Characteristics of ecosystems under various anthropogenic impacts in a tropical forest region of **Southeast Asia**

Chansopheaktra Sovann^{1,2}, Torbern Tagesson¹, Patrik Vestin¹, Sakada Sakhoeun³, Soben Kim⁴, Sothea Kok², Stefan Olin¹ 5

¹Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, S-223 62 Lund, Sweden ²Department of Environmental Science, Royal University of Phnom Penh, Phnom Penh, 120404, Cambodia ³Provincial Department of Environment, Ministry of Environment, Siem Reap, 171202, Cambodia ⁴Faculty of Forestry, Royal University of Agriculture, Phnom Penh, 120501, Cambodia

Correspondence to: Chansopheaktra Sovann (chansopheaktra.sovann@nateko.lu.se) 10

The copyright of individual parts of the supplement might differ from the article licence.

Contents

	Subsection 1. Characteristics of the forest inventory plots
15	Table S1.1. Characteristics of the forest inventory plots in Phnom Kulen National Park. Data source: annual precipitation, annual average daily mean air temperature, annual average daily sum global radiation and annual average daily mean vapour pressure deficit from Kulen weather station data from April 10, 2022, to April 9, 2023. Soil type and geology data from Matschullat (2014). Disturbance history information is obtained from field observation, discussion with local people and combining with Global Forest Change dataset of Hansen et al. (2013) and LandTrendr Pixel Time Series Plotter tool of Kennedy et al. (2018)
20	Figure S1.1. Photographs of the forest inventory plots in Phnom Kulen National Park. (a), (b), and (c) are the evergreen forest plots at the south (EF1), middle (EF2), and north (EF3); (e), (f) and (g) are the regrowth forest plots at the south (RF1), middle (RF2), and north (RF3). (h), (j) and (k) are the cashew plantation plots at the south (CP1), middle (CP2), and north (CP2), and north (CP3)
	Figure S1.2. Design of forest inventory plots and sub-plots
	Table S1.2. Description of the decomposition level used to record lying and standing deadwood decomposition in this study. The proposed five-scale level ofdecomposition was modified based on a harmonizing scaling system between the Swedish National Forest Inventory (Swedish NFI, 2019) and the Cambodian NationalForest Inventory (Than et al., 2018).8
25	Subsection 2. Meteorological station in Phnom Kulen National Park10
	Figure S2.1. The diagram depicts the installation configuration of weather and photosynthetically active radiation (PAR) sensors at the Kulen Station. The weather sensor was installed at a height of 2.2 m above the ground, while the PAR sensors were placed at a height of 2 m above the ground

30	Figure S2.2. Monthly meteorological conditions at Kulen meteorological station from April 10, 2022, to April 9, 2023. (a) Monthly average air temperature (°C); (b) Monthly total precipitation (mm); (c) Monthly total global radiation (W m ⁻²); (d) Monthly average relative humidity (%); (e) Monthly average wind speed (m s ⁻¹). The error bars in (a), (d), and (e) represent the 95% confidence interval (using standard deviation) from the monthly mean. The data were computed based on 15-minute timestep measurements.
	Subsection 3. Soil conditions in the forest inventory plots
35	Figure S3.1. Monthly mean soil temperature (°C) for different land-cover classes from April 10, 2022, to April 9, 2023. The mean values were calculated by averaging the data from two representative plots for each land-cover class. Soil sensors were installed 0.2 m below the ground
	Figure S3.2. Monthly mean water content (m ³ m ⁻³) for different land-cover classes from April 10, 2022, to April 9, 2023. The mean values were calculated by averaging the data from two representative plots for each land-cover class. Soil sensors were installed 0.2 m below the ground
	Figure S3.3. Monthly mean soil saturation extraction electrical conductivity (mS cm ⁻¹) for different land-cover classes from April 10, 2022, to April 9, 2023. The mean values were calculated by averaging the data from two representative plots for each land-cover class. Soil sensors were installed 0.2 m below the ground
40	Subsection 4. Correlation matrix meteorological and soil conditions16
	Figure S4.1. Correlation between daily sum precipitation ('Sum prec.'; mm), daily mean air temperature ('Air temp.'; °C), daily mean soil temperatures ('stemM'; °C), daily mean soil water content ('swcM'; m ³ m ⁻³), daily mean soil saturation extraction electrical conductivity ('secM'; mS cm ⁻¹) at Kulen from April 10, 2022, to April 9, 2023. The suffixes 'EF', 'RF', and 'CP' represent evergreen forests, regrowth forests, and cashew plantations. The precipitation and air temperature data were measured at Kulen's meteorological station (see Fig. 1); meanwhile, the soil data were the average of two measured plots in each land-cover class.
45	Subsection 5. Species diversity
	Table S5.1. Percentage of shared species among land-cover classes in the nine-forest inventory plot. The "Count" column indicates the total number of species observed in each land-cover class, whereas the "Sum" column indicates the total number of species recorded in each land-cover class. The "Shared%" column indicates the proportion of each species found in each land-cover class. Within each land-cover class, the "Cumulative Sum%" column displays the cumulative sum percentage, which accumulates from the highest to the lowest percentage of shared species
50	Table S5.2. Species richness (S _R) and Shannon-Wiener index (S _H) across nine forest inventory plots in Kulen, Cambodia
	Subsection 6. Functional diversity of different land covers and plots
	Table S6.1. Summary of the leaf traits, including leaf dry weight, leaf area, leaf length, specific leaf area (SLA, m ² kg ⁻¹), chlorophyll a and b content (Chl, mg g ⁻¹), and leaf dry matter content (LDMC, mg g ⁻¹), obtained from 30 plant woody species found in the Kulen inventory list. The table displays the number of species collected (n), the mean value, standard deviation (SD.), median, minimum (min.), and maximum (max.) value for each trait.

Table S6.2. The mean and standard deviation values (SD) of leaf chlorophyll content (SPAD-value), leaf fresh weight (g), leaf dry weight (g), leaf length area (cm), leaf area (cm²), specific leaf area (SLA, m² kg⁻¹), chlorophyll a and b content (Chl, mg g⁻¹), and leaf dry matter content (LDMC, mg g⁻¹) by species. The data included all 30 plant woody species from inventory data species which was used to compute the community weighted mean for SLA, Chl and LDMC. 'n' is the total number of sample leaves per species. * Standard deviation values include both the standard deviation of five-time measurements per leaf and the standard deviation of the total number of leaves sampled per species. _____20

60	Table S6.3. The values of specific leaf area (SLA, $m^2 kg^{-1}$), chlorophyll a and b content (Chl, $mg g^{-1}$), and leaf dry matter content (LDMC, $mg g^{-1}$) by species and inventory plots. The samples were collected from cashew plantations (CP), regrowth forests (RF), evergreen forests (EF), and the areas within 500 m of EF and RF plots (EF123 and RF123). In the SLA, Chl, and LDMC columns, 'n' = the number of leaf samples, 'Mean' = the mean value, and 'SD' = the standard deviation value
65	Table S6.4. Woody species trait value sources and their shared percentages by plot of the data used to compute community weighted mean (CWM). In the column "Trait data source", the value "Plot" is species trait values derived directly from the species collected in its plot, "LC" value is species trait values obtained from its land-cover class when the trait species was not collected in its plot, and "Pool" value is trait values obtained from other land covers in Kulen; The column "Count" indicates the shared number of tree stands in the plot; "Total" is the total number of trees in the plot; and "Shared %" is the shared percentage of trees with different trait sources. "n. missing species" column is the number of missing species in each plot; the "Species" column contains the missing species in each plot. Seedlings were not included in this figure as they do not have DBH records and are not used in community weighted-mean calculations
!	Subsection 7. Stand structure of different land-cover classes and plots25
70	Figure S7.1. The frequency distributions of tree diameters at the breast height (DBH, cm) and height (H, m) across different plots. The plot labels "EF", "RF", and "CP" correspond to "evergreen forests", "regrowth forests" and "cashew plantations" respectively
	Table S7.1. Ordinary least square regression statistical table of between diameter at breast height In(DBH) (cm) and height In(H) (m) for evergreen forests (EF), regrowth forests (RF), and cashew plantations (CP) in Kulen
75	Figure S7.2. Relationship between diameter at breast height ln(DBH) (cm) and height ln(H) (m) for different inventory plots in evergreen forests (EF), regrowth forests (RF), and cashew plantations (CP) in Kulen. In (a), (b) and (c) present ln(DBH) (cm) and ln(H) (m) relationships at plots EF1, EF2, and EF3 of the evergreen forests; In (d), (e) and (f) present ln(DBH) (m) and ln(H) (m) relationships at plots RF1, RF2, and RF3 of regrowth forests; in (g), (h) and (i) present DBH (cm) and H (m) relationships at plots CP1, CP2, and CP3 of cashew plantation. Based on the relationship below, the intercept parameter (K ₁) and slop parameter (K ₂) of the power law relationship between DBH (cm) and H (m) for each plot were obtained. The K ₁ and K ₂ parameters were used as community traits to investigate the relationship among other biodiversity and ecosystem property variables of various land-cover classes by plot level.
80	Table \$7.2. The computed values of the intercept parameter (K1) and slop parameter (K2) of power-law relationship between diameter at breast height (DBH) (cm) and height (H) (m) for each plot. 28
	Figure S7.3. The 1:1 line plot comparison between aboveground biomass (AGB, kg) estimated by the diameter at breast height (DBH) and height (H) relationship (AGB _h , kg) and aboveground biomass estimated by adopted functions (AGB _f , kg) for evergreen forests (EF) (a), regrowth forests (RF) (b), and cashew plantations (CP) (c)
85	Figure S7.4. The estimation of aboveground biomass (AGB) (Mg ha ⁻¹) by different methods for each inventory plot. "AGB _f " represents aboveground biomass estimated by adopted functions; "AGB _{wd} " represents aboveground biomass estimated by adopted functions utilizing species-specific wood density; "AGB _h " represents aboveground biomass estimated by biomass estimated by adopted functions utilizing species-specific wood density; "AGB _h " represents aboveground biomass estimated by adopted functions utilizing species-specific wood density; "AGB _h " represents aboveground biomass estimated by biomass estimated by adopted functions utilizing species-specific wood density; "AGB _h " represents aboveground biomass estimated by biomass estimated by the diameter at breast height (DBH) and height (H) relationship, along with species-specific wood density, for our study site.
	Figure S7.5. The 1:1 line plot comparison between aboveground biomass estimated by diameter at breast height (DBH) and height (H) relationship (AGB _h) and aboveground biomass estimated by adopted functions (AGB _f) for evergreen forest plots (EF1, EF2, and EF3) (a, b, and c), regrowth forest plots (RF1, RF2, and RF3) (d, e, and f), and cashew plantation plots (CP1, CP2, CP3) (g, h, and i)
90	Table S7.3. Distribution of stem density per hectare by DBH class for different land-cover classes. EF, RF, and CP stand for evergreen forests, regrowth forests, and cashew plantations. 31
	Table S7.4. Distribution of aboveground biomass (AGB) across diameter at breast height (DBH) classes for different land-cover classes. The total AGB estimated by AGB _h method was used in the calculation. EF, RF and CP stand for evergreen forests, regrowth forests, and cashew plantations

