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Abstract.

This work presents an efficient graph reconstruction-based approach for generating physical sewer models from incomplete

information, addressing the challenge of representing sewer drainage effect in urban pluvial flood simulation. The approach

utilizes graph-based topological analysis and hydraulic design constraints to derive gravitational flow directions and nodal in-

vert elevations in decentralized sewer networks with multiple outfalls. By incorporating linearized programming formulation5

to solve reconstruction problems, this approach can achieve high computational efficiency, enabling application to city-scale

sewer networks with thousands of nodes and links. Tested in Yinchuan, China, the approach integrates with a 1D/2D coupled

hydrologic-hydrodynamic model and accurately reproduces maximum inundation depths (R2 = 0.95) when the complete net-

work layout and regulated facilities are available. Simplifications, such as adopting road-based layouts and omitting regulation

facilities, can degrade simulation performance for extreme rainfall events compared to calibrated equifinal methods. However,10

design rainfall analysis demonstrates that the physical reconstruction approach can reliably outperform equifinal methods,

achieving reduced variation and higher accuracy in simulating inundation areas. However, proper configuration of regulated

facilities and network connectivity remains crucial, particularly for simulating local inundation during extreme rainfall. Thus,

it is recommended to integrate the proposed algorithm with targeted field investigations to further improve urban pluvial flood

simulation performance in data-scarce regions.15

1 Introduction

Global climate change and intensified human activities have significantly altered climatic conditions and surface environments,

leading to an increase in the frequency and magnitude of urban pluvial floods, particularly where rainfall exceeds the design ca-

pacity of drainage systems (Rosenzweig et al., 2018). As representative drainage infrastructure, sewer networks can effectively

mitigate pluvial flood risks by transporting rainwater to downstream sites such as river channels and detention ponds (Wang20

et al., 2022). However, its performance can be inherently insufficient and gradually deteriorate due to outdated design and poor

maintenance (Tran et al., 2024), potentially resulting in system overflow and exacerbated surface floods during extreme rainfall
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(Schmitt and Scheid, 2020). Thus, accurately modeling the drainage effects of sewer networks is essential for urban pluvial

flood simulation and risk attribution (Luan et al., 2024).

However, detailed sewer network information may not always be readily available and its implementation in hydraulic25

models requires laborious work with high uncertainty (Montalvo et al., 2024). As a result, various simplified approaches

have been developed to approximate the effect of sewer drainage. These approaches typically introduce a term of sewer-

induced mass loss during rainfall-runoff simulations within specific regions, such as roads and inlets (Li et al., 2020; Xing

et al., 2021, 2019). However, such approaches fail to explicitly consider the relative difference in hydraulic heads between

sewer networks and surface water, and thus are incapable of capturing critical processes such as overflow caused by system30

overload. To address these limitations, Montalvo et al. (2024) proposes a physics-based approach that designs a representative

virtual sewer network using publicly available datasets and local design standards. This approach enables the development of

a physical sewer hydraulic model with bidirectional interactions between surface and sewer flows, thereby offering a more

comprehensive representation of sewer drainage processes. The virtual network design (VND) consists mainly of two steps:

– Layout Definition. This step determines the geometric connections and hydraulic directions between nodes in the sewer35

network. Typical algorithms include surface-elevation-driven delineation (Blumensaat et al., 2012; Duque et al., 2022),

graph-theory-based modeling (Bakhshipour et al., 2019; Kim et al., 2021), and street-network-guided configuration

(Chegini and Li, 2022; Reyes-Silva et al., 2023). Most existing work assumes the target system as a centralized layout

with a single outfall (Hesarkazzazi et al., 2022), facilitating the application of tree-based solutions such as the minimum

spanning tree (Reyes-Silva et al., 2023) and the Steiner minimal tree (Machine Hsie and Huang, 2019). However, this40

simplification ignores the rich topological structures of real-world decentralized networks with potential cycles and

forests (Bakhshipour et al., 2019). Furthermore, most approaches assume that gravitational flow direction aligns with

surface gradients—an assumption that may not hold in flat urban areas or in the presence of inaccurate elevation data

(Hesarkazzazi et al., 2022; Dunton and Gardoni, 2024).

– Hydraulic Design. This step determines the sizes and slopes of pipes, as well as the necessary configuration of rain-45

water treatment facilities, with the objective of satisfying the design discharge requirement estimated by the Rational

Method (Wang and Wang, 2018; Reyes-Silva et al., 2023). To achieve this, most approaches formulate the design task

as an optimization problem and employ mathematical programming techniques such as linear programming (Swamee

and Sharma, 2013), mixed-integer linear programming (Safavi and Geranmehr, 2017), nonlinear programming (Li and

Matthew, 1990), and multi-objective programming (Bakhshipour et al., 2021). However, it requires significant computa-50

tional efforts to obtain global optima in nonlinear or integer cases. Thus, approximate approaches such as piecewise lin-

earization (Elimam et al., 1989), evolutionary algorithms (Wang et al., 2017; Bakhshipour et al., 2021), and topological-

driven prediction-correction (Sitzenfrei et al., 2020; Chegini and Li, 2022) are proposed to alleviate the computational

burden related with optimization procedures. Nevertheless, a trade-off between approximation-based solution quality

and computational efficiency still exists for large-scale cases (Yu et al., 2024).55
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Considering previous achievements in VND, this study further proposes a Virtual Network Reconstruction (VNR) approach

to improve the physical realism of sewer representations in urban pluvial flood simulation. While VND optimizes network

design for economic cost and drainage performance, VNR estimates the most possible network properties constrained by

partially known information. Although existing tools such as SWMManywhere (Dobson et al., 2025) have offered practical

solutions for high-quality VND using publicly available datasets, certain discrepancies between virtual and real networks still60

inevitably exist due to inherent assumptions and simplifications, such as predefined road alignments for network topology,

river proximity for outfall location, and ideal hydraulic design using the Rational Method. These discrepancies can potentially

alter hydrological connectivity and lead to undesirable performance in flood simulation (Tran et al., 2024). Thus, in order

to enhance the physical realism of virtual networks, additional efforts should be devoted to incorporating partially known

information as constraints of network generation. This leads to a critical challenge: while basic network attributes like terminal65

nodes, spatial layout, and pipe sizes can be possibly identified and easily adjusted through existing VND toolsets, field surveys

and engineering drawings, key hydraulic parameters such as flow directions and invert elevations often remain unknown or

hard to achieve efficient estimation at city scale. To bridge this gap, we present our VNR approach that integrates partial

network information with surface elevation data to derive the most possible hydraulic parameters, thereby reducing simulation

uncertainty of sewer drainage effects in urban flood modeling.70

In the remainder of this paper, we first describe the proposed workflow for VNR (Sect. 2) along with the corresponding

1D/2D coupled hydrologic-hydrodynamic model for urban pluvial flood simulation (Sect. 3) and then conduct a comparative

analysis of flood simulation performance under varying levels of information completeness during reconstruction, taking into

account factors such as regulated facility removal and road-based layout simplification (Sect. 4).

