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Abstract. Given the severe anthropogenic pressure on tropical forests and the high demand for field observations of ecosystem 10 

characteristics, it is crucial to collect such data both in pristine tropical forests and in the converted deforested land-cover 

classes. To gain insight into the ecosystem characteristics of pristine tropical forests, regrowth forests, and cashew plantations, 

we established an ecosystem monitoring site in Phnom Kulen National Park, Cambodia. Here, we present the first observed 

datasets at this site of forest inventories, leaf area index, leaf traits of woody species, a fraction of intercepted photosynthetically 

active radiation, and soil and meteorological conditions. Our main objective was to study how land-cover change affects the 15 

species and functional diversity, stand structure, and soil conditions among the three land-cover classes. We found significant 

differences in these ecosystem characteristics, caused by the anthropogenic land cover conversion, which underlines the 

profound impact land-cover change has on ecosystem productivity, resilience, and functioning in these tropical forest regions. 

Our results further demonstrated the feasibility of locally updating aboveground biomass estimates using power-law functions 

based on relationships between diameters at breast height and tree height. These datasets and findings can contribute to filling 20 

data gaps in tropical forest research, addressing global environmental challenges, and supporting sustainable forest 

management.  
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1 Introduction 

Tropical forests cover approximately 14 % of the Earth’s surface (Fichtner and Härdtle, 2021) and contribute significantly to 

global terrestrial biodiversity (Giam, 2017) and biogeochemical cycles (Males et al., 2022). Tropical forests produce at least 

30 % of the global terrestrial net primary production (Townsend et al., 2011; Wright, 2013) and account for approximately 70 30 

% of the global gross carbon sink (Pan et al., 2024). In addition, they play a critical role in regulating hydrological cycles on a 

continental scale (Gloor et al., 2013). Tropical forests have been under severe anthropogenic pressures from agricultural land 

expansion, resource exploitation (logging, mining), and urbanization (Gardner et al., 2009; Laurance et al., 2014). Due to these 

disturbances, tropical forest ecosystems have degraded, resulting in a decrease in biodiversity (Barlow et al., 2016). 

Southeast Asia, though harbouring roughly 15 % of the world's tropical forests (Stibig et al., 2014), has suffered the highest 35 

global deforestation rates over the past 15 years (Miettinen et al., 2011). This alarming trend threatens over 40 % of the region's 

biodiversity by 2100 (Sodhi et al., 2004). The forests are mainly disturbed by timber harvesting (Pearson et al., 2017), slash-

and-burn agriculture, and agricultural plantations as a consequence of fulfilling global demands for timber production and 

agricultural commodities, especially rubber, cashew, oil palm, Eucalyptus and Acacia (Phompila et al., 2014; Grogan et al., 

2015; Chen et al., 2016; Johansson et al., 2020). In addition to primary forests, secondary forests that regenerate after clear-40 

cutting or other ecosystem disturbances are also important for protecting biodiversity and assuring the availability of ecosystem 

https://www.annualreviews.org/doi/10.1146/annurev-ecolsys-110512-135914
https://www.annualreviews.org/doi/10.1146/annurev-ecolsys-110512-135914
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services and goods (Tito et al., 2022). However, despite the significance of tropical forests in biodiversity conservation and 

ecosystem services, little is known about how the conversion from primary to secondary forests and plantations impacts 

biodiversity and ecosystem functioning (Edwards et al., 2011; Singh et al., 2014). 

In the context of tackling the current global environmental challenges, field observation data are necessary to assess the 45 

dynamic responses of ecosystems to changing environmental conditions on fine spatial and temporal scales. Field observations 

of key ecosystem characteristics such as forest inventory, leaf functional traits, leaf area index (LAI), fraction of 

photosynthetically active radiation (fPAR), and soil conditions provide crucial insights into ecosystem functions and services, 

including vegetation productivity, carbon sequestration, hydrological cycle, ecosystem stability and resilience to disturbances, 

nutrient reservoir capacity, and the abundance of habitats of organisms (Naeem et al., 1994; Hector, 1998; Cardinale et al., 50 

2012; Chen et al., 2016; Liang et al., 2016; Parisi et al., 2018b; Woodall et al., 2020). In addition, the field data on leaf 

functional traits, LAI, and fPAR are important for the parameterization and evaluation of remote sensing products and dynamic 

vegetation models, essential for modelling and upscaling ecosystem responses to anthropogenic disturbances and climate 

change (Feng et al., 2018; Fang et al., 2019; Pei et al., 2022). Recognizing the significant role and high demand for field 

observations of ecosystem characteristics, open data repositories such as FLUXNET, ICOS Carbon Portal, SpecNet, and the 55 

TRY database have been established to facilitate data sharing (Gamon et al., 2010; Kattge et al., 2020; Pastorello et al., 2020). 

However, despite those global initiatives, field data remain limited, particularly in tropical forests, where they are urgently 

needed to assess ecosystem characteristics, functions, and services in response to rapid degradation and deforestation (DeFries 

et al., 2007; Miettinen et al., 2011; Li et al., 2021). 

Given the increasing anthropogenic pressures on tropical forests, our main aim is to gain insight into the impact of land cover 60 

conversion on key ecosystem characteristics. Therefore, our first objective is to assess the differences in [1] stand structure, 

[2] species diversity, [3] leaf functional traits, [4] and soil conditions between pristine tropical forests and the land cover the 

deforested regions are converted into (regrowth forests and cashew plantations). We further explore relationships between the 

ecosystem characteristics, and how they are influenced by these land cover conversions. Furthermore, recognizing a high 

demand for field observations of ecosystem characteristics of tropical forests, we also present a unique novel in situ data set 65 

of ecosystem characteristics of pristine tropical forests, regrowth forests, and cashew plantations from a newly established 

ecosystem monitoring site in Phnom Kulen National Park (Kulen), Cambodia, providing a valuable resource for advancing 

knowledge of tropical forest ecosystems. 

2 Materials and Methods  

2.1 Study area and selection of plots  70 

The selected study area is the Phnom Kulen National Park located in the Siem Reap Province in north-west Cambodia (Fig. 

1). It covers 37,380 ha predominantly on Jurassic-Cretaceous sandstone plateaus with the highest peak of 496 m (Matschullat, 

2014; Geissler et al., 2019). Kulen is a hotspot for ecosystem service provisioning in Cambodia, mainly for water supply, 
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potential carbon sink, and cultural services (Jacobson et al., 2022; Kim et al., 2023). It is the origin of the Khmer Empire and 

contains numerous archaeological sites. The stream water from the mountain is not only used to support local livelihoods in 75 

water supply and irrigation downstream (Somaly et al., 2020). It is also the primary water source to recharge surface water and 

groundwater aquifers in the Angkor Wat, UNESCO World Heritage Site. Hence, the area is of high importance to ensure that 

the temples' foundations remain stable and maintain their surrounding forest ecosystem (Hang et al., 2016). However, previous 

studies revealed that the forestland in and around Kulen has been disturbed (Chim et al., 2019). The three main land-cover 

classes on Kulen are [1] nearly intact tropical evergreen forests (EF), [2] forests that regrow naturally after clear-cutting (RF) 80 

and [3] household-scale cashew plantations (CP). Approximately 60 % of Kulen is today covered by cashew plantations, 

another 13 % consists of forestland, while the remainder comprises other land-cover classes (Singh et al., 2019). 

 
Figure 1. The locations of the nine forest inventory plots and the meteorological station in the Phnom Kulen National Park, 

Cambodia. Note: the background land use 2021 was derived from SERVIR-Mekong (2024).     85 

Nine forest inventory plots were established in Kulen in December 2020, three within each of the EF, RF, and CP land-cover 

classes (Fig. 1; Table 1; Fig. S1.1), with a minimum separation of 250 meters to capture stand structure variation for each land-
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cover class. The EF plots represented tropical evergreen forests with no clear-cut history. The RF plots were dominated by at 

least 10 year old natural regrowth forests, RF1 was clear-cut in 2009, while RF2 and RF3 experienced timber harvesting and 

burning in 2006, with human disturbances continuing until 2013. The CP plots were permanent rainfed cashew plantations, 90 

with cashew trees planted in 2013 in CP1 and in 2012 for the other two. 

Table 1. Characteristics of the forest inventory plots in Phnom Kulen National Park. Note: EF = evergreen forests, RF = regrowth 

forests, and CP = cashew plantations. Data source: Soil type and geology data from Matschullat (2014). Disturbance history 

information is obtained from field observation, discussion with local people, and combining with the Global Forest Change dataset 

of Hansen et al. (2013) and LandTrendr Pixel Time Series Plotter tool of Kennedy et al. (2018).  95 

Plot ID  Latitude, Longitude Elevation (m)   Soil type  Disturbance history 

EF1  N 13° 34' 12.4680''  

E 104° 7' 18.6096'' 

331 Acid Lithosols  No clear-cut history; affected by high wind disturbance 

and minor human disturbance in 2006, 2012, and 2014. 

Fewer large tree stands and lower vegetation cover 

density compared to EF2 and EF3. 

EF2  N 13° 34' 25.3452''  

E 104° 7' 20.2872'' 

349 

  

Acid Lithosols  No clear-cut history; past disturbances include wind 

events and minor human activities, such as lychee tree 

cutting for fruit harvesting. Most disturbances occurred 

approximately 150 m around the plot in 2004 and 2006. 

EF3  N 13° 34' 35.0508''  

E 104° 7' 20.6148'' 

339 

  

Acid Lithosols  No clear-cut history; wind-driven disturbances occurred 

approximately 300 m around the plot in 2006, 2014, and 

2016. The plot has larger tree stands than EF1 and EF2, 

with the largest DBH at 102 cm. 