	Subsection 8. Leaf area index and a fraction of absorbed photosynthetically active radiation
95	Table S8.1. Descriptive statistics of observed leaf area index (LAI) ($m^2 m^{-2}$) measured at breast height and ground height for evergreen forests (EF), regrowth forests (RF), and cashew plantations (CP) by different months of a year. The "Month" column represents the months of the year (1 = January and 12 = December). The " n " column indicates the number of measurements in a specific month for each land cover
	Subsection 9. Relationships among ecosystem characteristics
100	Table S9.1. Ordinary least squares regression model fit statistics for In(AGB _h) and In(S _R), In(AGB _h) and In(LAI _T), and In(AGB _h) and In(SLA _{cwm}). The number of observations is the number of plots. 'LAI _T ' is a mean of total leaf area index, 'AGB _h ' is aboveground biomass, 'SLA _{cwm} ' is a community-weighted mean.
105	Figure S9.1. The relationship between biodiversity and ecosystem property variables of different land-cover classes in Kulen. 'EF', 'RF', and 'CP' are evergreen forests, regrowth forests and cashew plantations. The suffixes '1', '2', and '3' are plot ID. The variables: 'Mean LAI' means LAI measured at the ground level (m ² m ⁻²), 'SLA _{cwm} ' is community weighted mean of specific leaf area (kg m ⁻²), 'Species richness' is the counted number of species in each sample plot. 'K ₁ ' and 'K ₂ ' are the intercept and slope of the relationship between H and DBH at plot level (unitless). 'AGB' is aboveground biomass (Mg ha ⁻¹) computed based on the relationship between DBH and H (AGB _h)
	Subsection 10. Comparison of species richness, Shannon-Wiener index and LAI with previous studies
	Table S10.1. Comparison of species richness (S _R) with previous studies. 36
	Table S10.2. Comparison of Shannon-Wiener index (S _H) with previous studies
110	Table S10.3. Comparing canopy leaf area index (LAI _C) and total leaf area index (LAI _T) of evergreen forests (EF) and regrowth forests (RF) with previous studies. Mean ± SD or SEM is a mean plus or minus a standard deviation or a standard error of a mean

Subsection 1. Characteristics of the forest inventory plots.

120

Table S1.1. Characteristics of the forest inventory plots in Phnom Kulen National Park. Data source: annual precipitation, annual average daily mean air temperature, annual average daily sum global radiation and annual average daily mean vapour pressure deficit from Kulen weather station data from April 10, 2022, to April 9, 2023. Soil type and geology data from Matschullat (2014). Disturbance history information is obtained from field observation, discussion with local people and combining with Global Forest Change dataset of Hansen et al. (2013) and LandTrendr Pixel Time Series Plotter tool of Kennedy et al. (2018).

Plot ID	Latitude, Longitude	Elevation (m) Slope (°)	Annual precipitation (mm year ⁻¹)	Annual average daily mean air Temperature (mean ± SD min – max; °C)	Annual average daily sum global radiation (mean ± SD min – max; kW m ⁻² day ⁻¹)	Annual average daily mean vapour pressure deficit (mean ± SD min – max; Pa)	Soil type	Geology	Disturbance history
EF1	N 13° 34' 12.4680" E 104° 7' 18.6096"	331, <5	2290.0	24.2 ± 2.0 17.78–28.6	16.5 ± 4.2 (3.6–25.2)	448.9 ± 211.1 (12.1–1069.4)	Acid Lithosols	Jurassic-Cretaceous sandstone	No clear-cut history; high wind disturbance and slight human disturbance in 2006, 2012, 2014. There are fewer large stands of trees, and the vegetation cover is less dense in comparison to EF2 and EF3.
EF2	N 13° 34' 25.3452" E 104° 7' 20.2872"	349, <5					Acid Lithosols	Jurassic-Cretaceous sandstone	No clear-cut history: wind disturbance history, slight human disturbance history included cutting leechee tree to harvest fruit. Most disturbances were 150 m around EF2 in 2004, 2006.
EF3	N 13° 34' 35.0508" E 104° 7' 20.6148"	339, <5					Acid Lithosols	Jurassic-Cretaceous sandstone	No clear-cut history; slight disturbances history mainly by the wind. Most of the disturbances were about 300 m around the plot in 2006, 2014, 2016. This plot has bigger stands compared to EF1 and EF2. The biggest stand found in the plot has DBH of 102 cm.
RF1	N 13° 33' 42.6132" E 104° 8' 1.2408"	331, <5					Red-yellow podzols	Jurassic-Cretaceous sandstone	Clear-cut in 2009; many disturbances history about 300 m to the east of RF1 in 2006, 2012, 2013.
RF2	N 13° 36' 15.6924" E 104° 7' 48.8928"	371, <5					Acid Lithosols	Jurassic-Cretaceous sandstone	Timber harvesting and burning experience from 2006; many disturbances history about 180 m

								to the west and east of RF2 in 2006, 2007, and 2010.
N	13° 37' 0.3612"	401, <5			A	Acid	Jurassic-Cretaceous	Timber harvesting and burning
Е	104° 7' 41.358"				I	Lithosols	sandstone	experience from 2006; many
								disturbances history about 600 m
								around RF3 in 2009, 2010, 2011
								and 2013.
N 13° 32' 18.8988" 429,	429,	<5			I	Red-yellow	Jurassic-Cretaceous	Latest clearing vegetations in
E 104° 12' 12.55	68"				F	podzols	sandstone	2013; many disturbances history
								about 300 m around CP1 in 2006,
			ĺ					2019.
N 13° 32' 29.3100" 422, <5	422, <5				l I	Red-yellow	Jurassic-Cretaceous	Latest clearing vegetations in
E 104° 12' 13.0284"					F	podzols	sandstone	2012; many disturbances history
								about 180m around CP2 in 2007,
<u> </u>			4					2009, 2013, 2019.
N 13° 32' 50.1864" 430, <5	430, <5				I	Red-yellow	Jurassic-Cretaceous	Latest clearing vegetations in
E 104° 12' 13.1544"					F	podzols	sandstone	2012; many disturbances history
								about 120 m around CP3 in 2007,
								2009, 2016, 2019,

Figure S1.1. Photographs of the forest inventory plots in Phnom Kulen National Park. (a), (b), and (c) are the evergreen forest plots at the south (EF1), middle (EF2), and north (EF3); (e), (f) and (g) are the regrowth forest plots at the south (RF1), middle (RF2), and north (RF3). (h), (j) and (k) are the cashew plantation plots at the south (CP1), middle (CP2), and north (CP3).

Figure S1.2. Design of forest inventory plots and sub-plots.

Table S1.2. Description of the decomposition level used to record lying and standing deadwood decomposition in this study. The proposed five-scale level of decomposition was modified based on a harmonizing scaling system between the Swedish National Forest Inventory (Swedish NFI, 2019) and the Cambodian National Forest Inventory (Than et al., 2018).

		Proposed in this study		Cambodian NFI		Swedish NFI
N.	Scale	Definition	Scale	Definition	Scale	Definition
1	1	Raw wood. E.g. recently <i>downed trees with green leaves</i> . Also trees with raw cambium when green leaves are missing.	1	Solid wood material	0	Raw wood. E.g. recently downed trees with green leaves. Also trees with raw cambium when green leaves are missing.
2	1.5	Hard dead wood. The stem volume consists of less than 10% soft wood (Decomposed part of stem compares to its original diameters) and a hard mantle area. Very little signs of decomposition of the stem.	1	Solid wood material	1	Hard dead wood. The stem volume consists of more than 90% hard wood and a hard mantel area. Very little signs of decomposition of the stem.
3	2	Somewhat decomposed wood. The volume of the stem consists of <i>10–25% soft wood</i> . Remaining stem consists of hard wood. A tool, e.g. an earth spike can be pushed through the mantle, but not through the entire sapwood.	2	Partially rotten wood material	2	Somewhat decomposed wood. The volume of the stem consists of 10–25% soft wood. The remaining stem consists of hard wood. A tool, e.g., an earth spike can be pushed through the mantel, but not through the entire sapwood.

4	2.5	Decomposed dead wood. The stem volume consists of 26–75% soft or very soft wood.	2	Partially rotten wood material	3	Decomposed dead wood. The stem volume consists of 26–75% soft or very soft wood.
5	3	Very decomposed dead wood. The stem volume consists of 76–100% soft or very soft wood. A tool, e.g. an earth spike can be pushed through the entire stem. However, a hard core can exist.	3	Fully or partially rotten wood material	4	Very decomposed dead wood. The stem volume consists of 76–100% soft or very soft wood. A tool, e.g. an earth spike can be pushed through the entire stem. However, a hard core can exist.

Subsection 2. Meteorological station in Phnom Kulen National Park.

145

Figure S2.1. The diagram depicts the installation configuration of weather and photosynthetically active radiation (*PAR*) sensors at the Kulen Station. The weather sensor was installed at a height of 2.2 m above the ground, while the *PAR* sensors were placed at a height of 2 m above the ground.

150	Table S2.1. Descriptive statistics of weather parameters at Kulen meteorological station from April 10, 2022, to April 9, 2023, based on 15-minute timestep
	data.

Parameters	n	Mean	SD	Median	Min	Max	Sum
Global Radiation (W m ⁻²)	35032	172.36	250.36	2.50	0.00	1065.60	6038158.00
Air Temperature °C)	35032	24.22	4.16	23.80	10.50	37.00	848479.00
Precipitation (mm)	35032	0.07	0.69	0.00	0.00	24.82	2290.03
Max Precipitation Rate (mm h ⁻¹)	35032	0.65	5.75	0.00	0.00	147.90	22924.10
Wind Direction (°)	34602	196.84	91.06	219.00	0.00	359.00	6811055.00
Wind Speed (m s ⁻¹)	34602	0.68	0.44	0.58	0.03	4.91	23416.40
Gust Speed (m s ⁻¹)	34602	1.71	1.27	1.38	0.07	10.95	59123.04
Relative Humidity (%)	35032	87.73	11.82	92.40	38.00	100.70	3073211.20
RH Sensor Temp (°C)	35032	25.01	5.24	23.80	10.10	40.00	876038.60

Atmospheric Pressure (kPa)	35032	97.47	0.28	97.46	96.50	98.44	3414504.80
VPD (kPa)	34602	0.45	0.51	0.22	0.00	3.11	15535.38
Reference Pressure (kPa)	35034	97.32	0.28	97.31	96.35	98.29	3409502.75
Lightning Activity (count)	35032	0.14	2.59	0.00	0.00	232.00	4935.00
Lightning Distance (km)	35032	0.29	2.30	0.00	0.00	37.00	10330.00

Figure S2.2. Monthly meteorological conditions at Kulen meteorological station from April 10, 2022, to April 9, 2023. (a) Monthly average air temperature (°C); (b) Monthly total precipitation (mm); (c) Monthly total global radiation (W m⁻²); (d) Monthly average relative humidity (%); (e) Monthly average wind speed (m s⁻¹). The error bars in (a), (d), and (e) represent the 95% confidence interval (using standard deviation) from the monthly mean. The data were computed based on 15-minute timestep measurements.

Figure S3.1. Monthly mean soil temperature (°C) for different land-cover classes from April 10, 2022, to April 9, 2023. The mean values were calculated by averaging the data from two representative plots for each land-cover class. Soil sensors were installed 0.2 m below the ground.

Figure S3.2. Monthly mean water content (m³ m⁻³) for different land-cover classes from April 10, 2022, to April 9, 2023. The mean values were calculated by averaging the data from two representative plots for each land-cover class. Soil sensors were installed 0.2 m below the ground.