2 Graph-based sewer network reconstruction75

2.1 Graph representation of sewer networks

The necessary inputs of sewer network reconstruction include the sewer network layout with specified outfalls and correspond-

ing digital elevation model (DEM). For convenience of topological analysis, we represent the sewer network as an undirected

graph G= (V,E) where V = {vi} and E = {ei,j} represent the sets of nodes and links, respectively (Shi et al., 2023). Then

we can specify the link directions as related gravitational flow directions and convert the original undirected graph to the80

corresponding directed form GD = (V,ED) where ED = {−→e i,j} represents the set of directed links evaluated as follows:

−→e i,j =

1, vj ∈NGD
(vi)

0, vj /∈NGD
(vi)

, ∀vj ∈NG(vi) (1)

where NGD
(vi) and NG(vi) represent the neighboring nodes of node vj in GD and G.

For one node vi, its out-degree dout,i and in-degree din,i can be defined as the number of directed links pointed from/to it:
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dout,i =
∑

vj∈NG(vi)

−→e i,j ,din,i =
∑

vj∈NG(vi)

−→e j,i, (2)85

In addition to these basic attributes, some useful structures can be derived from the graph representation. Considering the

potential cycles in the geometric layout of G, we identify the set of simple cycles C = {Ck} defined as the set of closed paths

where no node appears twice (Johnson, 1975). For a cycle Ck ∈ C, we group its internal nodes and links into the corresponding

sets denoted by CVk and CEk, respectively. Then its out-degree dCout,k and in-degree dCin,k can be defined as follows:

dCout,k =
∑

vi∈CVk

∑
vj∈NG(vi)\CVk

−→e i,j ,dCin,k =
∑

vi∈CVk

∑
vj∈NG(vi)\CVk

−→e j,i (3)90

where NG(vi)\CVk represents the difference set between NG(vi) and CVk, i.e., the set of nodes that are neighboring nodes

of vi but not in Ck.

According to Eq. 3, we define a cycle Ck as an "island" if the sum of its in-degree and out-degree is equal to 1 and further

denote the set of nodes located in the islands of G as ISD(G):

ISD(G) =
⋃
Ck

CVk s.t. dCout,k +dCin,k = 1 (4)95

In addition to general properties, we also consider some sewer-related hydraulic characteristics for the convenience of the

following analysis. For a node vi ∈ V , we include it in the set of outfalls (denoted as O) if its out-degree is 0 and in-degree is

1, or in the set of sources (denoted as S) if its in-degree is 0 and out-degree is 1:

O = {vi | vi ∈ V,dout,i = 0,din,i = 1} ,S = {vi | vi ∈ V,dout,i = 1,din,i = 0} (5)

During practical usage, the set of sources can be derived as the difference set between the set of predefined outfalls and the100

set of nodes whose in-degree and out-degree are summed to 1.

To allow for hydraulic simulation, we also attach the invert elevation attribute to vi (denoted as zi) which can be initialized

as follows:

z
(0)
i = zg,i −Dmin (6)

where z
(0)
i is the initial value of zi; zg,i is the surface elevation at the location of vi; Dmin is the minimum allowable cover105

depth and set as Dmin = 0.6 m by default (MOHURD, 2021).

By comparing invert elevations of neighboring nodes, link directions can be initialized as follows:
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Figure 1. Graph representation of the sewer network.

−→e (0)
i,j =

1, z
(0)
i ≥ z

(0)
j

0, z
(0)
i < z

(0)
j

(7)

Fig. 1 shows an illustrative example of a simple sewer system in its graph representation with aforementioned properties.

2.2 Gravitational flow direction derivation110

Since flow direction initialization using Eq. 7 does not consider the necessary topological constraints for a feasible layout

of the sewer network (Fig. 2), it may produce an unfeasible or unreasonable layout and therefore needs further correction

(Reyes-Silva et al., 2023).

In order to maintain flow directions as intact as possible during correction, we formulate the following 0-1 programming

problems with linear constraints:115

min
eij

∑
−→e i,j

∣∣∣−→e i,j −−→e (0)
i,j

∣∣∣ (8a)
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Constraint 7: no recirculation inside the cycles

Constraint 6: strictly positive out-degrees of cycles

Constraint 1: unique direction

(a)

(b)

Constraint 5: strictly positive out-degrees at non-outfall nodes

Constraint 2: zero out-degrees at outfalls

Constraint 4: strictly positive in-degrees at nodes that 
are neither sources nor situated in an island

Constraint 3: known flow directions

junction outfall directed link

Figure 2. Topological constraints for a feasible sewer network.

s.t.



−→e i,j = 1−−→e j,i

−→e i,j = 1,∀vj ∈ O
−→e i,j =

−→e ∗
i,j ,∀−→e i,j ∈ E∗

D

din,i ≥ 1,∀vi /∈ S ∪ ISD(G)

dout,i ≥ 1,∀vi /∈ O

dCout,k ≥ 1,∀Ck ∈ C

−→e
CV

(|Ck|)
k ,CV

(1)
k

+

|Ck|−1∑
i=1

−→e
CV

(i)
k ,CV

(i+1)
k

≤ |Ck| − 1,∀Ck ∈ C

(8b)

(8c)

(8d)

(8e)

(8f)

(8g)

(8h)

where |Ck| is the number of nodes in Ck; E∗
D is the set of links with known directions (denoted by −→e ∗

i,j); −→e
CV

(|Ck|)
k ,CV

(1)
k

+∑|Ck|−1
i=1

−→e
CV

(i)
k ,CV

(i+1)
k

is the sum of consecutively connected direction values along Ck.120

The rationale for each constraint can be summarized as follows (cf. Fig. 2):

– Eq. 8b: No bi-directional links between consecutive nodes

– Eq. 8c: Outfalls must have zero out-degree
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– Eq. 8d: Preserves known link directions

– Eq. 8e: Non-source and non-island nodes must have positive in-degrees (Eq. 4)125

– Eq. 8f: Non-outfall nodes must have positive out-degrees

– Eq. 8g: Cycles must have positive out-degrees for flow passage

– Eq. 8h: No recirculation within cycles

Prior to optimization, pipes are discretized into 50 m segments following common inlet spacing (MOHURD, 2021). This

ensures uniform link lengths for objective evaluation and provides computational elements with inlets at endpoints for surface-130

sewer exchange in hydraulic simulation.