RF1  N 13° 33' 42.6132''  

E 104° 8' 1.2408'' 

331 

  

Red-yellow podzols  Clear-cut in 2009; disturbances occurred approximately 

300 m to the east of the plot in 2006, 2012, and 2013.   

RF2  N 13° 36' 15.6924''  

E 104° 7' 48.8928'' 

371 

  

Acid Lithosols  Timber harvesting and burning since 2006; disturbances 

occurred approximately 180 m to the west and east of the 

plot in 2006, 2007, and 2010. 

RF3  N 13° 37' 0.3612''  

E 104° 7' 41.358''  

401 

  

Acid Lithosols  Timber harvesting and burning since 2006; disturbances 

occurred approximately 600 m around the plot in 2009, 

2010, 2011, and 2013. 

CP1  N 13° 32' 18.8988''  

E 104° 12' 12.5568''  

429 

  

Red-yellow podzols  The latest vegetation clearing was in 2013; disturbance 

occurred approximately 300 m around the plot in 2006 

and 2019. 

CP2  N 13° 32' 29.3100'' 

E 104° 12' 13.0284''  

422 

  

Red-yellow podzols  The latest vegetation clearing was in 2012; disturbances 

occurred approximately 180 m around the plot in 2007, 

2009, 2013, and 2019. 
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CP3  N 13° 32' 50.1864''  

E 104° 12' 13.1544'' 

430  Red-yellow podzols  The latest vegetation clearing was in 2012; disturbances 

occurred approximately 120 m around the plot in 2007, 

2009, 2016, and 2019. 

2.2 Data collection  

2.2.1 Forest inventory  

The forest inventory was performed by following the standard method of the National Forest Inventory of Cambodia (Than et 

al., 2018). Each plot was designed as a rectangle with 50 m x 30 m long edges in the south-north and west-east directions. The 

plots were further subdivided into five subplots with the following dimensions: 2 m x 2 m, 5 m x 5 m, 10 m x 10 m, 30 m x 100 

15 m, and 30 m x 50 m (Fig. S1.2). In the 2 m × 2 m subplots, seedlings with diameters at breast height (DBH, 1.3 m above 

ground) of less than 1 cm were recorded. In the 5 m x 5 m, 10 m x 10 m, 30 m x 15 m, and 30 m x 50 m subplots, trees with 

DBH ranges of 1–5 cm, 5–15 cm, 15–30 cm, and greater than 30 cm were measured, respectively.   

For seedlings, we only recorded the total numbers of each species. For the DBH range of 1–5 cm, we noted the DBH, tree 

height (H), species, local name (Khmer), and position of each tree. For trees with a DBH greater than 5 cm, we collected the 105 

same data as for trees with a DBH of 1–5 cm, plus bole height (the height from the ground to the first main lowest stem), health 

(healthy or infected), quality (straight, bent, or crooked stem), origin (natural or planted), and stump diameter and height 

(measured 15 cm above ground for annual tree growth monitoring). 

Deadwood is a significant indicator of decomposition and nutrient cycling processes in a forest ecosystem (Shannon et al., 

2021). Data on lying and standing deadwood with a DBH greater than 10 cm in the 30 m x 15 m subplots were also collected. 110 

The deadwood decomposition levels were classified into five scales, based on harmonizing the scaling systems of the National 

Forest Inventory of Sweden (Swedish NFI, 2019) and Cambodia (Than et al., 2018) (Table S1.1). For standing deadwood, we 

recorded their species, local name, location, height, and decomposition level. For lying deadwood, we counted the number of 

pieces and measured their lengths, base and tree diameters, and decomposition levels. 

2.2.2 Leaf sample collection and measurement 115 

A total of 453 leaf samples from 30 woody species were collected inside and 500 m around the forest inventory plots in 

December 2019 and August 2022. Each species was represented by five to 47 leaf samples. Each leaf's fresh mass, chlorophyll 

content, and photo were taken in the field. A Chlorophyll Meter (SPAD 502 Plus; Konica Minolta Sensing Inc., Japan) was 

used in situ to measure chlorophyll content five times on each leaf surface to retrieve a leaf mean value. The given measurement 

unit was in SPAD value (Soil Plant Analysis Development) and later converted to chlorophyll a and b content (Chl) in µg cm-120 

2 (Coste et al., 2010). We obtained fresh leaf mass by weighting in the field and leaf dry mass by oven-drying the leaves at 60 

°C until the leaf mass remained constant (oven-dried for at least three days) (Garnier et al., 2001). The leaf photos were used 

for estimating leaf lengths and areas using ImageJ (Schindelin et al., 2012; Schneider et al., 2012).  
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2.2.3 Meteorological and photosynthetically active radiation data 

A meteorological station was installed in an open area to continuously record metrological conditions, and incoming 125 

photosynthetically active radiation (PAR) for the wider area (the Kulen National Park). Data were sampled at one minute 

intervals and stored as 15 minute averages (sum for rainfall). The installation was done in November 2020 in Khnang Phnom 

Commune, Svay Luer District, Siem Reap Province, at 13° 34' 16.1148'' N, 104° 9' 45.6768'' E, and an altitude of 314 m above 

mean sea level. The station has one Atmos 41 meteorological station (Meter Group Inc. WA, USA), installed 2.2 m above 

ground level, measuring rainfall, wind speed, wind direction, global radiation, atmospheric pressure, and air temperature. 130 

Additionally, four PAR sensors (SQ-110-SS, Apogee Instruments, Inc., UT, USA) were positioned 2 m above the ground to 

record incoming PAR (PARinc) (Fig. S2.1).  

Six additional loggers with five PAR sensors (SQ-521-SS and SQ-110-SS, Apogee Instruments, Inc., UT, USA) and one 

TEROS 12 soil moisture sensor each (Meter group Inc. WA, USA), collecting data at a 15 minute mean timestep, were installed 

in six of the forest inventory plots in April 2022. The soil moisture sensors were installed at a depth of 20 cm to measure soil 135 

water content (SWC), soil temperature (Ts), and soil electrical conductivity (ECs). Two loggers were placed in each land-cover 

class (EF, RF, and CP). The selection of plots in each land-cover class was based on previous measurements of leaf area index 

(LAI) and the loggers were placed at the plots with the highest and lowest LAI for each land cover, respectively. Thus, the 

selected plots for installing PAR sensors were EF1, EF3, RF1, RF3, CP2, and CP3 (Fig. 1). The PAR sensors were placed with 

one in the centre of the plot and the other four placed 15 ± 1 m apart at 30°, 150°, 220°, and 330° from the north. In cases of 140 

unfavourable field conditions, such as high termite nests or being too close to a tree, the locations were adjusted 0.5–1 m east 

or west of the planned position. Each PAR sensor was mounted on 1.3 m poles to record PAR below canopy data. We calculated 

the fraction of PAR intercepted by the stand canopy (fPAR) for each plot using Eq. (1) (Olofsson and Eklundh, 2007). Each 

TEROS 12 soil moisture sensor was installed at a depth of 20 cm in the middle of the six plots to measure SWC, Ts, and ECs. 

The data of fPAR and soil conditions from two plots within the same land-cover classes were averaged to represent those 145 

classes. 

𝑓𝑃𝐴𝑅 =  
(𝑃𝐴𝑅inc − 𝑃𝐴𝑅below)

𝑃𝐴𝑅inc
 (1) 

Where 𝑃𝐴𝑅inc  and 𝑃𝐴𝑅below  are photosynthetically active radiation above and below canopy (μmol m-2 s-1). 𝑓𝑃𝐴𝑅  is in 

percentage.  

2.2.4 Leaf area index measurements 

We measured each plot's total one-sided leaf surface area per unit ground area, LAI, using a LAI-2000 Plant Canopy Analyzer 150 

(LI-COR, NE, USA). The measurements were conducted six times across two seasons: four times during the dry season 

(November/December 2019, November 2020, December 2020, and March 2021) and twice during the rainy season (September 
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2020 and June 2021). The measurements were taken both at ground level to capture the total LAI (LAIT) and at breast height 

to specifically assess tree canopy LAI (LAIC) within two diagonal transects across the 50 m x 30 m rectangular plots. On each 

measurement occasion, we collected between 32 and 75 samples, except for the ground-level measurements of the RF3 plot 155 

in December 2020, where only ten samples were collected due to technical issues.  

2.3 Data analysis  

2.3.1 Species diversity 

We investigated the species diversity of various land covers by calculating species richness (SR) and the Shannon-Wiener index 

(SH) (Shannon, 1948). The SR was determined by summing the number of tree species in each plot. The SH is commonly used 160 

to quantify species richness and evenness in a community by representing the number of species and how equally individuals 

are distributed among them (Hill, 1973). The value of SH increases as the number of species and the degree of evenness 

increase. The SH was calculated by: 

𝑆H  = − ∑ 𝑃i ln(𝑃i)

𝑛

𝑖=1

 (2) 

Where 𝑆H is Shannon-Wiener index (unitless), 𝑃i is a proportion of i species in a community (unitless), and n is the number 

of species in a plot (unitless). We calculated the 𝑆R and 𝑆H at the plot level and then averaged the values for each land-cover 165 

class. 

