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Abstract. Flow depth and velocity are the most important hydrodynamic variables that govern various river functions, 

including water resources, navigation, sediment transport, and biogeochemical cycling. Existing high-resolution flow depth 

simulations rely on either computationally expensive river hydrodynamic models (RHMs) or data-driven models with 

formidable training costs, whereas data-driven modeling of flow velocity has rarely been explored. Here, using the hybrid 10 

Low-fidelity, Spatial analysis, and Gaussian Process learning (LSG) model, we developed a downscaling approach to 

accurately construct high-resolution flow depth and velocity from a two-dimensional (2-D) RHM simulation at coarse 

resolution. The LSG models were trained and tested in an urban watershed in Houston using two different hurricane-driven 

flood events. The results showed that through downscaling, the simulation errors were reduced to less than one-fourth and one-

third of the errors of the low-resolution 2-D RHM for flow depth and velocity, respectively. Our analysis further revealed that 15 

the dominant uncertainty sources of the downscaled hydrodynamics are different, with flow velocity dominated by the 

dimensionality reduction error, which we reduced by using a regionalized training procedure. The downscaling approach 

achieves an 84-fold acceleration in computational time compared to the high-resolution 2-D RHM, making high-fidelity 

ensemble flood modeling feasible. More importantly, the developed method provides an opportunity to couple large-scale 

hydrodynamical processes with local physical, chemical, and biological processes in river models. 20 

1 Introduction 

Rivers play a crucial role in water resources, navigation, sediment transport, and biogeochemical cycling (Syvitski et al., 

2005; Oki & Kanae, 2006; Allen & Pavelsky, 2018; Ibáñez & Peñuelas, 2019; Mao et al., 2019; Regnier et al., 2022; Feng et 

al., 2023a; Rocher-Ros et al., 2023). To sustain these vital services, river flow depth and velocity must remain within normal 

ranges. Extreme flow depths can result in extensive fluvial flooding (Bates, 2022), whereas prolonged low flow depths 25 

jeopardize the availability of drinking and irrigation water in many regions worldwide (Gadgil, 1998; Haddeland et al., 2006). 

Together, flow depth and velocity are key drivers of navigation capability, sediment transport, and biogeochemical processes 

in rivers (Zhang et al., 2014; Raymond et al., 2016; Li et al., 2022; Sukhodolov et al., 2023). Consequently, extreme variations 

in flow depth and velocity can lead to waterway blockage, channel aggradation or degradation, water quality deterioration, and 
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habitat loss. River flow depth and velocity regimes are dynamic and influenced by climate change and human activities, leading 30 

many rivers to experience extreme flow conditions (Mishra & Shah, 2018). These conditions exacerbate flooding (Freer et al., 

2011), degrade aquatic ecosystems (Carpenter et al., 2011; Battin et al., 2023), and diminish water supplies (Oki & Kanae, 

2006). Hence, accurate prediction of river flow depth and velocity in the context of a changing climate is essential for ensuring 

the well-being of human society (IPCC, 2021). 

Flow depth and velocity are commonly simulated using river hydrodynamic models (RHMs). Widely used RHMs are 35 

often based on one-dimensional (1-D) or two-dimensional (2-D) Saint-Venant equations, disregarding vertical variations due 

to the significant difference between the horizontal and vertical length scales of rivers (Li et al., 2013; Teng et al., 2017; Bates, 

2022; Huang et al., 2022). Considering the low computational cost and high numerical stability, Earth system models (ESMs) 

usually employ 1-D RHMs as the river component for large-scale and/or ensemble hydrological simulations (Li et al., 2013; 

Feng et al., 2024). However, they are unsuitable for high-fidelity flood simulations. This is because 1-D RHMs are solved on 40 

upscaled river networks rather than actual river reaches (Wu et al., 2011; Liao et al., 2022) and rely on uncertain 

parameterizations, such as the bathtub method for estimating floodplain inundation (Luo et al., 2017; Xu et al., 2022). 

Additionally, by oversimplifying and/or neglecting momentum transport in river channels and floodplains (Luo et al., 2017; 

Feng et al., 2022), 1-D RHMs lack the capability to simulate fine-scale river hydrodynamics required for geomorphological 

and biogeochemical modeling (Hostache et al., 2014; Shabani et al., 2021). Conversely, 2-D RHMs can solve full river 45 

dynamics. When running on high-resolution meshes, they can accurately capture river flow depth and velocity (Razavi et al., 

2012). Therefore, high-resolution 2-D RHMs are often referred to as high-fidelity (HF) models, whereas both 1-D RHMs and 

low-resolution 2-D RHMs are referred to as low-fidelity (LF) models. However, the significant computational cost of HF 

RHMs (Teng et al., 2017; Wu et al., 2020; Ivanov et al., 2021) makes them not viable for real-time modeling and flood risk 

assessments through ensemble modeling, which requires hundreds or thousands of model realizations (Wu et al., 2020). 50 

To achieve accurate and affordable simulations of river hydrodynamics, several alternative approaches have been 

developed (Razavi et al., 2012). One prominent approach is the use of data-driven models to emulate the behaviors of HF 

RHMs (Ivanov et al., 2021; Tran et al., 2023). With the rapid advancement of machine learning (ML) techniques, ML-based 

emulators have been increasingly employed in hydrological sciences, including applications such as modeling runoff (Gao et 

al., 2020), evapotranspiration (Hu et al., 2021), inundation (Xie et al., 2021), lake-river interactions (Liang et al., 2018; Huang 55 

et al., 2022), reservoir operations (Zhang et al., 2018; Yang et al., 2019), streamflow (Ha et al., 2021; Sikorska-Senoner & 

Quilty, 2021), groundwater (He et al., 2020; Wunsch et al., 2022), and water quality (Chen et al., 2020; Saha et al., 2023). 