2.3 Nodal invert elevation derivation

Corrected gravitational flow directions pave the way for the derivation of nodal invert elevation prepared for downstream

hydraulic simulation. Based on invert elevation initialized by Eq. 6, further adjustment is needed to keep the slopes of links

within the range of minimum and maximum allowable slopes (Safavi and Geranmehr, 2017).135

In order to achieve the least deviation from initial results considering sewer construction costs proportional to excavation

depth (Swamee and Sharma, 2013; Machine Hsie and Huang, 2019), we introduce the following nonlinear optimization prob-

lem to estimate the invert elevation of nodes:

min
zi

∑
zi

∣∣∣zi − z
(0)
i

∣∣∣
s.t.

 ii,j ≤−imin,i,j , ∀−→e i,j = 1

ii,j ≥−imax,i,j , ∀−→e i,j = 1

(9)

where ii,j is the slope of −→e i,j ; imin,i,j , imax,i,j are the minimum and maximum allowable slopes required for −→e i,j according140

to Table 1 summarized from the Standard for Design of Outdoor Wastewater Engineering (MOHURD, 2021), considering both

explicitly stated slope limits and those derived from velocity constraints (Swamee and Sharma, 2013).

For simplicity but without loss of generality, ii,j is estimated using the invert elevation of two consecutive nodes, ensuring

the linearity of constraints for the above optimization problem:

ii,j =− 1

di,j
zi +

1

di,j
zj (10)145

It should be also noted that Eq. 10 can be also extended to the case of multiple consecutive nodes and corresponding slope

estimator still remains in the form of the linear combination of nodal invert elevation (see Appendix A for details), which

maintains the linearity of constraints in the original optimization problem.
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Table 1. Slope constraints with respect to different sizes according to Standard for Design of Outdoor Wastewater Engineering (MOHURD,

2021).

Diameter [mm] Minimum slope Maximum slope

300 0.002 0.41

400 0.0015 0.28

500 0.0012 0.21

600 0.001 0.16

800 0.0008 0.11

1000 0.0006 0.08

1200 0.0006 0.06

1400 0.0005 0.05

> 1500 0.0005 0.05

2.4 Computational efficiency considerations

The objective functions of Eq. 8 and Eq. 9 are expressed as the sum of absolute deviations and can be further reduced into an150

equivalent linear form as follows (Wagner, 1959; Giangrande et al., 2013), thus ensuring their solution efficiency for large-scale

applications.

Without loss of generality, for minimizing the summation of absolute values:

L=

N∑
i=1

|kixi − bi| (11)

where ki, bi are fixed numbers with respect to N decision variables xi, we can introduce auxiliary decision variables zi =155

|kixi − bi| constrained by:


zi ≥ kixi − bi

zi ≥−kixi + bi

zi ≥ 0

(12)

Thus, the original unconstrained nonlinear problem can be reformulated into an equivalent linear one with additional con-

straints:
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min
xi,zi

N∑
i=1

zi

s.t.


z1 ≥ kix1 − b0,z1 ≥−kix1 + b0,z1 ≥ 0

..., ...

zN ≥ kixN − bN ,zN ≥−kixN + bN ,zN ≥ 0

(13)160

Furthermore, if additional constraints are present with Eq. 11, they can be added directly to the reformulated problem (Eq.

13) without loss of equivalence. This reformulation strategy has been used in previous research (Giangrande et al., 2013) and

thus can be easily extended to our work for efficient sewer network reconstruction (Eq. 8 and Eq. 9). In terms of solving the

reformulated linear programming problems, we select the open-source Computational Infrastructure for Operations Research

(COIN-OR) branch-and-cut solver (CBC) (Forrest and Lougee-Heimer, 2005) through its Python interface in PuLP (Mitchell165

et al., 2011).

3 AUTOSHED: A 1D/2D coupled hydrologic-hydrodynamic model

Given the sewer network reconstructed from incomplete information, we further adopt a 1D/2D coupled hydrologic-hydrodynamic

model named AUTOSHED to simulate the pluvial flood process in the urbanized area. AUTOSHED delineates the whole sim-

ulation domain into multiple triangular-shaped units (TSUs). For each unit, AUTOSHED uses the Rain-on-Grid approach, also170

known as the Fully Hydrodynamic Approach (Hall, 2015; Chen and Huang, 2024; Perrini et al., 2024), and performs sequential

hydrologic-hydrodyamic computations for surface runoff generation and routing, respectively.

3.1 Surface runoff generation and routing

The surface runoff generation scheme is mainly built upon the core module of the Surface Urban Energy and Water Balance

Scheme (SUEWS) (Järvi et al., 2011) and Tsinghua Integrated Hydrological Modeling System (THIHMS) (Ni et al., 2008) ex-175

cept for overland and channel flow routing. Each TSU is divided into impervious and pervious parts according to the empirical

impervious ratio αimp derived from the unit land use statistic by area-weighted averaging (Cao et al., 2020; Krebs et al., 2014).

And the total surface runoff ∆Ssr is calculated as the area-weighted sum of runoff from the impervious and pervious parts.

Details of methodologies for rainfall-runoff simulation can be found in the work of (Ni et al., 2008) and (Järvi et al., 2011).

After obtaining total surface runoff, a well-balanced formulation of 2D shallow water equations (SWEs) (Song et al., 2011)180

is adopted to simulate the subsequent surface routing process:

∂

∂t


h

hu

hv

+
∂

∂x


hu

hu2 +g(h2 − z2b )/2

huv

+
∂

∂y


hu

huv

hv2 +g(h2 − z2b )/2

=


∆Ssr − qsd

−g(h+ zb)
∂zb
∂x − ghn2u

√
u2+v2

h4/3

−g(h+ zb)
∂zb
∂y − ghn2v

√
u2+v2

h4/3

 (14)
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where h is the water depth; u,v are the depth-averaged velocity components in the x- and y-directions; zb is the bed elevation;

g is the gravitational acceleration; qsd is the mass loss term caused by sewer drainage; n is the empirical Manning coefficient

initialized as n0 by land use types and further increased according to the intersected area ratio of TSUs with buildings (denoted185

as bf ) by the building roughness method (Schubert and Sanders, 2012) where the maximum roughness is set as 0.5 s/m1/3.

