1 Supplementary Information

2

Direct measurement of N₂O₅ heterogeneous uptake coefficients on atmospheric aerosols in southwestern China and evaluation of current parameterizations

6

Jiayin Li ^{a⊥}, Tianyu Zhai ^{a,b⊥}, Xiaorui Chen ^c*, Haichao Wang ^c, Shuyang Xie ^a, Shiyi Chen ^a, Chunmeng Li ^{a,d}, Huabin, Dong ^a, Keding Lu ^a*

9

10 ^a State Key Joint Laboratory of Environmental Simulation and Pollution Control,

11 College of Environmental Science and Engineering, Peking University, Beijing 100871,

12 China

13 ^b State Environmental Protection Key Laboratory of Vehicle Emission Control and

Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012,China

^c School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine
 Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China

18 ^d The National Institute of Metrology, Center for Environmental Metrology, Beijing

19 100029, China

20 ^{\perp}Jiayin Li and Tianyu Zhai contributed equally in this work.

21

22 Corresponding author: Xiaorui Chen (chenxr95@mail.sysu.edu.cn) and Keding Lu

- 23 (k.lu@pku.edu.cn)
- 24

25 **Contents**

- Figure S1. Time series of measured concentrations of NO₂, O₃, NO, PM_{2.5} and N₂O₅,
- 27 the values of $\gamma(N_2O_5)$, and meteorological parameters of RH and T during the campaign.
- 28 Figure S2. NO₃ reactivity with VOCs.
- 29 Figure S3. Time series of N₂O₅ and NO₃ lifetime during the campaign.
- 30 Figure S4. The distribution of parameterized $\gamma(N_2O_5)$ values of GRI09 (a) and BT09
- 31 (b).
- 32 Table S1. Summary of field observation results of nocturnal NO₃ and N₂O₅
- 33 concentrations, $P(NO_3)$, and $\tau(N_2O_5)$ from various regions around the world in recent
- 34 years.
- 35 Table S2. Summary of global field observation results of $\gamma(N_2O_5)$.
- 36 Table S3. Summary of the details and performances of the parameterizations discussed
- in this study.
- 38
- 39

Figure S1. Time series of measured concentrations of NO₂, O₃, NO, PM_{2.5} and N₂O₅,
the values of γ(N₂O₅), and meteorological parameters of RH and T during the campaign.
The blue line and the purple line represent Chinese national air quality standards for O₃
and PM_{2.5}, respectively.

Figure S2. NO₃ reactivity with VOCs. (a) Time series of VOCs contributions for $k(NO_3)$. (b) Mean diurnal profiles of $k(NO_3)$. (c) The contribution of VOCs categories

Location	Site type	Period	NO ₃ (pptv)	N ₂ O ₅ (pptv)	P(NO ₃)	$\tau(N_2O_5)$	Reference
			(night)	(night)	(ppbv/h)	(s)	
Kunming,	Suburban	2021.04	5.7±3.2	33.4±75.2	0.6 ± 0.1	185±294	This work
China				(395.1)			
Beijing,	Rural	2016.05	27	73±90 (937)	1.2 ± 0.9	270±240	(Wang et
China							al., 2018)
Bejing,	Urban	2016.09	-	36.7	1.4 ± 1.7		(Wang et
China					1.4 ± 1.7	-	al., 2017a)

Bejing,	Suburban	2016.02	-	~1400	_	_	(Wang et
China							al., 2020b)
Wangdu,	Rural	2014.07	-	~200 (430)	1.7 ± 0.6	76.9	(Tham et
China							al., 2016)
Mountain	Suburban	2014.07	-	6.8±7.7	0.5 ± 0.4	74	(Wang et
Tai, China							al., 2017c)
Jinan,	Urban	2014.08	-	22±12 (278)			(Wang et
China					-	-	al., 2017b)
Shanghai,	Urban	2011.08	16±9	310±380	1.1 ± 1.1	-	(Wang et
China							al., 2013)
Taizhou,	Rural	2018.05	4.4±2.2	26.0±35.7	1.0×0.5	43 ± 52	(Wang et
China				(492)			al., 2020a)
Taizhou,	Suburban	2018.05	4.4±2.2	26.0 ± 35.7	1.2±0.4	55±68	(Li et al.,
China							2020)
Changzho	Suburban	2019.05	-	61.0 ± 63.1	2.8 ± 1.6	-	(Zhai et al.,
u, China				(477.2)			2023)
Hongkong	Island	2012.08	7 ±12	17±33 (336)	-	76±61	(Yan et al.,
, China							2019)
Hongkong	Coastal	2013.11	-	~11800	0.26	~13 h	(Brown et
, China							al., 2016)
Shenzhen,	Coastal	2019.09	-	56±89	2.9±0.5	-	(Niu et al.,
China				(1420)			2022)
Heshan,	Urban	2019.09	~90	64±145	2.5±2.1	-	(Wang et
China							al., 2022)
South	Island	2021.11	10 ± 13	120±129	1.4 ± 0.7	30±42	(Wang et
China Sea							al., 2024)
Seoul,	TT	2015.05		4100+1200	1.2	1900	(Brown et
Korea	Urban,	2015.05	-	4100 ± 1200 ,	1.3	1800	al., 2017)
	tower			2000 ± 1000			
				(3000)			
Southern	Coastal	2008.11	-	~500	-	-	(Crowley et
Spain							al., 2011)
Northwest	C t- 1	2010.07		(70)		15 120	(Morgan et
ern,	Coastal,	2010.07	-	670	-	13~120	al., 2015)
Europe	airdorne					min	
Taunus	D1	2011.00		200	1.0		(Phillips et
Observato	Kurai	2011.08	-	~800	~1.8	-	al., 2016)
ry,							
Germany							
East coast	Coastal	2002.06	17	84	-	-	(Brown et
USA							al., 2004)
California,	Coastal	2004.01	-	~200	-	~30 min	(Wood et

