

Indigenous Wisdom in Flash Flood Adaptation and Mitigation: Insights from the Gayo Highlands, Indonesia

Cut Azizah^{1,5}, Cut Ayu Lizar², Sarif Robo³, Zuraihan⁴, Isma Arsyani⁵, Muhammad Iqbal⁶, Rambang Muhamramsyah⁶, Ismahadi¹

5 ¹Environmental and Natural Resources Management Master Program, Almuslim University, Bireuen, 24252, Indonesia

²Environmental Science Program, Almuslim University, Bireuen, 24252, Indonesia

³Soil Science Program, Khairun Gambesi University, South Ternate, 97711, Indonesia

⁴Architecture Program, Almuslim University, Bireuen, 24252, Indonesia

⁵Civil Engineering Program, Almuslim University, Bireuen, 24252, Indonesia

10 ⁶Social Science Education Program, Almuslim University, Bireuen, 24252, Indonesia

Correspondence to: Cut Azizah (cut.azizah13@gmail.com)

Abstract. Flash floods rank among the most catastrophic hydrometeorological disasters, profoundly affecting human lives, infrastructure, and ecosystems. As climate change intensifies their frequency and severity, locally tailored adaptation and mitigation strategies are essential, particularly in regions with limited access to advanced technologies. This study investigates the role of indigenous wisdom in mitigating flash flood risks, focusing on the socio-ecological challenges of the Gayo Highlands in Aceh, Indonesia. The region's steep terrain, high rainfall, and shifting land use contribute to its vulnerability, making community-driven strategies, such as river patrolling, reforestation, and adaptive stilt house construction, vital for disaster mitigation. Using a mixed-methods approach, the research identifies these practices as integrative solutions that blend ecological knowledge with cultural traditions. The findings reveal that these grassroots efforts have successfully prevented major floods over the past nine years, enhancing both ecological stability and societal resilience. Nationally recognized through the Kalpataru Award in 2023 and internationally acclaimed for their innovative community-based approaches, these practices underscore the critical role of traditional knowledge in disaster risk management. However, contextual adaptation is crucial, as such strategies must be tailored to fit diverse socio-ecological conditions in other regions. This research emphasizes the necessity of integrating indigenous wisdom with ecosystem-based frameworks and modern advancements, such as early warning systems and digital mapping tools, to develop scalable and globally relevant mitigation models, offering a practical framework for replication in other disaster-prone regions.

1 Introduction

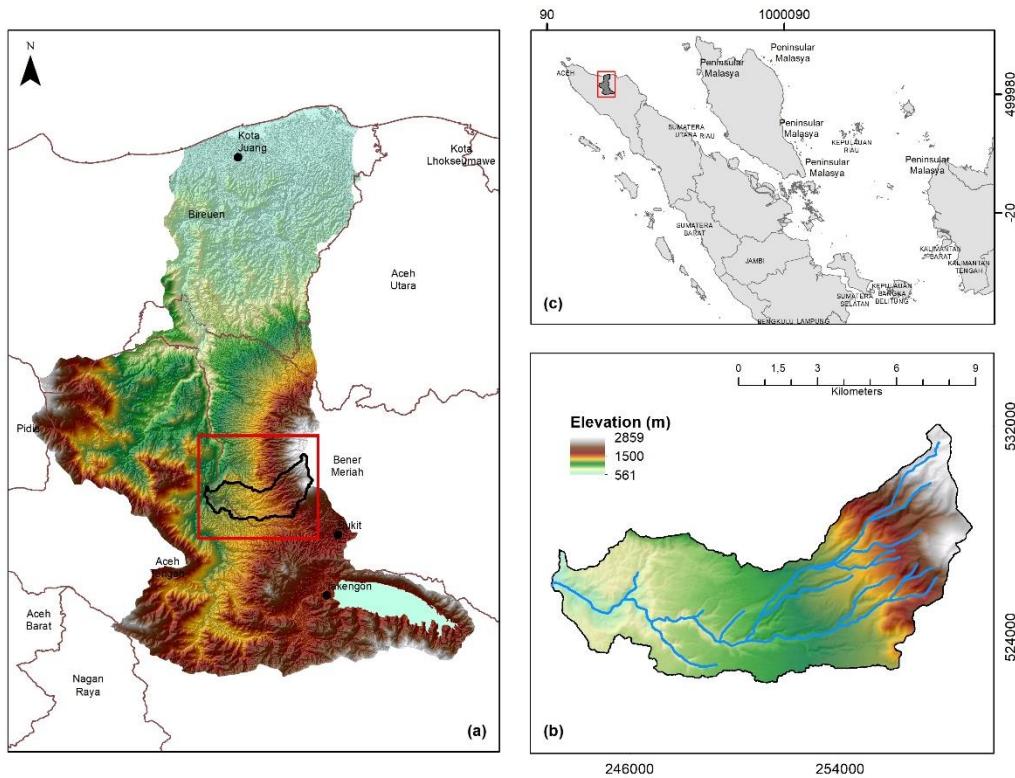
Flash floods are among the most destructive hydrometeorological disasters, causing significant impacts on infrastructure, the environment, and human lives (Khan et al., 2020; Pascual et al., 2024; Al-Rawas et al., 2024; Rahman et al., 2023). Characterized by sudden and rapid water flow, these disasters frequently occur in areas with steep topography, high rainfall

intensity, and poor land-use management (Azizah et al., 2022; Ali et al., 2017; Jodar-Abellán et al., 2019). Globally, the intensity and frequency of flash floods have been increasing (CRED, 2024). Data from the Centre for Research on the Epidemiology of Disasters (CRED) indicates a 30% rise in flash flood occurrences over the past two decades, affecting more
35 than 10 million people annually (Guha-Sapir et al., 2016). This rise is attributed to climate change (Archana et al., 2024; Hussain Shah et al., 2023), deforestation (Dhyani and Dhyani, 2016; Jean Louis et al., 2024; Maqsood et al., 2024), and unplanned urbanization (Hoang and Liou, 2024; Martín-Raya et al., 2024).