Details of methodologies for solving 2D SWEs can be found in the work of Song et al. (2011).

3.2 Sewer flow simulation

In the TSU with rainwater inlets, vertical linkages are established for bidirectional coupling between the surface flow and

the sewer flow. A modified form of the 1D Saint-Venant equations is introduced to simulate the sewer flow process using a190

node-link approach (Rossman and Huber, 2017):


∂H

∂t
=

Q1D−2D +
∑

Qnl

Aas

∂Q

∂t
= 2U

∂A

∂t
+U2 ∂A

∂x
− gA

∂H

∂x
− gASf

(15)

where H is the total nodal hydraulic head of water; Q is the flow rate; U is the flow velocity; A is the cross-sectional area;

Aas is the node assembly surface area consisting of node’s storage surface area and half the surface area of connected links

(Rossman, 2015); Sf is the friction slope parameterized by the Manning formula; Qnl are the flow contributed by neighboring195

links in the sewer system; Q1D−2D is the mass source term exchanged between the surface flow and the sewer flow. Details

of methodologies for solving 1D Saint-Venant equations under regulation can be found in Rossman (2015) and corresponding

surface-sewer flow coupling scheme is given in Appendix B.

3.3 Study area and data

The study area is the main city zone of Yinchuan (CYC), Ningxia Hui autonomous region, situated in the northwestern part of200

China, covering an area of 137.15 km2. Desipte being located in an arid region with an average annual rainfall of 189 mm and

annual evaporation of 1825 mm, CYC has experienced several flood disasters due to increasing extreme rainfall events in recent

years (Lu et al., 2024). According to local documents, most of the drainage system in CYC is the combined sewer system, and

therefore its drainage capacity is largely constrained by downstream wastewater treatment plants (WTPs) due to restrictive

environmental regulations, which may result in overflow at rainwater inlets and further amplify the surface inundation risks.205

In order to establish the urban pluvial flood model for scenario analysis, we collect multi-source geographical datasets listed

as follows:

– 5 m digital elevation model (DEM, Fig. 3 (a)) generated from the stereo images of ZiYuan-3 satellite. Following common

practices of DEM preprocessing in urban flood simulation, we delete the inaccurately measured building roof elevation

from the original product (Chen and Huang, 2024) and lower the surface elevation of grids containing roads by 0.2 m210

(Liu et al., 2022) to improve the representation of hydrological connectivity in DEM.
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– 10 m land use map (Fig. 3 (b)) collected from the European Space Agency (ESA) WorldCover 2021 product (Zanaga

et al., 2022) and covers tree, grassland, cropland, built-up and bareland area in the study area.

– Building footprint (Fig. 3 (a)) and road network layers (Fig. 3 (b)) downloaded via the application programming interface

of the Baidu map. Considering potential underestimation of impervious area identified from remote sensing datasets215

(Weng, 2012), we further modify the land use type as built-up area at pixels intersected with buildings and roads.

– Sewer network layout and corresponding attribute of pipeline sizes (Fig. 4 (a)) digitized from investigation and design

documents authorized by the local government. It should be noted that when detailed information is unavailable, previous

research would generate a virtual sewer network from the street network (Montalvo et al., 2024). In order to investigate

potential effects induced by such simplification, we further create a road-based sewer network by identifying pipes220

intersected with the major roadway zone and then performing necessary reconnections at pipes broken intermediately

(Fig. 4 (b)). Here we define the term of "major road" (Fig. 3 (b)) as the union of the primary, secondary, tertiary and

trunk roads and then generate corresponding roadway zones by buffering road centerlines with the width evaluated from

The Design of Urban Road Engineering (CJJ 37—2012).

The formula of the designed rainfall in CYC is also collected based on local rainfall statistics:225

q =
551.4(1+0.584lgP )

(t+11)0.669
(16)

where q is the rainfall intensity, L/(s · ha); P is the return period; t is the rainfall duration, min.

Seven designed rainfalls with return years of 1a, 5a, 10a, 20a, 50a, 100a, and 200a are selected for the scenario analysis

where each rainfall event lasts for 2 h (Fig. 5), followed by an additional 2 h period without any precipitation.

3.4 Baseline configurations230

Five baselines are selected for the comparison of the performance between the proposed approach (denoted as the FSR ap-

proach) and other approximation methods:

– Full-Sewer-reconstruction-No-controls (FSN) which uses the same reconstruction approach but ignores the existence of

regulated facilities such as pump stations and wastewater treatment plants. To be specific, regulated facilities located at

outflow and intermediate points are configured as free outfalls and uncontrolled junctions, respectively.235

– Road-based-Sewer-reconstruction-No-controls (RSN) which uses the same reconstruction approach but adopts the layout

of sewers filtered by the major roadway zone (Fig. 4 (b)) and ignores the existence of regulated facilities.

– Road-based-Sewer-reconstruction-with-Controls (RSC) which uses the reconstructed sewer network from RSN and fur-

ther incorporates regulated facilities at corresponding locations.
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(a)

(a)

Study area
major road
minor road

Building
Study area Elevation [m]

1100 1105 1110 1115 1120 1125

tree
grassland

cropland water
built-up
bareland

(a)

(b)

Figure 3. Geographical datasets in the study area. (a) Digital elevation model. (b) Land use map and road networks. Basemaps are derived

from ESRI World Imagery (Credit: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Com-

munity).
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(a)

(b)

Pump
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Study area
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Figure 4. Sewer network in the study area. (a) Complete sewer network digitized from the local document. (b) Simplified sewer network

filtered within major roadway zone. Basemaps are derived from ESRI World Imagery (Credit: Esri, TomTom, Garmin, FAO, NOAA, USGS,

© OpenStreetMap contributors, and the GIS User Community).

– Road-Drainage Approximation (RDA) (Xing et al., 2021; Li et al., 2023) which subtracts the mass at a uniform rate id240

from the roadway zone buffered from road centerlines using widths evaluated by The Design of Urban Road Engineering

(CJJ 37—2012).
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Figure 5. 2-hour design rainfall scenarios with varying return periods (1a, 5a, 10a, 20a, 50a, 100a and 500a).

– No-Drainage Approximation (NDA) which ignores the drainage effects of the sewer network.

According to whether a sewer hydraulic module is reconstructed for simulation with AUTOSHED, we can further classify

the above approximation methods into two categories: physical approaches (including FSR, FSN, RSN and RSC), and equi-245

final ones (including RDA and NDA), meaning similar flood simulation results can be achieved by different methods with

appropriate parameters of drainage effects (Dobson et al., 2025).