USA Salt Lake Valley, USA	Airborne	2017.01	-	0~2	0~2	-	al., 2005) (McDuffie et al., 2019)
Lower Fraser	Suburban	2012.07	-	1.4 (23)	-	-	(Osthoff et al., 2018)
Vaney, Canada							

 $61 \qquad \text{The values in brackets are the maximum of N_2O_5 concentration.}$

Table S2. Summary of global field observation results of $\gamma(N_2O_5)$.

Location	Period	Site type	$\gamma(N_2O_5)$	Method	Reference
Kunming,	2021.04	Suburban	0.0018~0.12	AFTS	This work
China			(0.23±0.21)		
Beijing, China	2016.02	Suburban	0.001-0.02 (0.0046)	Box model	(Wang et
					al., 2020b)
Beijing, China	2016.05	Rural	0.012-0.055 (0.034)	Products	(Wang et
					al., 2018)
Beijing, China	2016.09	Urban	0.025-0.072 (0.048)	Steady-state	(Wang et
					al., 2017a)
Beijing, China	2018.1	Urban	0.0075-0.0149	Steady-state	(Xia et al.,
					2021)
Beijing, China	2019.01	Tower	0.0005-0.2 (0.05)	Box model	(Chen et
					al., 2020)
Beijing, China	2020.12	Urban	0.0045-0.12	AFTS	(Chen et
			(0.042±0.026)		al., 2022)
Wangdu, China	2014.06	Rural	0.005-0.039	Products	(Tham et
					al., 2018)
Wangdu, China	2014.06	Rural	0.0012-0.072	Steady-state	(Lu et al.,
					2022)
Wangdu, China	2017.12	Rural	0.006-0.015	Steady-state	(Xia et al.,
					2021)
Mountain Tai,	2014.07	Suburban	0.021-0.102 (0.061)	Steady-state	(Wang et
China					al., 2017c)
Mountain Tai,	2018.03	Suburban	0.001-0.019 (0.01)	AFTS	(Yu et al.,
China					2020)
Jinan, China	2014.08	Urban	0.042-0.092 (0.069)	Steady-state	(Wang et
					al., 2017b)
Taizhou, China	2018.06	Suburban	0.027-0.107 (0.08)	Steady-state	(Li et al.,
					2020)

Location	Period	Site type	γ(N ₂ O ₅)	Method	Reference
Changzhou,	2019.06	Suburban	0.057-0.123	Steady-state	(Zhai et
China			0.001-0.024	Parameterization	al., 2023)
Hongkong,	2013.11	Suburban	0.004-0.029 (0.014)	Steady-state	(Brown et
China					al., 2016)
Hongkong,	2013.11	Suburban	0.0005-0.016 (0.004)	Box model	(Yun et al.,
China					2018)
Heshan, China	2017.03	Suburban	0.002-0.067 (0.02)	AFTS	(Yu et al.,
					2020)
Heshan, China	2019.10	Urban	0.0019-0.077 (0.0317)	Products	(Wang et
					al., 2022)
Shenzhen,	2019.10	Coastal	0.002-0.068	Products	(Niu et al.,
China			(0.027 ± 0.02)		2022)
			0.005-0.08	Box model	
			(0.031 ± 0.02)		
New England,	2002.08	Ship	0.03-0.04	Steady-state	(Aldener
USA					et al.,
					2006)
New England,	2004.02	Airborne	0.0016-0.02	Steady-state	(Brown et
USA					al., 2006)
Texas, USA	2006.10	Airborne	0.0005-0.006 (0.0039)	Steady-state	(Brown et
					al., 2009)
Boulder, USA	2008.07	Tower	0.0009-0.012 (0.003)	AFTS	(Bertram
					et al.,
					2009)
Seattle, USA	2008.08	Coastal	0.005-0.04	AFTS	(Bertram
					et al.,
					2009)
California,	2009.09	Coastal	0.00003-0.029 (0.0054)	AFTS	(Riedel et
USA					al., 2012)
Los Angeles,	2010.05	Airborne	0.001-0.01	Steady-state	(Chang et
USA		moone			al., 2016)
Colorade, USA	2011.02	Tower	0.002-0.1 (0.04)	Box model	(Wagner et
					al., 2013)
Eastern, USA	2015.02		0.00002-0.175 (0.014)	Box model	(McDuffie
		Airborne			et al.,
					2018)
Salt Lake	2017.01		0.001-0.1 (0.076)	Box model	(McDuffie
Valley, USA		Airborne			et al.,
					2019)
NW	2010.06	Airborne	0.0076-0.03	Steady-state	(Morgan
Europe/UK					et al.,