2.3.2 Functional traits and diversity 

We computed the specific leaf area (SLA) for each of the 453 leaf samples as the ratio of leaf area to leaf dry mass. Likewise, 

leaf dry matter content (LDMC) was calculated by the ratio of dry leaf mass to fresh leaf mass (Garnier et al., 2001; Akram et 

al., 2023). We estimated the trait community-weighted means and standard deviations of SLAcwm, LDMCcwm, and Chlcwm to 170 

represent ecosystem functions and their diversity at the land-cover level (Garnier et al., 2004; Leoni et al., 2009; Wang et al., 

2020) with:  

𝑇cwm =  
∑ 𝑊i𝑇i

𝑛
𝑖 = 1

∑ 𝑊i
𝑛
𝑖 = 1

 (3) 

Where 𝑇cwm is trait community-weighted mean for SLA, LDMC, or Chl, 𝑇i is the species-specific trait value tree 𝑖, 𝑛 is total 

number of trees, 𝑊i is the weight (volume based) value of the tree, assuming that larger trees have a greater impact on the 

ecosystem function (Chave et al., 2005; Feldpausch et al., 2011). Before computing 𝑇cwm for each trait, we addressed missing 175 

species traits within each plot by first taking values from a different plot with the same land-cover class. If unavailable, we 



9 

 

used values from the same species across all nine plots, followed by values from the genus and family levels. When multiple 

genera or families were available, we averaged the values. If neither was available, we used the mean trait value of the plot. 

2.3.3 Stand structural attributes 

We examined the differences in DBH, H, basal area (BA), aboveground biomass (AGB), and deadwood biomass (DWB) for 180 

the various land-cover classes to characterize stand structure attributes. Deadwood volumes (VDW, m3) for each bole were 

determined by Smalian's equation:  

𝑉𝐷𝑊 = (π 𝐻b) 
(𝐷base

2 + 𝐷top
2 )

8
 (4) 

Where 𝐷base and 𝐷top are diameters at base and top (m), and 𝐻b is the length/height of the trunk (m). 

Deadwood biomass was then received by multiplying VDW with a mean deadwood density of 0.45 g cm-3 (Kiyono et al., 2007). 

Total DWB was computed plot-wise by taking the sum of lying and standing DWB. DWB for each land-cover class was 185 

calculated as the average of the total DWB across the plots within that land-cover class. 

Basal area was determined plot-wise by combining the DBH of all living trees within a plot:  

𝐵𝐴 = ∑ π (
𝐷𝐵𝐻i

2
)

2

(
104

𝐴i

)

𝑛

𝑖=1

 (5) 

Where 𝐵𝐴 is a plot-wise total basal area of all living trees (m2 ha-1), 𝑛 is a number of trees in a plot, 𝐷𝐵𝐻i is the diameter at 

breast height of tree 𝑖 in a sampling plot (m), π (
𝐷𝐵𝐻i

2 
)

2

is the circle basal area of tree i (m2), (
104

𝐴i
) are the scaling factors 

employed to convert the sampled subplot area (𝐴i) to one hectare (unitless). The BA for each land-cover class was represented 190 

by the mean BA of all plots within a class. 

We calculated the mean and standard deviation of DBH and H for each plot and land cover. We further used these for 

establishing relationships between DBH and H, as such relationships serve as functional traits characterizing tree growth 

patterns and successional stages within forest communities (Nyirambangutse et al., 2017; Howell et al., 2022). We used natural 

logarithms and then converted them to power-law relationships both plot- and land-cover class-wise (West and Brown, 2005). 195 

An ordinary least-square linear regression (OLS) was applied to investigate the DBH-H relationship, followed by transforming 

the relationship into a power-law relationship (Huxley, 1932). 

𝐻 =  𝐾1𝐷𝐵𝐻𝐾2  (6) 

Where 𝐾1 and 𝐾2 are the power-law intercept and slope, respectively. The K1 captures the overall scaling relationship between 

H (m) relative to DBH (cm) within a forest community while K2 regulates the rate of H increase relative to DBH growth. 
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The obtained K1 and K2 values were further used to estimate AGB (AGBh) Eq. (7) in Table 2. We also computed the AGB using 200 

existing equations (Table 2, Eqs. (9–11)) (AGBf) adopted for the three different land-cover classes. These EF and RF allometric 

equations were developed for tropical multiple species, whereas the CP was a species-specific allometric equation for the 

cashew tree ((Malimbwi et al., 2016). The wood density (WD) values required for the AGB estimations were species-specific 

and obtained from The International Council for Research in Agroforestry (2022) and Zanne et al. (2009). When multiple WD 

values for a tree species were available, the mean value was used, whereas when no species-specific WD values were available, 205 

the average of tropical Asia (0.57 g cm-3) was used (Reyes et al., 1992). The applied WD values for this study then ranged from 

0.39–1.04 g cm-3. Specifically, the WD values (mean ± a standard deviation) for EF, RF, and CP were 0.74 ± 0.17 g cm-3, 0.72 

± 0.15 g cm-3, and 0.45 g cm-3, respectively. We first estimated AGB at the plot level in kilograms, then scaled these values to 

megagrams per hectare, and averaged per land-cover class. 

Table 2. Allometric equations used for estimating aboveground biomass (AGB, kg tree-1) in the different land-cover classes. 210 

No. Equations Land 

cover 

AGB allometric equations Regions n DBH 

(range, cm) 

𝑊𝐷f
̅̅ ̅̅ ̅̅  (mean ± SD, 

g cm-3) 

References 

1 Eq. (7) All 
𝐴𝐺𝐵h =

 𝑊𝐷 π 𝐾1

8
  𝐷𝐵𝐻2+ 𝐾2 +  𝜀 

- - - - This study 

2 Eq. (8) All 
𝐴𝐺𝐵wd =

𝑊𝐷 

𝑊𝐷f
̅̅ ̅̅ ̅̅

  𝐴𝐺𝐵f 
- - - - This study 

3 Eq. (9) EF 𝐴𝐺𝐵f = 0.1184 𝐷𝐵𝐻2.53 Pantropical 170 5.0–148.0 0.58 ± 0.02 Brown (1997) 

4 Eq. (10) RF 𝐴𝐺𝐵f = 0.0829 𝐷𝐵𝐻2.43 Sarawak, 

Malaysia 

136 0.1–28.7 0.38 ± 0.07  Kenzo et al. 

(2009) 

5 Eq. (11) CP 𝐴𝐺𝐵f = 0.8450 𝐷𝐵𝐻1.77 Pwani, 

Tanzania 

45 6.0–89.9 0.18 Malimbwi et al. 

(2016)  

Note: EF is evergreen forests, RF is regrowth forests, CP is cashew plantations. In Eqs. (9–11), DBH is diameter at breast height 

(cm), and 𝑾𝑫𝐟
̅̅ ̅̅ ̅̅  is the reported mean wood density used in AGBf (kg m-3). In Eq. (7), K1 and K2 are derived power-law intercept and 

slope values between DBH (cm) and tree height (H, m) relationship in Eq. (6), 𝛆 is a statistical error term, WD is wood density for 

each tree species (g cm-3), and DBH is in centimetres. In this study, in Eq. (7), we employed a trunk shape factor of 1/8 for calculating 

the volume of frustum cones, as proposed by King et al. (2006). This factor falls within the range of 1/4 (cylinder volumes) to 1/12 215 
(cone volumes). In Eq. (8), AGBwd is our examined aboveground biomass based on equations Eqs. (9–11) with species-specific wood 

density updated for our woody tree species, 𝑾𝑫 are the species-specific wood density of trees in each plot (g cm-3). 

2.3.4 Statistical analysis 

Descriptive statistics were conducted to examine the difference in ecosystem characteristics between plots and land-cover 

classes. One-way ANOVA tests (ANOVA) were used to assess significant differences in mean values across land-cover 220 

classes. Tukey's Honestly Significant Difference test (Tukey HSD) was further employed for pairwise comparisons between 
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land-cover classes. Pearson correlation and ordinary least squares regression analyses were used to explore relationships 

between variables. All analyses were performed using R 4.2.3 (R Core Team, 2023). 

3 Results 

3.1 Meteorological conditions 225 

The observed annual daily mean air temperature from April 2022 to April 2023 at Kulen meteorological station was 24.2 ± 

2.0 °C, varying between 17.8 °C and 28.6 °C (Fig. 2a). The total annual rainfall was 2290 mm, significantly surpassing nearby 

lowland stations: Banteay Srei station, located 22 km west, recorded 1160 mm, and Siem Reap City station, situated 40 km 

southwest, recorded 1475 mm (Chim et al., 2021). About 90 % of the annual precipitation fell during the rainy season from 

May to November, with September being the wettest month (505 mm). The daily maximum rainfall can reach up to 141 mm, 230 

but the daily mean during the rainy season was 11.2 ± 19.7 mm (Fig. 2b). The annual daily mean of global radiation, relative 

humidity, vapour pressure deficit, and wind speed were 172 ± 44 W m-2, 88 ± 12 %, 0.45 ± 0.21 kPa, and 0.68 ± 0.22 m s-1, 

respectively (Fig. 2c–f). 

For the different land-cover classes, daily mean soil water content ranged between 0.14–0.23 m3 m⁻3, soil temperature between 

24.2–25.8 °C, and soil electrical conductivity between 0.025–0.039 dS m-1 (measured at 20 cm depth, Fig. 2g–i). In particular, 235 

the mean Ts at CP (25.8 ± 1.5 °C) was significantly higher than for EF (24.3 ± 1.2 °C) and RF (24.2 ± 1.3 °C), whereas the 

mean SWC was significantly lower in RF (0.14 ± 0.03 m3 m⁻3) compared to EF (0.23 ± 0.06 m3 m-3) and CP (0.21 ± 0.05 m3 

m-3) (Table 3). Additionally, EF had higher ECs (0.039 dS m-1) than RF and CP (0.032 dS m-1, 0.025 dS m-1) (p-value < 0.001), 

indicating higher salinity levels in the soil.  