4 Performance Analysis: From Graph Reconstruction to Urban Flood Simulation

4.1 Sewer network reconstruction performance

According to the layout of the digitized sewer network (Fig. 4), gravitational flow directions are initialized by surface elevation250

(Eq. 7) and then estimated by solving 0-1 programming problems (Eq. 8). For simplicity, Fig. 6 summarizes the correspond-

ing results for the initialized and reconstructed directions of the complete sewer network with 11 outfall points consisting

of wastewater treatment plants and pumping stations. The directions of 359 in 908 pipes are reversed to satisfy the topolog-

ical constraints. The majority of modified pipes are located in the southern part of the study area and exhibit a pattern of

cyclic structures over a relatively flat areas, posing challenges on the direct identification of dominant flow directions and thus255

necessitating the incorporation of additional topological constraints (Eq. 8b-Eq. 8h) for rational reconstruction.
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Figure 6. Comparison of initial and reconstructed gravitational flow directions of the complete sewer network in the study area. (a) Flow

directions initialized by surface elevation. (b) Flow directions reconstructed from topological constraints. Basemaps are derived from ESRI

World Imagery (Credit: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community).
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(a)

(b)

(a) (b)

Figure 7. Comparison of initial and reconstructed sewer slope distributions. (a) Complete sewer network used in the FSR and FSN ap-

proaches. (b) Road-based sewer network used in the RSN and RSC approach.

According to reconstructed flow directions, nodal invert elevation is further derived from values initialized by a constant

cover depth (Eq. 6) and the slope distributions before / after adjustment are summarized in Fig. 6. The initial slopes of both

complete and simplified sewer network exhibit a relatively symmetric distribution centered on 0, indicating adverse slopes

in nearly half a number of links due to nearly reversed 40% pipes in the previous step. After reconstruction using Eq. 9,260

slope distributions are shifted into strictly positive ones where the majority of slopes are around 0.001. Additionally, the

simplified sewer network shares a similar pattern in the slope distribution with the complete one except for minor increases

around 0 because its layout is slightly modified due to aforementioned reconnection of broken pipes in Sect. 3.3. Thus, it

can be concluded that the proposed reconstruction approach is robust to empirical simplification of the sewer network layout

following road networks and can be stably extended to cases using street-based network generation.265

Owing to linearized programming formulation used in the process of gravitational flow directions and nodal invert elevation

reconstruction (Sect. 2.4), 1D sewer hydraulic models can be built from prepared geographical datasets in 33 seconds on a local

desktop using a single core of Intel(R) Core(TM) i7-14700KF CPU and 400 MB RAM occupancy. According to reconstructed

sewer networks initialized with a uniform spacing of 50 m (cf. Sect. 2.2), FSR/FSN and RSN/RSC models have 8242 links and

8131 inlets, 5268 links and 5188 inlets, respectively. Furthermore, the entire study area is discretized into 7222150 TSUs with270

a median area of 18.2 m2 for surface runoff generation and routing computation.

4.2 Model calibration and evaluation

To facilitate the comparison of pluvial flood simulation performance using different approaches, we first calibrate the model

parameters with a severe storm hitting CYC on 11 July 2022 (denoted as the 20220711 storm). This storm brings an average
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Table 2. Calibrated parameters of the AUTOSHED model.

Land use type Impervious ratio [m2/m2] Manning coefficient [s/m1/3]

tree 0.05 0.06

grassland 0.05 0.08

cropland 0.05 0.08

built-up 1.0 0.015

bareland 0.4 0.04

water 1.0 0.02

total rainfall of 57.8 mm and a peak intensity of 44.5 mm/h, resulting in 31 inundated points reported by the local government,275

of which 18 are recorded with corresponding maximum waterlogging depth. Considering its representativeness as disastrous

torrential events and data availability, we use the information of recorded maximum waterlogging depth to calibrate the param-

eters in the aforementioned model and related approximation approaches for the sewer drainage effect.

For AUTOSHED, the main physical parameters include the empirical impervious ratio αimp and the Manning coefficient

n estimated from land use types. Considering the dominance of the built-up area and attempts to avoid possible parameter280

equifinality between physical process such as soil infiltration and sewer drainage, we perform simple tests of model perfor-

mance using recommended empirical values of corresponding parameters from the Technical Specification for Construction

and Application of Mathematical Model of Urban Flooding Prevention and Control System (DB11/T 2074-2022) and finalize

the values of parameters in Table. 2 without exhaustive search. Fig. 8 shows the inundation map simulated by AUTOSHED

with the sewer hydraulic module reconstructed from the FSR approach under the 20220711 storm.285

The coefficient of determination (R2) is used to quantify the overall performance of the models using different parameters:

R2 = 1−

∑N
i=1

(
ĥi −hi

)2

∑N
i=1 (hi −µh)

2
(17)

where N = 18 is the number of inundated points with known maximum depth, ĥi and hi are the maximum depth simulated

and observed, µh is the mean of the observed maximum depth.

According to Fig. 9 (a), the FSR approach achieves an R2 of 0.95, which indicates good agreement between the simulated290

and observed values and thus consolidates the physical background for further comparison. In addition, we further examine the

performance of the FSR approach with varying inlet spacings (denoted as ILS) from 30 m to 100 m. According to Fig. 9 (b),

the FSR approach demonstrates relatively robust performance with R2 ranging from 0.85 to 0.95 where ILS of 50 m achieves

the highest NSE. It is worth noting that increasing ILS leads to both underestimation and overestimation, such as P5 and P2 in

Fig. 9 (b), highlighting the dual role of rainwater inlets in either alleviating surface inundation through drainage or contributing295

to it when overloaded.
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Figure 8. Maximum inundation depth map simulated by the FSR approach under the 20220711 storm. Basemaps are derived from ESRI

World Imagery (Credit: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community).

Based on calibrated parameters of the physical model, we further use the grid search strategy to optimize the most possible

equivalent drainage rate id used in the RDA method when detailed sewer network information is unavailable. Specifically, we

set the possible range of id according to the local design drainage standard and perform simulations with id = 2.5, 5.0, 7.5,

10.0, 12.5, 15.0 mm/h. According to Fig. 9 (c), id = 2.5 mm/h achieves the highest R2 and thus selected as the final value of300

drainage rate for further scenario analysis.