Indonesia, with its humid tropical climate, annual rainfall exceeding 2,500 mm, and mountainous terrain, ranks among the countries most vulnerable to flash floods (Azizah et al., 2022; Taufik et al., 2017; Sapan et al., 2023). For instance, the Gayo
40 Highlands in Central Aceh face recurrent risks due to extreme rainfall, land-use changes, and weak watershed management (Amri et al., 2023; Ilhamni et al., 2023). Previous studies highlight the region's physiographic characteristics, such as steep slopes and fragile volcanic soils, which exacerbate landslide risks and natural river damming, often triggering large-scale flash floods (Sukrizal et al., 2019; Murdawati et al., 2024; Azzahra et al., 2021). However, these disasters are not solely driven by natural factors; deforestation significantly reduces the ecosystem's capacity to retain rainfall and stabilize soil (Zhang et al.,
45 Jean Louis et al., 2024; Maqsood et al., 2024).

While modern technologies such as Geographic Information Systems (GIS), hydrological modeling, and early warning systems have been widely implemented (Wahba et al., 2024; Hu et al., 2024; Al-rawas et al., 2024; Rifath et al., 2024; Ding et al., 2021), their effectiveness often remains limited in rural areas with low access to technological infrastructure (Montz and Gruntfest, 2002; Sauer et al., 2024; Iqbal and Nazir, 2023). Alternatively, community-based approaches leveraging local
50 wisdom have gained traction as locally relevant and sustainable solutions (Bucherie et al., 2022; Trogrlić et al., 2019; Rozi, 2017; Tran et al., 2009). In many countries, indigenous knowledge has played a pivotal role in disaster mitigation (Islam et al., 2018; Hiwasaki et al., 2014; Setten and Lein, 2019; Dekenss, 2007). For example, communities in Vietnam integrate local knowledge with GIS to enhance the accuracy of flash flood risk maps (Tran et al., 2009), while in Zimbabwe, communities rely on natural signs to predict floods (Mavhura et al., 2013). In Simeulue, Aceh, the "Smong" tradition saved thousands of
55 lives during the 2004 tsunami by relying on local understanding of earthquake and natural signs (Syahputra, 2019; McAdoo et al., 2006; Syafwina, 2014).

However, despite widespread recognition of local wisdom in various contexts, its documentation and integration into formal policies remain limited, particularly in Indonesia. Most previous research has focused on technical or technological approaches without addressing the unique socio-ecological dimensions of indigenous communities. Studies on the local
60 knowledge of the Gayo people, specifically regarding flash flood adaptation and mitigation, remain scarce, despite their rich traditions in natural resource management and risk mitigation. For instance, the Gayo community employs a combination of revegetation, river monitoring, and community cooperation to mitigate flash flood impacts, yet these practices remain largely undocumented and unincorporated into formal policy frameworks.


This study aims to identify and analyze the local wisdom-based mitigation and adaptation strategies employed by the Gayo
65 people in facing flash floods. It not only documents local practices such as revegetation, river monitoring, and adaptive housing

design but also explores how these practices can be integrated with modern technologies to create more effective mitigation systems. By adopting a multidisciplinary approach that combines social, ecological, and technological dimensions, this research seeks to contribute significantly to the global literature on community-based disaster mitigation and offer a replicable model for other regions facing similar risks.

70 2 Study Area

The Gayo Highlands in Aceh, Indonesia, encompass three main regencies: Central Aceh, Bener Meriah, and Gayo Lues. Situated along the Barisan Mountain Range, which stretches from north to south across Sumatra Island, the area is located approximately between $4^{\circ}0' - 5^{\circ}0'$ N latitude and $96^{\circ}30' - 98^{\circ}0'$ E longitude. The upper reaches of the Peusangan Watershed dominate this region, with elevations ranging from 561 to 2,859 meters above sea level (see Fig. 1). The combination of steep 75 topography, volcanic soils with low infiltration capacity, and high annual rainfall (2,500–3,000 mm) makes the region highly vulnerable to hydrometeorological hazards, particularly flash floods.

80 **Figure 1: (a) The Gayo community resides in the upper reaches of the Peusangan Watershed, located in Bener Meriah and Central Aceh Regencies, Aceh Province. (b) Wih Gile is a sub-watershed of the Peusangan Watershed. (c) Geographically, Aceh Province is part of the island of Sumatra, Indonesia.**

The average slope gradient in the region is approximately 20%, with the steepest areas concentrated in the upstream hills of the Peusangan Watershed. This rugged terrain, coupled with heavy rainfall and environmental degradation, frequently triggers landslides that often lead to river blockages. A study by Ilhamni et al. (2023), highlights that deforestation, driven by the expansion of coffee plantations, has significantly reduced the ecosystem's capacity to absorb rainfall, thereby increasing
85 the risk of flash floods, especially in the Wih Gile sub-watershed (see Fig. 1).

In addition to being a disaster-prone region, the Gayo Highlands are renowned for producing world-class Arabica coffee. This area serves as a hub for coffee cultivation, which not only sustains the local economy but also significantly impacts the environment. According to Amri et al. (2023), forest-to-coffee plantation conversion has increased by 10% over the past decade, resulting in the loss of 5,000 hectares of forest cover.

90 Beyond its physical and environmental complexities, the Gayo Highlands are home to the indigenous Gayo community, who possess unique local wisdom for disaster risk mitigation. Through community-based social practices, the Gayo people have developed adaptive mitigation strategies that address local challenges. This region serves as a critical case study for understanding how the interplay between hydrometeorological risks, environmental changes, and local knowledge can inform globally relevant, community-based solutions.