 240 
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Figure 2. The meteorological conditions at Kulen meteorological station (a–f), and soil conditions at each land-cover class (g–i) from 

April 10, 2022, to April 9, 2023. (a) Daily mean air temperature (Tair, °C), (b) daily total precipitation (P, mm), (c) daily mean global 

radiation (Rg, W m-2), (d) daily mean relative humidity (RH, %), (e) daily mean vapour pressure deficit (VPD, kPa), and (f) daily 

mean wind speed (WS, m s-1), (g) daily mean soil water content (SWC, m3 m-3), (h) daily mean soil temperature (Ts, °C), (i) daily 245 
mean soil saturation extraction electrical conductivity (ECs, dS m-1). The vertical dashed line region in all the plots highlighted the 

rainy season period in Cambodia from May to October. The grey-shaded regions around the mean in (a), (d), (e), and (f) represent 

the 95 % confidence interval (using a standard deviation) from the daily mean, whereas the blue horizontal dashed line represents 
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the yearly mean, the brown horizontal dashed line represents the yearly median, and the black horizontal dotted line represents a 

yearly standard deviation (see Table S2.1 and Fig. S2.2 present the Kulen meteorological station's annual and monthly 250 
meteorological data. Figs. S3.1–S3.3 shows monthly mean soil conditions by land-cover class, and Fig. S4.1 depicts correlations 

between meteorological and soil conditions). 

3.2 Species diversity 

A total of 343 observations (292 trees and 51 seedlings) from 47 woody species (including 13 seedling species) and 32 families 

(including seven seedling families) were identified from the nine plots (Table S5.1). The average species richness (SR) per plot 255 

for the EF, RF, and CP were 17, 13, and 4, respectively. The top five dominant species in EF accounted for 46 % of the 

individuals: (Mesua ferrea (n = 18), Diospyros bejaudii (n = 12), Litchi chinensis (n = 11), Vatica odorata (n = 11), and 

Hydnocarpus annamensis (n = 8). In RF, the most dominant species were Vatica odorata (n = 54), Nephelium hypoleucum (n 

= 14), Benkara fasciculata (n = 12), Garcinia oliveri (n = 12), and Mesua ferrea (n = 5), comprising 61 % of individuals. 

Naturally, within the CP, the most abundant species was Anacardium occidentale (n = 46), the only species found when 260 

excluding seedlings. Among seedlings, except for Anacardium occidentale, we also found Strychnos axillaris (n = 3), 

Nephelium hypoleucum (n = 1), Melodorum fruticosum (n = 1), Maclura cochinchinensis (n = 1), and Catunaregam tomentosa 

(n = 1). Furthermore, fast-growth species, as described by Ha (2015) (WD < 0.6 g cm-3), accounted for 40 % of EF and 44 % 

of RF of their total species composition. 

The Shannon-Wiener index ranged from 0.31–2.68 across all plots, with the highest and lowest values observed in EF1 and 265 

CP2 (Table S5.2). EF showed the highest mean SH (2.48 ± 0.33), followed by RF (1.97 ± 0.45), whereas CP was dominated 

by Anacardium occidentale, and thus it has a very low SH (0.61 ± 0.46).   

 

Table 3. Mean values and statistics of ecosystem characteristics in the different land-cover classes. 

Group Variables 

Land cover 

A 

N 

O 

V 

A 

Tukey HSD 

CP 

& 

EF 

RF 

& 

EF 

RF 

& 

CP 

EF  

(Mean ± SD) 
n 

RF  

(Mean ± 

SD) 

n 

CP  

(Mean ± 

SD) 

n 
p-

value 

p-

value 

p-

value 

p-

value 

Species  

diversity 

SR (with seedling species, count 

per plot) 
17 ± 4 3 13 ± 2 3 4 ± 3 3 - - - - 

SR (without seedling species, 

count per plot) 
13 ± 2 3 10 ± 3 3 1 ± 0 3 - - - - 

SH (with seedling species, 

unitless) 
2.48 ± 0.33 3 1.97 ± 0.45 3 0.61 ± 0.46 3 - - - - 



14 

 

Leaf  

functional 

traits 

Chlcwm (mg g-1) 9.14 ± 3.45 109 7.56 ± 2.03 137 4.99 ± 0.66 46 * * 0.39 0.08 

LDMCcwm (mg g-1) 
398.43 ± 

72.24 
109 

370.13 ± 

94.97 
137 

407.64 ± 

21.68 
46 0.51 0.50 0.94 0.69 

SLAcwm (m2 kg-1) 18.18 ± 2.86 109 14.87 ± 2.06 137 11.99 ± 1.45 46 ** ** * 0.06 

Stand 

structure 

DBH (cm) 18.0 ± 20.1 109 5.8 ± 4.3 137 13.0 ± 3.9 46 *** 0.14 *** *** 

H (m) 17.0 ± 13.3 109 7.4 ± 3.8 137 6.3 ± 1.0 46 *** *** *** 0.93 

Maximum H (m) 52.0 109 18.6 137 7.8 46 - - - - 

Wood density (g cm-3)† 0.74 ± 0.17 109 0.72 ± 0.15 137 0.45 ± 0.00 46 *** *** 0.56 *** 

Stem density DBH > 1 cm (ha-

1)†† 
6216 ± 2177 3 

10859 ± 

4999 
3 1067 ± 440 3 - - - - 

Stem density DBH > 5 cm (ha-

1)†† 
1016 ± 533 3 2193 ± 895 3 1067 ± 440 3 - - - - 

Stem density DBH ≥ 10 cm (ha-

1)†† 
550 ± 505 3 293 ± 6 3 600 ± 164 3 - - - - 

BA (m2 ha-1) 26 ± 4 3 17 ± 5 3 12 ± 4 3 - - - - 

BA (m2 ha-1, DBH ≥ 5 cm) 24 ± 4 3 12 ± 2 3 12 ± 3 3 - - - - 

BA (m2 ha-1, DBH ≥ 10 cm) 21 ± 4 3 4 ± 1 3 9 ± 1 3 - - - - 

DWB (Total) (Mg ha-1) 27.5 ± 12.4 3 4.8 ± 7.0 3 0.4 ± 0.2 3 - - - - 

AGBf (Mg ha-1) 239 ± 92 3 42 ± 10  3 71 ± 22 3 - - - - 

AGBwd (Mg ha-1) 336 ± 168 3 78 ± 25 3 182 ± 57 3 - - - - 

AGBh (Mg ha-1) 312 ± 184 3 54 ± 14 3 17 ± 5  3 - - - - 

LAIC (m2 m-2) 4.62 ± 0.50 21 4.66 ± 0.70 21 2.52 ± 0.42 21 *** *** 1.00 *** 

LAIT (m2 m-2) 6.16 ± 0.67 21 5.57 ± 0.76 21 3.07 ± 0.61 21 *** *** 0.08 *** 

Annual mean fPAR‡ 0.97 ± 0.01 364 0.96 ± 0.01 365 0.76 ± 0.06 359 *** *** * *** 

Soil 

conditions 

Annual mean SWC‡ (m3 m-3) 0.23 ± 0.06 364 0.14 ± 0.03 365 0.21 ± 0.05 363 *** *** *** *** 

Annual mean Ts‡ (°C) 24.3 ± 1.2 364 24.2 ± 1.3 365 25.8 ± 1.5 363 *** *** *** *** 

Annual mean ECs‡ (dS m-1) 0.039 ± 0.015 268 
0.032 ± 

0.013 
40 

0.025 ± 

0.003 
260 *** *** *** *** 

Note: Abbreviations used in the table: EF = evergreen forests, RF = regrowth forests, CP = cashew plantations, SR = species richness 270 
(only woody seedling species),   SH = Shannon-Wiener index, Chlcwm = community-weighted mean of chlorophyll a and b content, 

LDMCcwm = community-weighted mean of leaf dry matter content, SLAcwm = community-weighted mean of specific leaf area, DBH 

= tree’s diameter at breast height, H = tree height, BA = stand basal area, AGBf = aboveground biomass computed by adopted 

functions, AGBh = aboveground biomass computed by H and DBH power-law relationship, AGBwd = aboveground biomass based on 

equations Eqs. (9–11) with species-specific wood density updated for our woody tree species, LAIC = canopy leaf area index, LAIT = 275 
total leaf area index, fPAR = fraction of photosynthetically active radiation, SWC = soil water content, Ts = soil temperature, ECs = 

soil saturation extract electrical conductivity, SD = a standard deviation, ANOVA = one-way analysis of variance, Tukey HSD = 

Tukey's Honestly Significant Difference test. Statistically significant code for ANOVA and Tukey HSD test: ‘***’ p-value < 0.001, 

‘**’ p-value < 0.01, ‘*’ p-value < 0.05, and “-” not available. †The species-specific wood density was derived from the ICRAF 

Database (2022) and Zanne et al. (2009). ††Extrapolated values for one hectare were obtained from sampling DBH class subplots. 280 
‡Daily mean values were used to calculate the reported variables. 
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3.3 Leaf functional traits and diversity 

The mean specific leaf area for all 30 species was 16.97 ± 5.30 m2 kg-1, with Hydnocarpus annamensis having the highest SLA 

(36.67 ± 5.20 m2 kg-1) and Capparis micracantha the lowest (10.46 ± 3.28 m2 kg-1). For Chl, the mean value was 10.28 ± 4.17 

mg g-1, with Hydnocarpus annamensis having the highest value (25.75 ± 5.28 mg g-1) and Anacardium occidentale the lowest 285 

(4.86 ± 4.93 mg g-1). Finally, for LDMC the mean value was 378.96 ± 143.26 mg g-1, with Mesua ferrea and Hydnocarpus 

annamensis having the highest (486.90 ± 25.03 mg g-1) and lowest (139.92 ± 20.19 mg g-1) values, respectively. For detailed 

descriptions of leaf functional traits of all species and plots, please refer to Tables S6.1–S6.3.  

