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Abstract. Given the severe anthropogenic pressure on tropical forests and the high demand for field observations of ecosystem
characteristics, it is crucial to collect such data both in pristine tropical forests and in the converted deforested land-cover
classes. To gain insight into the ecosystem characteristics of pristine tropical forests, regrowth forests, and cashew plantations,
we established an ecosystem monitoring site in Phnom Kulen National Park, Cambodia. Here, we present the first observed
datasets at this site of forest inventories, leaf area index, leaf traits of woody species, a fraction of intercepted photosynthetically
active radiation, and soil and meteorological conditions. Our main objective was to study, how land-cover change affects the

species and functional diversity, stand structure, and soil conditions among the three land-cover classes. We found significant
differences, in fhese ecosystem characteristics, caused by the anthropogenic land cover conversion, which underlines the

profound impact land-cover change has on ecosystem productivity, resilience, and functioning in these tropical forest regions.

Our results further demonstrated the feasibility of locally updating aboveground biomass estimates using power-law functions,

based on relationships between diameters at breast height and tree height. These datasets and findings can contribute to filling

data gaps in tropical forest research, addressing global environmental challenges, and supporting sustainable forest

management,,
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1 Introduction

Tropical forests cover approximately 14 % of the Earth’s surface (Fichtner and Hérdtle, 2021) and contribute significantly to
global terrestrial biodiversity (Giam, 2017) and biogeochemical cycles (Males et al., 2022). Tropical forests produce at least
30 % of the global terrestrial net primary production (Townsend et al., 2011; Wright, 2013) and account for approximately 70

% of the global gross carbon sink (Pan et al., 2024), In addition, they play a critical role in regulating hydrological cycles on a
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continental scale (Gloor et al., 2013). Tropical forests have been under severe anthropogenic pressures from agricultural land
expansion, resource exploitation (logging, mining), and urbanization (Gardner et al., 2009; Laurance et al., 2014). Due to these
disturbances, tropical forest ecosystems have degraded, resulting in a decrease in biodiversity (Barlow et al., 2016).

Southeast Asia, though harbouring roughly 15 % of the world's tropical forests (Stibig et al., 2014), has suffered the highest
global deforestation rates over the past 15 years (Miettinen et al., 2011). This alarming trend threatens over 40 % of the region's
biodiversity by 2100 (Sodhi et al., 2004). The forests are mainly disturbed by timber harvesting (Pearson et al., 2017), slash-
and-burn agriculture, and agricultural plantations as a consequence of fulfilling global demands for timber production and
agricultural commodities, especially rubber, cashew, oil palm, Eucalyptus and Acacia (Phompila et al., 2014; Grogan et al.,
2015; Chen et al., 2016; Johansson et al., 2020). In addition to primary forests, secondary forests that regenerate after clear-

cutting or other ecosystem disturbances are also important for protecting biodiversity and assuring the availability of ecosy stem
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services and goods (Tito et al., 2022). However, despite the significance of tropical forests in biodiversity conservation and
ecosystem services, little is known about how the conversion from primary to secondary forests and plantations impacts
biodiversity and ecosystem functioning (Edwards et al., 2011; Singh et al., 2014).

In the context of tackling the current global environmental challenges, field observation data are necessary to assess the
dynamic responses of ecosystems to changing environmental conditions on fine spatial and temporal scales. Field observations

of key ecosystem characteristics such as forest inventory, leaf functional traits, leaf area index (LAI), fraction of
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photosynthetically active radiation (fPAR), and soil conditions provide crucial insights into gcosystem functions and services,

Jncluding vegetation productivity, carbon sequestration, hydrological cycle, ecosystem stability and resilience to disturbances,

nutrient reservoir capacity, and the abundance of habitats of organisms (Naeem et al., 1994; Hector, 1998; Cardinale et al., |
\

2012; Chen et al., 2016; Liang et al., 2016; Parisi et al., 2018b; Woodall et al., 2020), In addition, the field data on leaf

functional traits, LAI, and fPAR are important for the parameterization and evaluation of remote sensing products and dynamic

vegetation models, essential for modelling and upscaling ecosystem responses to anthropogenic disturbances and climate
change (Feng et al., 2018; Fang et al., 2019; Pei et al., 2022). Recognizing the significant role and high demand for field
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observations of ecosystem characteristics, open data repositories such as FLUXNET, ICOS Carbon Portal, SpecNet, and the

TRY database have been established to facilitate data sharing (Gamon et al., 2010; Kattge et al., 2020; Pastorello et al., 2020).

However, despite those global initiatives, field data remain limited, particularly in tropical forests, where they are urgently

needed to assess ecosystem characteristics, functions, and services in response to rapid degradation and deforestation (DeFries
et al., 2007; Miettinen et al., 2011; Li et al., 2021),
Given the ncreasing anthropogenic pressures on tropical forests, pur main aim is togain insight into the impact of land cover

conversion on key ecosystem characteristics. Therefore, our first objective is to assess the differences in [1] stand structure
[2] species diversity, [3] leaf functional traits, [4] and soil conditions between pristine tropical forests and the land cover the
deforested regions are converted into_(regrowth forests and cashew plantations). We further explore relationships between the

ecosystem characteristics, and how they are influenced by these land gover conversions. Furthermore, recognizing a high

demand for field observations of ecosystem characteristics of tropical forests, we also present g unique novel in situ data_set
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ecosystem monitoring site in Phnom Kulen National Park (Kulen), Cambodia, providing a valuable resource for advancing \

knowledge of tropical forestgcosystems.

2 Materials and Methods
2.1 Study area and selection of plots

The selected study area is the Phnom Kulen National Park located in the Siem Reap Province in north-west Cambodia (Fig.
1). It covers 37,380 ha predominantly on Jurassic-Cretaceous sandstone plateaus with the highest peak of 496 m (Matschullat,
2014; Geissler et al., 2019). Kulen is a hotspot for ecosystem service provisioning in Cambodia, mainly for water supply,
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potential carbon sink, and cultural services (Jacobson et al., 2022; Kim et al., 2023). It is the origin of the Khmer Empire and

contains numerous archaeological sites. The stream water from the mountain is not only used to support local livelihoods in

water supply and irrigation downstream (Somaly et al., 2020). It is also the primary water source to recharge surface water and
groundwater aquifers in the Angkor Wat, UNESCO World Heritage Site. Hence, the area is of high importance to ensure that

the temples' foundations remain stable and maintain their surrounding forest ecosystem (Hang et al., 2016). However, previous
studies revealed that the forestland in and around Kulen has been disturbed (Chim et al., 2019). The three main land-cover
classes on Kulen are [1] nearly intact tropical evergreen forests (EF), [2] forests that regrow naturally after clear-cutting (RF)
and [3] household-scale cashew plantations (CP). Approximately 60 % of Kulen is today covered by cashew plantations,

155 another 13 % consists of forestland, while the remainder comprises other land-cover classes (Singh et al., 2019).
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Figure 1. The locations of the nine forest inventory plots and the meteorological station in the Phnom Kulen National Park,

Cambodia. Note: the background land use 2021 was derived from SERVIR-Mekong (2024).

Nine forest inventory plots were established in Kulen in December 2020, three within each of the EF, RF, and CP land-cover

classes (Fig. 1; Table 1; Fig. S1.1), with a minimum separation of 250 meters to capture stand structure variation for each land-
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2.2 Data collection
2.2.1 Forest inventory

The forest inventory was performed by following the standard method of the National Forest Inventory of Cambodia (Than et
al., 2018). Each plot was designed as a rectangle with 50 m x 30 m long edges in the south-north and west-east directions. The
plots were further subdivided into five subplots with the following dimensions: 2 m x 2 m,5m x5 m, 10 m x 10 m, 30 m x
15 m, and 30 m x 50 m (Fig. S1.2). In the 2 m x 2 m subplots, seedlings with diameters at breast height (DBH, 1.3 m above
ground) of less than 1 cm were recorded. Inthe 5m x5 m, 10 m x 10 m, 30 m x 15 m, and 30 m x 50 m subplots, trees with
DBH ranges of 1-5 cm, 5-15 cm, 15-30 cm, and greater than 30 cm were measured, respectively.

For seedlings, we only recorded the total numbers of each species. For the DBH range of 1-5 cm, we noted the DBH, tree
height (H), species, local name (Khmer), and position of each tree. For trees with a DBH greater than 5 cm, we collected the
same data as for trees with a DBH of 1-5 cm, plus bole height (the height from the ground to the first main lowest stem), health
(healthy or infected), quality (straight, bent, or crooked stem), origin (natural or planted), and stump diameter and height
(measured 15 cm above ground for annual tree growth monitoring).