Figure S3.3. Monthly mean soil saturation extraction electrical conductivity (mS cm⁻¹) for different land-cover classes from April 10, 2022, to April 9, 2023.
 The mean values were calculated by averaging the data from two representative plots for each land-cover class. Soil sensors were installed 0.2 m below the ground.

Sum prec.	Air temp.	swcM.EF	swcM.RF	swcM.CP	stempM.EF	stempM.RF	stempM.CP	secM.EF	secM.RF	secM.CP	
0.3 - 0.2 - 0.1 - 0.0 -	Corr: 0.017	Corr: 0.396***	Corr: 0.381***	Corr: 0.389***	Corr: 0.178***	Corr: 0.170**	Corr: 0.058	Corr: 0.008	Corr: 0.320*	Corr: 0.126*	Sum prec.
27.5 - 25.0 - 22.5 - 20.0 - 17.5 -	$ \land$	Corr: 0.286***	Corr: 0.235***	Corr: 0.209***	Corr: 0.890***	Corr: 0.906***	Corr: 0.898***	Corr: 0.018	Corr: -0.105	Corr: -0.243***	Air temp.
0.30 - 0.25 - 0.20 - 0.15 -		$\sim \sim$	Corr: 0.960***	Corr: 0.950***	Corr: 0.469***	Corr: 0.392***	Corr: 0.160**	Corr: -0.243***	Corr: -0.052	Corr: 0.241***	swcM.EF
0.20 - 3			\sim	Corr: 0.927***	Corr: 0.393***	Corr: 0.321***	Corr: 0.103.	Corr: -0.188**	Corr: -0.066	Corr: 0.377***	swcM.RF
0.30 - 0.25 - 0.20 - 0.15 -	<u></u>		1	\sim	Corr: 0.398***	Corr: 0.318***	Corr: 0.068	Corr: -0.385***	Corr: -0.283.	Corr: 0.377***	swcM.CP
26 - 25 - 25 - 24 - 23 - 22 - 22 - 22 - 22 - 22 - 22	/	L.			\square	Corr: 0.991***	Corr: 0.921***	Corr: 0.058	Corr: -0.152	Corr: -0.250***	stempM.EF
26 - 24 - 22 -	X	4		H.	/	\frown	Corr: 0.952***	Corr: 0.073	Corr: -0.116	Corr: -0.255***	stempM.RF
28 - 26 - 24 -	1						\bigwedge	Corr: 0.165**	Corr: -0.058	Corr: -0.277***	stempM.CP
0.10 - 0.08 - 0.06 -		<u>Lines</u>	Alexandre -					\bigwedge	Corr: 0.587***	Corr: 0.006	secM.EF
0.08 -	-	-			100			/	A	Corr: -0.085	secM.RF
0.035 - 0.030 - 0.025 -			Constant -	-	A STATE	and the second s	A CONTRACT			\bigwedge	secM.CP
0.04 - 0.02 - 0.035 - 0.025 - 0.035 - 0.025 -	17.5 200 22.5 25.0 27.5						22 24 26 28			Corr: -0.085	

180 Subsection 4. Correlation matrix meteorological and soil conditions.

Figure S4.1. Correlation between daily sum precipitation ('Sum prec.'; mm), daily mean air temperature ('Air temp.'; °C), daily mean soil temperatures ('stemM'; °C), daily mean soil water content ('swcM'; m³ m⁻³), daily mean soil saturation extraction electrical conductivity ('secM'; mS cm⁻¹) at Kulen from April 10, 2022, to April 9, 2023. The suffixes 'EF', 'RF', and 'CP' represent evergreen forests, regrowth forests, and cashew plantations. The precipitation and air temperature data were measured at Kulen's meteorological station (see Fig. 1); meanwhile, the soil data were the average of two measured plots in each land-cover class.

Subsection 5. Species diversity.

190

Table S5.1. Percentage of shared species among land-cover classes in the nine-forest inventory plot. The "Count" column indicates the total number of species observed in each land-cover class, whereas the "Sum" column indicates the total number of species recorded in each land-cover class. The "Shared%" column indicates the proportion of each species found in each land-cover class. Within each land-cover class, the "Cumulative Sum%" column displays the cumulative sum percentage, which accumulates from the highest to the lowest percentage of shared species.

							Cumulative
Ν	Forest type	Species	Family	Count	Sum	Shared %	sum %
1	Evergreen forest	Mesua ferrea	Calophyllaceae	18	136	13.24	13.24
2	Evergreen forest	Diospyros bejaudii	Ebenaceae	12	136	8.82	22.06
3	Evergreen forest	Litchi chinensis	Sapindaceae	11	136	8.09	30.15
4	Evergreen forest	Vatica odorata	Dipterocarpaceae	11	136	8.09	38.24
5	Evergreen forest	Hydnocarpus annamensis	Achariaceae	8	136	5.88	44.12
6	Evergreen forest	Memecylon acuminatum war. Tenuis	Melastomataceae	8	136	5.88	50.00
7	Evergreen forest	Polyalthia cerasoides	Annonaceae	7	136	5.15	55.15
8	Evergreen forest	Homalium tomentosum	Salicaceae	6	136	4.41	59.56
9	Evergreen forest	Maclura cochinchinensis	Moraceae	6	136	4.41	63.97
10	Evergreen forest	Limonia acidissima	Rutaceae	5	136	3.68	67.65
11	Evergreen forest	Melodorum fruticosum	Annonaceae	5	136	3.68	71.32
12	Evergreen forest	Sandoricum indicum	Meliaceae	5	136	3.68	75.00
13	Evergreen forest	Nageia wallichiana	Podocarpaceae	4	136	2.94	77.94
14	Evergreen forest	Artocarpus chama	Moraceae	3	136	2.21	80.15
15	Evergreen forest	Croton joufra	Euphorbiaceae	3	136	2.21	82.35
16	Evergreen forest	Nephelium hypoleucum	Sapindaceae	3	136	2.21	84.56
17	Evergreen forest	Syzygium lineatum	Myrtaceae	2	136	1.47	86.03
18	Evergreen forest	Unknown_2	Unknown_2	2	136	1.47	87.50
19	Evergreen forest	Agave sisalana	Asparagaceae	1	136	0.74	88.24
20	Evergreen forest	Anamirta cocculus	Menispermaceae	1	136	0.74	88.97
21	Evergreen forest	Apostasia wallichii	Orchidaceae	1	136	0.74	89.71
22	Evergreen forest	Baccaurea ramiflora	Phyllanthaceae	1	136	0.74	90.44
23	Evergreen forest	Calamus viminalis	Arecaceae	1	136	0.74	91.18
24	Evergreen forest	Capparis micracantha	Capparaceae	1	136	0.74	91.91
25	Evergreen forest	Catunaregam tomentosa	Rubiaceae	1	136	0.74	92.65
26	Evergreen forest	Cyperus elatus	Cyperaceae	1	136	0.74	93.38
27	Evergreen forest	Desmodium heterocarpon	Fabaceae	1	136	0.74	94.12
28	Evergreen forest	Dipterocarpus costatus	Dipterocarpaceae	1	136	0.74	94.85
29	Evergreen forest	Garcinia oliveri	Clusiaceae	1	136	0.74	95.59
30	Evergreen forest	Madhuca elliptica	Sapotaceae	1	136	0.74	96.32
31	Evergreen forest	Mitrephora vandaeflora	Annonaceae	1	136	0.74	97.06
32	Evergreen forest	Strychnos axillaris	Loganiaceae	1	136	0.74	97.79
33	Evergreen forest	Strychnos nux-vomica	Loganiaceae	1	136	0.74	98.53

34	Evergreen forest	Unknown_3	Unknown_3	1	136	0.74	99.26
35	Evergreen forest	Xanthophyllum glaucum	Polygalaceae	1	136	0.74	100.00
36	Regrowth forest	Vatica odorata	Dipterocarpaceae	54	168	32.14	32.14
37	Regrowth forest	Nephelium hypoleucum	Sapindaceae	14	168	8.33	40.48
38	Regrowth forest	Benkara fasciculata	Rubiaceae	12	168	7.14	47.62
39	Regrowth forest	Garcinia oliveri	Clusiaceae	12	168	7.14	54.76
40	Regrowth forest	Unknown_4	Unknown_4	6	168	3.57	58.33
41	Regrowth forest	Capparis micracantha	Capparaceae	5	168	2.98	61.31
42	Regrowth forest	Limonia acidissima	Rutaceae	5	168	2.98	64.29
43	Regrowth forest	Mesua ferrea	Calophyllaceae	5	168	2.98	67.26
44	Regrowth forest	Pterospermum grewiifolium	Malvaceae	5	168	2.98	70.24
45	Regrowth forest	Syzygium formosanum	Myrtaceae	5	168	2.98	73.21
46	Regrowth forest	Melodorum fruticosum	Annonaceae	4	168	2.38	75.60
47	Regrowth forest	Peltophorum dasyrrhachis	Fabaceae	4	168	2.38	77.98
48	Regrowth forest	Polyalthia cerasoides	Annonaceae	4	168	2.38	80.36
49	Regrowth forest	Maclura cochinchinensis	Moraceae	3	168	1.79	82.14
50	Regrowth forest	Memecylon acuminatum war. Tenuis	Melastomataceae	3	168	1.79	83.93
51	Regrowth forest	Artocarpus chama	Moraceae	2	168	1.19	85.12
52	Regrowth forest	Dalbergia cochinchinensis	Fabaceae	2	168	1.19	86.31
53	Regrowth forest	Diospyros bejaudii	Ebenaceae	2	168	1.19	87.50
54	Regrowth forest	Fagraea fragrans	Gentianaceae	2	168	1.19	88.69
55	Regrowth forest	Oroxylum indicum	Bignoniaceae	2	168	1.19	89.88
56	Regrowth forest	Psychotria revesii	Rubiaceae	2	168	1.19	91.07
57	Regrowth forest	Terrninalia catappa	Combretaceae	2	168	1.19	92.26
58	Regrowth forest	Unknown_3	Unknown_3	2	168	1.19	93.45
59	Regrowth forest	Willughbeia edulis	Apocynaceae	2	168	1.19	94.64
60	Regrowth forest	Apostasia wallichii	Orchidaceae	1	168	0.60	95.24
61	Regrowth forest	Catunaregam tomentosa	Rubiaceae	1	168	0.60	95.83
62	Regrowth forest	Dialium cochinchinense	Fabaceae	1	168	0.60	96.43
63	Regrowth forest	Diospyros sp.	Ebenaceae	1	168	0.60	97.02
64	Regrowth forest	Diospyros undulata	Ebenaceae	1	168	0.60	97.62
65	Regrowth forest	Madhuca elliptica	Sapotaceae	1	168	0.60	98.21
66	Regrowth forest	Miliusa mollis	Annonaceae	1	168	0.60	98.81
67	Regrowth forest	Unknown_2	Unknown_2	1	168	0.60	99.40
68	Regrowth forest	Unknown_5	Unknown_5	1	168	0.60	100.00
69	Plantation	Anacardium occidentale	Anacardiaceae	46	63	73.02	73.02
70	Plantation	Strychnos axillaris	Loganiaceae	3	63	4.76	77.78
71	Plantation	Euphorbia hirta	Euphorbiaceae	2	63	3.17	80.95
72	Plantation	Scleria levis	Cyperaceae	2	63	3.17	84.13
73	Plantation	Catunaregam tomentosa	Rubiaceae	1	63	1.59	85.71
74	Plantation	Diospyros bejaudii	Ebenaceae	1	63	1.59	87.30
75	Plantation	Echinochloa crus-galli	Poaceae	1	63	1.59	88.89
76	Plantation	Gardenia philastrei	Rubiaceae	1	63	1.59	90.48

77	Plantation	Heterosmilax paniculata	Smilacaceae	1	63	1.59	92.06
78	Plantation	Imperata cylindrica	Poaceae	1	63	1.59	93.65
79 !	Plantation	Maclura cochinchinensis	Moraceae	1	63	1.59	95.24
80 !	Plantation	Melodorum fruticosum	Annonaceae	1	63	1.59	96.83
81 !	Plantation	Nephelium hypoleucum	Sapindaceae	1	63	1.59	98.41
82	Plantation	Unknown_1	Unknown_1	1	63	1.59	100.00

Table S5.2. Species richness (S_R) and Shannon-Wiener index (S_H) across nine forest inventory plots in Kulen, Cambodia.