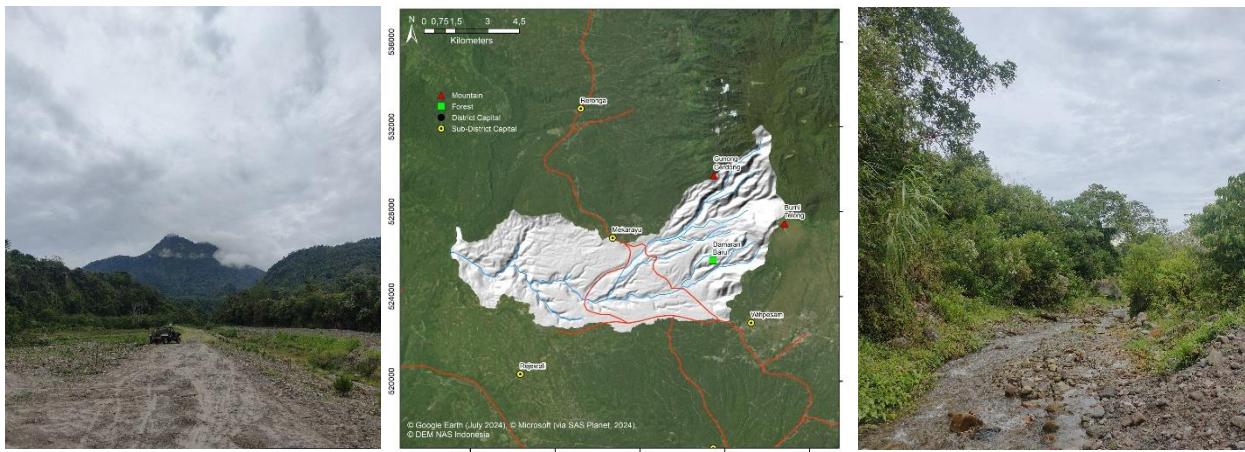
95 **3 Materials and methods**

This study employed a mixed-methods approach, emphasizing qualitative data collection complemented by quantitative data to strengthen the analysis. Conducted between 2023 and 2024, the research aimed to explore the local wisdom of the Gayo community in flash flood mitigation and to analyze data-driven empirical findings.

100 Qualitative data were collected through in-depth interviews, focus group discussions (FGDs), and participatory observation. A total of 20 interviews were conducted with key informants, including traditional leaders, community representatives, members of the Forest Management Group (Lembaga Pengelola Hutan Kampung, LPHK), and individuals with extensive knowledge of environmental signals, mitigation practices, and cultural values. Additionally, three FGD sessions, each involving 10 to 15 participants from diverse occupational backgrounds, were organized to explore collective perceptions of disaster risks and adaptive measures. Participatory observations documented activities such as forest patrols, 105 revegetation efforts, and river maintenance.

Quantitative data were obtained through structured questionnaire surveys involving 94 respondents selected via snowball sampling. Respondents included household heads and active members of LPHK groups. The questionnaire was designed to assess perceptions of risk, flood experiences, participation levels, and the impact of mitigation activities on reducing flash flood risks. Secondary data, such as land-use maps and watershed maps, were sourced from the Regional Disaster Management 110 Agency (BPBD) of Bener Meriah, the Forest Management Unit (KPH) Region II Aceh, and the HAkA Foundation (Forest, Nature, and Environment Aceh).

115 Data analysis involved thematic methods for qualitative data and descriptive statistical analysis for quantitative data. Interview transcripts and FGD recordings were examined to identify patterns in community adaptation and community-based mitigation strategies. Quantitative data supported qualitative findings by providing empirical insights into participation rates and the effectiveness of mitigation initiatives. Additionally, spatial analysis using Geographic Information Systems (GIS) was conducted to map the study location and analyze land-use changes.


4 Results and Discussion

4.1 Flash Flood Disaster Adaptation

4.1.1 Symbolic Naming Practices

120 The tradition of geographical naming with symbolic meanings has long been an integral part of local communities' adaptation strategies to natural disaster risks. One notable example is the Wih Gile River (see Fig. 2), which translates to "Mad River" in the Gayo language. This name serves as a symbolic warning of the potential dangers posed by the river's unpredictable and turbulent flow. The term "mad" vividly describes the river's erratic and deadly currents, presenting a significant threat to surrounding communities. This naming practice promotes public awareness of the river's characteristics, encouraging residents 125 to avoid activities or construction along its banks (Bucherie et al., 2022).

130

135 **Figure 2: Wih Gile River, located at the foothills of Mount Gerdong and Mount Berapi (the two highest peaks in Aceh), serves as the main channel for flash floods impacting the Damaran Baru community. The map illustrates the geographical location of the river and its surrounding ecosystem.**

Source (middle image): © Google Earth (Imagery Date: July 2024), © Microsoft (via SAS Planet, Imagery Date: 2024), © DEM NAS Indonesia. Overlays and modifications by the authors.

This cultural tradition reflects a long-standing heritage passed down through generations. Dove (2008) described a similar practice in Mount Merapi, Indonesia, where geographical naming serves as a traditional warning tool to enhance awareness of

140 volcanic disaster risks. Comparable findings were reported by Rahman et al. (2023) in Bangladesh, where river names with symbolic meanings helped communities heighten their vigilance during the monsoon season. Additionally, Smith and Petley (2009) emphasized that local knowledge-based approaches play a pivotal role in mitigating natural disaster risks in vulnerable communities.

145 Interviews with local residents revealed that this naming practice effectively discourages development near the river, thus reducing vulnerability to flash floods. Bucherie et al. (2022) also highlighted that such traditions strengthen the community's connection with their environment, fostering ecological awareness critical for risk mitigation. In modern contexts, these practices could be integrated with risk maps or technology-driven early warning systems to enhance community-based disaster risk management, as recommended by UNDRR (2023).

150 **4.1.2 Residential Houses**

Traditional houses serve not only as dwellings but also as a reflection of local wisdom in adapting to environmental risks. The traditional architecture of the Gayo people, known as Umah Pitu Ruang (see Fig. 3a), exemplifies structural adaptation to the threat of flash floods (Iswanto et al., 2022; Zahrah et al., 2021). These houses are elevated structures designed on stilts, allowing water to flow beneath without damaging the main building (Wulandari et al., 2024). This design is comparable to traditional 155 stilt houses in Thailand and Vietnam, which are constructed to withstand seasonal floods and mitigate soil erosion, as described by Saengpanya and Kintarak (2019) and (Pham and Oh 2021).