There were statistical differences in mean SLAcwm (p-value < 0.002) and Chlcwm (p-value < 0.018) among the three land-cover 

classes, whereas there was no significant difference in the mean LDMCcwm (p-value = 0.51) (Table 3). SLAcwm and Chlcwm were 290 

highest in EF (18.18 ± 2.86 m2 kg-1, and 9.14 ± 3.45 mg g-1) followed by RF (14.87 ± 2.06 m2 kg-1, and 7.56 ± 2.03 mg g-1) 

and CP (11.99 ± 1.45 m2 kg-1, and 4.99 ± 0.66 mg g-1). However, for LDMCcwm the highest value was observed in CP, with a 

value of 407.64 ± 21.68 mg g-1 (398.43 ± 72.24 mg g-1 for EF, 370.13 ± 94.97 mg g-1 for RF). See Table S6.4 for data sources 

and shared percentages of species trait values used to compute SLAcwm, Chlcwm, and LDMCcwm. 

3.4 Stand structure attributes 295 

3.4.1 DBH-H relationship 

The 292 sampled woody trees in the nine inventory plots had a mean DBH of 11.5 ± 13.9 cm and a mean H of 10.8 ± 9.8 m 

(Fig. S7.1). The maximum H of 52.0 m and the maximum DBH of 102.3 cm were both observed in EF. RF and CP had 

maximum H of 18.6 m and 7.8 m, and maximum DBH of 23.1 cm and 18.8 cm respectively. Comparing land-cover classes, 

EF had both the highest mean and the highest variability in DBH (18.0 ± 20.1 cm) and highest H (17.0 ± 13.3 m), while CP 300 

had a mean DBH of 13.0 ± 3.9 cm, which was double that of RF (5.8 ± 4.3 cm). CP had slightly higher mean H values than 

RF, whereas RF had higher variability (RF at 7.4 ± 3.8 m; CP at 6.3 ± 1.0 m). In addition, the ANOVA confirmed statistically 

significant differences in mean DBH and mean H among the three land-cover classes (Table 3). The Tukey HSD test further 

revealed differences in mean DBH for RF & EF and RF & CP (p-value < 0.001), as well as in mean H for CP & EF and RF & 

EF (p-value < 0.001). In contrast, the test showed no statistically significant differences between the mean DBH for CP & EF 305 

(p-value = 0.14) and mean H for CP & RF (p-value = 0.93) (Table 3).  

Strong positive relationships between DBH and H were observed in both EF and RF. For EF, 92 % of the variation in H can 

be explained by the variation in DBH, whereas for RF and CP, it was 78 % and 51 %, respectively (Table S7.1). The power-

law relationships between DBH and H further indicated that the K1 and K2 values for EF and RF were similar, whereas the 

values for CP were much lower (Fig. 3). For a plot-level analysis of relationships between ln(DBH) and ln(H), see Fig. S7.2 310 

and Table S7.2.  
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Figure 3. Relationship between diameter at breast height (DBH) (cm) and tree height (H) (m) for evergreen forests (EF), regrowth 

forests (RF), and cashew plantations (CP) in Kulen. Figure shows the derived power-law intercept (K1) and slope (K2) values for EF, 

RF, and CP.  315 

3.4.2 Aboveground and deadwood biomass, stem density, and basal area 

The AGBwd method consistently yielded higher aboveground biomass across all land-cover classes compared to the AGBf and 

AGBh methods. Significant variations in estimated AGB values were observed among land-cover classes for all methods; EF 

had values in the range of 239–336 Mg ha-1, and RF had values in the range of 42–78 Mg ha-1 (Table 3, Fig. 4). The main 

difference between the methods was that AGBh, based on local scale K1 and K2 values (Table S7.2, Fig. S7.2), had substantially 320 

lower AGB for CP compared to the other two methods (AGBwd: 182 ± 57 Mg ha-1, AGBf: 71 ± 22 Mg ha-1, AGBh: 17 ± 5 Mg 

ha-1, see Fig. S7.3). Further plot-level results are available in Figs. S7.4–S7.5. Additionally, the mean total DWB was 27.5 ± 

12.4 Mg ha-1 in EF, 4.8 ± 7.0 Mg ha-1 in RF, and 0.4 ± 0.2 Mg ha-1 in CP. See Table A1 for the contribution of lying and 

standing DWB to total DWB. 
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Figure 4. Power-law relationships between aboveground biomass (AGB) of AGBf, AGBh, and AGBwd and diameter at breast height 

(DBH) for each land-cover class (a), along with the corresponding results of AGB estimation (b). AGBf represents aboveground 

biomass estimated by adopted functions, AGBwd represents aboveground biomass estimated by adopted functions utilizing species-

specific wood density, and AGBh represents aboveground biomass estimated by the DBH and tree height (H) relationship, in 330 
conjunction with species-specific wood density, for the study site. The error bar in (b) represents a standard deviation. 

The stem density per hectare (DBH > 5 cm) was twice as high in the RF compared to EF and CP (Fig. 5). This higher stem 

density per ha was primarily attributed to the DBH class of 5–15 cm. RF had a significantly larger BA (17 ± 5 m2 ha-1) than 

the CP (12 ± 4 m2 ha-1), despite having a smaller mean DBH (Table 3). Interestingly, only 5 % of the stems with a DBH > 30 

cm contributed to approximately 75 % of the total AGBh, 234 Mg ha-1 out of 312 Mg ha-1. The main DBH class contributing 335 

to the AGB in RF and CP was 5–15 cm, accounting for 62 % and 71 % of the total AGB in RF and in CP, respectively. Refer 

to Supplementary Table S7.3 for shared stem density percentages per hectare across DBH classes, and Table S7.4 for shared 

percentages of AGBh categorized by DBH class. 
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Figure 5. Estimations per land-cover class of a mean number of stems per hectare (a), basal area (BA, m² ha-1) (b), and mean 340 
aboveground biomass separated by the different diameters at breast height (DBH) classes (c). In (c), the contribution of different 

DBH classes to the mean aboveground biomass estimated by the AGBh method was used in this calculation. The error bars in the 

figure represent one standard deviation. 

3.5 LAI and fPAR 

The mean total leaf area index values were 6.16 ± 0.67 m2 m-2 for EF, 5.57 ± 0.76 m2 m-2 for RF, and 3.07 ± 0.61 m2 m-2 for 345 

CP. The mean canopy LAI values were 4.62 ± 0.5 m2 m-2 for EF, 4.66 ± 0.70 m2 m-2 for RF, and 2.52 ± 0.42 m2 m-2 for CP. 

The ANOVA analysis revealed a significant difference in mean LAIT and mean LAIC among the three land-cover classes, while 

the Tukey HSD test did not find a significant difference in mean LAIT and mean LAIC between EF and RF (Table 3). The 

phenology of both LAIT and LAIC revealed a similar pattern in EF and RF, with peak and base values in June and March, 

respectively (Fig. 6a–b, Table S8.1 in Supplementary Subsection 8 for their descriptive statistics). The LAIT and LAIC patterns 350 

for CP resembled those of EF and RF but also had a strong decrease in April. Furthermore, the understory LAI (LAIU; the 

difference between LAIT and LAIC) for the various land-cover classes indicates that the ground vegetation highly contributes 

to LAIT for EF and RF, while the contribution was minor for CP (Fig. 6c). In particular, the LAIU mean values within a year 

were approximately 1.54 ± 0.57 m2 m-2 for EF (25 %), 0.91 ± 0.36 m2 m-2 for RF (16 %), and 0.55 ± 0.39 m2 m-2 for CP (18 

%). A general trend of high contribution LAIU to LAIT in June and low contribution in April was apparent for all land-cover 355 

classes. 
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Figure 6. Total leaf area index (LAIT, m2 m-2), canopy leaf area index (LAIC, m2 m-2), and understory leaf area index (LAIU, m2 m-2), 

their variations across different months within a year for evergreen forests (EF), regrowth forests (RF), and cashew plantations 

(CP). The lines in the graph represent the connection between the mean LAI values from one month to another.  360 

The observed mean annual fPAR for EF, RF, and CP was high: 0.97 ± 0.01, 0.96 ± 0.01, and 0.76 ± 0.06, respectively (Table 

3). The values of EF and RF exhibited minimal fluctuations throughout the year, whereas the fPAR of CP ranged between 0.55 

and 0.93 (Fig. 7). Like LAI, the annual mean fPAR among EF, RF, and CP were statistically significantly different according 

to both the ANOVA test and Tukey HSD’s tests.  
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  365 

Figure 7.  Daily mean global radiation (Rg, W m-2) (a) and daily mean fPAR for evergreen forests (EF) (b), regrowth forests (RF) 

(c), cashew plantations (CP) (d) from April 11, 2022, to April 9, 2023 at Kulen. The shaded area represents one standard deviation 

from the mean, computed using the ten PAR sensors installed in each land-cover class.  