Deadwood is a significant indicator of decomposition and nutrient cycling processes in a forest ecosystem (Shannon et al.,
2021). Data on lying and standing deadwood with a DBH greater than 10 cm in the 30 m x 15 m subplots were also collected.
The deadwood decomposition levels were classified into five scales, based on harmonizing the scaling systems of the National
Forest Inventory of Sweden (Swedish NFI, 2019) and Cambodia (Than et al., 2018) (Table S1.1). For standing deadwood, we
recorded their species, local name, location, height, and decomposition level. For lying deadwood, we counted the number of

pieces and measured their lengths, base and tree diameters, and decomposition levels.

2.2.2 Leaf sample collection and measurement

A total of 453 leaf samples from 30 woody species were collected inside and 500 m around the forest inventory plots in
December 2019 and August 2022. Each species was represented by five to 47 leaf samples. Each leaf's fresh mass, chlorophyll
content, and photo were taken in the field. A Chlorophyll Meter (SPAD 502 Plus; Konica Minolta Sensing Inc., Japan) was
used in situ to measure chlorophyll content five times on each leaf surface to retrieve a leaf mean value. The given measurement
unit was in SPAD value (Soil Plant Analysis Development) and later converted to chlorophyll a and b content (Chl) in pg cm
2 (Coste et al., 2010). We obtained fresh leaf mass by weighting in the field and leaf dry mass by oven-drying the leaves at 60
°C until the leaf mass remained constant (oven-dried for at least three days) (Garnier et al., 2001). The leaf photos were used
for estimating leaf lengths and areas using ImageJ (Schindelin et al., 2012; Schneider et al., 2012).
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2.2.3 Meteorological and photosynthetically active radiation data

A meteorological station was installed in an open area to continuously record metrological conditions, and incoming
photosynthetically active radiation (PAR) for the wider area (the Kulen National Park). Data were sampled at one minute
intervals and stored as 15 minute averages (sum for rainfall). The installation was done in November 2020 in Khnang Phnom
Commune, Svay Luer District, Siem Reap Province, at 13° 34' 16.1148" N, 104° 9' 45.6768" E, and an altitude of 314 m above
mean sea level. The station has one Atmos 41 meteorological station (Meter Group Inc. WA, USA), installed 2.2 m above
ground level, measuring rainfall, wind speed, wind direction, global radiation, atmospheric pressure, and air temperature.
Additionally, four PAR sensors (SQ-110-SS, Apogee Instruments, Inc., UT, USA) were positioned 2 m above the ground to
record incoming PAR (PARinc) (Fig. S2.1).

Six additional loggers with five PAR sensors (SQ-521-SS and SQ-110-SS, Apogee Instruments, Inc., UT, USA) and one
TEROS 12 soil moisture sensor each (Meter group Inc. WA, USA), collecting data at a 15 minute mean timestep, were installed
in six of the forest inventory plots in April 2022. The soil moisture sensors were installed at a depth of 20 cm to measure soil
water content (SWC), soil temperature (Ts), and soil electrical conductivity (ECs). Two loggers were placed in each land-cover
class (EF, RF, and CP). The selection of plots in each land-cover class was based on previous measurements of leaf area index
(LAI) and the loggers were placed at the plots with the highest and lowest LAI for each land cover, respectively. Thus, the
selected plots for installing PAR sensors were EF1, EF3, RF1, RF3, CP2, and CP3 (Fig. 1). The PAR sensors were placed with
one in the centre of the plot and the other four placed 15 + 1 m apart at 30°, 150°, 220°, and 330° from the north. In cases of
unfavourable field conditions, such as high termite nests or being too close to a tree, the locations were adjusted 0.5-1 m east
or west of the planned position. Each PAR sensor was mounted on 1.3 m poles to record PAR below canopy data. We calculated
the fraction of PAR intercepted by the stand canopy (fPAR) for each plot using Eq. (1) (Olofsson and Eklundh, 2007). Each
TEROS 12 soil moisture sensor was installed at a depth of 20 cm in the middle of the six plots to measure SWC, Ts, and ECs.
The data of fPAR and soil conditions from two plots within the same land-cover classes were averaged to represent those
classes.

(PARinc - PARbelow)

fPAR = —PARmC (1)

Where PAR;,. and PARyej0w are photosynthetically active radiation above and below canopy (umol m2s?). fPAR is in

percentage.

2.2.4 Leaf area index measurements

We measured each plot's total one-sided leaf surface area per unit ground area, LAI, using a LAI-2000 Plant Canopy Analyzer
(LI-COR, NE, USA). The measurements were conducted six times across two seasons: four times during the dry season
(November/December 2019, November 2020, December 2020, and March 2021) and twice during the rainy season (September
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2020 and June 2021). The measurements were taken both at ground level to capture the total LAI (LAl+) and at breast height
to specifically assess tree canopy LAI (LAlc) within two diagonal transects across the 50 m x 30 m rectangular plots. On each
measurement occasion, we collected between 32 and 75 samples, except for the ground-level measurements of the RF3 plot

in December 2020, where only ten samples were collected due to technical issues.

2.3 Data analysis
2.3.1 Species diversity

We investigated the species diversity of various land covers by calculating species richness (Sg) and the Shannon-Wiener index
(SH) (Shannon, 1948). The Sg was determined by summing the number of tree species in each plot. The Sy is commonly used
to quantify species richness and evenness in a community by representing the number of species and how equally individuals
are distributed among them (Hill, 1973). The value of Sy increases as the number of species and the degree of evenness

increase. The Sy was calculated by:

n
Sy = _Z P In(P) )
i=1
Where Sy is Shannon-Wiener index (unitless), P; is a proportion of 7species in a community (unitless), and # is the number
of species in a plot (unitless). We calculated the Si and Sy at the plot level and then averaged the values for each land-cover

class.

2.3.2 Functional traits and diversity

We computed the specific leaf area (SLA) for each of the 453 leaf samples as the ratio of leaf area to leaf dry mass. Likewise,
leaf dry matter content (LDMC) was calculated by the ratio of dry leaf mass to fresh leaf mass (Garnier et al., 2001; Akram et
al., 2023). We estimated the trait community-weighted means and standard deviations of SLAcwm, LDMCcwm, and Chlewm to
represent ecosystem functions and their diversity at the land-cover level (Garnier et al., 2004; Leoni et al., 2009; Wang et al.,
2020) with:

T _ X WiT
owm = g ®

Where Ty, is trait community-weighted mean for SLA, LDMC, or Chl, T; is the species-specific trait value tree i, n is total
number of trees, W; is the weight (volume based) value of the tree, assuming that larger trees have a greater impact on the
ecosystem function (Chave et al., 2005; Feldpausch et al., 2011). Before computing T,,,, for each trait, we addressed missing

species traits within each plot by first taking values from a different plot with the same land-cover class. If unavailable, we
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used, values from the same species across all nine plots, followed by values from the genus and family levels. When multiple

genera or families were available, we averaged the values. Jf neither was available, we used the mean trait value of the plot.

2.3.3 Stand structural attributes

We examined the differences in DBH, H, basal area (BA), aboveground biomass (AGB), and deadwood biomass (DWB) for
the various land-cover classes to characterize stand structure attributes. Deadwood volumes (Vow, m?) for each bole were

determined by Smalian's equation:

Vpow = (1 Hyp)

(Dgase; thop) )

Where Dy,se and Dy, are diameters at base and top (m), and Hy, is the length/height of the trunk (m).

Deadwood biomass was then received by multiplying Vpw with a mean deadwood density of 0.45 g cm (Kiyono et al., 2007).
Total DWB was computed plot-wise by taking the sum of lying and standing DWB. DWB for each land-cover class was
calculated as the average of the total DWB across the plots within that land-cover class.

Basal area was determined plot-wise by combining the DBH of all living trees within a plot:

n 2 4
_ DBH; 10
BA = 2, s (T) A_1 (5)

Where BA is a plot-wise total basal area of all living trees (m? ha*), n is a number of trees in a plot, DBH, is the diameter at

DBH;

2 4.
breast height of tree i in a sampling plot (m), n(z—) is the circle basal area of tree i (m?), (%) are the scaling factors

employed to convert the sampled subplot area (4;) to one hectare (unitless). The BA for each land-cover class was represented
by the mean BA of all plots within a class.