These studies have demonstrated that, once trained under extensive conditions, the computationally efficient ML models can 

mimic numerical models. However, general ML-based emulators often lack the enforcement of physical laws, such as the 

conservation of mass and momentum (Konapala et al., 2020; Karniadakis et al., 2021), resulting in poor transferability to out-60 

of-sample conditions in nonstationary systems (Young et al., 2017; Konapala et al., 2020), such as streamflow in a changing 

climate. To address this limitation, variants like physics-informed neural networks have been developed, embedding physical 
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laws (e.g., Saint-Venant equations) into their cost functions to constrain ML solutions. However, the incorporation of physical 

laws tends to reduce the training efficiency of ML models (Feng et al., 2023b). 

The second approach is to downscale the low-resolution RHM simulation onto a finely discretized grid (Wilby & 65 

Dawson, 2013; Feng et al., 2023b). For instance, Bermúdez et al. (2020) created high-resolution inundation maps by simply 

interpolating flow depth computed from a LF RHM onto a high-resolution digital elevation model (DEM). Recently, more 

advanced downscaling methods have been developed using various ML techniques to reproduce the detailed spatial and 

temporal features of high-resolution river hydrodynamics (Carreau & Guinot, 2021). Notably, Fraehr et al. (2022) developed 

a novel downscaling method based on the hybrid Low-fidelity, Spatial analysis, and Gaussian Process learning (LSG) model. 70 

This method demonstrated promising accuracy in simulating the dynamic behavior of flood inundation, such as the rising and 

recession components and hysteresis, at the computational cost of a low-resolution 2-D RHM (Fhraehr et al., 2022). Later, 

Fraehr et al. (2023a) extended the approach for fast and accurate simulations of not only high-resolution flood extent but also 

high-resolution flow depth. Additionally, the LSG-based downscaling model can support both structured and unstructured 

grids, a significant advantage as modern 2-D RHMs increasingly adopt unstructured grids for fine-scale modeling (Begnudelli 75 

& Sanders, 2006; Kim et al., 2012). However, similar to Fraehr et al. (2022 & 2023a), existing research on hydrodynamic 

model downscaling has focused entirely on flood extent and magnitude, while ignoring flow velocity, a critical factor for 

human safety risks in flood events (Russo et al., 2013). Moreover, as discussed earlier, without accurate simulations of flow 

velocity, our understanding of how river functions will respond to environmental stresses will remain elusive.  

In this study, we develop an LSG-based downscaling approach to achieve accurate simulations of high-resolution river 80 

flow depth and velocity at the computational cost of a low-resolution 2-D RHM. The effectiveness and transferability of our 

method are tested in an urbanized watershed in the Houston area using data from two extreme hurricane events. Furthermore, 

based on this downscaling method, we propose a new paradigm to couple large-scale hydrodynamical processes with local 

detailed physical, chemical, and biological processes in river models. The remainder of this paper is organized as follows: 

Section 2 describes the downscaling method and the configurations of the high-resolution and low-resolution 2-D RHMs for 85 

the study events; Section 3 highlights the main results; Section 4 discusses the implications of the results, outlines the 

limitations of our approach, and introduces the new paradigm; and Section 5 concludes the paper. 

2 Materials and Methods 

2.1 LSG model 

For the LSG model, the underlying principle is that the dynamics of flow depth and velocity can be approximated by a 90 

limited number of temporal and spatial modes due to their strong spatial pattern controlled by topography. The LSG model 

consists of a LF RHM, key spatial modes extracted from a HF RHM, and a Sparse Gaussian Process (GP) emulator model. It 

uses the LF RHM as a transfer function to capture the dynamics and spatial correlation of river flow. The key temporal features 

of the LF RHM outputs are extracted through an Empirical Orthogonal Function (EOF) analysis based on the extracted spatial 
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features from the HF RHM, thereby allowing the use of a Sparse GP model to convert the LF data to HF data via conversion 95 

of the extracted temporal features. The LSG model can reconstruct high-fidelity river hydrodynamics for two reasons. First, 

the accurate spatial correlations of river hydrodynamics are preserved due to the use of the key spatial modes from the HF 

model, which are assumed to not vary by events. Second, the Sparse GP model is efficient and effective in reconstructing the 

dynamics of HF data. In this study, we used the same 2-D shallow water equations to construct the LF and HF RHMs (described 

later). The only difference between them is the spatial resolution, with the coarse mesh adopted by the LF model reducing the 100 

simulation accuracy. We followed the procedure described by Fraehr et al. (2022, 2023a) to train and apply LSG models for 

river flow depth and velocity downscaling (Fig. 1), with any deviations from the general procedure specifically highlighted. 

 
Figure 1: Workflow of training the LSG model and using the trained model to predict high-resolution river hydrodynamics.   