The Gayo community often associates flash floods with the term letot, interpreted as a dragon descending from the mountains due to upstream river disruptions (Setianingsih et al., 2017). The dragon (nege) symbol featured in Umah Pitu Ruang represents the forces of nature that must be respected and preserved. This symbolism resembles the dragon myths in 160 Chinese culture, which are often linked to rain and flood protection. However, in Gayo, the dragon myth carries a profound moral message to maintain the ecological balance of river systems, serving as a medium for promoting environmental conservation values within the community (Dove 2008).

Additionally, the use of local durable materials such as ulin hardwood enhances the resilience of Umah Pitu Ruang to extreme weather conditions, similar to practices in the Philippines, where traditional houses employ local materials like 165 bamboo and hardwood to withstand typhoons and floods (See et al., 2024). Research by Biswas et al. (2015) in Bangladesh also highlights the role of traditional stilt houses in community adaptation to floods, particularly in reducing damage to properties and infrastructure.

The steeply pitched roofs of Umah Pitu Ruang, designed to facilitate rapid rainwater runoff, share a functional similarity with traditional houses in Japan. In mountainous regions of Japan, as noted by Tamura (2024), steep roofs prevent the 170 accumulation of snow or rain, showcasing ecological adaptation based on local environmental conditions.

Umah Pitu Ruang is not merely a cultural representation of the Gayo people but also a form of local wisdom-based adaptation relevant to hydrometeorological disaster mitigation. Integrating this traditional design with modern approaches, such as early warning systems and risk mapping, can create community-based mitigation models adaptable on a global scale.

Similar practices have been proposed by Montz and Gruntfest (2002), who emphasized the importance of combining local
175 traditions with technological innovations to develop more effective disaster adaptation solutions.

4.1.3 Awareness of Natural Signs

Awareness of natural signs has been an integral part of the Gayonese community's adaptive strategies in mitigating flash flood
risks. This knowledge, passed down through generations, emphasizes recognizing environmental cues associated with
180 impending floods. Flash floods frequently occur during heavy rainfall in upstream areas, especially in the late afternoon when
dark, dense clouds gather over mountain slopes. These clouds serve as visual indicators of increased water flow in the upper
reaches, which may lead to a flash flood downstream.

In addition, the Gayonese observe auditory signs, such as roaring sounds or rumbling noises from upstream rivers. These
sounds signal surging water flows carrying large debris, including boulders, logs, and sediment. Upon noticing such signs, the
185 community immediately moves away from the riverbanks and warns others to seek safety. This practice reflects an ingrained
lifestyle and a natural form of disaster mitigation passed through oral traditions (Dove, 2008; Rahman et al., 2023).

The Gayonese approach aligns with practices observed in Karonga, Malawi, where communities also rely on
meteorological and hydrological indicators for disaster preparedness. Bucherie et al. (2022) found that Karonga residents
recognize changes in wind patterns, the appearance of black convective clouds, and rising temperatures as early warnings of
190 flash floods. Hydrologically, sudden changes in river flow velocity, increased water volume, discoloration to brown or black,
and floating debris serve as critical signals. This local knowledge allows communities to prepare and reduce risk effectively.

These observations underline the importance of local knowledge in disaster risk reduction. Both the Gayonese and Karonga
communities demonstrate a reliance on subtle environmental changes to enhance alertness and prompt timely responses,
thereby minimizing disaster impacts. This underscores the dual role of local wisdom in preserving cultural identity and serving
195 as a vital disaster mitigation tool in flash flood-prone regions (Syuryansyah and Habibi, 2024).

4.2 Mitigation of Flash Flood Disasters

4.2.1 Establishment of Forest Management Institutions

Mitigating natural disasters, particularly flash floods, requires an integrated approach that combines environmental
200 conservation with community empowerment. In the context of local wisdom, collective natural resource management has
proven to be an effective strategy for reducing disaster risks. A prime example is the establishment of the Forest Management
Institution (LPHK) in 2017 by the Gayonese community in Kampung Damaran Baru, Aceh. This group, known locally as Mpu
Uteun or Forest Guardians, stands out due to its composition of female members, often referred to as Women Rangers.

The formation of LPHK was a direct response to the destructive flash flood that struck the region on September 13, 2015.
205 This disaster devastated 25 homes, destroyed roads, and damaged coffee plantations—the community's primary livelihood—
while underscoring the critical need for forest protection as a mitigation measure.

The main objective of Mpu Uteun is to safeguard and sustainably manage forests to prevent flash floods and restore the forest's ecological functions. This initiative was facilitated through the Village Forest Program (Hutan Desa) under Indonesia's Ministry of Environment and Forestry, which provided a robust legal and institutional framework for community-based forest management (Shrestha et al., 2008; Troglić et al. 2019).

The initiatives led by Mpu Uteun have received widespread recognition both nationally and internationally. In 2023, the group was awarded the prestigious Kalpataru Award by the Indonesian government for their environmental conservation efforts. Additionally, Mpu Uteun gained global recognition, being included in Time Magazine's "100 Most Influential People," highlighting their vital role in community-based disaster mitigation.

As Women Rangers (see Fig. 3b,c), Mpu Uteun members have challenged traditional gender roles by actively patrolling forests, preventing illegal logging, and restoring degraded ecosystems. This aligns with findings from Tran et al. (2009) and Sopiawati and Hatuti (2019), which highlight that involving women in environmental management enhances the success of community-based mitigation programs.

Globally, similar examples can be found among women's groups in Nepal and India engaged in community forest management. In Nepal, Community Forest User Groups (CFUGs) empower women by involving them in decision-making processes and forest protection, providing access and control over natural resources (Leone, 2019). In India, the Chipko Movement led by women in the 1970s became an iconic success story in conservation, safeguarding forests from commercial exploitation. These parallels underscore the natural role of women as ecosystem stewards, driven by their motivation to protect their families and communities from environmental risks (Crowley, 2013).