				S _R (excluded seedling	
N.	Forest type	Plot ID	S _R (included seedling species)	species)	Sh
1	Plantation	CP1	8	1	1.14
2	Plantation	CP2	2	1	0.31
3	Plantation	CP3	3	1	0.39
4	Evergreen forest	EF1	20	15	2.68
5	Evergreen forest	EF2	18	14	2.66
6	Evergreen forest	EF3	12	11	2.11
7	Regrowth forest	RF1	12	9	2.11
8	Regrowth forest	RF2	16	13	2.33
9	Regrowth forest	RF3	12	8	1.47

Subsection 6. Functional diversity of different land covers and plots.

205

Table S6.1. Summary of the leaf traits, including leaf dry weight, leaf area, leaf length, specific leaf area (*SLA*, $m^2 kg^{-1}$), chlorophyll a and b content (*Chl*, $mg g^{-1}$), and leaf dry matter content (*LDMC*, $mg g^{-1}$), obtained from 30 plant woody species found in the Kulen inventory list. The table displays the number of species collected (n), the mean value, standard deviation (SD.), median, minimum (min.), and maximum (max.) value for each trait.

Statistics	Leaf dry weight (g)	Leaf length (cm)	Leaf area (cm ²)	$\frac{SLA}{(m^2 kg^{-1})}$	$Chl (mg g^{-1})$	$\frac{LDMC}{(mg g^{-1})}$
n	30	30	30	30	30	30
Mean	0.52	16.51	80.96	16.97	10.28	378.96
SD	0.34	5.29	52.64	5.30	4.17	143.26
Min	0.06	5.46	10.66	10.46	4.86	139.92
Max	1.36	29.13	207.41	36.67	25.75	1000.00

210 **Table S6.2.** The mean and standard deviation values (SD) of leaf chlorophyll content (SPAD-value), leaf fresh weight (g), leaf dry weight (g), leaf length area (cm), leaf area (cm²), specific leaf area (*SLA*, m² kg⁻¹), chlorophyll a and b content (*Chl*, mg g⁻¹), and leaf dry matter content (*LDMC*, mg g⁻¹) by species. The data included all 30 plant woody species from inventory data species which was used to compute the community weighted mean for *SLA*, *Chl* and *LDMC*. 'n' is the total number of sample leaves per species. * Standard deviation values include both the standard deviation of five-time measurements per leaf and the standard deviation of the total number of leaves sampled per species.

					Fresh w	veight	Dry we	ight	Leaf ler	ıgth								
N.	Species	n	Chl (SP	AD)	(g)		(g)	-	(cm)	-	Leaf area	(cm^2)	SLA (m ²	² kg ⁻¹)	Chl (mg	g g ⁻¹)	LDMC (m	g g ⁻¹)
	•		Mean	SD^*	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1	Anacardium occidentale	41	39.90	8.92	2.30	0.47	0.98	0.93	14.40	3.14	87.68	35.39	11.24	11.66	4.86	4.93	418.74	85.40
2	Artocarpus chama	7	53.18	1.44	3.37	0.58	1.18	1.67	24.26	6.10	205.30	91.55	17.80	1.19	11.59	0.89	349.38	5.67
3	Benkara fasciculata	6	49.85	3.95	0.84	0.03	0.26	0.11	13.15	1.40	43.01	7.28	16.88	3.25	9.81	1.05	307.68	42.01
4	Capparis micracantha	7	67.28	5.36	2.27	0.58	1.00	1.33	21.38	6.37	99.46	53.04	10.46	3.28	10.24	4.03	466.84	106.60
5	Catunaregam tomentosa	6	43.10	1.86	0.94	0.13	0.38	0.31	13.40	1.80	52.36	11.39	14.20	2.16	6.77	1.02	408.44	37.96
6	Croton joufra	11	57.24	7.32	5.69	0.28	1.36	2.08	29.13	7.37	207.41	70.31	15.12	3.55	10.90	1.97	253.77	50.08
7	Dalbergia cochinchinensis	6	53.60	1.46	0.18	0.01	0.06	0.03	5.46	0.55	10.66	1.43	16.91	1.84	11.14	1.21	361.10	35.60
8	Diospyros bejaudii	31	49.76	2.69	1.57	0.22	0.64	0.59	17.47	2.14	85.60	23.29	13.98	2.41	8.28	2.37	413.86	50.61
9	Diospyros undulata	6	68.08	4.46	1.29	0.17	0.46	0.30	18.67	1.72	73.16	14.03	16.59	2.59	16.42	3.25	349.97	44.30
10	Dipterocarpus costatus	6	53.81	2.49	1.88	0.40	0.84	0.78	21.38	3.41	140.34	60.04	17.25	2.90	11.32	0.98	438.84	44.24
11	Fagraea fragrans	6	55.54	2.50	1.10	0.06	0.26	0.14	12.65	0.95	44.06	3.66	17.46	3.48	12.07	1.72	234.69	27.28
12	Garcinia oliveri	22	50.61	2.46	2.70	0.28	0.55	1.36	17.57	5.09	85.01	39.81	15.95	2.74	9.71	2.95	206.89	36.16
13	Homalium tomentosum	11	52.31	1.44	0.58	0.06	0.20	0.17	13.71	2.60	50.63	13.77	25.05	1.82	16.05	3.51	351.46	18.33
14	Hydnocarpus annamensis	7	55.55	1.91	1.90	0.06	0.26	0.44	20.50	2.01	95.23	19.94	36.67	5.20	25.75	5.28	139.92	20.19
15	Limonia acidissima	10	49.50	2.25	2.46	0.51	1.03	1.37	23.14	2.32	120.12	51.84	12.12	2.17	7.02	0.90	433.31	60.40
16	Litchi chinensis	22	36.56	1.63	1.09	0.15	0.39	0.30	16.70	2.62	65.26	17.63	18.64	5.44	6.79	4.00	351.61	95.93
17	Maclura cochinchinensis	5	51.44	5.62	0.51	0.03	0.17	0.10	10.17	0.53	22.75	4.47	13.18	2.31	8.13	1.67	348.52	62.06

18	Melodorum fruticosum	41	53.46	3.84	0.46	0.07	0.20	0.12	11.83	2.42	30.93	6.26	16.19	3.87	10.85	3.82	433.44	66.60
19	Memecylon acuminatum war. Tenuis	12	54.66	2.15	0.97	0.07	0.36	0.19	12.44	1.52	42.90	9.86	11.99	1.67	8.10	1.11	369.01	35.35
20	Mesua ferrea	12	49.79	1.44	0.77	0.08	0.38	0.14	16.39	1.78	53.86	6.98	14.70	2.49	8.70	1.81	486.90	25.03
21	Nageia wallichiana	7	52.94	3.60	2.58	0.46	0.85	1.04	25.10	5.15	162.10	57.70	26.24	24.27	16.21	13.30	339.01	118.87
22	Nephelium hypoleucum	47	44.86	4.66	1.09	0.15	0.52	0.30	17.68	2.31	75.35	18.66	14.88	3.66	7.42	1.86	479.23	44.06
23	Oroxylum indicum	33	44.32	4.02	1.48	0.20	0.52	0.91	17.13	3.01	81.28	31.30	15.67	3.77	8.28	5.37	393.85	87.75
24	Peltophorum dasyrrhachis	8	38.06	5.91	0.45	0.04	0.16	0.12	8.78	1.95	24.72	6.99	15.68	1.46	6.32	1.25	354.31	35.66
25	Polyalthia cerasoides	6	53.08	2.12	0.80	0.04	0.30	0.11	14.38	1.76	54.51	9.87	18.45	2.45	11.94	1.47	368.80	21.78
26	Pterospermum grewiifolium	7	49.77	8.59	0.30	0.13	0.30	0.13	11.65	2.88	39.04	16.02	13.06	1.49	7.66	0.66	1000.00	0.00
27	Sandoricum indicum	20	48.03	3.54	1.85	0.20	0.43	0.68	16.68	3.11	96.25	37.23	24.52	7.76	13.46	3.85	226.84	30.43
28	Syzygium lineatum	7	48.16	1.98	0.36	0.05	0.15	0.12	10.97	1.26	20.64	6.21	14.31	1.09	8.01	0.84	407.93	19.94
29	Terrninalia catappa	16	35.18	2.12	3.64	0.73	0.90	3.40	22.43	10.06	177.10	143.60	19.80	3.27	7.11	1.71	292.53	89.40
30	Vatica odorata	27	46.08	2.27	1.66	0.30	0.62	0.75	16.77	3.52	81.99	29.15	14.11	3.05	7.53	2.59	382.09	65.49

Table S6.3. The values of specific leaf area (*SLA*, $m^2 kg^{-1}$), chlorophyll a and b content (*Chl*, $mg g^{-1}$), and leaf dry matter content (*LDMC*, $mg g^{-1}$) by species and inventory plots. The samples were collected from cashew plantations (CP), regrowth forests (RF), evergreen forests (EF), and the areas within 500 m of EF and RF plots (EF123 and RF123). In the *SLA*, *Chl*, and *LDMC* columns, 'n' = the number of leaf samples, 'Mean' = the mean value, and 'SD' = the standard deviation value.