4.3 Extreme rainfall analysis: both local inlets and global regulation matter

After calibrating the AUTOSHED model integrated with reconstructed sewer hydraulic modules, we now delve deeper into

understanding how the proposed graph reconstruction-based approach performs compared to simplified alternatives across

different rainfall scenarios and varying levels of available information. The aforementioned 20220711 storm event, with an305

average total rainfall exceeding the 500-year return period threshold (40.8 mm), highlights its extremity in an arid region. Ac-

cording to Fig. 9, when information on regulated facilities and detailed layouts is unavailable, simplified physical approaches,
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Figure 9. Simulation performance of the maximum inundation depth at inundated points using different approximation methods and param-

eters. The index of inundated points follow Fig. 8.

such as FSN, RSC and RSN, exhibit relatively lower accuracy than calibrated equifinal ones, which approximate limited

drainage capacities during extreme rainfall using a small equivalent drainage rate.

Considering physical approaches incorporate drainage effects at rainwater inlets, we further investigate the relationship310

between simulation error in maximum inundation depth and the distances to the nearest inlets, denoted as Df for the complete
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Figure 10. Simulation error of maximum inundation depth at inundated points where ∆hmax stands for the simulated depth minus observed

ones and Df and Ds are the distances to the closest rainwater inlet of the complete sewer network used in the FSR, FSN approach and the

simplified sewer network used in the RSN approach. ∆D =Ds −Df . The index of inundated points follow Fig. 8.

sewer network and Ds for the simplified one (see Sect. 3.3), respectively. As illustrated in Fig. 10, simulation error variability

decreases as Df and Ds increase, with the maximum absolute value of deviations remaining less than 5 cm for distances

exceeding 30 m, where local microtopography predominantly influences the inundation. Furthermore, NDA can underestimate

the maximum inundation depths at points such as P8 and P18, suggesting the occurrence of potential overflows surrounding315

nearby rainwater inlets due to insufficient drainage capacity under extreme rainfall.

To assess differences in simulated sewer drainage performance, we further summarize accumulated discharges at rainwater

inlets and conduct two steps of comparisons according to available information.

– Effects of neglecting regulation: when neglecting the information of regulated facilities, FSN can significantly un-

derestimate the maximum inundation depth at points such as P2 in Fig. 10, compared to FSR. This mainly results from320

overestimated inflows (∆
∑

Q1D−2D > 0) at surrounding inlets, as seen at P2 in Fig. 11 (a) and (e). Similar phenomenon

of overestimation can also be observed when comparing RSN with RSC whereas with greatly decreased magnitude since

road-based simplification reduces the rainwater collected into the sewer system and thus alleviates the drainage burden.

However, when regulated facilities are deleted, FSN can also overestimate the maximum inundation depths at certain

points such as P1 and P3 (Fig. 10), which may seem counterintuitive. Analysis of P1’s nearby inlets reveals lower in-325

flows using FSN, compared to FSR, particularly at IL1 (Fig. 11 (b) and (f)), causing model overestimation of surrounding
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Figure 11. Comparison of accumulated discharges (
∑

Q1D−2D) at rainwater inlets during the 20220711 storm where positive values indicate

inflows. (a)-(b). FSN simulated discharges. (c-f) Simulated discharge differences (
∑

∆Q1D−2D) between FSN and FSR defined by FSN

minus FSR. Basemaps are provided by Tianditu (https: //map.tianditu.gov.cn/).

maximum inundation depth. After tracking accumulated discharges at downstream inlets with respect to IL1, we further

locate the drainage bottleneck at one pump station PM1. As illustrated in Fig. 11 (d), its removal can significantly in-

crease inflows at upstream inlets, further increasing water heads at adjacent sewer nodes and consequently reducing

upstream inlet drainage capacities due to backwater effects.330
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Figure 12. Comparison of accumulated discharges at rainwater inlets during the 20220711 storm. (a)-(b) RSN simulated discharges. (c)-

(d) Simulated discharge differences between RSN and FSN defined by RSN minus FSN. Basemaps are provided by Tianditu (https:

//map.tianditu.gov.cn/).

– Impact of network simplification: when approximating the sewer layout through major roads, RSN generally overesti-

mates the maximum water depths at inundated points within 30 m of rainwater inlets compared to FSN (Fig. 10), driven

by intensified overflows from excessive surface water flowing through a single drainage pathway, as seen at P1 in Fig.

12 (a) and (c). However, some inundated points like P13 and P18, where surrounding inlets are removed, may also ex-

hibit underestimated maximum water depths. This occurs because these inlets initially contribute to surface overflows in335

FSN-based simulations, as evidenced by the underestimation of maximum water depth in Fig. 10 when NDA is adopted.

In particular, we can also observe the overestimation of maximum water depths at certain flood points without removing

local inlets during simplification, such as P2 and P4 with ∆D = 0 in Fig. 10. Examining the simulated total discharges at

rainwater inlets near P2 (Fig. 12 (b) and (d)) reveals that increased local inflows are outweighed by amplified upstream

overflows, thus exacerbating downstream inundation conditions.340

In summary, while physical approaches simplified through major roads can yield a similar pipe slope distribution (Sect. 4.1),

achieving accurate simulation of maximum inundation depths still requires the proper configuration of regulated facilities and
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drainage pathways. Otherwise, equifinal methods, flexible in parameter calibration, can offer better performance, especially

when observational data are available.

4.4 Design rainfall analysis: physical approaches outperform but require more complete information345

In order to assess whether equifinal approaches always exhibit comparable or even better performance with physical coun-

terparts, we further conduct design rainfall scenario analysis. The Probability of Detection (POD), False Alarm Rate (FAR),

Critical Success Index (CSI) and Bias (BIAS) are selected to evaluate the model performance in inundation area simulations

(McGrath et al., 2018), using results from the FSR approach as the reference:

POD=
TP

TP+FN
(18)350

FAR=
FP

TP+FP
(19)

CSI =
TP

TP+FN+FP
(20)

BIAS =
TP+FP

TP+FN
(21)

where TP (True Positive) represents areas correctly identified as inundated, FN (False Negative) represents areas incorrectly

classified as not inundated, and FP (False Positive) represents areas incorrectly classified as inundated, with FSR used as the355

reference. An area is considered inundated when its maximum depth exceeds 15 cm per local regulations.