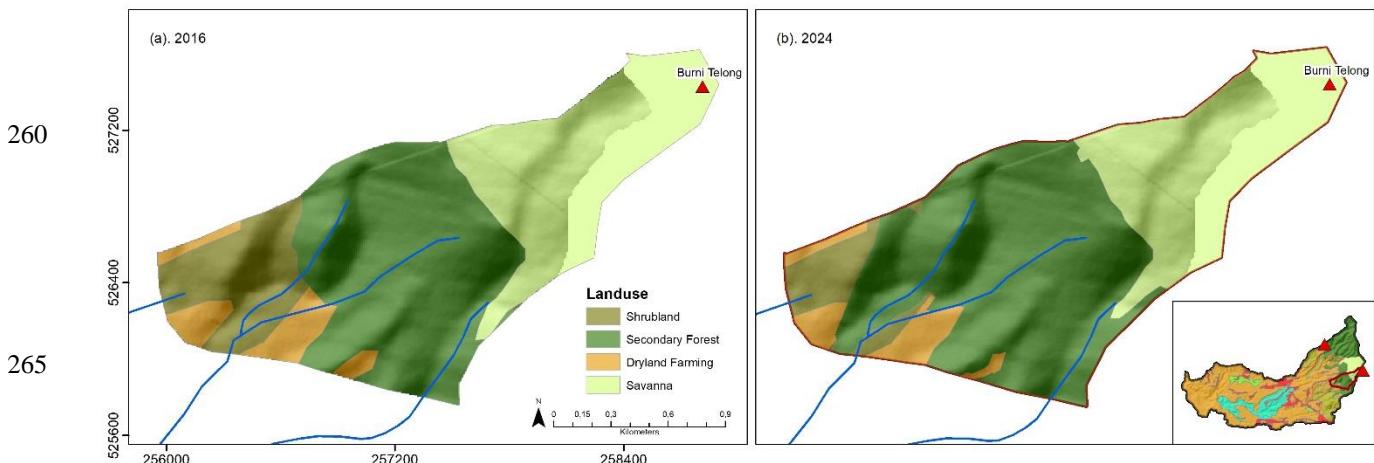
225

230

Figure 3: (a) Umah Pitu Ruang, the traditional house of the Gayo people, designed as a stilt structure to adapt to flash floods. (b) The head of LPHK Damaran Baru at a revegetation site as part of community-based mitigation efforts. (c) Female rangers of Mpu Uteun Damaran Baru actively engaged in forest patrols and ecosystem conservation.

As a model of community-based management, LPHK Kampung Damaran Baru integrates environmental conservation, disaster mitigation, and community empowerment into a holistic approach. This reflects findings by Troglić et al. (2019), who emphasized that community-based institutions enhance adaptive capacity through the integration of local knowledge and

240 institutional support. Henriksen et al. (2023) further highlighted the importance of community-based management in disaster mitigation, particularly through forest protection and locally driven governance.


LPHK Kampung Damaran Baru demonstrates how local communities can independently manage disaster risks while significantly contributing to environmental conservation and societal resilience. The Women Rangers of LPHK exemplify community-based mitigation efforts that prioritize active community participation in environmental stewardship.

245

4.2.2 Revegetation and Landslide

Revegetation serves as a critical strategy in mitigating landslide risks in mountainous regions, including the 251-hectare Damaran Baru Forest, which forms the upstream area of Wih Gile River (see Fig. 4). Landslides in this region often carry soil and rocks that contribute to hydrological changes, including the risk of damming. In this context, revegetation plays a dual 250 role: reducing erosion on slopes and restoring hydrological stability in critical areas (Zhao et al., 2018; Thapa et al., 2024).

The core of this strategy involves planting native tree species on landslide-prone slopes. These species are selected for their deep root systems, which strengthen soil structure and reduce erosion risks. Research by Amri et al. (2023) in Aceh demonstrated that multistrata vegetation, including grasses in the lower stratum and trees in the upper stratum, provides optimal protection against landslides by anchoring soil on steep slopes. Similarly, studies by Dhyani and Dhyani (2016) in the 255 Himalayan region highlighted the effectiveness of layered vegetation in reducing runoff that triggers erosion in mountainous terrains.

260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
89

275 Routine revegetation activities by LPHK have significantly reduced landslide occurrences, strengthened soil stability, and maintained the river ecosystem's balance.

Revegetation also supports broader ecosystem restoration. A study in Wenchuan, China, found that deciduous tree species are more effective in improving soil quality compared to evergreen species (Fusun et al., 2013). This aligns with the experience in Damaran Baru, where local vegetation has reduced erosion risks while maintaining the hydrological quality of rivers.

280 Moreover, the revegetation program is guided by local wisdom, emphasizing community collaboration. Activities are often initiated based on observations made during forest patrols conducted by LPHK members. Comparatively, the Community Forest User Groups program in Nepal, as reported by Leone (2019), emphasizes involving local communities in vegetation selection to ensure ecosystem sustainability. Similarly, Marzuki and Gayo (2022) highlighted that successful environmental mitigation depends on integrating local knowledge with modern approaches.

285 As a community-based disaster mitigation model, the Damaran Baru revegetation program mirrors global findings. For instance, Canavesi and Dos Santos Alvalá (2012) demonstrated that community involvement in revegetation projects enhances the effectiveness of soil and water conservation efforts. By utilizing native tree species and encouraging active community participation, the revegetation efforts in Damaran Baru not only protect the environment but also strengthen community resilience against disaster risks.

290 **4.2.3 River Patrolling for Preventing Damming**

Flash floods are among the most destructive hydrological threats in mountainous regions, often triggered by damming of river flows due to landslides or other debris. Their devastating impacts include widespread physical damage and the loss of livelihoods. In Kampung Damaran Baru, a community-based river patrolling program, organized by LPHK, serves as a mitigation measure to prevent the formation of natural blockages in river channels (see Fig. 5). This program not only strengthens disaster risk management but also empowers the community to protect forest and river ecosystems.

295 Extreme rainfall is a primary trigger of damming and subsequent breaches of natural blockages. Research by Hou et al. (2020) highlights that high precipitation intensifies water pressure behind blockages, significantly increasing the risk of structural failure and flash floods. Similarly, Yang et al. (2020) demonstrated that rainfall intensity and duration influence blockage formation, particularly in areas with steep topography and high erosion rates. In Kampung Damaran Baru, persistent rainfall has been identified as an early warning indicator of damming risks, forming the basis for proactive mitigation through river patrolling.