For training, we first run the HF RHM over the study domain for a training flood event (Step 1) and derive the spatial 105 

EOF modes and the temporal expansion coefficients (ECs) modes of this HF simulation through the EOF analysis (Step 2) as 

defined in Eq. (1). 

𝐷!" = 𝑈!" ∙ 𝐶!" ≈ ∑ 𝑈!"(𝑘, : ) ∙ 𝐶!"(: , 𝑘)#
$%& ,        (1) 

where DHF is a T × N matrix containing simulated HF flow depth or velocity (T is the number of timesteps in the training data 

and N is the number of wet cells) that have been detrended (Fraehr et al., 2023a), UHF is a T × N matrix each row of which is 110 

an EOF spatial map, CHF is a T × T matrix each column of which corresponds to an EC temporal function, and K is the number 

of significant modes determined by both North’s test (North et al., 1982) and Kaiser’s Rule (Kaiser, 1960). 
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For the training phase, we also run the LF RHM for the training event (Step 3) and interpolate the simulated flow depth 

and velocity from the coarse mesh used by the LF model to the fine mesh used by the HF model (Step 4). Notably, we improved 

the nearest neighbor interpolation method adopted by Fraehr et al. (2023a) by accounting for mass conservation. While our 115 

improved method still assumes a homogeneous water level within a coarse grid cell, it ensures that the sum of interpolated 

water volume in fine grid cells equals the water volume in the coarse grid cell. Additionally, we ensure that the interpolation 

of flow velocity only occurs at wet grid cells where the water depth is greater than 3 cm (Fhraehr et al., 2023a). Another 

difference is that we do not apply area-based weights to 𝐷!" before the EOF analysis, as Fraehr et al. (2023a) recommended. 

This is because we are more interested in the flow depth and velocity of river channels and nearby floodplains that are 120 

represented by smaller grid cells in our fine mesh (Fig. 2). 

Next, we perform the EOF analysis on the interpolated LF flow depth and velocity to derive the temporal EC modes of 

the LF simulation (Step 5). Using the extracted high-resolution EOF spatial modes from Step 2, the extracted temporal ECs 

are defined in Eq. (2).  

𝐶'" = 𝐷'" ∙ 𝑈!"( ,            (2) 125 

where CLF is a T × T matrix containing the LF ECs, DLF is a T × N matrix corresponding to the interpolated LF flow depth or 

velocity simulations, and 𝑈!"(  is the transpose of UHF. In the final step of training, we use the derived LF and HF temporal ECs 

to train a Sparse GP model (Rasmussen & Williams, 2006) that can predict the HF ECs from the LF ECs (Step 6). For flow 

depth and velocity, the training of the Sparse GP models is performed independently. 

For prediction, only the low-cost LF RHM simulations are needed (Fig. 1). While Steps 7 to 9 essentially replicate Steps 130 

3 to 5, the difference is that Steps 7 to 9 are applied to a new LF simulation that is run for an unseen flood event. After the new 

LF ECs are retrieved following the EOF analysis in Eq. (1) using the spatial EOF modes derived in Step 2, they are fed into 

the trained Sparse GP model to predict the new HF ECs (Step 10). Finally, the predicted HF ECs are combined with the EOF 

spatial modes from Step 2 to reconstruct the HF flow depth and velocity simulations based on the reverse EOF analysis (Step 

11) as defined in Eq. (3). 135 

𝐷')*-=∑ 𝑈!"(𝑘, : ) ∙ 𝐶')*-(: , 𝑘)#
$%& ,          (3) 

where 𝐷')*- is the predicted high-resolution flow depth or velocity, and 𝐶')*- is the predicted HF temporal ECs. More details 

of the workflow can be found in Fraehr et al. (2022 & 2023a).  

The downscaling error consists of two major components: the error from dimensionality reduction and the error from the 

LSG model. According to Eq. (1), the error from dimensionality reduction 𝐸𝑅+,  can be defined as: 𝐸𝑅+, = 𝐷!" −140 

∑ 𝑈!"(𝑘, : ) ∙ 𝐶!"(: , 𝑘)#
$%& . According to Eq. (3), the error from the LSG model 𝐸𝑅')*  can be defined as: 𝐸𝑅')* =

∑ 𝑈!"(𝑘, : ) ∙ 𝐶!"(: , 𝑘)#
$%& −∑ 𝑈!"(𝑘, : ) ∙ 𝐶')*-(: , 𝑘)#

$%& . 
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2.2 Study site and flood events 

We used the Hurricane Harvey flood event (hereafter referred to as Harvey) in the Houston area as a case study. On 

August 26, 2017, Harvey made landfall along the mid-Texas coast as a Category 4 hurricane. As one of the worst hurricanes 145 

to hit the United States in recent history, Harvey brought record-breaking rainfall across the Houston metropolitan area (Van 

Oldenborgh et al., 2017), causing more than 80 fatalities and over $150 billion in economic losses, mostly due to extraordinary 

flooding (Emanuel, 2017; Balaguru et al., 2018). Specifically, we selected the Buffalo Bayou at Turning Basin as the study 

domain (Fig. 2), where the selected RHM was recently validated at different resolutions (Xu et al., in review). 