We calculated the mean and standard deviation of DBH and H for each plot and land cover. We further used these for
establishing relationships between DBH and H, as such relationships serve as functional traits characterizing tree growth
patterns and successional stages within forest communities (Nyirambangutse et al., 2017; Howell et al., 2022). We used natural
logarithms and then converted them to power-law relationships both plot- and land-cover class-wise (West and Brown, 2005).
An ordinary least-square linear regression (OLS) was applied to investigate the DBH-H relationship, followed by transforming

the relationship into a power-law relationship (Huxley, 1932).
H = K,DBH*> (6)

Where K; and K, are the power-law intercept and slope, respectively. The K; captures the overall scaling relationship between

H (m) relative to DBH (cm) within a forest community while K, regulates the rate of H increase relative to DBH growth.
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The obtained K; and K values were further used to estimate AGB (AGB) Eq. (7) in Table 2, We also computed the AGB using
existing equations (Table 2, Eqgs. (9—11)) (AGBx) adopted for the three different land-cover classes. These EF and RF allometric
equations were developed for tropical multiple species, whereas the CP was a species-specific allometric equation for the
cashew tree ((Malimbwi et al., 2016). The wood density (WD) values required for the AGB estimations were species-specific
and obtained from The International Council for Research in Agroforestry (2022) and Zanne et al. (2009). When multiple WD
values for a tree species were available, the mean value was used, whereas when no species-specific WD values were available,
the average of tropical Asia (0.57 g cm=) was used (Reyes et al., 1992). The applied WD values for this study then ranged from
0.39-1.04 g cm3. Specifically, the WD values (mean + a standard deviation) for EF, RF, and CP were 0.74 + 0.17 g cm™, 0.72
+0.15 g cm, and 0.45 g cm, respectively. We first estimated AGB at the plot level in kilograms, then scaled these values to
megagrams per hectare, and averaged per land-cover class.

Table 2, Allometric equations used for estimating aboveground biomass (AGB, kg tree) in the different land-cover classes.

No. Equations Land  AGB allometric equations Regions n DBH WD¢ (mean + SD, References
cover (range, cm) gem?d)
WD m K, - - - - i
1 Eq. (7) All AGBy, = ) 1 DBH*K: 4 g This study
wD - - - - i
2 Eqg. (8) All AGBoyq = AGB; This study
WD;
3 Eq. (9) EF AGB; = 0.1184 DBH?53 Pantropical 170 5.0-148.0  0.58 +0.02 Brown (1997)
4 Eq.(10) RF AGB; = 0.0829 DBH?**3 Sarawak, 136 0.1-28.7 0.38+0.07 Kenzo et al.
Malaysia (2009)
5 Egq.(11) CP AGB; = 0.8450 DBH77 Pwani, 45 60899 018 Malimbwi et al.
Tanzania (2016)

Note: EF is evergreen forests, RF is regrowth forests, CP is cashew plantations. In Egs. (9-11), DBH is diameter at breast height
(cm), and WDy is the reported mean wood density used in AGBs (kg m™). In Eq. (7), K1 and Kzare derived power-law intercept and
slope values between DBH (cm) and tree height (H, m) relationship in Eq. (6), € is a statistical error term, WD is wood density for
each tree species (g cm®), and DBH is in centimetres. In this study, in Eq. (7), we employed a trunk shape factor of 1/8 for calculating
the volume of frustum cones, as proposed by King et al. (2006). This factor falls within the range of 1/4 (cylinder volumes) to 1/12
(cone volumes). In Eq. (8), AGB,q is our examined aboveground biomass based on equations Egs. (9-11) with species-specific wood
density updated for our woody tree species, WD are the species-specific wood density of trees in each plot (g cm).

2.3.4 Statistical analysis

Descriptive statistics were conducted to examine the difference in ecosystem characteristics between plots and land-cover
classes. One-way ANOVA tests (ANOVA) were used to assess significant differences in mean values across land-cover

classes. Tukey's Honestly Significant Difference test (Tukey HSD) was further employed for pairwise comparisons between
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land-cover classes. Pearson correlation and ordinary least squares regression analyses were used to explore relationships
between variables. All analyses were performed using R 4.2.3 (R Core Team, 2023).

3 Results
3.1 Meteorological conditions

The observed annual daily mean air temperature from April 2022 to April 2023 at Kulen meteorological station was 24.2 +
2.0 °C, varying between 17.8 °C and 28.6 °C (Fig. 2a). The total annual rainfall was 2290 mm, significantly surpassing nearby
lowland stations: Banteay Srei station, located 22 km west, recorded 1160 mm, and Siem Reap City station, situated 40 km
southwest, recorded 1475 mm (Chim et al., 2021). About 90 % of the annual precipitation fell during the rainy season from
May to November, with September being the wettest month (505 mm). The daily maximum rainfall can reach up to 141 mm,
but the daily mean during the rainy season was 11.2 + 19.7 mm (Fig. 2b). The annual daily mean of global radiation, relative
humidity, vapour pressure deficit, and wind speed were 172 + 44 W m2, 88 + 12 %, 0.45 + 0.21 kPa, and 0.68 + 0.22 m s,
respectively (Fig. 2c-f).

For the different land-cover classes, daily mean soil water content ranged between 0.14-0.23 m® m 3, soil temperature between
24.2-25.8 °C, and soil electrical conductivity between 0.025-0.039 dS m™ (measured at 20 cm depth, Fig. 2g-i). In particular,
the mean Ts at CP (25.8 + 1.5 °C) was significantly higher than for EF (24.3 + 1.2 °C) and RF (24.2 + 1.3 °C), whereas the
mean SWC was significantly lower in RF (0.14 + 0.03 m® m ) compared to EF (0.23 + 0.06 m® m) and CP (0.21 + 0.05 m?
m-3) (Table 3). Additionally, EF had higher ECs (0.039 dS m*) than RF and CP (0.032 dS m, 0.025 dS m™) (p-value < 0.001),

indicating higher salinity levels in the soil.
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Figure 2. The meteorological conditions at Kulen meteorological station (a—f), and soil conditions at each land-cover class (g—i) from
335  April 10, 2022, to April 9, 2023. (a) Daily mean air temperature (Tair, °C), (b) daily total precipitation (P, mm), (c) daily mean global
radiation (Rg, W m), (d) daily mean relative humidity (RH, %), () daily mean vapour pressure deficit (VPD, kPa), and (f) daily
mean wind speed (WS, m s), (g) daily mean soil water content (SWC, m® m=), (h) daily mean soil temperature (Ts, °C), (i) daily
mean soil saturation extraction electrical conductivity (ECs, dS m). The vertical dashed line region in all the plots highlighted the
rainy season period in Cambodia from May to October. The grey-shaded regions around the mean in (a), (d), (e), and (f) represent
340 the 95 % confidence interval (using a standard deviation) from the daily mean, whereas the blue horizontal dashed line represents
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the yearly mean, the brown horizontal dashed line represents the yearly median, and the black horizontal dotted line represents a
yearly standard deviation (see Table S2.1 and Fig. S2.2 present the Kulen meteorological station's annual and monthly
meteorological data. Figs. $3.1-S3.3 shows monthly mean soil conditions by land-cover class, and Fig. S4.1 depicts correlations
between meteorological and soil conditions).

3.2 Species diversity

A total of 343 observations (292 trees and 51 seedlings) from 47 woody species (including 13 seedling species) and 32 families
(including seven seedling families) were identified from the nine plots (Table S5.1). The average species richness (Sg) per plot
for the EF, RF, and CP were 17, 13, and 4, respectively. The top five dominant species in EF accounted for 46 % of the
individuals: (Mesua ferrea (n = 18), Diospyros bejaudii (n = 12), Litchi chinensis (n = 11), Vatica odorata (n = 11), and
Hydnocarpus annamensis (n = 8). In RF, the most dominant species were Vatica odorata (n = 54), Nephelium hypoleucum (n
= 14), Benkara fasciculata (n = 12), Garcinia oliveri (n = 12), and Mesua ferrea (n = 5), comprising 61 % of individuals.
Naturally, within the CP, the most abundant species was Anacardium occidentale (n = 46), the only species found when
excluding seedlings. Among seedlings, except for Anacardium occidentale, we also found Strychnos axillaris (n = 3),
Nephelium hypoleucum (n = 1), Melodorum fruticosum (n = 1), Maclura cochinchinensis (n = 1), and Catunaregam tomentosa
(n = 1). Furthermore, fast-growth species, as described by Ha (2015) (WD < 0.6 g cm™®), accounted for 40 % of EF and 44 %
of RF of their total species composition.