Location	Period	Site type	$\gamma(N_2O_5)$	Method	Reference
					2015)
SW Germany	2011.08	Suburban	0.004-0.11 (0.028)	Products,	(Phillips et
				Steady-state	al., 2016)

65 The values in brackets are mean values of $\gamma(N_2O_5)$.

66 AFTS: aerosol flow tube system;

67 Steady-state: steady state approximation;

68 Products: products formation rate analysis;

69 Box model: inverse iterative box model simulation.

Parameterization	Factors	Parameterization	Reference	R ²	RMSE	Median
name	considered					
RIE03	Mass	$\gamma = f \times r_1 + (1 - f) \times r_2$	(Riemer et	0	0.0223	0.017
	concentration	where,	al., 2003)			
	of aerosol	r ₁ =0.02				
	sulfate and	r ₁ =0.002				
	nitrate	$f = \text{mass SO}_4^2 / (\text{mass SO}_4^2 + \text{mass NO}_3)$				
	$(\mu g/m^3)$					
DAV08	[SO ₄ ²⁻],	$\gamma = \mathbf{x}_1 \times \gamma_1^* + \mathbf{x}_2 \times \gamma_2^* + \mathbf{x}_3 \times \gamma_3^*$	(Davis et al.,	0.02	00317	0.034
	[NO ₃ ⁻],	where,	2008)			
	[NH4 ⁺], RH,	λ_1 =-4.10612+0.02386×RH-0.23771×max((T-291),0)				
	Т	$\gamma_1 = 1/(1 + e^{-\lambda 1})$				
		$\gamma_1^* = \min(\gamma_1, 0.08585)$				
		λ ₂ =(-4.10612-0.80570)+0.02386×RH+(-				
		0.23771+0.10225) ×max((T-291),0)				
		$\gamma_2 = 1/(1 + e^{-\lambda^2})$				
		$\gamma_2^* = \min(\gamma_2, 0.053)$				
		$\lambda_3 = -8.10774 + 0.04902 \times RH$				
		$\gamma_3 = 1/(1 + e^{-\lambda_3})$				
		$\gamma_3^* = \min(\gamma_3, 0.0154)$				
		x ₃ =[NO ₃ ⁻]/([NO ₃ ⁻]+[SO ₄ ²⁻])				
		$x_2=max(0, min(1-x_3, [NH_4^+]/([NO_3^-]+[SO_4^{2-}])-1))$				
		$x_1 = 1 - x_2 - x_3$				

Table S3. Summary of the details and performances of the parameterizations discussed in this study.

Parameterization	Factors	Parameterization	Reference	R ²	RMSE	Median
name	considered					
		(1=NH ₄ HSO ₄ , 2=(NH ₄) ₂ SO ₄ , 3=NH ₄ NO ₃)				
BT09	ALWC, [NO ₃ ⁻], [Cl ⁻], V _a , S _a	$\gamma = \frac{4}{c} \frac{V_a}{S_a} K_H k'_{2f} \left(1 - \frac{1}{\left(\frac{k_3 [H_2 0]}{k_{2b} [N0_3^-]}\right) + 1 + \left(\frac{k_4 [Cl^-]}{k_{2b} [N0_3^-]}\right)}\right)$ where, $K_H = 51, \text{ Henry's Law Coefficient (Fried et al., 1994)}$ $k'_{2f} = \beta - \beta_e^{(-\delta [H_2 0])}$ $\beta = 1.15 \times 10^6 (\text{s}^{-1})$ $\delta = 0.13 (\text{M}^{-1})$ $\frac{k_3}{k_{2b}} = 0.06$	(Bertram and Thornton, 2009)	0.06	0.0228	0.034
BT09 w/o Cl	ALWC, [NO ₃ ⁻], V _a ,	$\gamma = \frac{4 V_a}{c S} K_H k'_{2f} \left(1 - \frac{1}{(k_a [H_a O])} \right)$	(Bertram and	0.07	0.0202	0.020
	Sa	$\frac{k_{3} \left(\frac{k_{3} \left[102 \text{ G}\right]}{k_{2b} \left[\text{NO}_{3}^{-1}\right]}\right) + 1/2}{\text{parameters are same as BT09.}}$	Thornton, 2009)			
GRI09	ALWC, [NO3 ⁻], V _a , S _a	$\gamma = \frac{4}{c} \frac{V_a}{S_a} K_H k'_{2f} \left(1 - \frac{1}{\left(\frac{k_3 [H_2 0]}{k_{2b} [N0_3^-]}\right) + 1} \right)$	(Griffiths et al., 2009)	0.06	0.0533	0.063