Local wisdom also plays a crucial role in identifying signs of flash flood risks. Before the 2015 flash flood, the woman who now leads LPHK observed the formation of a large pool in the Wih Gile River, an indication of increasing water pressure behind a blockage. Unfortunately, this warning was ignored at the time, leading to unavoidable disaster. This experience 300 became a vital lesson, and such knowledge now guides river patrols in identifying and addressing potential hazards.

LPHK's river patrolling activities extend beyond monitoring to include the manual clearing of blockages obstructing river flow. Debris such as fallen trees, landslide material, and large rocks are removed using simple tools by LPHK members.

Research by Zain et al. (2021) confirms that clearing blockages in small catchments can significantly reduce flash flood risks at a much lower cost compared to large-scale infrastructure projects like dams.

310 The program's effectiveness is evident in its outcomes: since its implementation in 2015, no major flash floods have occurred along the Wih Gile River up to 2024. Over the past nine years, the program has successfully reduced disaster risks while strengthening community resilience to hydrological threats. However, despite its proven effectiveness, this initiative has yet to be incorporated into the local government's core disaster mitigation policies.

315 Globally, LPHK's river patrolling and blockage-clearing practices align with findings by Bronstert et al. (2018), which emphasize that removing debris from river channels reduces hydraulic pressure and enhances ecosystem stability. Additionally, research by Khan et al. (2020) highlights the importance of integrating community-based approaches into formal policies to enhance disaster mitigation effectiveness.

320 The success of LPHK Kampung Damaran Baru's river patrolling demonstrates that simple community-based measures can have a significant impact on mitigating hydrological disasters. This approach offers a low-cost, sustainable solution that can be replicated in other regions facing similar flash flood risks. Their experience provides valuable insights for developing broader community-based mitigation policies.

325

330

335 **Figure 5: (a) Landslide conditions blocking the river flow, creating potential damming that can increase the risk of flash floods. (b) River patrol activities conducted routinely by LPHK members to monitor water flow and detect potential blockages. (c) Mpu Uteun members collaboratively removing blockages, such as fallen trees and landslide materials, to maintain smooth river flow and prevent damming risks.**

5 Conclusions

340 This study demonstrates that the indigenous wisdom of the Gayo community in the Gayo Highlands, Aceh, significantly contributes to the adaptation and mitigation of flash flood risks. Community-based strategies, such as river patrolling,

reforestation, and the use of traditional architecture, have proven effective in reducing flash flood risks over the past nine years since 2015. These initiatives not only enhance community resilience but also sustainably preserve the ecological functions of the local environment.

The findings underscore the importance of integrating indigenous knowledge with ecosystem-based approaches and 345 modern technology to develop disaster mitigation models that are globally relevant. These strategies also offer flexibility in their application, allowing adaptation based on the socio-ecological characteristics of different regions. However, the success of these strategies is highly context-dependent, and their generalization requires a cautious approach. Consequently, further research is needed to explore the potential for replicating these strategies in regions with diverse ecological and social characteristics. Additionally, collaboration between local communities, governments, and global institutions is critical to 350 ensure effective knowledge transfer and support the development of community-based mitigation strategies.

As a practical recommendation, integrating community-based practices into national disaster mitigation policies is essential to ensure sustainability and scalability. Supportive policies, such as resource allocation, incentives for community-based practices, and technology-focused training, are crucial to guaranteeing long-term sustainability. Through a synergy of local and global approaches, indigenous wisdom can emerge as a universal solution to address hydrometeorological threats in the 355 era of climate change.

Author Contributions. CA served as the principal investigator, prepared the research proposal, conducted the research, performed data analysis, and led the writing and revision of the manuscript. CAL assisted in data collection and reviewed the manuscript. Sarif Robo performed GIS analysis, contributed to data interpretation, and reviewed the manuscript. Z served as 360 the architectural and spatial planning expert, analyzed the traditional Umah Pitu Ruang houses, and reviewed the manuscript. IA is a researcher from the Gayo ethnic group who provided in-depth insights into the cultural characteristics of the community, contributed to the interpretation of local practices, and reviewed the manuscript. MI and RM are experts in social and cultural studies who analyzed the sociocultural dimensions of the Gayo community, contributed to the interpretation of community practices, and reviewed the manuscript. Ismahadi assisted in the research process as a graduate student, supported field 365 activities, and reviewed the manuscript.

Competing interests. The contact author declares that neither they nor their co-authors have any competing interests.

Acknowledgements. This research was funded by the Directorate of Research, Technology, and Community Service 370 (DRTPM), Directorate General of Higher Education, Research, and Technology, Ministry of Education, Culture, Research, and Technology, under the Fundamental Research Regular Program with contract number 135/E5/PG.02.00.PM.BARU/2024. The authors extend their gratitude to Lembaga Penelitian dan Pengabdian Masyarakat Universitas Almuslim (Research and Community Service Institute of Almuslim University), Pusat Kajian DAS Krueng Peusangan (Krueng Peusangan Watershed Research Center), Pemerintah Kabupaten Bener Meriah (The Government of Bener Meriah Regency), Lembaga Pengelola

375 Hutan Kampung Damaran Baru (Forest Management Unit of Damaran Baru Village), Kesatuan Pengelolaan Hutan Wilayah II Aceh (Forest Management Unit Region II Aceh), and Yayasan Hutan Alam dan Lingkungan Aceh (Aceh Forest, Nature, and Environment Foundation/HAKA) for their invaluable support and contributions to this research.