 150 

black lines in (d) are dense grid cells for two reservoirs, which can also be seen in (c). 155 

Precipitation during Hurricane Harvey (Fig. 3) is extracted from the 1-km resolution Multi-Radar Multi-Sensor (MRMS) 

precipitation dataset, which has a native temporal resolution of two minutes (Zhang et al., 2016). To demonstrate the 

effectiveness of our downscaling approach for ensemble flood projections, we use a projected hurricane event (Hurricane 

Harvey-like) under the high warming scenario — Shared Socioeconomic Pathway SSP5-8.5 — as a test case (Fig. 3). The 

future hurricane is simulated using the Energy Exascale Earth System Model (E3SM) with the novel Simple Cloud-Resolving 160 

E3SM Atmosphere Model (SCREAM) configuration (Caldwell et al., 2021; Donahue et al., 2024). SCREAM is a global 

atmospheric circulation model with a non-hydrostatic dynamical core and parameterizations for atmospheric radiative transfer, 

cloud microphysics, and boundary layer clouds and turbulence (Caldwell et al., 2021). The SCREAM domain features a 

regionally refined mesh (RRM) with 3.25 km grid spacing over the east coast of the United States, including the Gulf of 

Figure 2: Study domain (a), topography (b), high-resolution mesh (c), and coarse-resolution mesh (d) for river hydrodynamics 
simulations in the Turning River basin. The river basin boundary is highlighted in orange color in (a) and the black dots in (b) show the 
locations  of  the  USGS gauges  (Table  S1)  along  with  their  gauge  number.  The  basemap in  (a)  is  extracted  from ©  Google  Imagery 
@2024 TerraMetrics, Map data @2024. The seemingly thick bold lines in (c) are dense grid cells for river channels. The seemingly 
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Mexico and a significant part of the Atlantic Ocean, within a global domain that has 25 km grid spacing outside the RRM. 165 

Nudging is applied to grid cells outside the RRM to constrain the atmospheric circulation using the European Centre for 

Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) data (Hersbach et al., 2020). These features enable 

SCREAM to capture fine-scale extreme weather events, accurately resolve coastal areas and mountainous regions, and 

properly represent convective clouds, which are major sources of climate model uncertainty (Sherwood et al., 2014). SCREAM 

is coupled with the E3SM Land Model (ELM), while sea surface temperature and sea ice extent are prescribed based on ERA5. 170 

In the historical simulation, SCREAM is initialized using ERA5 to simulate Hurricane Harvey (hereafter referred to as 

the SCREAM simulation). To simulate how Hurricane Harvey will behave under future conditions, a storyline simulation 

using SCREAM is performed (hereafter referred to as the Pseudo Global Warming (PGW) simulation). In the PGW simulation, 

the initial conditions and nudging data from ERA5 are perturbed by adding the mean monthly changes derived from a multi-

model ensemble of climate simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) to represent the 175 

mean climate change under the SSP5-8.5 scenario by the end of the 21st century (2079-2099) compared to the historical climate 

at the end of the 20th century (1990-2010). A similar perturbation is also applied to ELM for the PGW simulations. 

SCREAM can successfully predict the heavy precipitation during Harvey’s first landfall, but its simulated precipitation 

during the second landfall is relatively muted (Fig. 3a), a well-known challenge even for many weather forecasting models. 

Considering the high computational cost of the SCREAM runs, we conducted three PGW simulations to drive the ensemble 180 

flood projections. These simulations, each with slightly different initial conditions, represent the uncertainty of the hurricane 

projection due to internal variability at the weather timescale (Fig. 3d). One PGW simulation is selected for LSG model 

validation. Its temporal and spatial patterns of precipitation are shown in Figs. 3a and 3c, respectively, which are distinct from 

the patterns of the benchmark precipitation (Figs. 3a and 3b) selected for LSG model training. The simulation differences 

reflect model uncertainty and the effects of climate change on the hurricane. The distinct spatial pattern of precipitation in the 185 

observations and the PGW simulation supports the latter as an out-of-sample test case, relevant for projecting future flooding.  

https://doi.org/10.5194/egusphere-2024-3816
Preprint. Discussion started: 3 February 2025
c© Author(s) 2025. CC BY 4.0 License.



8 
 

 
Figure 3. Comparison of the observed (MRMS) and simulated hourly precipitation during Harvey under the observed historical 
(SCREAM) and projected future (PGW) conditions (a), and maps of the observed cumulative precipitation during Harvey (b), the 
cumulative precipitation of the PGW simulation selected for the LSG model validation (c), and the coefficient of variation (CV) of 190 
the PGW simulated cumulative precipitation ensemble (d) in the study domain. 