The Shannon-Wiener index ranged from 0.31-2.68 across all plots, with the highest and lowest values observed in EF1 and
CP2 (Table S5.2). EF showed the highest mean Sn (2.48 * 0.33), followed by RF (1.97 + 0.45), whereas CP was dominated

by Anacardium occidentale, and thus it has a very low Sy (0.61 + 0.46).

Table 3, Mean values and statistics of ecosystem characteristics in the different land-cover classes.

A Tukey HSD
N
CP RF RF
Land cover 0]
Vv & & &
Group Variables EF EF cpP
A
EF RF CP
n  (Mean* n  (Mean+ n P P P P
(Mean £ SD) value value value value
SD) SD)
Sr (with seedling species, count
17+4 3 13%2 3 4%3 3 - - -
per plot)
Species Sr (without seedling species,
13+2 3 10%3 3 1%0 3 - - -
diversity count per plot)

S (with seedling species,
. 248+033 3 197+045 3 061+046 3 - - -
unitless)
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370

Chlowm (Mg gt 9.14+345 109 7.56+2.03 137 499+0.66 46 * * 039 0.08

Leaf
functional  LDMCeum (Mg gt 39843+ 109 703 x 137 784 46 051 050 094 059
) 72.24 9497 2168 T

traits SLAcwum (M? kg™t) 18.18 £2.86 109 1487 +2.06 137 11.99+1.45 46 ** el * 0.06
DBH (cm) 180+20.1 109 5.8+4.3 137 13.0£39 46 *** 014  *** Frx
H (m) 170+133 109 7.4+38 137 6.3+£1.0 46 FrE kR Fk 0.93
Maximum H (m) 52.0 109 18.6 137 7.8 46 - - - -
Wood density (g cm3)* 0.74+0.17 109 0.72+0.15 137 0.45+0.00 46 ***  *** 056  ***
Stem density DBH > 1 cm (ha 10859 +
iyt 6216 + 2177 3 4999 3 1067 +440 3 - - - -
Stem density DBH > 5 c¢m (ha”
a1t 1016 £533 3 2193+895 3 1067 +440 3 - - - -
Stem density DBH > 10 cm (ha

Stand iyt 550 + 505 3 293%6 3 600+164 3 - - - -

structure, BA (m? hat) 26+4 3 17+5 3 12+4 3 - - - -
BA (m? ha'l, DBH > 5 cm) 24+4 3 12%2 3 12+3 3 - - - -
BA(m2hal,DBH>10cm) 214 3 4+%1 3 9#1 3 - - - -
DWB (Total) (Mg ha't) 275+124 3 48+70 3 04+02 3 - - - -
AGBt (Mg ha't) 239+ 92 3 42+10 3 71+22 3 - - - -
AGBwd (Mg ha'l) 336 + 168 3 7825 3 182%57 3 - - - -
AGBh (Mg ha) 312+184 3 54+14 3 1745 3 - - - -
LAlc (m? m?) 462+050 21 466+070 21 252+042 21 *** k= 1.00  ***
LAIT (m? m?) 6.16 £0.67 21 557+0.76 21 3.07+0.61 21 ***  *** 0.08  ***
Annual mean fPAR? 0.97+0.01 364 0.96+0.01 365 0.76+0.06 359 ***  *** * Fhx
Annual mean SWC# (m3 m=) 0.23+0.06 364 0.14+0.03 365 0.21+0.05 363 ***  *** Hx Frx

Soil Annual mean Ts* (°C) 243+12 364 242+13 365 258+15 363 ***  AE* Fkk Fhx

conditions 0.032 = 0.025 =
Annual mean ECs! (dS m?) 0.039 £0.015 268 40 260 *x* Ak Fk Frx

0.013 0.003

Note: Abbreviations used in the table: EF = evergreen forests, RF = regrowth forests, CP = cashew plantations, Sk = species richness
(only woody seedling species), Sw= Shannon-Wiener index, Chlewm = community-weighted mean of chlorophyll a and b content,
LDMCewm = community-weighted mean of leaf dry matter content, SLA«wm = community-weighted mean of specific leaf area, DBH
= tree’s diameter at breast height, H = tree height, BA = stand basal area, AGBr = aboveground biomass computed by adopted
functions, AGBh = aboveground biomass computed by H and DBH power-law relationship, AGB,q = aboveground biomass based on
equations Eqgs. (9-11) with species-specific wood density updated for our woody tree species, LAlc = canopy leaf area index, LAlT=
total leaf area index, fPAR = fraction of photosynthetically active radiation, SWC = soil water content, Ts = soil temperature, ECs =
soil saturation extract electrical conductivity, SD = a standard deviation, ANOVA = one-way analysis of variance, Tukey HSD =
Tukey's Honestly Significant Difference test. Statistically significant code for ANOVA and Tukey HSD test: “**** p-value < 0.001,
%> povalue < 0.01, “** p-value < 0.05, and “-” not available. "The species-specific wood density was derived from the ICRAF
Database (2022) and Zanne et al. (2009). **Extrapolated values for one hectare were obtained from sampling DBH class subplots.
*Daily mean values were used to calculate the reported variables.
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3.3 Leaf functional traits and diversity

The mean specific leaf area for all 30 species was 16.97 + 5.30 m? kg™, with Hydnocarpus annamensis having the highest SLA
(36.67 = 5.20 m? kgt) and Capparis micracantha the lowest (10.46 + 3.28 m? kg™). For Chl, the mean value was 10.28 + 4.17
mg g%, with Hydnocarpus annamensis having the highest value (25.75 + 5.28 mg g*) and Anacardium occidentale the lowest
(4.86 + 4.93 mg g%). Finally, for LDMC the mean value was 378.96 + 143.26 mg g, with Mesua ferrea and Hydnocarpus
annamensis having the highest (486.90 + 25.03 mg g*) and lowest (139.92 + 20.19 mg g'?) values, respectively. For detailed
descriptions of leaf functional traits of all species and plots, please refer to Tables S6.1-S6.3.

There were statistical differences in mean SLAcwm (p-value < 0.002) and Chlcwm (p-value < 0.018) among the three land-cover
classes, whereas there was no significant difference in the mean LDMCewm (p-value = 0.51) (Table 3). SLAcwm and Chlewm Were

highest in EF (18.18 + 2.86 m? kg%, and 9.14 + 3.45 mg g*) followed by RF (14.87,+ 2.06 m? kg*, and 7.56 + 2.03 mg g*})
and CP (11.99 + 1.45 m? kg%, and 4.99 + 0.66 mg g*). However, for LDMC.um the highest value was observed in CP, with a
value of 407.64 + 21.68 mg g (398.43 + 72.24 mg g'* for EF, 370,13 + 94,97 mg g’ for RF). See Table S6.4 for data sources

and shared percentages of species trait values used to compute SLAcwm, Chlewm, and LDMCewm.

3.4 Stand structure attributes
3.4.1 DBH-H relationship

The 292 sampled woody trees in the nine inventory plots had a mean DBH of 11.5 + 13.9 cm and a mean H of 10.8 + 9.8 m
(Fig. S7.1). The maximum H of 52.0 m and the maximum DBH of 102.3 cm were both observed in EF. RF and CP had
maximum H of 18.6 m and 7.8 m, and maximum DBH of 23.1 cm and 18.8 cm respectively. Comparing land-cover classes,
EF had both the highest mean and the highest variability in DBH (18.0 + 20.1 cm) and highest H (17.0 + 13.3 m), while CP
had a mean DBH of 13.0 + 3.9 cm, which was double that of RF (5.8 + 4.3 cm). CP had slightly higher mean H values than
RF, whereas RF had higher variability (RF at 7.4 £ 3.8 m; CP at 6.3 + 1.0 m). In addition, the ANOVA confirmed statistically
significant differences in mean DBH and mean H among the three land-cover classes (Table 3). The Tukey HSD test further
revealed differences in mean DBH for RF & EF and RF & CP (p-value < 0.001), as well as in mean H for CP & EF and RF &
EF (p-value < 0.001). In contrast, the test showed no statistically significant differences between the mean DBH for CP & EF
(p-value = 0.14) and mean H for CP & RF (p-value = 0.93) (Table 3).