Parameterization	Factors	Parameterization	Reference	R ²	RMSE	Median
name	considered					
		Where,				
		<i>K_H</i> =51				
		$\frac{k_3}{k_{2b}} = 1/30$				
		$k'_{2f} = 5 \times 10^{6}$				
YU20	ALWC, [NO ₃ ⁻], [Cl ⁻], Va. Sa	$\gamma = \frac{4}{c} \frac{V_a}{S_a} K_H k'_{2f} \left(1 \right)$	(Yu et al., 2020)	0.09	0.02	0.019
		$-\frac{1}{\left(\frac{k_{3}[H_{2}O]}{k_{2b}[NO_{3}^{-}]}\right)+1+\left(\frac{k_{4}[Cl^{-}]}{k_{2b}[NO_{3}^{-}]}\right)}\right)$				
		where,				
		$K_H = 51$				
		$k'_{2f} = [H_2O] \times 3 \times 10^4$				
		$\frac{k_3}{k_{2b}} = 0.033$				
		$\frac{k_4}{k_{2b}} = 3.4$				
EJ05	Mass	γ =mass SO ₄ ²⁻ /dry mass× γ_1 +mass organic/dry mass× γ_2	(Evans and	0	0.0228	0.019
	fraction of	where,	Jacob, 2005)			
	aerosol	$\gamma_1 = \alpha \times 10^{\beta}$				
	sulfate and	$\alpha = 2.79 \times 10^{-4} + 1.3 \times 10^{-4} \times RH - 3.43 \times 10^{-6} \times RH^2 + 7.52 \times 10^{-8}$				
	organic, RH,	×RH ³				

Parameterization	Factors	Parameterization	Reference	R ²	RMSE	Median
name	considered					
	Т	$\beta = 4 \times 10^{-2} \times (T - 294), (T \ge 282K)$				
		β=-0.48, (T<282K)				
		γ ₂ =RH×5.2×10 ⁻⁴ , (RH<57%)				
		$\gamma_2=0.03$, (RH $\ge 57\%$)				
BT09+Rie09	ALWC,	1 - 1 + 1	(Bertram	0.03	0.0278	0.012
	[NO ₃ ⁻], [Cl ⁻],	Y Ycore Yorg.coat	and			
	V _a , S _a ,	where,	Thornton,			
	organic	γ_{core} =BT09	2009;Anttila			
	coating	$\gamma = \frac{4RTD_{org}H_{org}R_c}{4RTD_{org}H_{org}R_c}$	et al.,			
		Yorg.coat clR _p	2006;Riemer			
		R, gas constant (atm \cdot m ³ /mol \cdot K)	et al., 2009)			
		T, temperature (K)				
		$D_{org}H_{org} = \epsilon D_{aq}H_{aq}$				
		ε=0.03				
		H _{aq} =5000, Henry's Law Coefficient in aqueous core (mol				
		$m^{-3} atm^{-1}$)				
		$D_{aq}=1\times10^{-9}$, N ₂ O ₅ Liquid Diffusion Coefficient (m ² s ⁻¹)				
		R _p , median particle total radius, (m)				
		$R_c=R_p-l$, particle core radius (m)				
		$l=R_p \times (1-\beta^{1/3})$, organic coating thickness (m)				
		$\beta = V_{inorganic} / (V_{organic} + V_{inorganic})$				
BT09+Rie09(wG14)	ALWC,	$\frac{1}{1} - \frac{1}{1} + \frac{1}{1}$	(Gaston et	0.07	0.0201	0.019
	[NO ₃ ⁻], [Cl ⁻],	Y Ycore Yorg.coat	al., 2014)	(O/C=0.8);	(O/C=0.8);	(O/C=0.8);

Parameterization	Factors	Parameterization	Reference	R ²	RMSE	Median
name	considered					
	V _a , S _a ,	same as BT09+Rie09 except,		0.07	0.0248	0.006
	organic	ϵ =0.06, (RH \leq 30% and O/C \geq 0.7)		(O/C=0.5)	(O/C=0.5)	(O/C=0.5)
	coating, O/C,	ϵ =0.008, (RH \leq 30% and O/C \leq 0.7)				
	RH	ϵ =0.3, (30% \leq RH \leq 70% and O/C \geq 0.7)				
		ε=0.05, (30%≤RH≤70% and O/C≤0.7)				
		ϵ =1.0, (70% \leq RH and O/C \geq 0.7)				
		ϵ =0.8, (70% \leq RH and O/C \leq 0.7)				
MD18	ALWC,		(McDuffie et	0.05	0.0205	0.022
	[NO ₃ ⁻], [Cl ⁻],	$\frac{1}{\gamma} - \frac{1}{\gamma_{core}} + \frac{1}{\gamma_{org.coat}}$	al., 2018)	(O/C=0.8);	(O/C=0.8);	(O/C=0.8);
	V _a , S _a ,	same as BT09+Rie09 except,		0.04	0.0208	0.018
	organic	γ_{core} =BT09 w/o Cl		(O/C=0.5)	(O/C=0.5)	(O/C=0.5)
	coating, O/C,	$k'_{2f} = [H_2O] \times 2.14 \times 10^5$				
	RH	$\frac{k_3}{k_{2b}} = 0.04$				
		ε=0.15×O/C+0.0016×RH				