2.3 River Hydrodynamic Model 

In this study, we chose the 2-D Overland Flow Model (OFM; Kim et al., 2012) for river hydrodynamics modeling, which 

was recently validated for the Harvey flood simulations (Xu et al., in review). In brief, OFM is a finite volume model that 

implements the first-order Godunov-type upwind scheme on a triangular mesh and uses Roe’s approximate Riemann solver to 195 

compute fluxes between grid cells (Begnudelli & Sanders, 2006). Later, Ivanov et al. (2021) improved OFM’s computational 

efficiency by using the Portable, Extensible Toolkit for Scientific Computation (PETSc; Balay et al., 2019) software for model 

parallelization. Mathematically, OFM solves the 2-D shallow water equations, which include the terms of advection, bottom 

friction, and gravity but ignore the terms of Coriolis and viscous forces (Begnudelli & Sanders, 2006): 

 -.
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where t is the time (s), h is the flow depth (m), u and v are the water velocity (m s-1) in the x and y direction under the Cartesian 

coordinate system, q is the excess precipitation rate (m s-1), g is the gravitational acceleration constant (m s-2), zb is the bed 

elevation (m), and CD is the bed drag coefficient derived from Manning’s roughness n as 𝐶+ = 𝑔𝑛;ℎ<& =⁄ .   205 
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We configure the OFM model on two variable-resolution meshes, with the high-resolution configuration serving as the 

HF RHM and the low-resolution configuration as the LF RHM. The variable-resolution meshes are generated using a 

Delaunay-based unstructured mesh generator, JIGSAW (Engwirda, 2017), which can refine topographic features important 

for shaping river flow regimes, such as river channels (Kim et al., 2022; Xu et al., 2022), floodplains (Yamazaki et al., 2011; 

Schrapffer et al., 2020), and water management structures (Schmutz & Moog, 2018). Specifically, the high-resolution mesh 210 

has 664,724 grid cells over the study domain, representing the main channels, tributaries, dams, and other regular cells with 

resolutions of 30 m, 60 m, 30 m, and 1000 m, respectively. In contrast, the low-resolution mesh has only 14,536 grid cells over 

the study domain, representing the main channels, tributaries, and other regular cells with a uniform resolution of 1000 m 

(except for dams, which are resolved at 30 m) (Fig. 2). In both the high-resolution and low-resolution meshes, the areas around 

two flood control reservoirs, Addicks and Barker’s Reservoir (Fig. 2), are refined to ensure more accurate flood simulations. 215 

As indicated in Xu et al. (in review), even though the simulation of streamflow at the outlet is only moderately degraded, the 

use of a coarser mesh severely deteriorates the model performance in simulating inundation. The 30-meter resolution Digital 

Elevation Model (DEM) from the National Elevation Database (NED) was used to construct the topography of the RHM 

meshes. 

To force the OFM, the MRMS precipitation data are upscaled from their native temporal resolution to an hourly time 220 

step and spatially interpolated to the variable-resolution mesh cells using the nearest neighbor interpolation method. Similarly, 

the hourly SCREAM simulation data are spatially interpolated to the variable-resolution mesh cells using the nearest neighbor 

method before being used to force the OFM. 

3 Results 

The trained LSG models can accurately predict the spatial and temporal variabilities of flow depth (Figs. 4–5) and velocity 225 

(Figs. 6–7) for the PGW flood event. First, the results confirm the effectiveness of the EOF analysis in extracting the significant 

spatial and temporal modes of the 2-D shallow water equations (Figs. S4–S5). Notably, as indicated by the proportion of 

variance explained by the specific modes, the significant modes of flow velocity (Fig. S5) are less representative of its 

variability compared to those of flow depth (Fig. S4), likely due to the higher nonlinearity of flow velocity simulations. Second, 

the trained LSG models perform remarkably well in reconstructing the HF ECs of river hydrodynamics from the LF ECs for 230 

both the training (Figs. S6–S7) and prediction phases (Figs. S8–S9). This performance is achieved despite substantial 

distinctions between the HF and LF ECs. Consequently, the spatial and temporal features of the high-resolution flow depth 

and velocity are well reproduced for both the training (Figs. S10–S13) and prediction phases (Figs. 4–7), even though they are 

forced by two distinct hurricane events (Fig. 3). 
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 235 
Figure 4. Root-mean-square-error (RMSE) of the LF simulated (a) and downscaled flow depth (b) for the PGW event, the LF 
simulated (c) and downscaled flow depth (d) at 01:00 am, August 27, the bias of the LF simulated (e) and downscaled flow depth (f) 
at the same time, and the HF simulated flow depth (g) at the same time. RMSE and bias are calculated by treating the HF simulation 
as “ground truth”. 

During the PGW flood, the average root-mean-square-error (RMSE) of the downscaled flow depth is 0.07±0.1 m (Fig. 240 

4b), which is less than one-fourth of the average RMSE (0.3±0.6 m) of the simulated LF flow depth (Fig. 4a). The downscaling 

achieves impressive error reductions in river channels (particularly downstream reaches), the nearby floodplains, and the two 

reservoirs (Fig. 4), which are flood-prone areas that have been deliberately refined in the high-resolution mesh (Fig. 2c). By 

downscaling, the detailed longitudinal variations of flow depth are precisely reproduced (Fig. 4d) during the peak flood period 

(near 01:00 am, August 27). Even very small ponding grid cells, which are barely seen in the LF simulation (Fig. 4c), are 245 

recovered (Fig. 4d). Compared to the LF simulation, the downscaled flow depth is highly consistent with the HF simulation, 

with the bias range (from the 10th percentile to the 90th percentile) reduced from [-0.2 m, 0.3 m] (Fig. 4e) to [-0.04 m, 0.06 
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m] (Fig. 4f). Generally, the downscaling reduces the underestimation and overestimation of the LF simulated flow depth in 

river channels and floodplains, respectively, likely due to the use of the HF EOFs (Fig. S4). 