Strong positive relationships between DBH and H were observed in both EF and RF. For EF, 92 % of the variation in H can
be explained by the variation in DBH, whereas for RF and CP, it was 78 % and 51 %, respectively (Table S7.1). The power-
law relationships between DBH and H further indicated that the K; and K; values for EF and RF were similar, whereas the
values for CP were much lower (Fig. 3). For a plot-level analysis of relationships between In(DBH) and In(H), see Fig. S7.2
and Table S7.2.
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Figure 3. Relationship between diameter at breast height (DBH) (cm) and tree height (H) (m) for evergreen forests (EF), regrowth
forests (RF), and cashew plantations (CP) in Kulen. Figure shows the derived power-law intercept (K1) and slope (K2) values for EF,
RF, and CP.

3.4.2 Aboveground and deadwood biomass, stem density, and basal area

The AGBw« method consistently yielded higher aboveground biomass across all land-cover classes compared to the AGB¢ and
AGB;, methods. Significant variations in estimated AGB values were observed among land-cover classes for all methods; EF
had values in the range of 239-336 Mg ha, and RF had values in the range of 42-78 Mg ha* (Table 3, Fig. 4). The main
difference between the methods was that AGB, based on local scale K and K; values (Table S7.2, Fig. S7.2), had substantially
lower AGB for CP compared to the other two methods (AGBuwq: 182 + 57 Mg ha', AGB: 71 + 22 Mg ha, AGBy: 17 + 5 Mg
hal, see Fig. S7.3). Further plot-level results are available in Figs. S7.4-S7.5. Additionally, the mean total DWB was 27.5 +
12.4 Mg ha' in EF, 4.8 + 7.0 Mg ha in RF, and 0.4 + 0.2 Mg ha™ in CP. See Table Al for the contribution of lying and
standing DWB to total DWB.
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Figure 4. Power-law relationships between aboveground biomass (AGB) of AGBt, AGBh, and AGBwd and diameter at breast height
(DBH) for each land-cover class (a), along with the corresponding results of AGB estimation (b). AGBs represents aboveground
biomass estimated by adopted functions, AGBwa represents aboveground biomass estimated by adopted functions utilizing species-
specific wood density, and AGBn represents aboveground biomass estimated by the DBH and tree height (H) relationship, in
conjunction with species-specific wood density, for the study site. The error bar in (b) represents a standard deviation.

The stem density per hectare (DBH > 5 cm) was twice as high in the RF compared to EF and CP (Fig. 5). This higher stem
density per ha was primarily attributed to the DBH class of 5-15 cm. RF had a significantly larger BA (17 + 5 m? ha) than
the CP (12 + 4 m? hal), despite having a smaller mean DBH (Table 3). Interestingly, only 5 % of the stems with a DBH > 30
cm contributed to approximately 75 % of the total AGBy, 234 Mg ha™* out of 312 Mg ha*. The main DBH class contributing
to the AGB in RF and CP was 5-15 cm, accounting for 62 % and 71 % of the total AGB in RF and in CP, respectively. Refer
to Supplementary Table S7.3 for shared stem density percentages per hectare across DBH classes, and Table S7.4 for shared

percentages of AGBy categorized by DBH class.
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Figure 5. Estimations per land-cover class of a mean number of stems per hectare (a), basal area (BA, m? ha) (b), and mean
aboveground biomass separated by the different diameters at breast height (DBH) classes (c). In (c), the contribution of different
DBH classes to the mean aboveground biomass estimated by the AGBn method was used in this calculation. The error bars in the
figure represent one standard deviation.

3.5 LAl and fPAR

The mean total leaf area index values were 6.16 + 0.67 m? m2 for EF, 5.57 + 0.76 m? m for RF, and 3.07 + 0.61 m? m2 for
CP. The mean canopy LAI values were 4.62 = 0.5 m? m™ for EF, 4.66 + 0.70 m? m for RF, and 2.52 + 0.42 m? m™ for CP.
The ANOVA analysis revealed a significant difference in mean LAl and mean LAlc among the three land-cover classes, while
the Tukey HSD test did not find a significant difference in mean LAlt and mean LAlc between EF and RF (Table 3). The
phenology of both LAl and LAlc revealed a similar pattern in EF and RF, with peak and base values in June and March,
respectively (Fig. 6a—b, Table S8.1 in Supplementary Subsection 8 for their descriptive statistics). The LAlr and LAlc patterns
for CP resembled those of EF and RF but also had a strong decrease in April. Furthermore, the understory LAl (LAly; the
difference between LAIlr and LAlc) for the various land-cover classes indicates that the ground vegetation highly contributes
to LAIy for EF and RF, while the contribution was minor for CP (Fig. 6¢). In particular, the LAly mean values within a year
were approximately 1.54 + 0.57 m? m for EF (25 %), 0.91 + 0.36 m? m*? for RF (16 %), and 0.55 + 0.39 m?m for CP (18

%). A general trend of high contribution LAly to LAlt in June and low contribution in April was apparent for all land-cover
classes.
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their variations across different months within a year for evergreen forests (EF), regrowth forests (RF), and cashew plantations
(CP). The lines in the graph represent the connection between the mean LAI values from one month to another.

The observed mean annual fPAR for EF, RF, and CP was high: 0.97 + 0.01, 0.96 + 0.01, and 0.76 + 0.06, respectively (Table
3). The values of EF and RF exhibited minimal fluctuations throughout the year, whereas the fPAR of CP ranged between 0.55

and 0.93 (Fig. 7). Like LAI, the annual mean fPAR among EF, RF, and CP were statistically significantly different according
to both the ANOVA test and Tukey HSD’s tests.
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Figure 7. Daily mean global radiation (Rg, W m?) (a) and daily mean fPAR for evergreen forests (EF) (b), regrowth forests (RF)
(c), cashew plantations (CP) (d) from April 11, 2022, to April 9, 2023 at Kulen. The shaded area represents one standard deviation
from the mean, computed using the ten PAR sensors installed in each land-cover class.

480 3.6 AGBn relationships with LAlT, SLAcwm, and Sr

We observed positive relationships between aboveground biomass and three pivotal ecosystem characteristics: LAl+, Sg, and

SLAcwm determining 76 %, 72 %, and 68 % of the variability in AGB, respectively (Fig. 8, Table S9.1 for statistical regression

tables). LAl exhibited strong positive correlations with SLAcwm, Sr, and AGB, with the Pearson correlation coefficient in the

range of 0.67-0.85. SLA.wm had a positive correlation with Sg and AGB. Furthermore, additional insights regarding the Pearson
485  correlation matrix depicting relationships among various ecosystem characteristics are presented in Fig. S9.1.
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Figure 8. Ordinary least squares regression showing the effect of mean total LAl (LAlT, m? m), mean SLAcwm (M? kgt), and species
richness (Sr, count per plot) on AGB. Mean LAl isa mean ground LAI measurement, Sr is a woody species count excluding seedlings
in a plot, and AGB is AGBh whose estimation was based on the DBH-H relationship.

4 Discussions
4.1 Importance of tropical field data

Numerous studies have emphasised the essential role of field-observed data for empirically elucidating the complexities of
tropical forest ecosystems (Fischer et al., 2016; Clark et al., 2017). These data are crucial for understanding how land-use and
land-cover changes affect forest ecosystems, for assessing biodiversity, for mapping, and for quantification of ecosystem
services, and for enhancing remote sensing and ecosystem modelling techniques. In our case, the observed dataset also allows
for pairwise comparisons of ecosystem characteristics against the pristine conditions of the tropical evergreen forests, a
perspective often missing in studies focused on a single land-cover class. Given the critical issue of land conversion in
Southeast Asia, where natural forests are frequently transformed into agricultural lands, our data are pivotal for studying the
ecological shifts of such land cover changes. Despite not being similar to the nearby lowlands (Chim et al., 2021), the
meteorological conditions at the field site are characteristic of the tropical monsoon climate of Southeast Asia (Thoeun, 2015),

indicating that the conclusions drawn from field site data may represent the larger region.

4.2 Soil conditions

The difference in soil temperature between the forested land-cover classes (EF and RF) and the cashew plantations (Table 3)
aligns with prior studies by van Haren et al. (2013) and Geng et al. (2022) and can be explained by the substantial difference
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in interception of incoming radiation between these ecosystems (Fig. 6). The multi-layered canopies and the dense layer of
deadwood and litterfall, effectively prevent direct sunlight from reaching the ground. This natural shield reduces the impact of
global radiation, thereby maintaining cooler soil surface temperatures (Senior et al., 2018). Conversely, CP has a simpler
canopy structure, predominantly featuring a single layer of cashew trees of similar age. The understory in these areas is sparser,
and the reduction in deadwood, due to management, facilitates greater global radiation penetration and elevates soil
temperatures.