In terms of detecting potential inundated areas, all approaches show only minor variations with high POD values ranging

between 0.85 and 0.95. The NDA and RDA approaches even slightly outperform FSN, RSC and RSN under extreme rainfall

conditions, aligning with previous results in Sect. 4.3. As rainfall return periods decrease, FAR values of the RSC, RSN, NDA

and RDA approaches gradually increase, with the latter two showing much more significant variations. This indicates that360

the performance of the equivalent drainage rate id calibrated by a single event still has a high uncertainty when applied to

rainfall scenarios with varying intensities. Therefore, while the differences in PODs are minimal, dramatically higher FARs

of equifinal approaches widen the overall performance gap, as measured by CSI, especially for rainfall events with return

periods below 50 years. Regarding BIAS, physical approaches that adopt reconstructed networks but without controls exhibit

a consistent underestimation of the total inundated area with BIAS values less than 1. In contrast, other equifinal approaches365

tend to overestimate the inundated area. Specifically, RDA and NDA can overestimate the total inundated area by more than

8% and 10% for rainfall events with return periods less than 100 years, respectively. Thus, a constant equivalent drainage
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Figure 13. Comparison of simulated inundation area under design rainfall scenarios using different approximation methods.

rate is insufficient to achieve an accurate simulation of sewer drainage effects under diverse rainfall conditions, while physical

approaches can also yield biased estimation of the inundated area if regulated facilities are not properly configured.

From the perspective of water balance, total inundated areas (or volumes) are closely related to the volume of rainwater370

drained outside the system. Thus, we further compare the discharge processes at outfalls simulated by different physical ap-

proaches (Fig. 14). Being the solution reconstructed from the most detailed information, FSR clearly reveals the insufficient

drainage capacities at most outfalls such as OF1. When regulated facilities are excluded but sewer layout remains unchanged,

FSN demonstrates significantly higher discharges, especially at major outflow points such as OF2 and OF3 with peak flows

over 300% higher, thereby leading to an underestimation of total inundated areas (Fig. 13). When the sewer layout is further375
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simplified by the major roads, the simulated outflows decrease by approximately 27% due to reduced inlets that collect rainwa-

ter into the sewer system. This attribution can be further supported by the improved alignment of outflow hydrographs between

RSN and RSC, which exhibit fewer truncations during peak flows under regulated conditions when compared to FSR and FSN.

This indicates an alleviation of drainage deficiency due to reduced rainwater inflow. However, certain outflow points, such as

OF3, still yield substantially higher discharges with simplified road networks. Comparison of layouts used in FSN and RSN380

reveals that a main pipe, measuring 6.8 m × 2.6 m (near OF1 and OF8, cf. Fig. 15) is found to be removed during simplifi-

cation, blocking the drainage pathway that divides the corresponding upstream rainwater to the northern outflow points such

as OF1 and OF8, eventually magnifying the inflow to OF3. Thus, for real urban environments with complicated sewer layouts

due to practical factors such as multistage construction, direct geometric simplification through major roads may remove some

critical connectivity inside a graph-like drainage system and thus fail to accurately represent the drainage effects of the sewer385

network due to topological incompleteness.

4.5 Outlook and limitation

The proposed graph reconstruction-based approach offers an efficient solution for generating physical sewer models using

available data on sewer layouts and surface elevation, which can be obtained from local surveys (Xing et al., 2022), engineer-

ing drawings (Lyu et al., 2018), or open source software such as SWMManywhere (Dobson et al., 2025). Given the significant390

influence of network topology and regulation facilities on inundation simulation results (as discussed in Sect. 4.3 and 4.4),

in addition to the aforementioned data sources, it is imperative to further implement intelligent surveying systems targeting

relevant critical components such as inlets and outfalls. These data can then be integrated with the proposed reconstruction

algorithm to achieve more reliable pluvial flood modeling. In particular, outfall identification still remains a difficult task, espe-

cially for decentralized sewer networks in relatively flat urban areas, challenging the applicability of existing topography-driven395

approaches (Dobson et al., 2025) and motivating the need for user-defined configurations according to prior knowledge of the

area (Reyes-Silva et al., 2023). In addition, it should be acknowledged that considering inherent quality issues of multi-source

geographical datasets, mathematical programming procedures in the proposed approach may occasionally fail because of infea-

sible configurations such as over-elevated outfalls and dangling pipelines. While introducing data cleaning procedures may help

alleviate such issues and streamline the downstreaming reconstruction process, it also necessitates the trade-off between algo-400

rithm robustness and accuracy owing to embedded assumptions during quality control, which deserves further investigations.

In addition to related cleaning functions implemented in existing packages like SWMManywhere (Dobson et al., 2025), we

propose leveraging the built-in functionality of irreducible inconsistent subset (IIS) computation within our optimization-based

framework, which can be steadily accessed in solvers such as Gurobi (https://docs.gurobi.com/projects/optimizer). This tool

can help identify the specific constraints responsible for infeasibility and thus support the spatial pinpointing of ill-conditioned405

sewer elements that over-constrain the optimization and may require further correction or elimination. In summary, additional

integration with other existing tools will further enhance the practicality of the proposed reconstruction method and facilitate a

more realistic representation of drainage effects in urban pluvial flood simulation.
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Figure 14. Comparison of simulated outflow processes under design rainfall scenarios using different approximation methods.

5 Conclusions

In this work, we present a graph reconstruction-based approach for building a physical sewer hydraulic model, leveraging410

incomplete information and surface elevation model while adhering to design guidelines. In contrast to conventional optimal-

design-based approaches, our approach seeks to reconstruct the most possible sewer network with related hydraulic properties,

such as gravitional flow direction and nodal invert elevation, constrained by minimal deviation from the initial status based on

available information. The resulting mathematical programming problems can be equivalently transformed into corresponding

linearized formulations, ensuring their computational efficiency for large-scale applications. We apply the proposed approach415

to Yinchuan’s main city zone, characterized by multiple outfalls consisting of wastewater treatment plants and pump stations,

yielding the following key insights:
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– The reconstructed sewer hydraulic module integrated into a 1D/2D coupled hydrologic-hydrodynamic model achieves

high accuracy in simulating maximum inundation depths, with an R2 of 0.95. A comparison with road-based layout

simplifications further demonstrates the robustness of our approach in reconstructing sewer hydraulic properties, as the420

simplified model maintains a similar distribution of pipe slopes.

– While equifinal approaches ease parameter calibration by encapsulating complex sewer drainage processes into equiva-

lent drainage rates, the proposed reconstruction approach can reliably achieve superior performance in simulating inun-

dated areas across various rainfall scenarios. This improvement stems from its physically grounded structure in simulat-

ing bidirectional interaction between the ground surface and the sewer system, indicating that physical reconstruction is425

preferable to approximate sewer drainage effects in operational applications.

– The completeness of available information has non-negligible effects on the simulated hydraulic performance of recon-

structed sewer networks. Simplifications involving road-based layouts and regulation facility removal lead to complex

deviation patterns in local maximum inundation depths and outflow hydrographs, with both overestimations and underes-

timations arising from the combined effects of surface microtopography, sewer connectivity modification and regulation430

facility operation.