References

- Al-Rawas, G., Nikoo, M.R., Janbehsarayi, S.F.M., Hassani, M.R., Imani, S., Niksokhan, M.H., and Nazari, R.: Near Future Flash Flood Prediction in an Arid Region under Climate Change, *Scientific Reports.*, 14, 25887. 380 <https://doi.org/10.1038/s41598-024-76232-0>, 2024.
- Al-rawas, G., Nikoo, M.R., and Al-Wardy, M.: A Review on the Prevention and Control of Flash Flood Hazards on a Global Scale : Early Warning Systems, Vulnerability Assessment, Environmental, and Public Health Burden., *Inter.*, no. November, 1–6. 2024.
- 385 Ali, K., Bajracharyar, R., and Raut, N.: Advances and Challenges in Flash Flood Risk Assessment: A Review, *Journal of Geography & Natural Disasters.*, 07. <https://doi.org/10.4172/2167-0587.1000195>. 2017.
- Amri, U., Azizah, C., Ernawita., Robo, S., Nuraida., Ismy, R., and Sastriawan, H.: Lake Cliff Landslide Mitigation – A Case Study of Lut Tawar Peusangan Lake, Aceh, Indonesia, *Journal of Ecological Engineering.*, 24 (2): 165–72. <https://doi.org/10.12911/22998993/156699>. 2023.
- 390 Archana, T. R., Vinod, D., and Mahesha, A.: Decadal Trends and Climatic Influences on Flash Droughts and Flash Floods in Indian Cities, *Sustainable Cities and Society.*, 58 (November): 1–8. 2024.
- Azizah, C., Pawitan, H., Dasanto, B. D., Ridwansyah, I., and Taufik, M.: Risk Assessment of Flash Flood Potential in the Humid Tropics Indonesia: A Case Study in Tamiang River Basin, *Int. J. Hydrology Science and Technology.*, Vol. 13.2022
- 395 Azzahra, S., Hamid, A.H., Nugroho, A., Zulkarnain., and Wahyuni, W.: Assessing the Vulnerability of Gayo Coffee Households towards Floods and Landslides in Central Aceh-Indonesia, *IOP Conference Series: Earth and Environmental Science.*, 686 (1). <https://doi.org/10.1088/1755-1315/686/1/012016>. 2021.
- Biswas, S., Hasan, M.A., and Islam, M. I.: Stilt Housing Technology for Flood Disaster Reduction in the Rural Areas of Bangladesh, *International Journal of Research in Civil Engineering, Architecture & Design.*, 3 (April): 1–6. 2015.
- 400 Bronstert, A., Agarwal, A., Boessenkool, B., Crisologo, I., Fischer, M., Heistermann, M., Köhn-Reich, L., Lopez-Tarazon, J.A., Moran, T., Ozturk, U., Reinhardt-Imjela, C., Wendi, D.: Forensic Hydro-Meteorological Analysis of an Extreme Flash Flood: The 2016-05-29 Event in Braunsbach, SW Germany, *Science of the Total Environment*, 630:977–91. <https://doi.org/10.1016/j.scitotenv.2018.02.241>. 2018.
- Bucherie, A., Werner, M., Van Den Homberg, M., and Tembo, S.: Flash Flood Warnings in Context: Combining Local Knowledge and Large-Scale Hydro-Meteorological Patterns, *Natural Hazards and Earth System Sciences*, 22 (2), 461–80. <https://doi.org/10.5194/nhess-22-461-2022>. 2022.

Canavesi, V., and Dos Santos Alvalá, R.C.: Changes in Vegetation Cover in Reforested Areas in the State of São Paulo, Brazil and the Implication for Landslide Processes, *ISPRS International Journal of Geo-Information*, 1 (2), 209–27. <https://doi.org/10.3390/ijgi1020209>. 2012.

410 CRED.: Disasters in Numbers: A Significant Year in Disaster Impact, Université Catholique de Louvain. Brussels: Nature Research. <https://doi.org/10.1038/s41591-023-02419-z>. 2024.

Crowley, T.: Climbing Mountains, Hugging Trees: A Cross-Cultural Examination of Love for Nature, Emotion, Space and Society, 6 (1), 44–53. <https://doi.org/10.1016/j.emospa.2011.10.005>. 2013.

Dekenss, J.: Local Knowledge for Disaster Preparedness. A Literature Review, International Centre for Integrated Mountain 415 Development, no. January 2007, 1–65. 2007.

Dhyani, S., and Dhyani, D.: Strategies for Reducing Deforestation and Disaster Risk: Lessons from Garhwal Himalaya, India, Advances in Natural and Technological Hazards Research, 42, 507–28. https://doi.org/10.1007/978-3-319-43633-3_22. 2016.

420 Ding, L., Ma, L., Li, L., Liu, C., Li, N., Yang, Z., Yao, Y., and Lu, H.: A Survey of Remote Sensing and Geographic Information System Applications for Flash Floods, *Remote Sensing*, 13 (9), 1–20. <https://doi.org/10.3390/rs13091818>. 2021.

Dove, M. R.L Perception of Volcanic Eruption as Agent of Change on Merapi Volcano, Central Java, *Journal of Volcanology and Geothermal Research*, 172 (3–4), 329–37. <https://doi.org/10.1016/j.jvolgeores.2007.12.037>. 2008.

425 Fusun, S., W. Jinniu, L. Tao, W. Yan, G. Haixia, and W. Ning.: Effects of Different Types of Vegetation Recovery on Runoff and Soil Erosion on a Wenchuan Earthquake-Triggered Landslide, China, *Journal of Soil and Water Conservation*, 68 (2), 138–45. <https://doi.org/10.2489/jswc.68.2.138>. 2013.

Guha-Sapir, D., Hoyois, P., Wallemacq, P., and Below, R.: Annual Disaster Statistical Review 2016 The Numbers and Trends, CRED. http://emdat.be/sites/default/files/adsr_2016.pdf. 2016.

430 Henriksen, L.F., Kamnde, K., Silvano, P., Olwig, M.F. Mwamfupe, A and Gallemore C.: Strong Collaborative Governance Networks Support Effective Forest Stewardship Council-Certified Community-Based Forest Management: Evidence from Southeast Tanzania, Global Environmental Change, 82 (August), 102734. <https://doi.org/10.1016/j.gloenvcha.2023.102734>. 2023.

435 Hiwasaki, L., Luna, E., Syamsidik., and Shaw, R.: Process for Integrating Local and Indigenous Knowledge with Science for Hydro-Meteorological Disaster Risk Reduction and Climate Change Adaptation in Coastal and Small Island Communities, *International Journal of Disaster Risk Reduction*, 10, 15–27. <https://doi.org/10.1016/j.ijdrr.2014.07.007>. 2014.

Hoang, D., and Liou, Y.: Assessing the Influence of Human Activities on Flash Flood Susceptibility in Mountainous Regions of Vietnam, *Ecological Indicators*, 158 (September 2023), 111417. <https://doi.org/10.1016/j.ecolind.2023.111417>. 2024.