N.	n.	Species name	Plot ID	Land		SLA (m ² l	(g ⁻¹)		Chl (mg	g-1)		LDMC (mg	g g ⁻¹)
	Species			cover	n	Mean	SD	n	Mean	SD	n	Mean	SD
1	1	Anacardium occidentale	CP3	СР	5	13.57	0.59	5	5.64	0.67	5	418.74	-
2		Anacardium occidentale	CP2	СР	31	11.00	13.41	31	4.86	5.67	31	425.96	96.17
3		Anacardium occidentale	CP1	CP	5	10.41	1.64	5	4.09	0.69	5	373.98	25.55
4	2	Artocarpus chama	RF123	RF	7	17.80	1.19	7	11.59	0.89	7	349.38	5.67
5	3	Benkara fasciculata	RF123	RF	6	16.88	3.25	6	9.81	1.05	6	307.68	42.01
6	4	Capparis micracantha	RF123	RF	7	10.46	3.28	7	10.24	4.03	7	466.84	106.6
7	5	Catunaregam tomentosa	RF123	RF	6	14.2	2.16	6	6.77	1.02	6	408.44	37.96
8	6	Croton joufra	EF123	EF	6	17.75	2.61	6	11.92	1.97	6	216.06	34.33
9		Croton joufra	RF1	RF	5	11.97	0.38	5	9.67	1.18	5	299.02	10.19
10	7	Dalbergia cochinchinensis	RF123	RF	6	16.91	1.84	6	11.14	1.21	6	361.10	35.60
11	8	Diospyros bejaudii	CP3	CP	5	16.55	0.67	5	6.92	0.50	5	343.45	13.95
12		Diospyros bejaudii	CP1	CP	5	13.26	0.83	5	5.59	0.59	5	399.38	12.20
13		Diospyros bejaudii	EF123	EF	6	12.06	2.01	6	10.14	1.80	6	381.04	30.08
14		Diospyros bejaudii	EF1	EF	5	15.41	2.35	5	11.99	0.82	5	439.67	33.15
15		Diospyros bejaudii	EF3	EF	5	15.48	1.91	5	7.17	0.49	5	464.02	40.13
16		Diospyros bejaudii	RF2	RF	5	11.51	0.81	5	7.51	0.78	5	462.16	7.51
17		Diospyros undulata	RF123	RF	6	16.59	2.59	6	16.42	3.25	6	349.97	44.30
18	9	Dipterocarpus costatus	EF123	EF	6	17.25	2.9	6	11.32	0.98	6	438.84	44.24
19	10	Fagraea fragrans	RF123	RF	6	17.46	3.48	6	12.07	1.72	6	234.69	27.28
20	11	Garcinia oliveri	EF123	EF	6	16.81	3.11	6	14.09	1.35	6	200.37	30.13

21		Garcinia oliveri	EF2	EF	6	15.68	2.88	6	7.23	0.98	6	195.56	45.47
22		Garcinia oliveri	RF3	RF	5	13.22	0.83	5	8.7	0.84	5	249.73	3.73
23		Garcinia oliveri	RF2	RF	5	17.97	0.88	5	8.43	0.48	5	185.48	2.97
24	12	Grewwia eriocarpa	CP3	CP	5	21.31	1.55	5	8.65	1.10	5	434.07	16.09
25		Grewwia eriocarpa	CP1	CP	5	21.29	3.53	5	8.03	3.11	5	350.33	56.80
26	13	Homalium tomentosum	EF123	EF	6	23.94	1.72	6	19.01	0.95	6	353.50	25.47
27		Homalium tomentosum	EF3	EF	5	26.37	0.74	5	12.49	0.80	5	349.00	3.92
28	14	Hydnocarpus annamensis	EF123	EF	7	36.67	5.20	7	25.75	5.28	7	139.92	20.19
29	15	Limonia acidissima	EF123	EF	5	12.47	3.18	5	7.51	1.04	5	387.64	53.86
30		Limonia acidissima	RF1	RF	5	11.76	0.46	5	6.53	0.34	5	478.99	9.62
31	16	Litchi chinensis	EF123	EF	6	16.66	1.57	6	11.38	0.98	6	403.99	23.37
32		Litchi chinensis	EF2	EF	11	18.99	7.46	11	4.82	3.93	11	329.54	128.98
33		Litchi chinensis	EF3	EF	5	20.24	1.92	5	5.61	0.33	5	337.30	18.28
34	17	Maclura cochinchinensis	EF123	EF	5	13.18	2.31	5	8.13	1.67	5	348.52	62.06
35	18	Melodorum fruticosum	CP2	CP	6	11.43	0.45	6	8.34	0.59	6	515.98	34.46
36		Melodorum fruticosum	CP1	CP	5	18.33	0.83	5	9.83	0.99	5	395.68	22.36
37		Melodorum fruticosum	EF123	EF	7	22.10	4.34	7	18.51	1.37	7	340.58	48.96
38		Melodorum fruticosum	EF1	EF	5	16.13	1.00	5	11.09	0.51	5	484.77	17.11
39		Melodorum fruticosum	RF3	RF	5	15.52	0.47	5	10.99	0.57	5	453.48	13.36
40		Melodorum fruticosum	RF2	RF	5	15.54	0.99	5	7.99	0.71	5	429.33	22.99
41		Melodorum fruticosum	RF1	RF	8	14.10	2.06	8	8.21	1.36	8	434.35	62.65
42	19	Memecylon acuminatum war. Tenuis	EF123	EF	6	10.95	1.11	6	7.93	0.72	6	395.39	14.90
43	-	Memecylon acuminatum war. Tenuis	RF123	RF	6	13.04	1.50	6	8.27	1.46	6	342.62	29.26
44	20	Mesua ferrea	EF123	EF	6	16.88	0.83	6	10.32	0.65	6	469.12	22.85
45		Mesua ferrea	RF123	RF	6	12.52	1.27	6	7.09	0.73	6	504.67	9.88
46	21	Nageia wallichiana	EF123	EF	7	26.24	24.27	7	16.21	13.3	7	339.01	118.87
47	22	Nephelium hypoleucum	CP3	CP	5	18.41	0.38	5	5.12	0.34	5	411.34	11.67
48		Nephelium hypoleucum	CP1	CP	5	19.98	7.96	5	5.46	2.91	5	430.97	15.52
49		Nephelium hypoleucum	EF123	EF	6	11.27	0.41	6	7.38	0.59	6	428.69	14.52
50		Nephelium hypoleucum	EF1	EF	5	16.17	0.44	5	9.5	0.19	5	482.58	10.55
51		Nephelium hypoleucum	EF2	EF	7	13.90	0.30	7	9.28	0.18	7	526.93	10.77
52		Nephelium hypoleucum	RF3	RF	5	15.74	0.35	5	7.15	0.44	5	513.55	6.59
53		Nephelium hypoleucum	RF2	RF	5	12.87	0.63	5	6.11	0.51	5	513.43	13.64
54		Nephelium hypoleucum	RF1	RF	9	13.19	1.68	9	8.09	1.44	9	500.44	19.05
55	23	Oroxylum indicum	CP3	CP	5	15.49	0.95	5	8.60	0.21	5	374.16	8.49
56		Oroxylum indicum	EF3	EF	5	16.67	2.03	5	7.98	0.35	5	445.55	37.63
57		Oroxylum indicum	RF123	RF	6	17.96	8.59	6	14.85	10.57	6	243.30	71.14
58		Oroxylum indicum	RF3	RF	5	15.63	0.44	5	7.03	0.50	5	453.21	25.47
59		Oroxylum indicum	RF2	RF	5	14.22	0.60	5	5.62	0.23	5	440.95	6.76
60		Oroxylum indicum	RF1	RF	7	14.18	0.41	7	5.43	0.73	7	423.99	65.82
61	24	Peltophorum dasyrrhachis	RF1	RF	8	15.68	1.46	8	6.32	1.25	8	354.31	35.66
62	25	Polyalthia cerasoides	RF123	RF	6	18.45	2.45	6	11.94	1.47	6	368.80	21.78
63	26	Pterospermum grewiifolium	RF1	RF	7	13.06	1.49	7	7.66	0.66	7	1000.00	_

64	27	Sandoricum indicum	EF1	EF	5	31.64	1.68	5	16.81	2.31	5	213.03	14.49
65		Sandoricum indicum	EF2	EF	5	16.63	0.59	5	9.02	1.73	5	217.81	10.60
66		Sandoricum indicum	EF3	EF	5	31.47	5.18	5	16.28	2.97	5	207.61	31.50
67		Sandoricum indicum	RF1	RF	5	18.35	2.69	5	11.72	0.91	5	268.89	8.41
68	28	Syzygium lineatum	EF123	EF	7	14.31	1.09	7	8.01	0.84	7	407.93	19.94
69	29	Terrninalia catappa	CP3	CP	5	16.37	1.06	5	7.04	0.96	5	415.86	15.47
70		Terrninalia catappa	CP1	CP	5	22.61	2.81	5	5.36	0.61	5	249.75	34.40
71		Terrninalia catappa	RF123	RF	6	20.32	2.20	6	8.62	1.39	6	225.40	19.70
72	30	Vatica odorata	EF123	EF	6	11.96	2.79	6	6.77	2.40	6	406.42	77.64
73		Vatica odorata	EF1	EF	5	13.40	2.06	5	6.45	1.13	5	411.82	49.31
74		Vatica odorata	EF2	EF	6	15.63	1.15	6	11.44	1.53	6	301.63	46.41
75		Vatica odorata	RF3	RF	5	17.42	3.80	5	7.00	0.50	5	395.15	48.59
76		Vatica odorata	RF2	RF	5	12.28	1.29	5	5.36	0.67	5	406.63	13.84

Table S6.4. Woody species trait value sources and their shared percentages by plot of the data used to compute community weighted mean (CWM). In the
column "Trait data source", the value "Plot" is species trait values derived directly from the species collected in its plot, "LC" value is species trait values
obtained from its land-cover class when the trait species was not collected in its plot, and "Pool" value is trait values obtained from other land covers in Kulen;
The column "Count" indicates the shared number of tree stands in the plot; "Total" is the total number of trees in the plot; and "Shared %" is the shared
percentage of trees with different trait sources. "n. missing species" column is the number of missing species in each plot; the "Species" column contains the
missing species in each plot. Seedlings were not included in this figure as they do not have DBH records and are not used in community weighted-mean
calculations.

2	2	n
	Э	υ

	_	Plot	Trait	I	Tree stan	ds		Missing tree species
N.	Forest type	ID	data source	Count	Total	Shared %	n. missing species	Species
1	Evergreen forest	EF1	Plot	17	38	44.74	NA	NA
2	Evergreen forest	EF1	LC	16	38	42.11	NA	NA
3	Evergreen forest	EF1	Pool	5	38	13.16	NA	NA
4	Evergreen forest	EF2	Plot	12	38	31.58	NA	NA
5	Evergreen forest	EF2	LC	24	38	63.16	NA	NA
6	Evergreen forest	EF2	Pool	1	38	2.63	NA	NA
7	Evergreen forest	EF2	Missing	1	38	2.63	1	Agave sisalana
8	Evergreen forest	EF3	Plot	13	33	39.39	NA	NA
9	Evergreen forest	EF3	LC	14	33	42.42	NA	NA
10	Evergreen forest	EF3	Pool	6	33	18.18	NA	NA
11	Regrowth forest	RF1	Plot	11	27	40.74	NA	NA
12	Regrowth forest	RF1	LC	15	27	55.56	NA	NA
13	Regrowth forest	RF1	Pool	1	27	3.70	NA	NA
14	Regrowth forest	RF2	Plot	34	58	58.62	NA	NA
15	Regrowth forest	RF2	LC	22	58	37.93	NA	NA
16	Regrowth forest	RF2	Pool	1	58	1.72	NA	NA

17	Regrowth forest	RF2	Missing	1	58	1.72	1	Dialium cochinchinense
18	Regrowth forest	RF3	Plot	38	52	73.08	NA	NA
19	Regrowth forest	RF3	LC	8	52	15.38	NA	NA
20	Regrowth forest	RF3	Missing	6	52	11.54	2	Syzygium formosanum, Madhuca elliptica
21	Plantation	CP1	Plot	18	18	100.00	NA	NA
22	Plantation	CP2	Plot	10	10	100.00	NA	NA
23	Plantation	CP3	Plot	18	18	100.00	NA	NA

Figure S7.1. The frequency distributions of tree diameters at the breast height (*DBH*, cm) and height (*H*, m) across different plots. The plot labels "EF", "RF", and "CP" correspond to "evergreen forests", "regrowth forests" and "cashew plantations" respectively.