3.6 AGBh relationships with LAIT, SLAcwm, and SR 

We observed positive relationships between aboveground biomass and three pivotal ecosystem characteristics: LAIT, SR, and 370 

SLAcwm determining 76 %, 72 %, and 68 % of the variability in AGB, respectively (Fig. 8, Table S9.1 for statistical regression 

tables). LAIT exhibited strong positive correlations with SLAcwm, SR, and AGB, with the Pearson correlation coefficient in the 

range of 0.67–0.85. SLAcwm had a positive correlation with SR and AGB. Furthermore, additional insights regarding the Pearson 

correlation matrix depicting relationships among various ecosystem characteristics are presented in Fig. S9.1. 

 375 



21 

 

 

Figure 8. Ordinary least squares regression showing the effect of mean total LAI (LAIT, m2 m-2), mean SLAcwm (m2 kg-1), and species 

richness (SR, count per plot) on AGB. Mean LAIT is a mean ground LAI measurement, SR is a woody species count excluding seedlings 

in a plot, and AGB is AGBh whose estimation was based on the DBH-H relationship.  

4 Discussions 380 

4.1 Importance of tropical field data 

Numerous studies have emphasised the essential role of field-observed data for empirically elucidating the complexities of 

tropical forest ecosystems (Fischer et al., 2016; Clark et al., 2017). These data are crucial for understanding how land-use and 

land-cover changes affect forest ecosystems, for assessing biodiversity, for mapping, and for quantification of ecosystem 

services, and for enhancing remote sensing and ecosystem modelling techniques. In our case, the observed dataset also allows 385 

for pairwise comparisons of ecosystem characteristics against the pristine conditions of the tropical evergreen forests, a 

perspective often missing in studies focused on a single land-cover class. Given the critical issue of land conversion in 

Southeast Asia, where natural forests are frequently transformed into agricultural lands, our data are pivotal for studying the 

ecological shifts of such land cover changes. Despite not being similar to the nearby lowlands (Chim et al., 2021), the 

meteorological conditions at the field site are characteristic of the tropical monsoon climate of Southeast Asia (Thoeun, 2015), 390 

indicating that the conclusions drawn from field site data may represent the larger region. 

4.2 Soil conditions 

The difference in soil temperature between the forested land-cover classes (EF and RF) and the cashew plantations (Table 3) 

aligns with prior studies by van Haren et al. (2013) and Geng et al. (2022) and can be explained by the substantial difference 
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in interception of incoming radiation between these ecosystems (Fig. 6). The multi-layered canopies and the dense layer of 395 

deadwood and litterfall, effectively prevent direct sunlight from reaching the ground. This natural shield reduces the impact of 

global radiation, thereby maintaining cooler soil surface temperatures (Senior et al., 2018). Conversely, CP has a simpler 

canopy structure, predominantly featuring a single layer of cashew trees of similar age. The understory in these areas is sparser, 

and the reduction in deadwood, due to management, facilitates greater global radiation penetration and elevates soil 

temperatures. 400 

Our observed annual mean soil water content across the three land-cover classes (0.14–0.23 m3 m-3) is consistent with earlier 

findings (Rodell et al., 2004; Wang et al., 2012; Horel et al., 2022). Variations in SWC among these classes may stem from 

differences in their stand structural complexity (vegetation cover and root system) and soil properties (organic matter content 

and texture) (Pickering et al., 2021; Tang et al., 2021). The higher SWC in evergreen forests compared to regrowth forests is 

attributed to their dense and multilayered vegetation cover, which reduces global radiation and temperature at the forest floor, 405 

thereby reducing evaporation and maintaining topsoil moisture (Fig. 6). In addition, the complex root systems of primary 

forests enhance water retention by creating channels and pores in the soil, while organic matter from deadwood and litterfall 

further enhances soil water retention, particularly during arid conditions (Luo et al., 2023). Another explanation could be the 

soil texture, as our field investigation observed that cashew plantations are all on sandier soils with lower water-holding 

capacity, leading to decreased SWC (Ibrahim and Alghamdi, 2021). Nevertheless, further examination of soil samples is 410 

necessary to accurately measure the specific soil properties in each land-cover class. 

The analysis of soil electrical conductivity categorized the soils as non-saline across the land-cover classes. evergreen forests 

had higher ECs than cashew and regrowth forests, potentially indicating larger nutrient availability (Omuto et al., 2020). This 

higher nutrient availability in evergreen forests may be linked to greater organic matter decomposition, species richness, higher 

soil moisture content, and no history of being clear-cut, which could lead to nutrient losses via run-off during the phase without 415 

vegetation (Austin et al., 2004; Vestin et al., 2020; Guo et al., 2023b).  

4.3 Species diversity 

The mean species richness and biodiversity (the Shannon-Wiener index) of evergreen forests and regrowth forests (Table 3) 

were similar to several previous studies of evergreen forests (Zin and Mitlöhner, 2020; Theilade et al., 2022; Tynsong et al., 

2022). However, species richness was lower compared to the most diverse rainforests in South America and Southeast Asia, 420 

where often > 250 species ha–1 have been reported (Mohd Nazip, 2012; ter Steege et al., 2023) and the Shannon-Wiener index 

was lower than for some moist evergreen and humid lowland forests in Southeast Asia (Mohd Nazip, 2012; Zin and Mitlöhner, 

2020). These tropical rainforests may have more species because of their larger forest patch sizes and higher rainfall, compared 

to the relatively isolated monsoon forest at the top of Kulen, surrounded by agricultural areas (Galanes and Thomlinson, 2009). 

The relatively low SH may also be explained by the high proportion of the top five dominant species in each land cover, 425 

accounting for over 50 % of total stems in their communities. Another possible reason could be the limited number of sample 

plots, which may not fully capture the overall species composition and distribution in these forests. Tropical tree species 
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composition is markedly influenced by biogeography and disturbance history, showing significant local variations even over 

short distances (Whitmore, 1998; Van and Cochard, 2017). This emphasizes the necessity for comprehensive field data 

sampling to accurately assess the species richness and evenness of these highly diverse plant communities. The comparison 430 

between SR and SH of EF and RF with previous studies is presented in Table S10.1– S10.2. 

4.4 Leaf functional traits and diversity 

Specific leaf area, leaf dry matter content, and chlorophyll content are all key leaf traits in the leaf economic spectrum, and 

carry diverse implications for understanding carbon sequestration, resource availability, successional stages, and 

environmental responses (Wright et al., 2004; Gao et al., 2022). The SLAcwm of EF exceeded the mean values of tropical forests 435 

in Bolivia, Brazil, Costa Rica, and China (Finegan et al., 2015; Wang et al., 2016). The SLAcwm of RF was somewhat higher 

than the mean of neotropical regrowth forests, but still within the range (Poorter, 2021). SLAcwm in CP was greater than the 

range value in Parakou, Benin, but fell within the range reported for 15 cashew varieties in Karnataka, India (Akossou et al., 

2016; Mog and Nayak, 2018). Furthermore, our observations emphasize the significant consequences of transitioning from EF 

to RF or CP, resulting in a substantial reduction in actual values and diversity in SLAcwm, reflecting a reduction in both 440 

ecosystem productivity and resilience to disturbances (Liu et al., 2023). The higher SLAcwm in EF, suggests higher 

photosynthetic capacity, especially in shaded environments, due to its dense canopy cover and abundant resource availability 

(water and nutrients) for plant growth (Green et al., 2020). High SLAcwm values also link to faster turnover and promote nutrient 

cycles, carbon sequestration, and nutrient use efficiency in forest ecosystems (Guerrieri et al., 2021). The lower SLAcwm values 

of RF and CP may be attributed to limited water and nutrient availability in the soil because of high competition in those 445 

ecosystems. The notable reduction in SLAcwm caused by the shift from EF to RF or CP underlines the profound impact land-

cover change has on both SLAcwm and, consequently, ecosystem productivity, resilience, and functioning, highlighting the 

impact of land-cover change on ecosystem function.  

Leaf dry matter content is a measure of construction cost per fresh weight mass unit, and it serves as a metric for a plant's 

resource use strategy and resilience to environmental stresses (Guo et al., 2023a). The higher LDMCcwm in EF compared to 450 

that of RF indicates a conservative resource usage, longer leaf lifespan, and increased carbon sequestration, implying higher 

ecosystem stability and function for EF (Rawat et al., 2021). Conversely, the highest LDMCcwm in CP, is attributed to cashew 

monoculture and the species' high resilience to environmental stress, especially in nutrient-poor soils and water-stressed 

conditions (Bezerra et al., 2007). This study emphasises EF's increased stress tolerance, conservative resource utilisation and 

greater carbon sequestration compared to RF, while also emphasizing cashew as a highly proficient species in environmental 455 

stress tolerance. 

Chlorophyll is essential for photosynthesis and serves as a crucial indicator of a plant's photosynthetic capacity, profoundly 

influencing overall growth (Stirbet et al., 2020). In this study, Chlcwm in EF and RF falls within the range observed in Chinese 

forest ecosystems but surpasses the mean Chlcwm in those ecosystems (Li et al., 2018). Our CP had lower Chlcwm than EF and 

RF due to less light competition and higher temperatures, which could lead to photoinhibition and lowered leaf chlorophyll 460 
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content. The elevated Chlcwm seen in EF can be attributed to the well-developed and dense canopy structure, which creates a 

light-shaded environment. This prompts plants to invest more in chlorophyll production, enhancing light harvesting efficiency. 

Meanwhile, RF, experiencing intense competition for light in early successional stages, may exhibit lower chlorophyll levels 

as resources prioritize vertical growth over chlorophyll production (Laurans et al., 2014). 