Our observed annual mean soil water content across the three land-cover classes (0.14-0.23 m® m=) is consistent with earlier
findings (Rodell et al., 2004; Wang et al., 2012; Horel et al., 2022). Variations in SWC among these classes may stem from
differences in their stand structural complexity (vegetation cover and root system) and soil properties (organic matter conte nt
and texture) (Pickering et al., 2021; Tang et al., 2021). The higher SWC in evergreen forests compared to regrowth forests is
attributed to their dense and multilayered vegetation cover, which reduces global radiation and temperature at the forest floor,
thereby reducing evaporation and maintaining topsoil moisture (Fig. 6). In addition, the complex root systems of primary
forests enhance water retention by creating channels and pores in the soil, while organic matter from deadwood and litterfall
further enhances soil water retention, particularly during arid conditions (Luo et al., 2023). Another explanation could be the
soil texture, as our field investigation observed that cashew plantations are all on sandier soils with lower water-holding
capacity, leading to decreased SWC (lbrahim and Alghamdi, 2021). Nevertheless, further examination of soil samples is
necessary to accurately measure the specific soil properties in each land-cover class.

The analysis of soil electrical conductivity categorized the soils as non-saline across the land-cover classes. evergreen forests
had higher ECs than cashew and regrowth forests, potentially indicating larger nutrient availability (Omuto et al., 2020). This
higher nutrient availability in evergreen forests may be linked to greater organic matter decomposition, species richness, higher
soil moisture content, and no history of being clear-cut, which could lead to nutrient losses via run-off during the phase without
vegetation (Austin et al., 2004; Vestin et al., 2020; Guo et al., 2023b).

4.3 Species diversity

The mean species richness and biodiversity (the Shannon-Wiener index) of evergreen forests and regrowth forests (Table 3)
were similar to several previous studies of evergreen forests (Zin and Mitléhner, 2020; Theilade et al., 2022; Tynsong et al.,
2022). However, species richness was lower compared to the most diverse rainforests in South America and Southeast Asia,
where often > 250 species ha* have been reported (Mohd Nazip, 2012; ter Steege et al., 2023) and the Shannon-Wiener index
was lower than for some moist evergreen and humid lowland forests in Southeast Asia (Mohd Nazip, 2012; Zin and Mitl6hner,
2020). These tropical rainforests may have more species because of their larger forest patch sizes and higher rainfall, compared
to the relatively isolated monsoon forest at the top of Kulen, surrounded by agricultural areas (Galanes and Thomlinson, 2009).
The relatively low Sy may also be explained by the high proportion of the top five dominant species in each land cover,
accounting for over 50 % of total stems in their communities. Another possible reason could be the limited number of sample

plots, which may not fully capture the overall species composition and distribution in these forests. Tropical tree species

22

[ Deleted: 2




545

550

555

560

565

570

composition is markedly influenced by biogeography and disturbance history, showing significant local variations even over
short distances (Whitmore, 1998; Van and Cochard, 2017). This emphasizes the necessity for comprehensive field data
sampling to accurately assess the species richness and evenness of these highly diverse plant communities. The comparison
between Sg and Sy of EF and RF with previous studies is presented in Table S10.1- S10.2.

4.4 Leaf functional traits and diversity

Specific leaf area, leaf dry matter content, and chlorophyll content are all key leaf traits in the leaf economic spectrum, and
carry diverse implications for understanding carbon sequestration, resource availability, successional stages, and
environmental responses (Wright et al., 2004; Gao et al., 2022). The SLA.wm of EF exceeded the mean values of tropical forests
in Bolivia, Brazil, Costa Rica, and China (Finegan et al., 2015; Wang et al., 2016). The SLA«wm of RF was somewhat higher
than the mean of neotropical regrowth forests, but still within the range (Poorter, 2021). SLAcwm in CP was greater than the
range value in Parakou, Benin, but fell within the range reported for 15 cashew varieties in Karnataka, India (Akossou et al.,
2016; Mog and Nayak, 2018). Furthermore, our observations emphasize the significant consequences of transitioning from EF
to RF or CP, resulting in a substantial reduction in actual values and diversity in SLAcwm, reflecting a reduction in both
ecosystem productivity and resilience to disturbances (Liu et al., 2023). The higher SLAqwm in EF, suggests higher
photosynthetic capacity, especially in shaded environments, due to its dense canopy cover and abundant resource availability
(water and nutrients) for plant growth (Green et al., 2020). High SLAcwm Values also link to faster turnover and promote nutrient
cycles, carbon sequestration, and nutrient use efficiency in forest ecosystems (Guerrieri et al., 2021). The lower SLAcwm Values
of RF and CP may be attributed to limited water and nutrient availability in the soil because of high competition in those
ecosystems. The notable reduction in SLAcwm caused by the shift from EF to RF or CP underlines the profound impact land-
cover change has on both SLA.wm and, consequently, ecosystem productivity, resilience, and functioning, highlighting the
impact of land-cover change on ecosystem function.

Leaf dry matter content is a measure of construction cost per fresh weight mass unit, and it serves as a metric for a plant's
resource use strategy and resilience to environmental stresses (Guo et al., 2023a). The higher LDMCewn in EF compared to
that of RF indicates a conservative resource usage, longer leaf lifespan, and increased carbon sequestration, implying higher
ecosystem stability and function for EF (Rawat et al., 2021). Conversely, the highest LDMCecwm in CP, is attributed to cashew
monoculture and the species' high resilience to environmental stress, especially in nutrient-poor soils and water-stressed
conditions (Bezerra et al., 2007). This study emphasises EF's increased stress tolerance, conservative resource utilisation and
greater carbon sequestration compared to RF, while also emphasizing cashew as a highly proficient species in environmental
stress tolerance.

Chlorophyll is essential for photosynthesis and serves as a crucial indicator of a plant's photosynthetic capacity, profoundly
influencing overall growth (Stirbet et al., 2020). In this study, Chlewm in EF and RF falls within the range observed in Chinese
forest ecosystems but surpasses the mean Chlewm in those ecosystems (Li et al., 2018). Our CP had lower Chlewm than EF and

RF due to less light competition and higher temperatures, which could lead to photoinhibition and lowered leaf chlorophyll
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content. The elevated Chlcwm Seen in EF can be attributed to the well-developed and dense canopy structure, which creates a
light-shaded environment. This prompts plants to invest more in chlorophyll production, enhancing light harvesting efficiency.
Meanwhile, RF, experiencing intense competition for light in early successional stages, may exhibit lower chlorophyll levels

as resources prioritize vertical growth over chlorophyll production (Laurans et al., 2014).

4.5 Stand structure attributes
4.5.1 Tree height and diameter at breast height

Our mean DBH of evergreen forests is comparable to mature tropical forests in Vietnam and falls within the pantropical range,
while regrowth forests have a slightly higher mean DBH than tropical secondary forests in Sarawak, Malaysia (Brown, 1997;
Kenzo et al., 2009; Yen and Cochard, 2017). In contrast, cashew plantations show a significantly lower mean DBH compared
to older counterparts in Kampong Cham, Cambodia (Avtar et al., 2013). Moreover, observed species in our evergreen forests,
such as Dipterocarpus costatus, Sandoricum indicum, Mesua ferrea, Nageia wallichiana, and Litchi chinensis reach heights
of 40-52 m, similar to those found in Cambodia's central evergreen forests (Theilade et al., 2022). The loss of large-diameter
and tall trees in regrowth forests and cashew plantations, resulting from land use changes, substantially threatens critical
ecosystem functions, jeopardizing carbon storage, nutrient cycles, and biodiversity within these transformed landscapes (Diaz
etal., 2007; Lutz et al., 2018; Thiel et al., 2021).