Table S7.1. Ordinary least square regression statistical table of between diameter at breast height ln(*DBH*) (cm) and height ln(*H*) (m) for evergreen forests (EF), regrowth forests (RF), and cashew plantations (CP) in Kulen.

	EF by(H)								RF In(H)										
Predictors	р	t value	Estimates	standardized std. Error	std. Error	std. Beta	р	t value	Estimates	standardized std. Error	std. Error	std. Beta	р	t value	Estimates	standardized std. Error	std. Error	std. Beta	
(Intercept)	< 0.001	16.53	0.85	0.02	0.05	0.18	< 0.001	14.66	0.80	0.03	0.05	0.37	< 0.001	7.03	0.94	0.09	0.13	0.81	
ln(DBH)	< 0.001	35.71	0.72	0.04	0.02	0.94	< 0.001	21.70	0.70	0.04	0.03	0.81	< 0.001	6.72	0.35	0.09	0.05	0.53	
Observations	109							137						46					
R^2 / R^2 adjusted 0.92 / 0.92							0.78 / 0.78					0.51 / 0.50							

Figure S7.2. Relationship between diameter at breast height $\ln(DBH)$ (cm) and height $\ln(H)$ (m) for different inventory plots in evergreen forests (EF), regrowth forests (RF), and cashew plantations (CP) in Kulen. In (a), (b) and (c) present $\ln(DBH)$ (cm) and $\ln(H)$ (m) relationships at plots EF1, EF2, and EF3 of the evergreen forests; In (d), (e) and (f) present $\ln(DBH)$ (m) and $\ln(H)$ (m) relationships at plots RF1, RF2, and RF3 of regrowth forests; in (g), (h) and (i) present

DBH (cm) and H (m) relationships at plots CP1, CP2, and CP3 of cashew plantation. Based on the relationship below, the intercept parameter (K_1) and slop parameter (K_2) of the power law relationship between DBH (cm) and H (m) for each plot were obtained. The K_1 and K_2 parameters were used as community traits to investigate the relationship among other biodiversity and ecosystem property variables of various land-cover classes by plot level.

250

Table S7.2. The computed values of the intercept parameter (K_1) and slop parameter (K_2) of power-law relationship between diameter at breast height (*DBH*) (cm) and height (*H*) (m) for each plot.

Ν	Land-cover class	Plot ID	K_1	K_2
1	Evergreen forest (EF)	EF1	2.583	0.710
2	EF	EF2	2.100	0.727
3	EF	EF3	2.586	0.694
4	Regrowth forest (RF)	RF1	2.270	0.713
5	RF	RF2	2.512	0.666
6	RF	RF3	2.025	0.700
7	Cashew plantation (CP)	CP1	2.020	0.448
8	СР	CP2	2.358	0.354
9	СР	CP3	3.303	0.274

Figure S7.3. The 1:1 line plot comparison between aboveground biomass (AGB, kg) estimated by the diameter at breast height (DBH) and height (H) relationship (AGB_h , kg) and aboveground biomass estimated by adopted functions (AGB_f , kg) for evergreen forests (EF) (a), regrowth forests (RF) (b), and cashew plantations (CP) (c).

Figure S7.4. The estimation of aboveground biomass (*AGB*) (Mg ha⁻¹) by different methods for each inventory plot. "*AGB*_f" represents aboveground biomass estimated by adopted functions; "*AGB*_{wd}" represents aboveground biomass estimated by adopted functions utilizing species-specific wood density; "*AGB*_h" represents aboveground biomass estimated by the diameter at breast height (*DBH*) and height (*H*) relationship, along with species-specific wood density, for our study site.

Figure S7.5. The 1:1 line plot comparison between aboveground biomass estimated by diameter at breast height (*DBH*) and height (*H*) relationship (*AGB*_h) and aboveground biomass estimated by adopted functions (*AGB*_f) for evergreen forest plots (EF1, EF2, and EF3) (a, b, and c), regrowth forest plots (RF1, RF2, and RF3) (d, e, and f), and cashew plantation plots (CP1, CP2, CP3) (g, h, and i).

Table S7.3. Distribution of stem density per hectare by DBH class for different land-cover classes. EF, RF, and CP stand for evergreen forests, regrowth forests, and cashew plantations.

N	Landaquar	DBH Class	Moon	SD	Min	Moy	Sum	Shared percentage of
IN.	Laliu covel	(CIII)	Iviean	3D	IVIIII	IVIAX	Sum	number of sterns
1	EF(n = 3)	5–15	800.00	435.89	500.00	1300.00	2400.00	78.72%
2	EF(n = 3)	15-30	162.95	130.20	66.66	311.08	488.84	16.03%
3	EF(n = 3)	30-100	53.36	30.57	20.01	80.04	160.08	5.25%
4	RF $(n = 3)$	5-15	2133.33	945.16	1400.00	3200.00	6400.00	97.30%
5	RF $(n = 3)$	15-30	59.25	51.31	0	88.88	177.76	2.70%
6	CP(n = 3)	5-15	933.33	450.92	500.00	1400.00	2800.00	87.50%
7	CP(n = 3)	15-30	133.32	58.79	88.88	199.98	399.96	12.50%

Table S7.4. Distribution of aboveground biomass (*AGB*) across diameter at breast height (*DBH*) classes for different land-cover classes. The total *AGB* estimated by AGB_h method was used in the calculation. EF, RF and CP stand for evergreen forests, regrowth forests, and cashew plantations.

N.	Land cover	DBH class (cm)	Mean \pm SD (Mg ha ⁻¹)	Range (Mg ha ⁻¹)	Mean AGB_h (Mg ha ⁻¹)	Shared percentage of <i>AGB</i> _h
1	EF(n = 3)	0–5	6.51 ± 4.98	0.84-10.21		2.09%
2	EF(n = 3)	5–15	28.71 ± 30.97	9.05-64.40	211 66 + 102 00	9.21%
3	EF(n = 3)	15-30	42.17 ± 20.9	30.05-66.30	511.00 ± 185.88	13.53%
4	EF(n = 3)	30-100	234.27 ± 221.67	15.98-459.18		75.17%
5	RF $(n = 3)$	0–5	11.42 ± 7.72	2.70-17.36		21.07%
6	RF $(n = 3)$	5–15	33.17 ± 16.55	18.01-50.82	54.19 ± 14.09	61.21%
7	RF $(n = 3)$	15-30	9.60 ± 8.89	0.00 - 17.56		17.72%
8	CP(n = 3)	5–15	11.91 ± 5.02	7.22-17.21	1670 + 4.90	71.32%
9	CP (n = 3)	15–30	4.79 ± 2.26	3.02-7.34	10.70 ± 4.00	28.68%

290 Subsection 8. Leaf area index and a fraction of absorbed photosynthetically active radiation.

Table S8.1. Descriptive statistics of observed leaf area index (*LAI*) ($m^2 m^{-2}$) measured at breast height and ground height for evergreen forests (EF), regrowth forests (RF), and cashew plantations (CP) by different months of a year. The "Month" column represents the months of the year (1 = January and 12 = December). The "n" column indicates the number of measurements in a specific month for each land cover.

N	Land	M			LAI	$T_{\rm T}$ (m ² m ⁻²)						LA	$I_{\rm C}$ (m ² m ⁻²	2)	
IN.	cover	Month	n	Mean	SD	Median	Min	Max	_	n	Mean	SD	Median	Min	Max
1	СР	3	3	3.42	0.42	3.19	3.16	3.91		3	2.92	0.23	2.98	2.67	3.12
2	СР	4	3	2.76	0.31	2.79	2.44	3.05		3	2.41	0.22	2.44	2.18	2.61
3	CP	6	3	3.86	0.45	3.94	3.37	4.26		3	3.05	0.28	3.04	2.77	3.33
4	CP	9	3	2.83	0.78	3.26	1.93	3.29		3	2.18	0.25	2.19	1.92	2.42
5	CP	11	4	2.75	0.57	2.79	2.18	3.24		4	2.22	0.19	2.21	2.04	2.42
6	CP	12	5	2.97	0.55	2.88	2.27	3.79		5	2.48	0.45	2.59	1.95	3.09
7	EF	3	3	5.9	0.51	5.84	5.42	6.43		3	4.03	0.5	4.15	3.48	4.45
8	EF	4	3	6.36	0.29	6.32	6.1	6.67		3	5.31	0.08	5.29	5.25	5.4
9	EF	6	3	7.36	0.43	7.22	7.01	7.84		3	4.83	0.26	4.84	4.56	5.08
10	EF	9	3	6.27	0.39	6.46	5.82	6.53		3	4.53	0.32	4.65	4.17	4.78
11	EF	11	4	5.8	0.42	5.93	5.21	6.15		4	4.48	0.45	4.61	3.83	4.86
12	EF	12	5	5.7	0.43	5.72	5.07	6.25		5	4.59	0.47	4.62	3.85	5.01
13	RF	3	3	4.91	0.52	4.71	4.53	5.5		3	3.75	0.34	3.61	3.51	4.14
14	RF	4	3	6.11	0.42	6.19	5.66	6.48		3	5.26	0.3	5.28	4.96	5.55
15	RF	6	3	6.79	0.26	6.66	6.62	7.09		3	5.53	0.24	5.4	5.39	5.81
16	RF	9	3	5.32	0.67	5.3	4.66	5.99		3	4.45	0.62	4.77	3.74	4.85
17	RF	11	4	5.42	0.48	5.47	4.9	5.83		4	4.36	0.52	4.54	3.6	4.76
18	RF	12	5	5.17	0.53	5.24	4.54	5.8		5	4.68	0.58	4.59	4.11	5.64

Subsection 9. Relationships among ecosystem characteristics.

Table S9.1. Ordinary least squares regression model fit statistics for $\ln(AGB_h)$ and $\ln(S_R)$, $\ln(AGB_h)$ and $\ln(LAI_T)$, and $\ln(AGB_h)$ and $\ln(SLA_{cwm})$. The number of observations is the number of plots. '*LAI*_T' is a mean of total leaf area index, '*AGB*_h' is above ground biomass, '*SLA*_{cwm}' is a community-weighted mean.

			ln(A	GB _h)					ln(A	GB _h)					ln(A	GB _h)		
				standar						standar						standar		
Predictors	n	Statisti	Estimat	dized	std.	std.	n	Statisti	Estimat	dized	std.	std.	n	Statisti	Estimat	dized	std.	std.
1 redicions	P	С	es	std.	Error	Beta	p	С	es	std.	Error	Beta	p	С	es	std.	Error	Beta
				Error						Error						Error		
(Intercept)	< 0.001	6.09	2.72	0.21	0.45	0.01	0.384	-0.93	-1.05	0.25	1.13	-0.16	0.026	-2.81	-8.38	0.24	2.99	-0.14
$\ln(S_{\rm R})$	0.006	3.83	0.86	0.25	0.22	0.59												
$\ln(LAI_{\rm T})$							0.002	4.67	3.33	0.27	0.71	0.69						
$ln(SLA_{cwm})$													0.004	4.20	4.63	0.27	1.10	0.73
Observations	9						9						9					
R ² / R ² adjusted	0.68 / 0.6	53					0.76/0.	72					0.72 / 0.	68				

Figure S9.1. The relationship between biodiversity and ecosystem property variables of different land-cover classes in Kulen. 'EF', 'RF', and 'CP' are evergreen forests, regrowth forests and cashew plantations. The suffixes '1', '2', and '3' are plot ID. The variables: 'Mean *LAI*' means *LAI* measured at the ground level $(m^2 m^{-2})$, '*SLA*_{cwm}' is community weighted mean of specific leaf area (kg m⁻²), 'Species richness' is the counted number of species in each sample plot. 'K₁' and 'K₂' are the intercept and slope of the relationship between *H* and *DBH* at plot level (unitless). '*AGB*' is aboveground biomass (Mg ha⁻¹) computed based on the relationship between *DBH* and *H* (*AGB*_h).