 250 
Figure 5. Comparison of the HF simulated, LF simulated, and downscaled flow depth at the selected USGS gauges during the PGW 
event. 

The downscaling approach also performs promisingly in reproducing the temporal variability of the HF simulated flow 

depth at the selected USGS gauges (Fig. 5). Assessed by the Kling-Gupta efficiency (KGE) (Gupta et al., 2009), the 

downscaled flow depth shows good performance (KGE ≥ 0.5) at all gauges except Gauge #14, where small inundation occurs. 255 

In contrast, the LF simulation only shows good performance at two gauges but poor performance (KGE < -0.41; Knoben et 

al., 2019) at three gauges, whereas the performance at the other gauges is barely acceptable (-0.41 < KGE < 0.5). Notably, for 

four gauges (#3, #7, #8, and #19), the performance of the downscaling approach is excellent (KGE ≥ 0.9). Not only does the 

downscaling reduce the severe biases of the LF simulation at nearly all gauges, but it also recovers dynamics not captured by 

the LF simulation, such as the second peak flow depth at Gauge #18. 260 
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Figure 6. RMSE of the LF simulated (a) and downscaled flow velocity (b) for the PGW event, the LF simulated (c) and downscaled 
flow velocity (d) at 01:00 am, August 27, the bias of the LF simulated (e) and downscaled flow velocity (f) at the timestep, and the 
HF simulated flow velocity (g) at the timestep. RMSE and bias are calculated by treating the HF simulation as “ground truth”. 

Likewise, the downscaled simulations provide accurate representations of the spatial and temporal variabilities of flow 265 

velocity during the PGW flood (Figs. 6–7). The downscaling significantly reduces the average RMSE of simulated flow 

velocity from 0.7±1.9 m s-1 (Fig. 6a) to 0.2±0.6 m s-1 (Fig. 6b). Compared to flow depth, the error reduction in flow velocity 

is more concentrated in the river channels, possibly reflecting the larger gradients of flow velocity from river channels to the 

nearby floodplains. Like flow depth, the downscaling successfully recovers the detailed longitudinal variations of flow 

velocity, as well as the river flow in small inundated areas during the peak flood period (Fig. 6d). The method also yields 270 

substantial reductions in the estimation bias, from [-0.4 m s-1, 0.3 m s-1] (Fig. 6e) to [-0.07 m s-1, 0.05 m s-1] (Fig. 6f). 
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Figure 7. Comparison of the HF simulated, LF simulated, and downscaled flow velocity at the selected USGS gauges during the 
PGW event. 

The downscaling also produces more consistent temporal variability of flow velocity compared with the HF simulation 275 

at the selected USGS gauges (Fig. 7). The downscaled flow velocity demonstrates good performance at 15 gauges and excellent 

performance at 2 gauges (#11 and #16). In contrast, the LF simulation only shows good performance at Gauge #8 but exhibits 

unacceptable performance at 9 gauges (e.g., KGE < -0.41). However, despite its superiority to the LF simulation, the 

downscaled flow velocity does not perform as well as the downscaled flow depth at many of the study gauges. For instance, it 

fails to capture the velocity spike at Gauge #1 and greatly underestimates the velocity peaks at several other gauges (e.g., #2, 280 

#4, and #8). The downscaled solutions also struggle to reproduce the high-frequency fluctuations of flow velocity, such as at 

Gauges #12 and #18. Analysis of the error sources indicates that for the downscaled flow velocity, the error from 

dimensionality reduction ERDR is substantially larger than the LSG model error ERLSG, while for the downscaled flow depth, 

ERLSG is dominant (Fig. 8). First, this result aligns with the EOF analysis (Fig. S5), which shows the higher nonlinearity of 

flow velocity simulations. Second, this implies that reducing ERDR is crucial for more accurate flow velocity downscaling. 285 
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Figure 8. Percentage of flow depth (a) and velocity (b) downscaling uncertainty that can be explained by the error from the LSG 
model. 

A possible way to reduce ERDR is to regionalize the training of the LSG model in a smaller domain that focuses on a 

specific geographic feature. This approach can prevent locally important EC modes from being filtered out in large-scale EOF 290 

analyses (see Fraehr et al. (2023a) for North’s test and Kaiser’s Rule). Notably, this treatment does not require new model 

simulations and follows the same procedure outlined in Fig. 1. We selected Gauge #1, where the whole-domain downscaling 

fails to reproduce the peak flow velocity simulated by the HF model. By training a new LSG model over a smaller area 

encompassing the gauge (Fig. S14), the downscaled simulation aligns with the HF model for predicting the flow velocity spike 

on August 26 (Fig. 9). For the PGW event, the KGE for the simulated flow velocity increases significantly from 0.04 to 0.61. 295 

The regionalized training also slightly improves the accuracy of the downscaled flow depth at Gauge #1, with KGE increasing 

from 0.81 to 0.96. The smaller effect of regionalized training on flow depth is expected because our error analysis indicates 

that the uncertainty of the downscaled flow depth is only minorly contributed by ERDR (Fig. 8). 
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Figure 9. Comparison of the HF simulated, LF simulated, and downscaled flow depth and velocity at Gauge #1 during the PGW 300 
event with training LSG models in a focused area around the gauge (Fig. S14). 