4.5.2 Stem density and basal area

Our mean stem density per hectare of evergreen forests is consistent with previous studies in Cambodia, Vietnam, and in
Borneo, while regrowth forests show lower densities compared to those in the Yucatan Peninsula, Mexico (Slik et al., 2010;
Con et al., 2013; Roman-Dafiobeytia et al., 2014; Chheng et al., 2016; Theilade et al., 2022). Additionally, our stem density in
cashew plantations is similar to that of Isuochi, Nigeria, but significantly greater than that of Casamance, Senegal, due to their
differences in planting distance and management practices (Nzegbule et al., 2013; Ndiaye et al., 2020). The variation in stem
density between regrowth forests and evergreen forests reflects distinctive stages of succession. In the early succession stage
following clearance, open niches and resource abundance create a favourable environment for fast-growing and highly
reproductive early-succession species, resulting in higher stem density and heightened interspecies competition (Zhang et al.,
2020). As the forest matures, stem density naturally decreases as larger trees occupy more space, light, water, and nutrient
resources. This competition ultimately leads to the mortality of smaller trees, aligning with the power-law relationship between
stem density and biomass commonly observed in mature forests (Mrad et al., 2020). This natural process also alters species
composition, stand structure, habitat heterogeneity, and biomass of forests (Forrester et al., 2021). In cashew plantations, stem
density is controlled by humans to enhance cashew yield. This alteration in stand structure complexity influences interspecies
competition. These modifications also affect stand structure and interspecies competition, ultimately influencing the
biodiversity and functioning of the ecosystem.
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Basal area, by incorporating both cross-sectional area and stem density in a given area, offers crucial insights into stand
structure dynamics. The basal area of evergreen forests in our study aligns with those in northeast Cambodia and Pahang
National Park, Malaysia, but falls below values reported for Laos, Cambodia's central plains and Vietnam's lowlands (Rundel,
1999; Sovu et al., 2009; Mohd Nazip, 2012; Chheng et al., 2016; Theilade et al., 2022). Regrowth forests have lower BA than
evergreen forests, indicating early succession and disturbance (Ziegler, 2000). Still, our regrowth forest's BA exceeds that of
regrowth forest in Laos, while cashew plantations surpass plantations in Tanzania's (Sovu et al., 2009; Malimbwi et al., 2016).
Basal area decreases significantly when EF is replaced with CP or RF, impacting biomass, productivity, stand structure, and
structural complexity (Gea-l1zquierdo and Sanchez-Gonzélez, 2022). While tropical forests possess natural regenerative
capabilities, RF may require several decades to achieve BA levels comparable to EF, highlighting the critical importance of

conserving EF to maintain their ecological integrity and ecosystem services.

4.5.3 DBH-H relationships and estimations of aboveground biomass

The DBH-H relationship is crucial for understanding variations in tree growth rates, successional stage, aboveground biomass,
and forest health (Kramer et al., 2023). Finding a strong positive DBH-H relationship may indicate disturbances within the
ecosystem, as these by initiating gaps in the canopy provide opportunities for fast-growing species to establish and utilize
increased light availability and resources within the ecosystem (Senf et al., 2020). Hence, the observed relationships between
EF and RF suggest a composition of fast-growing species and indicate that EF may have experienced past disturbances. Indeed,
a windthrow in EF1 is reflected in its lowest LAlc among EF plots and a smaller mean DBH (Fig. S7.1a).

The lower DBH-H relationship in cashew plantations results from the growth strategy of the single species and management
practices. In monocultures with uniformly aged cashew plants, competition for light and resources is comparable, resulting in
a consistent resource distribution. Cashew's natural growth characteristics, with the species reaching up to 15 m in height and
a DBH of 100 cm under favourable conditions (Avtar et al., 2014), indicate a preference for investing resources in branches
and stems over height, especially in low-light competition environments. However, our observations indicate significant
variation in the DBH-H relationship among CP plots (low R? value in Fig. 3, Fig. S7.5g-i) which may have been influenced
by their different management practices, such as spacing, pruning, and thinning. These practices impact the DBH-H
relationship by minimizing light competition, resulting in a higher DBH-H ratio which also affects the relationship (Deng et
al., 2019; Bhandari et al., 2021).

Recent studies have emphasized the significant uncertainty in estimating plot-level aboveground biomass when directly
applying a generic AGB allometric equation (AGBs) due to variations in species composition and stand structure between the
study site and the equation’s origin (Feldpausch et al., 2011; Burt et al., 2020). To address this challenge, our study proposes
an allometric approach (AGBy,) using local species-specific wood density and the DBH-H relationship at the study site. This
approach captures the unique characteristics of the site's species composition and stand structure (Ketterings et al., 2001;
Nyirambangutse et al., 2017). Our locally adopted AGB: method produced estimates ~ 30 % higher than the generic AGB; for
both EF and RF (Table 3, Fig. 4b). This is likely due to the combined effects of higher mean wood density and a stronger DBH
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relationship, resulting in a more pronounced exponential growth response in AGB (Fig. 4a). Still, these ~ 30 % higher values
align with the range reported in previous studies (Tables A2-A3). In contrast, in the CP case, our AGBy method produced
estimates less than a quarter of the generic AGB; method. The reason is that the AGB, method is less reliable when a weak
DBH-H relationship is detected because it fails to accurately capture the overall tree size and volume. This is also reflected in
the substantially larger uncertainty in the CP AGB: method as indicated by the standardized errors of the parameters within the
DBH-H relationship (Table A4; Table S7.1). However, to fully validate the AGB allometric equations destructive field-
observed data would be necessary. Therefore, future research should include direct field measurements of AGB to more

accurately validate the methods for these land-cover classes.

4.5.4 Deadwood biomass

Deadwood biomass indicates biodiversity and ecosystem health, supporting various species and ecosystem processes like
carbon and nitrogen cycling, soil fertility enhancement, pollination, and erosion control (Parisi et al., 2018a; Santopuoli et al.,
2021; Tlaskal et al., 2021). In evergreen and regrowth forests, we found total deadwood biomass comparable to Cambodia and
Malaysia (Saner et al., 2012; Kiyono et al., 2018). However, our cashew plantations have less DWB than plantations in
Cameroon (Victor et al., 2021). Variations in total DWB values could result from the degree of disturbances within the studied
forests (Baker et al., 2007). The higher DWB in EF is due to its old stand age, long-term accumulation of DWB, and absence
of slash-and-burn practice as observed in RF and CP (van Galen et al., 2019). In CP, some farmers periodically cut and burn
dead branches of cashew trees to promote growth.

4.6 LAl and fPAR

In our study, canopy leaf area index in evergreen forests surpasses that of dry evergreen forests in Kampong Thom, Cambodia,
while regrowth forests lie between those of 18—35-year tropical secondary forests in Costa Rica; however, cashew plantations
exceed reported values in India (Ito et al., 2007; Clark et al., 2021; Kumaresh et al., 2023). The LAl difference between the
forests (EF and RF) and CP was significant due to CP management practices, resulting in a thin canopy with low LAlc. In
contrast, natural forests with their densely developed canopy have a high LAlc. Additionally, LAlc phenology followed the
rainy and dry seasons, with peak values during the rainy season and low values during the dry season (Ito et al., 2007). During
the dry season, reduced rainfall leads to less water availability for plant growth, causing plants to adapt to water stress by
shedding their leaves, resulting in low LAlc in the ecosystem (Maréchaux et al., 2018). The comparison between LAlc and
LAlt of EF and RF with previous studies is presented in Table S10.3.

Our mean fraction of photosynthetically active radiation for EF and RF marginally exceeded the global range for broadleaf
forests and the monthly range observed in the Amazon tropical forest in Santarém, Brazil (Senna et al., 2005; Pastorello et al.,
2020). The fPAR for CP, on the other hand, is within the range values reported for broadleaf crops (Xiao et al., 2015). Despite
annual variations in LAlc (24 % for EF, 32 % for RF, 29 % for CP) and incoming solar irradiance, fPAR remained remarkably
stable throughout the year in the forest ecosystems (EF and RF, Fig. 7). This stability can be attributed to the exponential
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relationship between fPAR and LAI, which typically saturates at LAl above 3 (Dawson et al., 2003). Our recorded lowest LAl
for EF and RF was 3.48, likely contributing to this saturation and explaining the lack of phenology displayed in fPAR. The
exclusion of reflected PAR above the canopy in the fPAR estimation may also contribute to the stability; however, previous
studies have shown that the difference between intercepted (what we measured) and absorbed PAR (including the reflected

component) is minimal (Olofsson and Eklundh, 2007).