Subsection 10. Comparison of species richness, Shannon-Wiener index and LAI with previous studies.

Table S1	l 0.1. Cor	nparison (of si	pecies	richness	$(S_{\rm R})$	with	previous s	studies.
----------	-------------------	------------	-------	--------	----------	---------------	------	------------	----------

0	1	~
- 1		~
2	т	~

Region	Forest type	Species richness (species per ha)	Methods	References
Kulen, Cambodia	Old-growth tropical evergreen forest	87 (13 species per plot)	Excluding seedling species, 3 plots, each 30 m x 50 m	In this study
Kulen, Cambodia	Old-growth tropical evergreen forest	113 (17 species per plot)	Including seedling species, 3 plots, each 30 m x 50 m	In this study
Kulen, Cambodia	Regrowth evergreen forest	67 (10 species per plot)	Excluding seedling species, 3 plots, each 30 m x 50 m	In this study
Kulen, Cambodia	Regrowth evergreen forest	87 (13 species per plot)	Including seedling species, 3 plots, each 30 m x 50 m	In this study
Central plains in	Various tropical	~50-110 (Estimated	DBH > 10, 119 plots, each	Theilade et al.
Cambodia	forest types	based on species accumulation curves)	50 m × 10 m	(2022)
Tanintharyi,	Moist evergreen	83-86	$DBH \ge 5$ cm, 25 sampling	Zin and Mitlöhner
Myanmar	forests		plots, each 20 m \times 20 m	(2020)
Meghalaya,	Tropical evergreen	83	$DBH \ge 15$ cm, 1 ha sampling	Tynsong et al.
Northeast India	forests		plot	(2022)
Pahang National Park, Malaysia	Tropical rainforest	280-450	$DBH \ge 10$ cm, 25 sampling plots, each 20 m \times 20 m	Nazip (2012)
Amazonia	Various forest types across Amazonia	3–357	$DBH \ge 10$ cm, 2046 Sampling plots, 0.5–2 ha each	Ter Steege et al. (2023)

Table S10.2. Comparison of Shannon-Wiener index (*S*_H) with previous studies.

Region	Forest type	Shannon-Wiener index (unitless)	Methods	References
Kulen, Cambodia	Old-growth tropical evergreen forest	2.48	Including seedling species, 3 plots, each 30 m x 50 m	In this study
Kulen, Cambodia	Regrowth evergreen forest	1.97	Including seedling species, 3 plots, each 30 m x 50 m	In this study
Pahang National Park, Malaysia	Tropical rainforest	3.42–3.97	$DBH \ge 10 \text{ cm}, 25 \text{ sampling}$ plots, each 20 m × 20 m	Nazip (2012)
Tanintharyi, Myanmar	Moist evergreen forests	4.42-4.45	$DBH \ge 5$ cm, 25 sampling plots, each 20 m \times 20 m	Zin and Mitlöhner (2020)
Nam Dong, Vietnam	Lowland regrowth tropical forest	2.77-3.00	$DBH \ge 2.5$ cm, 40 sampling plots, each 20 m x 20 m	Yen and Cochard (2017)
Thua Thien-Hue, Vietnam	secondary tropical evergreen broad-	2.78–3.04	$DBH \ge 6 \text{ cm}$, 40 sampling plots, each 20 m x 20 m	Van and Cochard (2017)

Table S10.3. Comparing canopy leaf area index (*LAI*_C) and total leaf area index (*LAI*_T) of evergreen forests (EF) and regrowth forests (RF) with previous studies. Mean \pm SD or SEM is a mean plus or minus a standard deviation or a standard error of a mean.

No.	Region	Vegetation type	LAI (m2 m-2) (Mean ± SD or SEM)	Methods	References				
Eve	Evergreen forests								
1	Kulen, Cambodia	Old-growth tropical	6.16 ± 0.67 (SD)	LAI-2000 (LAIT, at ground	In this study				
		evergreen forest		height)					
2	Kulen, Cambodia	Old-growth tropical	4.62 ± 0.50 (SD)	LAI-2000 (LAI _C , at 1.3 m	In this study				
		evergreen forest		height)					
3	Kampong Thom,	Old-growth tropical	4.05	LAI-2000 (LAIC, unknown	Ito et al. (2007)				
	Cambodia	dry evergreen forest		height)					
4	La Selva, Costa	Upland old-growth	6.00 ± 0.32 (SEM)	Direct harvests (LAI _T , Floor to	Clark et al. (2008)				
	Rica	tropical wet forest		canopy top leaf harvests, 55					
				points across 500 ha)					
5	La Selva, Costa	Old-growth tropical	5.10 ± 0.20 (SEM)	LAI-2000 (LAI_C , above 1 m	Olivas et al. (2013)				
	Rica	forest		height)					
6	La Selva, Costa	Old-growth tropical	$4.90-6.00 \pm 0.20$	Hemispherical photographs	Olivas et al. (2013)				
_	Rica	forest	(SEM)	$(LAI_{\rm C}, \text{above 1 m height})$					
1	Amazonas, Brazıl	Old-growth tropical	5.70	Direct harvests (LAI_{T} ,	McWilliam et al.				
		forest		Harvested four $10 \text{ m} \times 10 \text{ m}$	(1993)				
0			5 50	forest plots)	26.4				
8	Amazonas, Brazil	Old-growth tropical	5.58	Hemispherical photographs	Marthews et al.				
0	D (0() D 'I	forest	4 20 5 70	$(LAI_{\rm C}, \text{ at } 1 \text{ m height})$	(2012)				
9	Para State, Brazil	Old-growth tropical	4.30-5.70	LAI-2000 (100 points,	Metcalfe et al. (2010)				
10	A	Treest	276 4 67	unknown height, five dates)	Terra and Deckaral				
10	Amazon region	Tropical forest	3./0-4.0/	Geosciences Laser Altimeter	(2017)				
				System (LAIC, UNKNOWN	(2017)				
11	Amozon ragion	Tropical forest	1 59 5 15	Geographic Laser Altimator	Tong and Dubayah				
11	Amazon region	riopical lotest	4.36-3.13	Sustem $(LAI_{\rm m})$					
12	Banten Province	Tropical broadleaf	4 40 8 40	Hemispherical Photographs	(2017) Khairiah et al. (2017)				
12	Indonesia	forest	4.40-0.40	$(IAI_{C} \text{ at } 1.5 \text{ m height})$	Kilalitali et al. (2017)				
13	North Karnataka	Tropical evergreen	4.64 ± 1.20 (SD)	LAI-2200 (LAI _c unknown	Middinti et al. (2017)				
10	state. India	forest	1.01 = 1.20 (5D)	height 32.30 m x 30 m plots)	(2017)				
Regrowth forests									
1	Kulen, Cambodia	Regrowth evergreen	5.57 ± 0.76 (SD)	LAI-2000 (LAI _T , at ground	In this study				
	Traten, cumooura	forest		height)	in this study				
2	Kulen. Cambodia	Regrowth evergreen	4.66 ± 0.70 (SD)	LAI-2000 (<i>LAI</i> _c , at 1.3 m	In this study				
-		forest		height)	· ····································				
3	Guangxi, China	Tropical secondary	5.27 ± 1.16 (SD)	LAI-2200 (<i>LAI</i> _C , at 1.5 m	Xie et al. (2023)				
	0	forest		height)	· · ·				

4	Heredia Province, Costa Rica	18-year tropical secondary forest	3.97 ± 0.55 (SEM)	Direct harvests (<i>LAI</i> _C , at 1 m height)	Clark et al. (2021)	
5	Heredia Province,	25-year tropical	7.21 ± 0.62 (SEM)	Direct harvests (LAI _C , at 1 m	Clark et al. (2021)	
	Costa Rica	secondary forest		height)		
6	Heredia Province,	35-year tropical	6.45 ± 0.69 (SEM)	Direct harvests (LAI _C , at 1 m	Clark et al. (2021)	
	Costa Rica	secondary forest		height)		
Cashew plantations						
1	Kulen, Cambodia	Monoculture of	3.07 ± 0.61	LAI-2000 (LAI _T , at ground	In this study	
		cashew plantations		height)		
2	Kulen, Cambodia	Monoculture of	2.52 ± 0.42	LAI-2000 (LAI _C , at 1.3 m	In this study	
		cashew plantations		height)		
3	Tamil Nadu,	Monoculture of	0.52-1.25	AccuPAR LP-80 (LAIC,	Kumaresh et al.	
	India	cashew plantations		unknown height)	(2023)	