4.5 Stand structure attributes 465 

4.5.1 Tree height and diameter at breast height 

Our mean DBH of evergreen forests is comparable to mature tropical forests in Vietnam and falls within the pantropical range, 

while regrowth forests have a slightly higher mean DBH than tropical secondary forests in Sarawak, Malaysia (Brown, 1997; 

Kenzo et al., 2009; Yen and Cochard, 2017). In contrast, cashew plantations show a significantly lower mean DBH compared 

to older counterparts in Kampong Cham, Cambodia (Avtar et al., 2013). Moreover, observed species in our evergreen forests, 470 

such as Dipterocarpus costatus, Sandoricum indicum, Mesua ferrea, Nageia wallichiana, and Litchi chinensis reach heights 

of 40–52 m, similar to those found in Cambodia's central evergreen forests (Theilade et al., 2022). The loss of large-diameter 

and tall trees in regrowth forests and cashew plantations, resulting from land use changes, substantially threatens critical 

ecosystem functions, jeopardizing carbon storage, nutrient cycles, and biodiversity within these transformed landscapes (Díaz 

et al., 2007; Lutz et al., 2018; Thiel et al., 2021). 475 

4.5.2 Stem density and basal area 

Our mean stem density per hectare of evergreen forests is consistent with previous studies in Cambodia, Vietnam, and in 

Borneo, while regrowth forests show lower densities compared to those in the Yucatan Peninsula, Mexico (Slik et al., 2010; 

Con et al., 2013; Román-Dañobeytia et al., 2014; Chheng et al., 2016; Theilade et al., 2022). Additionally, our stem density in 

cashew plantations is similar to that of Isuochi, Nigeria, but significantly greater than that of Casamance, Senegal, due to their 480 

differences in planting distance and management practices (Nzegbule et al., 2013; Ndiaye et al., 2020). The variation in stem 

density between regrowth forests and evergreen forests reflects distinctive stages of succession. In the early succession stage 

following clearance, open niches and resource abundance create a favourable environment for fast-growing and highly 

reproductive early-succession species, resulting in higher stem density and heightened interspecies competition (Zhang et al., 

2020). As the forest matures, stem density naturally decreases as larger trees occupy more space, light, water, and nutrient 485 

resources. This competition ultimately leads to the mortality of smaller trees, aligning with the power-law relationship between 

stem density and biomass commonly observed in mature forests (Mrad et al., 2020). This natural process also alters species 

composition, stand structure, habitat heterogeneity, and biomass of forests (Forrester et al., 2021). In cashew plantations, stem 

density is controlled by humans to enhance cashew yield. This alteration in stand structure complexity influences interspecies 

competition. These modifications also affect stand structure and interspecies competition, ultimately influencing the 490 

biodiversity and functioning of the ecosystem. 
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Basal area, by incorporating both cross-sectional area and stem density in a given area, offers crucial insights into stand 

structure dynamics. The basal area of evergreen forests in our study aligns with those in northeast Cambodia and Pahang 

National Park, Malaysia, but falls below values reported for Laos, Cambodia's central plains and Vietnam's lowlands (Rundel, 

1999; Sovu et al., 2009; Mohd Nazip, 2012; Chheng et al., 2016; Theilade et al., 2022). Regrowth forests have lower BA than 495 

evergreen forests, indicating early succession and disturbance (Ziegler, 2000). Still, our regrowth forest's BA exceeds that of 

regrowth forest in Laos, while cashew plantations surpass plantations in Tanzania's (Sovu et al., 2009; Malimbwi et al., 2016). 

Basal area decreases significantly when EF is replaced with CP or RF, impacting biomass, productivity, stand structure, and 

structural complexity (Gea-Izquierdo and Sánchez-González, 2022). While tropical forests possess natural regenerative 

capabilities, RF may require several decades to achieve BA levels comparable to EF, highlighting the critical importance of 500 

conserving EF to maintain their ecological integrity and ecosystem services. 

4.5.3 DBH-H relationships and estimations of aboveground biomass 

The DBH-H relationship is crucial for understanding variations in tree growth rates, successional stage, aboveground biomass, 

and forest health (Kramer et al., 2023). Finding a strong positive DBH-H relationship may indicate disturbances within the 

ecosystem, as these by initiating gaps in the canopy provide opportunities for fast-growing species to establish and utilize 505 

increased light availability and resources within the ecosystem (Senf et al., 2020). Hence, the observed relationships between 

EF and RF suggest a composition of fast-growing species and indicate that EF may have experienced past disturbances. Indeed, 

a windthrow in EF1 is reflected in its lowest LAIC among EF plots and a smaller mean DBH (Fig. S7.1a).  

The lower DBH-H relationship in cashew plantations results from the growth strategy of the single species and management 

practices. In monocultures with uniformly aged cashew plants, competition for light and resources is comparable, resulting in 510 

a consistent resource distribution. Cashew's natural growth characteristics, with the species reaching up to 15 m in height and 

a DBH of 100 cm under favourable conditions (Avtar et al., 2014), indicate a preference for investing resources in branches 

and stems over height, especially in low-light competition environments. However, our observations indicate significant 

variation in the DBH-H relationship among CP plots (low R2 value in Fig. 3, Fig. S7.5g–i) which may have been influenced 

by their different management practices, such as spacing, pruning, and thinning. These practices impact the DBH-H 515 

relationship by minimizing light competition, resulting in a higher DBH-H ratio which also affects the relationship (Deng et 

al., 2019; Bhandari et al., 2021). 

Recent studies have emphasized the significant uncertainty in estimating plot-level aboveground biomass when directly 

applying a generic AGB allometric equation (AGBf) due to variations in species composition and stand structure between the 

study site and the equation’s origin (Feldpausch et al., 2011; Burt et al., 2020). To address this challenge, our study proposes 520 

an allometric approach (AGBh) using local species-specific wood density and the DBH-H relationship at the study site. This 

approach captures the unique characteristics of the site's species composition and stand structure (Ketterings et al., 2001; 

Nyirambangutse et al., 2017). Our locally adopted AGBh method produced estimates ~ 30 % higher than the generic AGBf for 

both EF and RF (Table 3, Fig. 4b). This is likely due to the combined effects of higher mean wood density and a stronger DBH 
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relationship, resulting in a more pronounced exponential growth response in AGB (Fig. 4a). Still, these ~ 30 % higher values 525 

align with the range reported in previous studies (Tables A2–A3). In contrast, in the CP case, our AGBh method produced 

estimates less than a quarter of the generic AGBf method. The reason is that the AGBh method is less reliable when a weak 

DBH-H relationship is detected because it fails to accurately capture the overall tree size and volume. This is also reflected in 

the substantially larger uncertainty in the CP AGBh method as indicated by the standardized errors of the parameters within the 

DBH-H relationship (Table A4; Table S7.1). However, to fully validate the AGB allometric equations destructive field-530 

observed data would be necessary. Therefore, future research should include direct field measurements of AGB to more 

accurately validate the methods for these land-cover classes.  

4.5.4 Deadwood biomass  

Deadwood biomass indicates biodiversity and ecosystem health, supporting various species and ecosystem processes like 

carbon and nitrogen cycling, soil fertility enhancement, pollination, and erosion control (Parisi et al., 2018a; Santopuoli et al., 535 

2021; Tláskal et al., 2021). In evergreen and regrowth forests, we found total deadwood biomass comparable to Cambodia and 

Malaysia (Saner et al., 2012; Kiyono et al., 2018). However, our cashew plantations have less DWB than plantations in 

Cameroon (Victor et al., 2021). Variations in total DWB values could result from the degree of disturbances within the studied 

forests (Baker et al., 2007). The higher DWB in EF is due to its old stand age, long-term accumulation of DWB, and absence 

of slash-and-burn practice as observed in RF and CP (van Galen et al., 2019). In CP, some farmers periodically cut and burn 540 

dead branches of cashew trees to promote growth.  

4.6 LAI and fPAR 

In our study, canopy leaf area index in evergreen forests surpasses that of dry evergreen forests in Kampong Thom, Cambodia, 

while regrowth forests lie between those of 18–35-year tropical secondary forests in Costa Rica; however, cashew plantations 

exceed reported values in India (Ito et al., 2007; Clark et al., 2021; Kumaresh et al., 2023). The LAIC difference between the 545 

forests (EF and RF) and CP was significant due to CP management practices, resulting in a thin canopy with low LAIC. In 

contrast, natural forests with their densely developed canopy have a high LAIC. Additionally, LAIC phenology followed the 

rainy and dry seasons, with peak values during the rainy season and low values during the dry season (Ito et al., 2007). During 

the dry season, reduced rainfall leads to less water availability for plant growth, causing plants to adapt to water stress by 

shedding their leaves, resulting in low LAIC in the ecosystem (Maréchaux et al., 2018). The comparison between LAIC and 550 

LAIT of EF and RF with previous studies is presented in Table S10.3. 

Our mean fraction of photosynthetically active radiation for EF and RF marginally exceeded the global range for broadleaf 

forests and the monthly range observed in the Amazon tropical forest in Santarém, Brazil (Senna et al., 2005; Pastorello et al., 

2020). The fPAR for CP, on the other hand, is within the range values reported for broadleaf crops (Xiao et al., 2015). Despite 

annual variations in LAIC (24 % for EF, 32 % for RF, 29 % for CP) and incoming solar irradiance, fPAR remained remarkably 555 

stable throughout the year in the forest ecosystems (EF and RF, Fig. 7). This stability can be attributed to the exponential 
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relationship between fPAR and LAI, which typically saturates at LAI above 3 (Dawson et al., 2003). Our recorded lowest LAI 

for EF and RF was 3.48, likely contributing to this saturation and explaining the lack of phenology displayed in fPAR. The 

exclusion of reflected PAR above the canopy in the fPAR estimation may also contribute to the stability; however, previous 

studies have shown that the difference between intercepted (what we measured) and absorbed PAR (including the reflected 560 

component) is minimal (Olofsson and Eklundh, 2007). 