4.7 AGBn relationships with LAlT, SLAcwm and Sr

Exploring the relationship between aboveground biomass and key ecosystem characteristics such as leaf area index, specific
leaf area, and species richness is vital for comprehending the complexity of ecosystem dynamics and informing ecosystem
modelling. We observed a strong positive relationship between LAl+ and AGBy, supporting prior findings (He et al., 2021;
Zhao et al., 2021). Higher LAlt enhances light interception and results in higher biomass. Elevated AGBy, levels stimulate LAl+
expansion by providing resources for robust leaf growth, leading to a denser canopy and greater leaf coverage. Similarly, our
findings support a positive relationship between SLA«wm and AGBy, (Finegan et al., 2015; Ali et al., 2017; Gao et al., 2021).
Higher SLA.wm values indicate a plant community with improved photosynthetic capacity, nutrient uptake, and leaf turnover,
which is essential for nutrient cycling (Reich et al., 1991). An increase in AGBy has a reinforced effect on SLAcwm values,
suggesting enrichment of the soil nutrient pool and providing structural support for plant growth. This influences light
availability and competition dynamics, affecting leaf morphology and SLAcwm. Furthermore, the positive relationship between
AGBy, and Sg is widely observed and explained by the niche complementarity hypothesis (Waide et al., 1999; Jactel et al.,
2018; Steur et al., 2022). This concept suggests that an ecosystem with high species diversity has a greater variation in
functional traits and resource-use strategies, lowering competition for scarce resources, and thus promoting productivity
(Tilman et al., 1997). In return, an increase in AGBy, fosters the coexistence of diverse species by providing more available
resources and habitat complexity in an ecosystem, thereby increasing species richness.

5 Conclusions

Land use and land cover change is one of the most severe environmental challenges within the Earth system. In the context of
tackling current global environmental challenges, field observations are necessary to assess the dynamic responses of
ecosystems to changing environmental conditions on fine spatial and temporal scales. Especially Southeast Asia, renowned
for its biodiversity richness, suffers from a scarcity of integrated datasets that encompass a broad spectrum of ecosystem
characteristics across different land-cover classes. Here we present the first data of a newly established field site in a tropical
forest region of Southeast Asia (the Kulen National Park, Cambodia), where we started monitoring ecosystem characteristics
of land-cover classes with various anthropogenic pressures (pristine evergreen forests, regrowth forests, and cashew
plantations). We thereafter used the observed ecosystem characteristics for the land-cover classes with various anthropogenic

pressures, to provide a comprehensive analysis of changes in ecosystem characteristics between these classes. Our results
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highlight substantial differences, in soil water content, species diversity, leaf functional traits, stand structure, aboveground

biomass, deadwood, leaf area index, and fraction of photosynthetically active radiation absorbed by the tree canopy,across
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land-cover classes affected by the anthropogenic land-cover conversion. We further demonstrate the utility of our novel dataset
for improving aboveground biomass estimation through the application of an allometric function based on locally specific
wood density and the DBH-H relationship. This approach has great potential for improving carbon stock estimations and
promoting informed forest management practices. Moreover, our analysis of relationships between leaf area index, specific
leaf area, species richness and aboveground biomass, underlines profound impact land-cover change has on ecosystem
productivity and functioning in these tropical forest regions. We further expect that the dissemination of our datasets will
contribute valuable insights for advancing the understanding of tropical forest ecosystems in Southeast Asia, support research,

and promote sustainable forest management under global environmental challenges.

Appendix A

Table Al. Estimated lying deadwood biomass (Mg ha*), standing deadwood biomass (Mg ha), and total deadwood biomass (Mg
ha!) by different land-cover classes in Kulen. Mean + SD is a mean plus or minus a standard deviation.

Lying deadwood biomass (Mg ha')  Standing deadwood biomass (Mg ha)  Total deadwood biomass (Mg ha'*)

Land cover
Mean = SD Range Mean + SD Range Mean + SD Range
EF (n=3) 17.74 £19.93 1.64-40.03 9.74 £ 8.49 0-15.56 27.48 £12.37 15.31-40.03
RF (n=3) 3.65+5.32 0.48-9.79 1.16 + 1.66 0-3.06 4.81+6.97 0.48-12.85
CP(n=3) 0.40 £0.19 0.28-0.62 0 0 0.40 £0.19 0.28-0.62

Table A2. Comparing estimated aboveground biomass (AGB, Mg ha™) in evergreen forests (EF) using adopted allometric equations
(AGBs), diameter at breast height (DBH) and tree height (H) power-law relationship (AGBh), and previous AGB reported in previous
studies. Mean + SD is a mean plus or minus a standard deviation.

No. Region Vegetation type AGB (Mg ha't) References
Mean + SD Range

1 Kulen, Cambodia Tropical evergreen forest 311.66 + 183.88 147.53-510.57 AGBh in this study
2 Kulen, Cambodia Tropical evergreen forest 238.53+92.41 161.83-341.13 AGBt in this study
3 Global Tropical forest 379.02 +187.40 230.58-589.58 Chave et al. (2014)
4 Gia Lai, Vietnam Tropical evergreen forest 273.24 +112.22 189.53-400.76 Nam et al. (2016)
5 Mondulkiri, Cambodia Tropical moist evergreen forest ~ 333.00 + 137.00 78.00-837.00 Solaetal., (2014)
6 Borneo (Brunei, Tropical lowland evergreen 458.16 + 123.62 196.30-778.50 Slik et al. (2010))

Malaysia, Indonesia)  forest
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7 Thanh Hoa, Vietnam

8 Africa

9 Cambodia

10  Kampong Thom,
Cambodia

11 Vietnam

Tropical evergreen broadleaf
forest

Tropical evergreen forest
Evergreen forest

Evergreen forest

Tropical evergreen broadleaf

forests in various ecoregions

251.81+125.43

429.00

243.00 +128.00

294.00 = 65.00

230.10 £ 8.60

40.88-543.88

114.00-749.00

11.00-837.00

176.00-398.00

199.00-320.20

Nguyen and Kappas (2020)
Lewis et al. (2013)
Solaet al., (2014)

Otaetal. (2015)

Van Do et al. (2019)

Table A3. Comparing estimated aboveground biomass (AGB, Mg ha™) in regrowth forests (RF) using adopted allometric equations
(AGBs), diameter at breast height (DBH) and tree height (H) power-law relationship (AGBh), and previous AGB reported in previous
studies. Mean + SD is a mean plus or minus a standard deviation.

No. Region Vegetation type AGB (Mg ha't) References
Mean + SD Range

1 Kulen, Cambodia Natural regrowth evergreen 54.19 +14.09 38.26-65.04 AGB# in this study
forest

2 Kulen, Cambodia Natural regrowth evergreen 41.66 +9.82 31.60-51.21 AGBtin this study
forest

3 Sumatra, Indonesia Mixed secondary forest 59.04 +17.15 39.26-69.79 Ketterings et al. (2001)

4 Kampong Thom, Regrowth forest 42.00 +21.00 22.00-90.00 Otaet al. (2015)

Cambodia
5 Malaysia Young forests aged 8.5-17 years 63.60 +34.93 34.00-118.00 Kho and Jepsen (2015)

Table A4. Comparing estimated aboveground biomass (AGB, Mg ha) in cashew plantations (CP) using adopted allometric
equations (AGBs), diameter at breast height (DBH) and tree height (H) power-law relationship (AGBn), and previous AGB reported
in previous studies. Mean + SD is a mean plus or minus a standard deviation.

No. Region Vegetation type AGB (Mg ha't) References
Mean = SD Range
1 Kulen, Cambodia Family-scale cashew plantation ~ 16.70 + 4.80 11.23-20.23 AGBh in this study
2 Kulen, Cambodia Family-scale cashew plantation ~ 70.60 + 22.01 46.16-88.87 AGB: in this study
3 Benin Cashew agroforestry farming 18.07 £2.14 - Biah et al. (2019)
4 Guinean, Cote d'lvoire Cashew plantation 13.78 £0.98 - Kanmegne Tamga et al.
(2022)
5 Kampong Cham, Large-scale and intensively 104.30 + 19.65 72.00-143.00 Avtar et al. (2013)

Cambodia

managed cashew plantation (10—

16 years of age)
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Data availability

All the collected data used in this study are publicly available via the links as follows:

1. The datasets of the forest inventory, leaf area index, and leaf functional traits across various land-cover classes are
available at https://doi.org/10.5281/zenodo.10146582 (Sovann et al., 2024a).

2. The daily data, including fPAR, soil conditions, and meteorological conditions from April 10, 2022, to April 9, 2023,
can be downloaded from https://doi.org/10.5281/zenod0.10159726 (Sovann et al., 2024b).

3. Future data from the field site will be uploaded to https://zenodo.org/communities/cambodia_ecosystem_data on a

regular basis.
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