References

- Clark, D. B., Oberbauer, S. F., Clark, D. A., Ryan, M. G., and Dubayah, R. O.: Physical Structure and Biological Composition of Canopies in Tropical Secondary and Old-Growth Forests, PLOS ONE, 16, e0256571, <u>https://doi.org/10.1371/journal.pone.0256571</u>, 2021.
- 330 Clark, D. B., Olivas, P. C., Oberbauer, S. F., Clark, D. A., and Ryan, M. G.: First Direct Landscape-Scale Measurement of Tropical Rain Forest Leaf Area Index, a Key Driver of Global Primary Productivity, Ecology Letters, 11, 163-172, <u>https://doi.org/10.1111/j.1461-0248.2007.01134.x</u>, 2008.
 - Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R.: High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 342, 850-853, <u>https://doi.org/10.1126/science.1244693</u>, 2013.
- 335 Ito, E., Khorn, S., Lim, S., Pol, S., Tith, B., Pith, P., Tani, A., Kanzaki, M., Kaneko, T., Okuda, Y., Kabeya, N., Nobuhiro, T., and Araki, M.: Comparison of the Leaf Area Index (Lai) of Two Types of Dipterocarp Forest on the West Bank of the Mekong River, Cambodia, in, Springer Japan, 214-221, <u>https://doi.org/10.1007/978-4-431-46503-4_19</u>, 2007.
 - Kennedy, R. E., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W. B., and Healey, S.: Implementation of the Landtrendr Algorithm on Google Earth Engine, 10, 691, https://doi.org/10.3390/rs10050691, 2018.
- 340 Khairiah, R. N., Setiawan, Y., Prasetyo, L. B., and Permatasari, P. A.: Leaf Area Index (Lai) in Different Type of Agroforestry Systems Based on Hemispherical Photographs in Cidanau Watershed, IOP Conference Series: Earth and Environmental Science, 54, 012050, <u>https://doi.org/10.1088/1755-1315/54/1/012050</u>, 2017.
 - Kumaresh, V., Rani, M. S. A., Vethamoni, P. I., Senthil, A., and Uma, D.: Morphological and Physiological Analysis of Vri-3 Cashew Plantations under Different Planting Density Systems, International Journal of Environment and Climate Change, 13, 3698-3706, https://doi.org/10.9734/ijecc/2023/v13i103041, 2023.
- Marthews, T. R., Malhi, Y., Girardin, C. A. J., Silva Espejo, J. E., Aragão, L. E. O. C., Metcalfe, D. B., Rapp, J. M., Mercado, L. M., Fisher, R. A., Galbraith, D. R., Fisher, J. B., Salinas-Revilla, N., Friend, A. D., Restrepo-Coupe, N., and Williams, R. J.: Simulating Forest Productivity Along a Neotropical Elevational Transect: Temperature Variation and Carbon Use Efficiency, Global Change Biology, 18, 2882-2898, https://doi.org/10.1111/j.1365-2486.2012.02728.x, 2012.
 - Matschullat, J.: Save Cambodia's Wildlife: Atlas of Cambodia. Maps on Socio-Economic Development and Environment, Environmental Earth Sciences, 72, 1295-1298, https://doi.org/10.1007/s12665-014-3325-3, 2014.
- McWilliam, A. L. C., Roberts, J. M., Cabral, O. M. R., Leitao, M. V. B. R., de Costa, A. C. L., Maitelli, G. T., and Zamparoni, C. A. G. P.: Leaf Area Index and above-Ground Biomass of Terra Firme Rain Forest and Adjacent Clearings in Amazonia, Functional Ecology, 7, 310-317, https://doi.org/10.2307/2390210, 1993.
- Metcalfe, D. B., Lobo-Do-Vale, R., Chaves, M. M., Maroco, J. P., C Aragão, L. E. O., Malhi, Y., Da Costa, A. L., Braga, A. P., Gonçalves, P. L., De Athaydes, J., Da Costa, M., Almeida, S. S., Campbell, C., Hurry, V., Williams, M., and Meir, P.: Impacts of Experimentally Imposed Drought on Leaf Respiration and Morphology in an Amazon Rain Forest, Functional Ecology, 24, 524-533, <u>https://doi.org/10.1111/j.1365-2435.2009.01683.x</u>, 2010.
- Middinti, S., Thumaty, K. C., Gopalakrishnan, R., Jha, C. S., and Thatiparthi, B. R.: Estimating the Leaf Area Index in Indian Tropical Forests Using Landsat-8 Oli Data, International Journal of Remote Sensing, 38, 6769-6789, https://doi.org/10.1080/01431161.2017.1363436, 2017.

Nazip, M.: Tree Species Diversity and Forest Stand Structure of Pahang National Park, Malaysia, in, InTech, https://doi.org/10.5772/50339, 2012.

- Olivas, P. C., Oberbauer, S. F., Clark, D. B., Clark, D. A., Ryan, M. G., O'Brien, J. J., and Ordoñez, H.: Comparison of Direct and Indirect Methods for Assessing Leaf Area Index across a Tropical Rain Forest Landscape, Agricultural and Forest Meteorology, 177, 110-116, <u>https://doi.org/10.1016/j.agrformet.2013.04.010</u>, 2013.
- Swedish NFI: Swedish National Forest Inventory and Swedish Soil Inventory: Field Work Instructions 2019, The Department of Forest Resource Management. Swedish 360 University of Agricultural Sciences, Umeå, Sweden, 504, 2019.
 - Tang, H. and Dubayah, R.: Light-Driven Growth in Amazon Evergreen Forests Explained by Seasonal Variations of Vertical Canopy Structure, 114, 2640-2644, https://doi.org/10.1073/pnas.1616943114, 2017.
 - Ter Steege, H., Pitman, N. C. A., Do Amaral, I. L., De Souza Coelho, L., De Almeida Matos, F. D., De Andrade Lima Filho, D., Salomão, R. P., Wittmann, F., Castilho, C. V., Guevara, J. E., Veiga Carim, M. D. J., Phillips, O. L., Magnusson, W. E., Sabatier, D., Revilla, J. D. C., Molino, J.-F., Irume, M. V., Martins, M. P., Da Silva
- Guimarães, J. R., Ramos, J. F., Bánki, O. S., Piedade, M. T. F., Cárdenas López, D., Rodrigues, D. D. J., Demarchi, L. O., Schöngart, J., Almeida, E. J., Barbosa, L. F., Cavalheiro, L., Dos Santos, M. C. V., Luize, B. G., De Leão Novo, E. M. M., Vargas, P. N., Silva, T. S. F., Venticinque, E. M., Manzatto, A. G., Reis, N. F. C., Terborgh, J., Casula, K. R., Honorio Coronado, E. N., Monteagudo Mendoza, A., Montero, J. C., Costa, F. R. C., Feldpausch, T. R., Quaresma, A. C., Castaño Arboleda, N., Zartman, C. E., Killeen, T. J., Marimon, B. S., Marimon-Junior, B. H., Vasquez, R., Mostacedo, B., Assis, R. L., Baraloto, C., Do Amaral, D. D.,
- Engel, J., Petronelli, P., Castellanos, H., De Medeiros, M. B., Simon, M. F., Andrade, A., Camargo, J. L., Laurance, W. F., Laurance, S. G. W., Maniguaje Rincón,
 L., Schietti, J., Sousa, T. R., De Sousa Farias, E., Lopes, M. A., Magalhães, J. L. L., Nascimento, H. E. M., De Queiroz, H. L., Aymard C, G. A., Brienen, R.,
 Stevenson, P. R., Araujo-Murakami, A., Baker, T. R., Cintra, B. B. L., Feitosa, Y. O., Mogollón, H. F., Duivenvoorden, J. F., Peres, C. A., Silman, M. R., Ferreira,
 L. V., Lozada, J. R., Comiskey, J. A., Draper, F. C., De Toledo, J. J., Damasco, G., García-Villacorta, R., Lopes, A., Vicentini, A., Cornejo Valverde, F., Alonso, A.,
 Arroyo, L., Dallmeier, F., Gomes, V. H. F., Jimenez, E. M., Neill, D., Peñuela Mora, M. C., Noronha, J. C., De Aguiar, D. P. P., Barbosa, F. R., Bredin, Y. K., De Sá
 Carpanedo, R., Carvalho, F. A., De Souza, F. C., Feeley, K. J., Gribel, R., Haugaasen, T., Hawes, J. E., Pansonato, M. P., Ríos Paredes, M., Barlow, J., Berenguer,
- E., Da Silva, I. B., Ferreira, M. J., Ferreira, J., Fine, P. V. A., Guedes, M. C., Levis, C., Licona, J. C., Villa Zegarra, B. E., Vos, V. A., Cerón, C., Durgante, F. M., Fonty, É., Henkel, T. W., Householder, J. E., Huamantupa-Chuquimaco, I., Pos, E., Silveira, M., Stropp, J., Thomas, R., Daly, D., Dexter, K. G., Milliken, W., Molina, G. P., Pennington, T., Vieira, I. C. G., Weiss Albuquerque, B., Campelo, W., Fuentes, A., Klitgaard, B., Pena, J. L. M., Tello, J. S., Vriesendorp, C., Chave, J., Di Fiore, A., Hilário, R. R., De Oliveira Pereira, L., Phillips, J. F., Rivas-Torres, G., Van Andel, T. R., Von Hildebrand, P., Balee, W., Barbosa, E. M., De Matos Bonates, L. C., Dávila Doza, H. P., Zárate Gómez, R., Gonzales, T., Gallardo Gonzales, G. P., Hoffman, B., Junqueira, A. B., Malhi, Y., De Andrade Miranda, I. P., Pinto, L. F. M., Prieto, A., Rudas, A., Ruschel, A. R., Silva, N., Vela, C. I. A., Zent, E. L., Zent, S., Cano, A., Carrero Márquez, Y. A., Correa, D. F., Costa, J. B. P.,
- Flores, B. M., Galbraith, D., Holmgren, M., Kalamandeen, M., Lobo, G., Torres Montenegro, L., Nascimento, M. T., Oliveira, A. A., Pombo, M. M., Ramirez-Angulo, H., Rocha, M., Scudeller, V. V., Sierra, R., Tirado, M., Umaña, M. N., Van Der Heijden, G., Vilanova Torre, E., Reategui, M. A. A., Baider, C., Balslev, H., Cárdenas, S., Casas, L. F., Endara, M. J., Farfan-Rios, W., Ferreira, C., Linares-Palomino, R., Mendoza, C., Mesones, I., Parada, G. A., Torres-Lezama, A., Urrego Giraldo, L. E., Villarroel, D., Zagt, R., Alexiades, M. N., De Oliveira, E. A., Garcia-Cabrera, K., Hernandez, L., Cuenca, W. P., Pansini, S., Pauletto, D., Ramirez Arevalo, F., Sampaio, A. F., Valderrama Sandoval, E. H., Gamarra, L. V., Levesley, A., Pickavance, G., and Melgaço, K.: Mapping Density, Diversity and
 - Species-Richness of the Amazon Tree Flora, Communications Biology, 6, <u>https://doi.org/10.1038/s42003-023-05514-6</u>, 2023.
 - Than, S., Vesa, L., Vanna, S., Hyvönen, P., Korhonen, K., Gael, S., Matieu, H., and van Rijn, M.: Field Manual for the National Forest Inventory of Cambodia, 2nd Eds, Forest Administration of the Ministry of Agriculture, Forestry and Fisheries & Food and Agriculture Organization of the United Nations, Phnom Penh, Cambodia2018.
- 390 Theilade, I., Phourin, C., Schmidt, L., Meilby, H., van de Bult, M., and Friborg, K. G.: Evergreen Forest Types of the Central Plains in Cambodia: Floristic Composition and Ecological Characteristics, 2022, e03494, <u>https://doi.org/10.1111/njb.03494</u>, 2022.
 - Tynsong, H., Dkhar, M., and Tiwari, B. K.: Tree Diversity and Vegetation Structure of the Tropical Evergreen Forests of the Southern Slopes of Meghalaya, North East India, Asian Journal of Forestry, 6, <u>https://doi.org/10.13057/asianjfor/r060104</u>, 2022.
- Van, Y. T. and Cochard, R.: Tree Species Diversity and Utilities in a Contracting Lowland Hillside Rainforest Fragment in Central Vietnam, Forest Ecosystems, 4, https://doi.org/10.1186/s40663-017-0095-x, 2017.
 - Xie, X., Yang, Y., Li, W., Liao, N., Pan, W., and Su, H.: Estimation of Leaf Area Index in a Typical Northern Tropical Secondary Monsoon Rainforest by Different Indirect Methods, Remote Sensing, 15, 1621, https://doi.org/10.3390/rs15061621, 2023.

- Yen, V. T. and Cochard, R.: Chapter 5 Structure and Diversity of a Lowland Tropical Forest in Thua Thien Hue Province, in: Redefining Diversity & Dynamics of Natural Resources Management in Asia, Volume 3, edited by: Thang, T. N., Dung, N. T., Hulse, D., Sharma, S., and Shivakoti, G. P., Elsevier, 71-85, https://doi.org/10.1016/B978-0-12-805452-9.00005-9, 2017.
- Zin, I. I. S. and Mitlöhner, R.: Species Composition and Stand Structure of Primary and Secondary Moist Evergreen Forests in the Tanintharyi Nature Reserve (Tnr) Buffer Zone, Myanmar, Open Journal of Forestry, 10, 445-459, <u>https://doi.org/10.4236/ojf.2020.104028</u> 2020.