4.7 AGBh relationships with LAIT, SLAcwm and SR 

Exploring the relationship between aboveground biomass and key ecosystem characteristics such as leaf area index, specific 

leaf area, and species richness is vital for comprehending the complexity of ecosystem dynamics and informing ecosystem 

modelling. We observed a strong positive relationship between LAIT and AGBh, supporting prior findings (He et al., 2021; 565 

Zhao et al., 2021). Higher LAIT enhances light interception and results in higher biomass. Elevated AGBh levels stimulate LAIT 

expansion by providing resources for robust leaf growth, leading to a denser canopy and greater leaf coverage. Similarly, our 

findings support a positive relationship between SLAcwm and AGBh (Finegan et al., 2015; Ali et al., 2017; Gao et al., 2021). 

Higher SLAcwm values indicate a plant community with improved photosynthetic capacity, nutrient uptake, and leaf turnover, 

which is essential for nutrient cycling (Reich et al., 1991). An increase in AGBh has a reinforced effect on SLAcwm values, 570 

suggesting enrichment of the soil nutrient pool and providing structural support for plant growth. This influences light 

availability and competition dynamics, affecting leaf morphology and SLAcwm. Furthermore, the positive relationship between 

AGBh and SR is widely observed and explained by the niche complementarity hypothesis (Waide et al., 1999; Jactel et al., 

2018; Steur et al., 2022). This concept suggests that an ecosystem with high species diversity has a greater variation in 

functional traits and resource-use strategies, lowering competition for scarce resources, and thus promoting productivity 575 

(Tilman et al., 1997). In return, an increase in AGBh fosters the coexistence of diverse species by providing more available 

resources and habitat complexity in an ecosystem, thereby increasing species richness. 

5 Conclusions 

Land use and land cover change is one of the most severe environmental challenges within the Earth system. In the context of 

tackling current global environmental challenges, field observations are necessary to assess the dynamic responses of 580 

ecosystems to changing environmental conditions on fine spatial and temporal scales. Especially Southeast Asia, renowned 

for its biodiversity richness, suffers from a scarcity of integrated datasets that encompass a broad spectrum of ecosystem 

characteristics across different land-cover classes. Here we present the first data of a newly established field site in a tropical 

forest region of Southeast Asia (the Kulen National Park, Cambodia), where we started monitoring ecosystem characteristics 

of land-cover classes with various anthropogenic pressures (pristine evergreen forests, regrowth forests, and cashew 585 

plantations). We thereafter used the observed ecosystem characteristics for the land-cover classes with various anthropogenic 

pressures, to provide a comprehensive analysis of changes in ecosystem characteristics between these classes. Our results 
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highlight substantial differences in soil water content, species diversity, leaf functional traits, stand structure, aboveground 

biomass, deadwood, leaf area index, and fraction of photosynthetically active radiation absorbed by the tree canopy across 

land-cover classes affected by the anthropogenic land-cover conversion. We further demonstrate the utility of our novel dataset 590 

for improving aboveground biomass estimation through the application of an allometric function based on locally specific 

wood density and the DBH-H relationship. This approach has great potential for improving carbon stock estimations and 

promoting informed forest management practices. Moreover, our analysis of relationships between leaf area index, specific 

leaf area, species richness and aboveground biomass, underlines profound impact land-cover change has on ecosystem 

productivity and functioning in these tropical forest regions. We further expect that the dissemination of our datasets will 595 

contribute valuable insights for advancing the understanding of tropical forest ecosystems in Southeast Asia, support research, 

and promote sustainable forest management under global environmental challenges.  

Appendix A  

Table A1. Estimated lying deadwood biomass (Mg ha-1), standing deadwood biomass (Mg ha-1), and total deadwood biomass (Mg 

ha-1) by different land-cover classes in Kulen. Mean ± SD is a mean plus or minus a standard deviation.  600 

Land cover 
Lying deadwood biomass (Mg ha-1) Standing deadwood biomass (Mg ha-1) Total deadwood biomass (Mg ha-1) 

Mean ± SD Range Mean ± SD Range Mean ± SD Range 

EF (n = 3) 17.74 ± 19.93 1.64–40.03 9.74 ± 8.49 0–15.56 27.48 ± 12.37 15.31–40.03 

RF (n = 3) 3.65 ± 5.32 0.48–9.79 1.16 ± 1.66 0–3.06 4.81 ± 6.97 0.48–12.85 

CP (n = 3) 0.40 ± 0.19 0.28–0.62 0 0 0.40 ± 0.19 0.28–0.62 

 

Table A2. Comparing estimated aboveground biomass (AGB, Mg ha-1) in evergreen forests (EF) using adopted allometric equations 

(AGBf), diameter at breast height (DBH) and tree height (H) power-law relationship (AGBh), and previous AGB reported in previous 

studies. Mean ± SD is a mean plus or minus a standard deviation. 

No. Region Vegetation type AGB (Mg ha-1) References 

Mean ± SD Range 

1 Kulen, Cambodia Tropical evergreen forest 311.66 ± 183.88 147.53–510.57 AGBh in this study 

2 Kulen, Cambodia Tropical evergreen forest 238.53 ± 92.41 161.83–341.13 AGBf in this study 

3 Global Tropical forest 379.02 ± 187.40 230.58–589.58 Chave et al. (2014) 

4 Gia Lai, Vietnam Tropical evergreen forest 273.24 ± 112.22 189.53–400.76 Nam et al. (2016) 

5 Mondulkiri, Cambodia Tropical moist evergreen forest 333.00 ± 137.00 78.00–837.00 Sola et al., (2014) 

6 Borneo (Brunei, 

Malaysia, Indonesia) 

Tropical lowland evergreen 

forest 

458.16 ± 123.62 196.30–778.50 Slik et al. (2010)) 
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7 Thanh Hoa, Vietnam Tropical evergreen broadleaf 

forest 

251.81 ± 125.43 40.88–543.88 Nguyen and Kappas (2020) 

8 Africa Tropical evergreen forest 429.00 114.00–749.00 Lewis et al. (2013) 

9 Cambodia Evergreen forest 243.00 ± 128.00 11.00–837.00 Sola et al., (2014) 

10 Kampong Thom, 

Cambodia 

Evergreen forest 294.00 ± 65.00 176.00–398.00 Ota et al. (2015) 

11 Vietnam Tropical evergreen broadleaf 

forests in various ecoregions 

230.10 ± 8.60 199.00–320.20 Van Do et al. (2019) 

 605 

Table A3. Comparing estimated aboveground biomass (AGB, Mg ha-1) in regrowth forests (RF) using adopted allometric equations 

(AGBf), diameter at breast height (DBH) and tree height (H) power-law relationship (AGBh), and previous AGB reported in previous 

studies. Mean ± SD is a mean plus or minus a standard deviation. 

No. Region Vegetation type AGB (Mg ha-1) References 

Mean ± SD Range 

1 Kulen, Cambodia Natural regrowth evergreen 

forest 

54.19 ± 14.09 38.26–65.04 AGBh in this study 

2 Kulen, Cambodia Natural regrowth evergreen 

forest 

41.66 ± 9.82 31.60–51.21 AGBf in this study 

3 Sumatra, Indonesia Mixed secondary forest 59.04 ± 17.15 39.26–69.79 Ketterings et al. (2001) 

4 Kampong Thom, 

Cambodia 

Regrowth forest 42.00 ± 21.00 22.00–90.00 Ota et al. (2015) 

5 Malaysia Young forests aged 8.5–17 years 63.60 ± 34.93 34.00–118.00 Kho and Jepsen (2015) 

 

Table A4. Comparing estimated aboveground biomass (AGB, Mg ha-1) in cashew plantations (CP) using adopted allometric 610 
equations (AGBf), diameter at breast height (DBH) and tree height (H) power-law relationship (AGBh), and previous AGB reported 

in previous studies. Mean ± SD is a mean plus or minus a standard deviation. 

No. Region Vegetation type AGB (Mg ha-1) References 

Mean ± SD Range 

1 Kulen, Cambodia Family-scale cashew plantation 16.70 ± 4.80 11.23–20.23 AGBh in this study 

2 Kulen, Cambodia Family-scale cashew plantation 70.60 ± 22.01 46.16–88.87 AGBf in this study 

3 Benin Cashew agroforestry farming 18.07 ± 2.14 - Biah et al. (2019) 

4 Guinean, Cote d'Ivoire Cashew plantation 13.78 ± 0.98 - Kanmegne Tamga et al. 

(2022) 

5 Kampong Cham, 

Cambodia 

Large-scale and intensively 

managed cashew plantation (10–

16 years of age) 

104.30 ± 19.65 72.00–143.00 Avtar et al. (2013) 

https://cambodia-redd.org/wp-content/uploads/2021/01/Annex4-Forest-biomass-in-Cambodia-from-field-plots-to-national-estimates.pdf
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Data availability 

All the collected data used in this study are publicly available via the links as follows:  

1. The datasets of the forest inventory, leaf area index, and leaf functional traits across various land-cover classes are 615 

available at https://doi.org/10.5281/zenodo.10146582 (Sovann et al., 2024a).  

2. The daily data, including fPAR, soil conditions, and meteorological conditions from April 10, 2022, to April 9, 2023, 

can be downloaded from https://doi.org/10.5281/zenodo.10159726 (Sovann et al., 2024b). 

3. Future data from the field site will be uploaded to https://zenodo.org/communities/cambodia_ecosystem_data on a 

regular basis. 620 
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