References:

Aldener, M., Brown, S. S., Stark, H., Williams, E. J., Lerner, B. M., Kuster, W. C., Goldan, P. D., Quinn, P. K., Bates, T. S., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactivity and loss mechanisms of NO₃ and N_2O_5 in a polluted marine environment: Results from in situ measurements during New England Air Quality Study 2002, Journal of Geophysical Research-Atmospheres, 111, 10.1029/2006jd007252, 2006.

Anttila, T., Kiendler-Scharr, A., Tillmann, R., and Mentel, T. F.: On the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: Theoretical analysis and application to the heterogeneous hydrolysis of N₂O₅, Journal of Physical Chemistry A, 110, 10435-10443, 10.1021/jp062403c, 2006.

Bertram, T. H., and Thornton, J. A.: Toward a general parameterization of N₂O₅ reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride, Atmospheric Chemistry and Physics, 9, 8351-8363, 10.5194/acp-9-8351-2009, 2009.

Bertram, T. H., Thornton, J. A., and Riedel, T. P.: An experimental technique for the direct measurement of N₂O₅ reactivity on ambient particles, Atmospheric Measurement Techniques, 2, 231-242, 10.5194/amt-2-231-2009, 2009.

Brown, S. S., Dibb, J. E., Stark, H., Aldener, M., Vozella, M., Whitlow, S., Williams, E. J., Lerner, B. M., Jakoubek, R., Middlebrook, A. M., DeGouw, J. A., Warneke, C., Goldan, P. D., Kuster, W. C., Angevine, W. M., Sueper, D. T., Quinn, P. K., Bates, T. S., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.: Nighttime removal of NOx in the summer marine boundary layer, Geophysical Research Letters, 31, 10.1029/2004gl019412, 2004.

Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber, R. J., Dube, W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.: Variability in nocturnal nitrogen oxide processing and its role in regional air quality, Science, 311, 67-70, 10.1126/science.1120120, 2006.

Brown, S. S., Dube, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini, R., Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive uptake coefficients for N₂O₅ determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations, Journal of Geophysical Research-Atmospheres, 114, 10.1029/2008jd011679, 2009.

Brown, S. S., Dube, W. P., Tham, Y. J., Zha, Q. Z., Xue, L. K., Poon, S., Wang, Z., Blake, D. R., Tsui, W., Parrish, D. D., and Wang, T.: Nighttime chemistry at a high altitude site above Hong Kong, Journal of Geophysical Research-Atmospheres, 121, 2457-2475, 10.1002/2015jd024566, 2016.

Brown, S. S., An, H., Lee, M., Park, J. H., Lee, S. D., Fibiger, D. L., McDuffie, E. E., Dube, W. P., Wagner, N. L., and Min, K. E.: Cavity enhanced spectroscopy for measurement of nitrogen oxides in the Anthropocene: results from the Seoul tower during MAPS 2015, Faraday Discussions, 200, 529-557, 10.1039/c7fd00001d, 2017.

Chang, W. L., Brown, S. S., Stutz, J., Middlebrook, A. M., Bahreini, R., Wagner, N. L., Dube, W. P., Pollack, I. B., Ryerson, T. B., and Riemer, N.: Evaluating N₂O₅ heterogeneous hydrolysis parameterizations for CalNex 2010, Journal of Geophysical Research-Atmospheres, 121, 5051-5070, 10.1002/2015jd024737, 2016.

Chen, X., Wang, H., Zhai, T., Li, C., and Lu, K.: Direct measurement of N₂O₅ heterogeneous uptake coefficients onambient aerosols via an aerosol flow tube system: design, characterizationand performance, Atmospheric Measurement Techniques, 15, 7019-7037, 10.5194/amt-15-7019-2022, 2022.

Chen, X. R., Wang, H. C., Lu, K. D., Li, C. M., Zhai, T. Y., Tan, Z. F., Ma, X. F., Yang, X. P., Liu, Y. H., Chen, S. Y., Dong, H. B., Li, X., Wu, Z. J., Hu, M., Zeng, L. M., and Zhang, Y. H.: Field Determination of Nitrate Formation Pathway in Winter Beijing, Environmental Science & Technology, 54, 9243-9253, 10.1021/acs.est.0c00972, 2020.