Because the training of the LSG model can be completed within minutes, the computational cost of our downscaling 

approach depends solely on the computational time needed for the RHM simulations. For the 13-day PGW simulations, when 

running on Intel Xeon Skylake CPUs (2.4 GHz) with 192 GB of DDR4 DRAM, the HF model (664,724 grid cells) requires 

4,032 CPU hours to complete, while the LF model (14,536 grid cells) requires only 48 CPU hours. Thus, by applying the 305 

downscaling approach to the LF ensemble simulations, our method provides an efficient way to evaluate the impact of the 

uncertainty in tropical cyclone (TC) predictions on the simulation of urban flooding. Figure 10 shows that compared to the 

single-member PGW simulation described in the above evaluation, a three-member ensemble of PGW simulations predicts 

higher peak inundation depths in the lower reaches of the Buffalo Bayou watershed, where population density is also the 

highest. In some areas, the difference in peak flood depth during the PGW event can exceed 1 m (Fig. 10b). Using the ensemble 310 

simulations, we can also calculate the likelihood of the areas where the PGW flood event poses significant or high risks to 

human safety (h>0.95 m; Russo et al., 2013). From the ensemble simulations, humans will very likely face significant risks to 

the flood water in the two reservoirs, river channels, and the nearby areas in Houston during the PGW flood event (Fig. 10c). 

In line with Fig. (10b), some simulations predict larger extents of the areas where the flood event would pose significant risks 

to human safety.   315 
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Figure 10. Projected peak flood depth of the PGW ensemble simulation (a), the difference of the projected peak flood depth between 
the PGW ensemble simulation and the selected PGW simulation (b), and the probability of significant risks to human safety by flood 
(c). 
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4 Discussions 320 

4.1 Simulation of high-resolution river hydrodynamics 

Our results demonstrate that the LSG model-based downscaling approach can provide efficient and accurate simulations 

of high-resolution river hydrodynamics at the computational cost of LF RHMs. To the best of our knowledge, this is one of 

the first studies to explore methods for fast and accurate simulations of high-resolution flow velocity in realistic cases, 

broadening the usefulness and relevance of recent rapid progress in hydrodynamic modeling, which still exclusively focuses 325 

on flooding (Carreau & Guinot, 2021; Xie et al., 2021; Zhou et al., 2021; Feng et al., 2023b; Fraehr et al., 2023b; Frame et al., 

2024; Wing et al., 2024). With HF simulations of flow velocity, our understanding of not only instantaneous flood hazards but 

also longer time-scale environmental hazards, such as eutrophication and pollution, can be greatly advanced. More broadly, 

the new method can contribute to the development of fully coupled atmosphere-land-river-ocean ESMs, which will be 

discussed in detail in Section 4.2. It is worth noting that the study watersheds of Fraehr et al. (2023a, 2023b) differ from this 330 

study in land use and climate. The two Australian watersheds in Fraehr et al. (2023a, 2023b) are dominated by rural and natural 

landscapes and are less affected by TCs. The success of the LSG model in different domains underscores its broad geographical 

applicability. 

The LSG model-based downscaling approach has two major advantages over neural network (NN)-based methods for 

high-resolution river hydrodynamic modeling. First, compared to NN-based methods (Tran et al., 2023), the training time of 335 

the LSG method is negligible, requiring only one expensive HF RHM simulation for training. Second, because physical laws 

have been explicitly coded in LF RHMs and implicitly complied with in the spatial interpolation process, the trained model 

can be expected to be transferable to future unseen climate conditions. These advantages make the approach well-suited for 

ensemble projections of future flooding, which are crucial for robust assessment of flood adaptation and mitigation (Fig. 10) 

given the substantial uncertainty of TC projections (Fig. 3). Another potential strength of our approach is that it can directly 340 

benefit from future advances in RHMs. The development of better RHMs will provide more accurate LF and HF simulations 

of river hydrodynamics for LSG model training, helping to reduce downscaling uncertainty (Fraehr et al., 2023a). 

While a well-trained LSG model can be applied to unseen climate conditions, it is not free from re-training. For instance, 

without re-training, an LSG model is unlikely to handle changes in land use and geographical features, such as 

geomorphological changes in river channels and river flow modifications related to reservoirs. Additionally, our training 345 

strategy, which trains the LSG model only with data from the Harvey flood event, may not be effective in more complex cases 

where floods are not always driven by TCs. For instance, the main flood mechanisms in the U.S. Mid-Atlantic watersheds 

include both rain-on-snow (ROS) and snowmelt events that mainly occur in high-latitude areas (e.g., 1996 ROS Flood), and 

heavy rainfall from tropical cyclones (e.g., Hurricane Irene in 2011), extratropical systems, and convective systems (Smith et 

al., 2010; Li et al., 2021; Sun et al., 2024). For such cases, it is necessary to follow the training procedure of Fraehr et al. 350 

(2023a), selecting multiple representative flood events of different types for training. Since the number of flood mechanisms 
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is limited, we expect that the computational demand will still be manageable even if the LSG model is applied to a watershed 

with diverse flood generation processes. 