In conclusion, we provide an efficient sewer reconstruction approach that improves the simulation and understanding of

sewer drainage effects during urban pluvial floods, accounting for varying levels of information completeness. However, un-

certainties persist in reconstructed physical models when detailed information on regulated facilities and drainage pathways is

lacking. Thus, future research will focus on integrating advanced techniques, such as data assimilation and intelligent surveying435

system, with reconstructed physical models to augment the realism of sewer drainage process representation.

Code and data availability. Landuse (https://worldcover2021.esa.int/download). DEM and sewer network information are not publicly avail-

able due to the privacy reasons. The snapshot of the source code and compiled application for sewer reconstruction has been archived

on Zenodo (https://doi.org/10.5281/zenodo.15522608). And the up-to-date version is available at: https://github.com/LllC-mmd/ASHED_

sewerReconstruction.440

Appendix A: Slope estimation using multiple points

Given a path consisting of K points p= {v1, ...,vK} with corresponding elevation values z = {z1, ...,zK}, its slope can be

derived from the estimated coefficient of ordinary least squares regression through the coordinates (vr,zr):

ip =

∑K
r=1(dr −µd)(zi −µz)∑K

r=1(dr −µd)2
=

∑K
r=1 drzr −Kµdµz∑K

i=1 d
2
r −Kµ2

d

(A1)

where dr is the distance from v1 to vr along the path (d1 = 0), µd and µz is the mean value of {dr}r=1,..,K and {zr}r=1,..,K .445
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Eq. A1 can re-written by using zr as pivot variables:

ip =

∑K
r=1 drzr −Kµdµz∑K

i=1 d
2
r −Kµ2

d

=
K

∑K
r=1 drzr − (

∑K
r=1 dr) · (

∑K
r=1 zr)

K
∑K

r=1 d
2
r − (

∑K
r=1 dr)

2

=

K∑
k=1

(
Kdk −

∑K
r=1 dr

)
K

∑K
r=1 d

2
r −

(∑K
r=1 dr

)2 zk

(A2)

Thus, ip can be expressed as a linear combination of zr. When K = 2, i.e, only two points are involved in the slope estima-

tion, we can simplify Eq. A2 into Eq. A3:

ip =− 1

d2
z1 +

1

d2
z2 (A3)450

Appendix B: Bidirectional surface-sewer flow coupling scheme

In AUTOSHED, the surface flow and sewer flow are bidirectionally linked via the mass source term Q1D−2D which can be

parameterized as follows (Buttinger-Kreuzhuber et al., 2022):

Q∗
1D−2D =



2

3
cwP

√
2gh1.5

2D , H1D < zbc

co,sA
√
2g[h2D − (H1D − zbc)]

0.5, zbc ≤H1D < zbc +h2D −A/P

cw,sP
√

2gh2D[h2D − (H1D − zbc)]
0.5, zbc +h2D −A/P ≤H1D < zbc +h2D

− cw,sP
√
2gh2D[(H1D − zbc)−h2D]

0.5, zbc +h2D ≤H1D < zbc +h2D +A/P

− co,sA
√
2g[(H1D − zbc)−h2D]

0.5, H1D ≥ zbc +h2D +A/P

(B1)

Here we assume Q∗
1D−2D is positive when water flows from the TSU to the linked inlet. H1D, h2D and zbc are the total455

hydraulic head at the inlet, the water depth at the TSU and the center bed elevation at the TSU, respectively; A and P are

the inlet’s area and perimeter, respectively; cw, cw,s and co,s are discharge coefficients for the free weir, the submerged weir,

and the orifice equations, respectively. By default, AUTOSHED sets cw = 0.56, cw,s = 0.11 and co,s = 0.2 (Rubinato et al.,

2017) and A= 0.3375 m2, P = 2.4 m assuming that each inlet is rectangular whose size is 0.45 m×0.75 m according to field

investigation.460

After examining the links between TSUs and inlets, we find that each TSU is linked with at most one inlet and thus have:

qsd =
Q1D−2D

AT
(B2)
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where AT is the total area of the TSU, and Q1D−2D is the sewer drainage rate at the inlet derived from Eq. B1 and further

constrained by the water availability of both the TSU and the inlet (Buttinger-Kreuzhuber et al., 2022):

Q1D−2D =


min

(
h2DAT

∆t
,Q∗

1D−2D

)
, H1D < zbc +h2D

max

(
−Vas

∆t
,Q∗

1D−2D

)
, H1D ≥ zbc +h2D

(B3)465

where Vas is the water volume at the inlet assembly determined by Aas and H1D; ∆t is the coupling time step evaluated as the

minimum value between the timesteps of the 1D and 2D solvers (Chen et al., 2018).

Notably, Eq. B2 and Eq. B3 can ensure strict mass balance during surface-sewer flow coupling since it is straightforward to

prove:

– The total exchange mass is the same between the surface and sewer network470

qsdAT∆t=Q1D−2D∆t (B4)

– The total exchange mass does not exceed the available water in the surface when water flows from the TSU to the inlet,

i.e., H1D < zbc +h2D,

Q1D−2D∆t=min
(
h2DAT ,Q

∗
1D−2D

)
≤ h2DAT (B5)

– The total exchange mass does not exceed the available water in the sewer network when water flows from the inlet to the475

TSU, i.e., H1D ≥ zbc +h2D,

Q1D−2D∆t=max
(
−Vas,Q

∗
1D−2D

)
≥−Vas (B6)

In order to jointly solve surface-sewer flow equations coupled with Eq. B2, AUTOSHED utilizes the 1D routing portion of

the Storm Water Management Model (SWMM) 5.1.015 (Rossman, 2015) and implements communication routines for 1D/2D

state variables such as water depth and hydraulic head (Eq. B1) via interface functions by compiling SWMM as a dynamic link480

library (Leandro and Martins, 2016).

In addition to unregulated nodes and links, we also account for the controlling effects of pump stations and wastewater

treatment plants using Type 4 pumps (whose flow rate changes linearly with the inlet node depth until the maximum pumping

capacity is reached) and nodes with limited maximum inflows in SWMM, respectively (Rossman, 2015).
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Figure 15. Comparison of simulated flows at 90 percentiles (Q90) of pipes under design rainfall scenarios using physical approaches with-

/without network simplification. (a) FSN approach. (b) RSN approach. Basemaps are provided by Tianditu (https: //map.tianditu.gov.cn/).
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