Crowley, J. N., Thieser, J., Tang, M. J., Schuster, G., Bozem, H., Beygi, Z. H., Fischer, H., Diesch, J. M., Drewnick, F., Borrmann, S., Song, W., Yassaa, N., Williams, J., Pohler, D., Platt, U., and Lelieveld, J.: Variable lifetimes and loss mechanisms for NO₃ and N₂O₅ during the DOMINO campaign: contrasts between marine, urban and continental air, Atmospheric Chemistry and Physics, 11, 10853-10870, 10.5194/acp-11-10853-2011, 2011.

Davis, J. M., Bhave, P. V., and Foley, K. M.: Parameterization of N₂O₅ reaction probabilities on the surface of particles containing ammonium, sulfate, and nitrate, Atmospheric Chemistry and Physics, 8, 5295-5311, 10.5194/acp-8-5295-2008, 2008.

Evans, M. J., and Jacob, D. J.: Impact of new laboratory studies of N₂O₅ hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH, Geophysical Research Letters, 32, 10.1029/2005gl022469, 2005.

Fried, A., Henry, B. E., Calvert, J. G., and Mozurkewich, M.: The reaction probability of n_{205} with sulfuric-acid aerosols at stratospheric temperatures and compositions, Journal of Geophysical Research-Atmospheres, 99, 3517-3532, 10.1029/93jd01907, 1994.

Gaston, C. J., Thornton, J. A., and Ng, N. L.: Reactive uptake of N₂O₅ to internally mixed inorganic and organic particles: the role of organic carbon oxidation state and inferred organic phase separations, Atmospheric Chemistry and Physics, 14, 5693-5707, 10.5194/acp-14-5693-2014, 2014.

Griffiths, P. T., Badger, C. L., Cox, R. A., Folkers, M., Henk, H. H., and Mentel, T. F.: Reactive Uptake of N₂O₅ by Aerosols Containing Dicarboxylic Acids. Effect of Particle Phase, Composition, and Nitrate Content, Journal of Physical Chemistry A, 113, 5082-5090, 10.1021/jp8096814, 2009.

Li, Z. Y., Xie, P. H., Hu, R. Z., Wang, D., Jin, H. W., Chen, H., Lin, C., and Liu, W. Q.: Observations of N_2O_5 and NO_3 at a suburban environment in Yangtze river delta in China: Estimating heterogeneous N_2O_5 uptake coefficients, Journal of Environmental Sciences, 95, 248-255, 10.1016/j.jes.2020.04.041, 2020.

Lu, X., Qin, M., Xie, P. H., Duan, J., Fang, W., and Liu, W. Q.: Observation of ambient NO₃ radicals by LP-DOAS at a rural site in North China Plain, Science of the

Total Environment, 804, 10.1016/j.scitotenv.2021.149680, 2022.

McDuffie, E. E., Fibiger, D. L., Dube, W. P., Lopez-Hilfiker, F., Lee, B. H., Thornton, J. A., Shah, V., Jaegle, L., Guo, H. Y., Weber, R. J., Reeves, J. M., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Dibb, J. E., Veres, P., Ebben, C., Sparks, T. L., Wooldridge, P. J., Cohen, R. C., Hornbrook, R. S., Apel, E. C., Campos, T., Hall, S. R., Ullmann, K., and Brown, S. S.: Heterogeneous N₂O₅ Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations, Journal of Geophysical Research-Atmospheres, 123, 4345-4372, 10.1002/2018jd028336, 2018.

McDuffie, E. E., Womack, C. C., Fibiger, D. L., Dube, W. P., Franchin, A., Middlebrook, A. M., Goldberger, L., Lee, B., Thornton, J. A., Moravek, A., Murphy, J. G., Baasandorj, M., and Brown, S. S.: On the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate matter formation during wintertime pollution events in Northern Utah, Atmospheric Chemistry and Physics, 19, 9287-9308, 10.5194/acp-19-9287-2019, 2019.

Morgan, W. T., Ouyang, B., Allan, J. D., Aruffo, E., Di Carlo, P., Kennedy, O. J., Lowe, D., Flynn, M. J., Rosenberg, P. D., Williams, P. I., Jones, R., McFiggans, G. B., and Coe, H.: Influence of aerosol chemical composition on N₂O₅ uptake: airborne regional measurements in northwestern Europe, Atmospheric Chemistry and Physics, 15, 973-990, 10.5194/acp-15-973-2015, 2015.

Niu, Y. B., Zhu, B., He, L. Y., Wang, Z., Lin, X. Y., Tang, M. X., and Huang, X. F.: Fast Nocturnal Heterogeneous Chemistry in a Coastal Background Atmosphere and Its Implications for Daytime Photochemistry, Journal of Geophysical Research-Atmospheres, 127, 10.1029/2022jd036716, 2022.

Osthoff, H. D., Odame-Ankrah, C. A., Taha, Y. M., Tokarek, T. W., Schiller, C. L., Haga, D., Jones, K., and Vingarzan, R.: Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia, Atmospheric Chemistry and Physics, 18, 6293-6315, 10.5194/acp-18-6293-2018, 2018.

