix A

Legendre polynomials form a set of infinite orthogonal functions with interesting mathematical properties. They were
previously used to fit angular radiance distributions (Kattawar, 1975). These polynomials are also employed for discretization
of radiance in the numerical discrete-ordinate solution for the radiative transfer equation (Stamnes et al., 1988). They were
naturally selected for the extrapolation of the unknown radiance values in water (camera below ice freeboard). The spectral

radiance L [W sr'' m?nm™'] at a given depth and wavelength is expressed as
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with u = cos 8, P; and c; being respectively the Legendre polynomials and their corresponding coefficient of degree [. A least-
square minimization routine led to the determination of the Legendre coefficients for the azimuthally averaged spectral
radiance. This is possible knowing that azimuthal dependence of the light field under optically thick ice is negligeable (Pegau
and Zaneveld, 2000). Angles below 25° (1 > 0.906) were discarded to mitigate the effect of self-shadow and the drastic light
fall-off at the edge of the FOV. We used the development of the polynomials up to a fifth degree [, found sufficient to fit
different shapes of L(u) commonly found in the medium. Figure S3 of the supplemental document shows some results of the
fit for the data taken during AO2018 expedition. Two example cases are displayed: for a depth of 40 cm at A =480 nm and for
a 120 cm at A = 540 nm.

Appendix B

This section is aimed at potential users interested in making radiometric measurements with a commercial 360-degree camera
in scattering environments. We focus on the challenges raised by changes in incident radiation and camera disturbances to the

radiative field within ice.

Firstly, it is important to minimize disturbance to the incident radiation by avoiding movement between the sun and the site of
interest and by reducing sources of shading. Ideally, the site should be as homogeneous as possible over a large area,
particularly in terms of snow cover. It is also essential to use an upward-looking radiometer to monitor irradiance throughout
the experiment, especially under variable sky conditions such as passing clouds. Secondly, the radiative field within the pack
ice must remain as undisturbed as possible, despite the hole made for the measurement. The use of a diffuser to block unwanted
light should be considered. Additionally, the camera and boom should be painted to match the reflectance of the surrounding
medium, to avoid absorbing light that would alter the radiative field. Thirdly, measuring light in air above the freeboard level
presents several challenges due to the reduced radiance caused by the change in refractive index. A satisfactory solution to this

problem has yet to be identified.

Code availability

The scripts used in this study are available in the online repository:

https://github.com/Raphaell arouche/radiance_camera_insta360. The latest version is also archived in the Zenodo repository

10.5281/zenodo0.4660993 (Larouche, 2024). This repository includes all scripts for processing fieldwork data and routines for

generating the figures presented in this paper. Note that the codes are subject to continuous development.
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Data availability

The dataset of this study is accessible online through the Zenodo repository: https://doi.org/10.5281/zenodo.14263255
(Larouche et al., 2024a).

Additionally, data from RAMSES irradiance sensors collected during the AO2018 expedition are accessible via the
Meereisportal platform: https://www.meereisportal.de/en/. These datasets can be retrieved from this page under the buoy name

2018R4 (Grosfeld et al., 2016).
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