Our study reveals that the downscaling accuracy of flow velocity is lower than that of flow depth. This is because the 

dynamics of flow velocity are more nonlinear, which induces significantly larger dimensionality-reduction errors in the 355 

downscaling process (Fig. 8). Accordingly, we introduced a regionalized training procedure to improve the downscaled flow 

velocity in focused areas (Fig. 9). This procedure does not significantly increase the computational cost of the LSG model 

because it does not require any new RHM runs. We envision that this strategy can be particularly useful for simulating river 

hydrodynamics in geographical areas that need more careful flood risk assessments, such as schools, hospitals, critical 

infrastructures, energy facilities, and Superfund sites (Brand et al., 2018). 360 

The LSG model error 𝐸𝑅')* primarily depends on the performance of the Sparse GP model in mapping LF ECs to HF 

ECs. Besides the Sparse GP model, other data-driven models, such as Multilayer Perceptrons and Artificial Neural Networks, 

can also be used to establish the complex relationships between ECs (Carreau & Guinot, 2021). Future research on 

implementing other data-driven models to reduce 𝐸𝑅')* is also worth exploring. 

The LF model used in this study is about 84 times faster than the HF model, which is more efficient than the LF model 365 

adopted by Fraehr et al. (2023a) and achieves a larger acceleration rate than the theoretical boost rate when considering the 

reduction in the number of grid cells (??@,B;@
&@,C=?

≈ 46). The improved efficiency indicates that the OFM RHM has taken advantage 

of fewer computational units and longer time steps according to the Courant–Friedrichs–Lewy convergence criteria in the 

simulations. Furthermore, the results underscore the usefulness of our approach for flood risk assessment which needs hundreds 

or thousands of ensemble model runs (Wu et al., 2020). 370 

4.2 Coupling large-scale hydrodynamical processes with local processes in river models 

It is challenging to represent other physical, chemical, and biological processes beyond river discharge in large-scale 

river models. This is mainly because, by sacrificing process and resolution accuracy for computational efficiency, these models 

cannot provide accurate simulations of high-resolution flow depth and velocity necessary for calculating local dynamics 

important for fluvial processes (Bertagni et al., 2024), such as sediment settling velocity (Li et al., 2022), bottom shear stress 375 

and diffusivity (Chen et al., 2023), and greenhouse gas outgassing velocity (Ulseth et al., 2019). By accurately and efficiently 

simulating high-resolution flow depth and velocity, our downscaling approach provides an opportunity to bridge the gaps 

between large-scale hydrodynamical processes and detailed local processes in river models. Specifically, we propose a two-

way coupling scheme in large-scale river models (Fig. 11). In the first stage of each simulation cycle, a large-scale river model 

is used to simulate coarse-resolution flow depth and velocity and transport mass and momentum downstream. In the second 380 

stage, the LSG model-based approach is employed to downscale the simulated flow depth and velocity to fine resolutions. In 

the third stage, high-resolution hydrodynamics are used to drive detailed physical, chemical, and biological models, such as 

the PFLOTRAN model for geochemistry (Hammond et al., 2012) and the GAIA model for sediment (Tassi et al., 2023), to 
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simulate the sources and sinks of the represented tracers. In the final stage, the sources and sinks calculated in the fine-

resolution mesh are upscaled to the coarse-resolution mesh of the large-scale river model and used to update the concentrations 385 

of the represented tracers.  

An outstanding weakness of existing ESMs is that they ignore the lateral biogeochemical fluxes in the land-river-ocean 

continuum and therefore do not close the global biogeochemical cycles (Regnier et al., 2022). By implementing this new 

paradigm of river modeling in ESMs, land, river, and ocean biogeochemistry will be fully coupled, helping to close the global 

biogeochemical cycles. To achieve this vision, future research must focus on extending the LSG model-based approach to 390 

downscale 1-D river models to 2-D fine-resolution meshes. This is because, despite the prospect of 2-D large-scale river 

models running on GPU-based supercomputers, 1-D river models will likely still be the default configuration in ESMs in the 

near future (Telteu et al., 2021). We envision that the potential challenges could include the alignment of 1-D and 2-D 

unstructured meshes and the interpolation of simulated 1-D river hydrodynamics onto 2-D meshes.   

 395 
Figure 11. A schematic illustration of coupling large-scale hydrodynamical processes that are simulated in coarse resolution with 
local physical, chemical, and biological processes that are simulated in fine resolution in river models. 
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5 Conclusion 

In this study, we developed a downscaling approach based on the LSG model to achieve fast and accurate simulations of 

high-resolution river flow depth and velocity. Our test of TC-induced flood events in an urban watershed in Houston 400 

demonstrates the effectiveness and efficiency of the downscaling method, as the simulation errors in the LF RHM are greatly 

reduced, without additional computational costs. We further indicated that the simulation error of the downscaled flow velocity 

can be reduced by employing regionalized training of the LSG model for selected focused areas. As one of the first studies to 

explore high-fidelity and efficient flow velocity simulations in realistic cases, our research can help broaden the usefulness 

and relevance of the recent rapid progress in hydrodynamic modeling, which still exclusively focuses on flooding. More 405 

importantly, the downscaling approach provides an opportunity to bridge the gaps between large-scale hydrodynamical 

processes and local physical, chemical, and biological processes in river models, which could eventually help close the global 

biogeochemical cycles in ESMs.     

 

Code and data availability. The code and input data for this work can be publicly available at 410 

https://doi.org/10.5281/zenodo.14258083. 
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