Phillips, G. J., Thieser, J., Tang, M. J., Sobanski, N., Schuster, G., Fachinger, J., Drewnick, F., Borrmann, S., Bingemer, H., Lelieveld, J., and Crowley, J. N.: Estimating N₂O₅ uptake coefficients using ambient measurements of NO₃, N₂O₅, ClNO₂ and particle-phase nitrate, Atmospheric Chemistry and Physics, 16, 13231-13249, 10.5194/acp-16-13231-2016, 2016.

Riedel, T. P., Bertram, T. H., Ryder, O. S., Liu, S., Day, D. A., Russell, L. M., Gaston, C. J., Prather, K. A., and Thornton, J. A.: Direct N₂O₅ reactivity measurements at a polluted coastal site, Atmospheric Chemistry and Physics, 12, 2959-2968, 10.5194/acp-12-2959-2012, 2012.

Riemer, N., Vogel, H., Vogel, B., Schell, B., Ackermann, I., Kessler, C., and Hass, H.: Impact of the heterogeneous hydrolysis of N_2O_5 on chemistry and nitrate aerosol formation in the lower troposphere under photosmog conditions, Journal of Geophysical Research-Atmospheres, 108, 10.1029/2002jd002436, 2003.

Riemer, N., Vogel, H., Vogel, B., Anttila, T., Kiendler-Scharr, A., and Mentel, T.

F.: Relative importance of organic coatings for the heterogeneous hydrolysis of N_2O_5 during summer in Europe, Journal of Geophysical Research-Atmospheres, 114, 10.1029/2008jd011369, 2009.

Tham, Y. J., Wang, Z., Li, Q. Y., Yun, H., Wang, W. H., Wang, X. F., Xue, L. K., Lu, K. D., Ma, N., Bohn, B., Li, X., Kecorius, S., Gross, J., Shao, M., Wiedensohler, A., Zhang, Y. H., and Wang, T.: Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China, Atmospheric Chemistry and Physics, 16, 14959-14977, 10.5194/acp-16-14959-2016, 2016.

Tham, Y. J., Wang, Z., Li, Q. Y., Wang, W. H., Wang, X. F., Lu, K. D., Ma, N., Yan, C., Kecorius, S., Wiedensohler, A., Zhang, Y. H., and Wang, T.: Heterogeneous N₂O₅ uptake coefficient and production yield of ClNO₂ in polluted northern China: roles of aerosol water content and chemical composition, Atmospheric Chemistry and Physics, 18, 13155-13171, 10.5194/acp-18-13155-2018, 2018.

Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dube, W. P., Kim, S., Middlebrook, A. M., Ozturk, F., Roberts, J. M., Russo, R., Sive, B., Swarthout, R., Thornton, J. A., VandenBoer, T. C., Zhou, Y., and Brown, S. S.: N₂O₅ uptake coefficients and nocturnal NO₂ removal rates determined from ambient wintertime measurements, Journal of Geophysical Research-Atmospheres, 118, 9331-9350, 10.1002/jgrd.50653, 2013.

Wang, H. C., Lu, K. D., Chen, X. R., Zhu, Q. D., Chen, Q., Guo, S., Jiang, M. Q., Li, X., Shang, D. J., Tan, Z. F., Wu, Y. S., Wu, Z. J., Zou, Q., Zheng, Y., Zeng, L. M., Zhu, T., Hu, M., and Zhang, Y. H.: High N₂O₅ Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway, Environmental Science & Technology Letters, 4, 416-420, 10.1021/acs.estlett.7b00341, 2017a.

Wang, H. C., Lu, K. D., Guo, S., Wu, Z. J., Shang, D. J., Tan, Z. F., Wang, Y. J., Le Breton, M., Lou, S. R., Tang, M. J., Wu, Y. S., Zhu, W. F., Zheng, J., Zeng, L. M., Hallquist, M., Hu, M., and Zhang, Y. H.: Efficient N₂O₅ uptake and NO₃ oxidation in the outflow of urban Beijing, Atmospheric Chemistry and Physics, 18, 9705-9721, 10.5194/acp-18-9705-2018, 2018.

Wang, H. C., Chen, X. R., Lu, K. D., Hu, R. Z., Li, Z. Y., Wang, H. L., Ma, X. F., Yang, X. P., Chen, S. Y., Dong, H. B., Liu, Y., Fang, X., Zeng, L. M., Hu, M., and Zhang, Y. H.: NO₃ and N₂O₅ chemistry at a suburban site during the EXPLORE-YRD campaign in 2018, Atmospheric Environment, 224, 10.1016/j.atmosenv.2019.117180, 2020a.

Wang, H. C., Chen, X. R., Lu, K. D., Tan, Z. F., Ma, X. F., Wu, Z. J., Li, X., Liu, Y. H., Shang, D. J., Wu, Y. S., Zeng, L. M., Hu, M., Schmitt, S., Kiendler-Scharr, A., Wahner, A., and Zhang, Y. H.: Wintertime N₂O₅ uptake coefficients over the North China Plain, Science Bulletin, 65, 765-774, 10.1016/j.scib.2020.02.006, 2020b.

Wang, H. C., Yuan, B., Zheng, E., Zhang, X. X., Wang, J., Lu, K. D., Ye, C. S., Yang, L., Huang, S., Hu, W. W., Yang, S. X., Peng, Y. W., Qi, J. P., Wang, S. H., He, X. J., Chen, Y. B., Li, T. G., Wang, W. J., Huangfu, Y. B., Li, X. B., Cai, M. F., Wang, X. M., and Shao, M.: Formation and impacts of nitryl chloride in Pearl River Delta, Atmospheric Chemistry and Physics, 22, 14837-14858, 10.5194/acp-22-14837-2022, 2022.

Wang, J., Wang, H. C., Tham, Y. J., Ming, L. L., Zheng, Z. L., Fang, G. Z., Sun, C. Z., Ling, Z. H., Zhao, J., and Fan, S. J.: Measurement report: Atmospheric nitrate radical chemistry in the South China Sea influenced by the urban outflow of the Pearl River Delta, Atmospheric Chemistry and Physics, 24, 977-992, 10.5194/acp-24-977-2024, 2024.

Wang, S. S., Shi, C. Z., Zhou, B., Zhao, H., Wang, Z. R., Yang, S. N., and Chen, L. M.: Observation of NO₃ radicals over Shanghai, China, Atmospheric Environment, 70, 401-409, 10.1016/j.atmosenv.2013.01.022, 2013.

Wang, X. F., Wang, H., Xue, L. K., Wang, T., Wang, L. W., Gu, R. R., Wang, W. H., Tham, Y. J., Wang, Z., Yang, L. X., Chen, J. M., and Wang, W. X.: Observations of N₂O₅ and ClNO₂ at a polluted urban surface site in North China: High N₂O₅ uptake coefficients and low ClNO₂ product yields, Atmospheric Environment, 156, 125-134, 10.1016/j.atmosenv.2017.02.035, 2017b.

Wang, Z., Wang, W. H., Tham, Y. J., Li, Q. Y., Wang, H., Wen, L., Wang, X. F., and Wang, T.: Fast heterogeneous N₂O₅ uptake and ClNO₂ production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain, Atmospheric Chemistry and Physics, 17, 12361-12378, 10.5194/acp-17-12361-2017, 2017c.

Wood, E. C., Bertram, T. H., Wooldridge, P. J., and Cohen, R. C.: Measurements of N₂O₅, NO₂, and O₃ east of the San Francisco Bay, Atmospheric Chemistry and Physics, 5, 483-491, 10.5194/acp-5-483-2005, 2005.

Xia, M., Peng, X., Wang, W. H., Yu, C. A., Wang, Z., Tham, Y. J., Chen, J. M., Chen, H., Mu, Y. J., Zhang, C. L., Liu, P. F., Xue, L. K., Wang, X. F., Gao, J., Li, H., and Wang, T.: Winter ClNO₂ formation in the region of fresh anthropogenic emissions: seasonal variability and insights into daytime peaks in northern China, Atmospheric Chemistry and Physics, 21, 15985-16000, 10.5194/acp-21-15985-2021, 2021.

Yan, C., Tham, Y. J., Zha, Q., Wang, X., Xue, L., Dai, J., Wang, Z., and Wang, T.: Fast heterogeneous loss of N₂O₅ leads to significant nighttime NOx removal and nitrate aerosol formation at a coastal background environment of southern China, Science of the Total Environment, 677, 637-647, 10.1016/j.scitotenv.2019.04.389, 2019.

Yu, C., Wang, Z., Xia, M., Fu, X., Wang, W. H., Tham, Y. J., Chen, T. S., Zheng, P. G., Li, H. Y., Shan, Y., Wang, X. F., Xue, L. K., Zhou, Y., Yue, D. L., Ou, Y. B., Gao, J., Lu, K. D., Brown, S. S., Zhang, Y. H., and Wang, T.: Heterogeneous N₂O₅ reactions on atmospheric aerosols at four Chinese sites: improving model representation of uptake parameters, Atmospheric Chemistry and Physics, 20, 4367-4378, 10.5194/acp-20-4367-2020, 2020.

Yun, H., Wang, T., Wang, W. H., Tham, Y. J., Li, Q. Y., Wang, Z., and Poon, S. C. N.: Nighttime NOx loss and ClNO₂ formation in the residual layer of a polluted region:

Insights from field measurements and an iterative box model, Science of the Total Environment, 622, 727-734, 10.1016/j.scitotenv.2017.11.352, 2018.

Zhai, T. Y., Lu, K. D., Wang, H. C., Lou, S. R., Chen, X. R., Hu, R. Z., and Zhang, Y. H.: Elucidate the formation mechanism of particulate nitrate based on direct radical observations in the Yangtze River Delta summer 2019, Atmospheric Chemistry and Physics, 23, 2379-2391, 10.5194/acp-23-2379-2023, 2023.