440 Hou, J., Li, B., Tong, Y., Ma, L., Ball, J., Luo, H., Liang, Q., and Xia, J.: Cause Analysis for a New Type of Devastating Flash Flood, *Hydrology Research*, 51 (1), 1–16. <https://doi.org/10.2166/nh.2019.091>. 2020.

- Hu, Y., Wu, H., Alfieri, L., Gu, G., Yilmaz, K.K., Li, C., Jiang L., Huang, Z., Chen, W., Wu, W., and Han, Q.: A Time-Space Varying Distributed Unit Hydrograph (TS-DUH) for Operational Flash Flood Forecasting Using Publicly-Available Datasets, *Journal of Hydrology*, 642 (November), 1–10. <https://doi.org/10.1016/j.jhydrol.2024.131785>. 2024.
- Hussain Shah, S.M., Yassin, M.A., Abba, A.I., Lawal, D.U., Hussein Al-Qadami, E.H., Teo, F.Y., Mustaffa, Z., and Aljundi I.H.: Flood Risk and Vulnerability from a Changing Climate Perspective: An Overview Focusing on Flash Floods and Associated Hazards in Jeddah, *Water (Switzerland)*, 15 (20). <https://doi.org/10.3390/w15203641>. 2023.
- Ilhamni, F., Azizah, C., Satriawan, H., Nuraida, Robo, S., Misnawati., and Ismy, R.: Mapping Analysis for Vulnerable Areas and Erosion Rate of Laut Tawar Lake, Peusangan Watershed, *Polish Journal of Environmental Studies*, 32 (4), 3617–26. <https://doi.org/10.15244/pjoes/163499>. 2023.
- Iqbal, A. and Nazir, H.: Community Perceptions of Flood Risks and Their Attributes: A Case Study of Rural Communities of Khipro, District Sanghar, Pakistan, *Urban Climate*, 52, 101715. <https://doi.org/10.1016/j.uclim.2023.101715>. 2023.
- Islam, M.R., Ingham, V., Hicks, J., and Kelly, E.: From Coping to Adaptation: Flooding and the Role of Local Knowledge in Bangladesh, *International Journal of Disaster Risk Reduction*, 28, 531–38. <https://doi.org/10.1016/j.ijdrr.2017.12.017>. 2018.
- Iswanto, S., Ramazan., and Suryana, N.: The History and Meaning of The Umah Pitu Ruang in Tanah Gayo, Aceh, *Jurnal Pendidikan Dan Kebudayaan*, 7 (2), 138–51. <https://doi.org/10.24832/jpnk.v7i2.3142>. 2022.
- Jean Louis, M., Crosato, A., Mosselman, E., and Maskey, S.: Effects of Urbanization and Deforestation on Flooding: Case Study of Cap-Haïtien City, Haiti, *Journal of Flood Risk Management*, no. June, 1–19. <https://doi.org/10.1111/jfr3.13020>. 2024.
- Jodar-Abellán, A., Valdés-Abellán, J., Pla, C., and Gomariz-Castillo, F.: Impact of Land Use Changes on Flash Flood Prediction Using a Sub-Daily SWAT Model in Five Mediterranean Ungauged Watersheds (SE Spain), *Science of the Total Environment*, 657 (April 2024), 1578–91. <https://doi.org/10.1016/j.scitotenv.2018.12.034>. 2019.
- Khan, T.A., Alam, M.M., Shahid, Z., and Mazliham, M.S.: Investigation of Flash Floods on Early Basis: A Factual Comprehensive Review, *IEEE Access*, 8, 19364–80. <https://doi.org/10.1109/ACCESS.2020.2967496>. 2020.
- Leone, M.: Women as Decision Makers in Community Forest Management: Evidence from Nepal, *Journal of Development Economics*, 138 (September 2017), 180–91. <https://doi.org/10.1016/j.jdeveco.2019.01.002>. 2019.
- Maqsood, M.H., Mumtaz, R., and Khan, M.A.: Deforestation Detection and Reforestation Potential Due to Natural Disasters—A Case Study of Floods, *Remote Sensing Applications: Society and Environment*, 34 (April), 1–8. <https://doi.org/10.1016/j.rsase.2024.101188>. 2024.
- Martín-Raya, N., Díaz-Pacheco, J., Antequera, P.D., and López-Díez, A.: Identifying Urban Prone Areas to Flash Floods: The Case of Santa Cruz de Tenerife, *Progress in Disaster Science*, 24 (September). <https://doi.org/10.1016/j.pdisas.2024.100372>. 2024.
- Marzuki, M. and Gayo, H.R.: Local Wisdom of Gayonese in Landslide Hazard Mitigation, *Proceedings of the 2nd International Conference on Social Science, Political Science, and Humanities (ICoSPOLHUM 2021)*, 648

- 475 (ICoSPOLHUM 2021), 75–79. <https://doi.org/10.2991/assehr.k.220302.012>. 2022.
- 480 Mavhura, E., Manyena, S.B., Collins, A.E., and Manatsa, D.: Indigenous Knowledge, Coping Strategies and Resilience to Floods in Muzarabani, Zimbabwe, International Journal of Disaster Risk Reduction 5, 38–48. <https://doi.org/10.1016/j.ijdrr.2013.07.001>. 2013.
- 485 McAdoo, B.G., Dengler, L., Prasetya, G., and Titov, V.: Smong: How an Oral History Saved Thousands on Indonesia's Simeulue Island during the December 2004 and March 2005 Tsunamis, Earthquake Spectra, 22 (SUPPL. 3). <https://doi.org/10.1193/1.2204966>. 2006.
- 490 Montz, B.E and Gruntfest, E.: Flash Flood Mitigation: Recommendations for Research and Applications, Environmental Hazards, 4, 15–22. 2002.
- 495 Murdawati., Nizamuddin., and Fatimah, E.: Analysis of Landslide-Prone Areas in Tripe Jaya District, Gayo Lues Regency, IOP Conference Series: Earth and Environmental Science, 1356 (1). <https://doi.org/10.1088/1755-1315/1356/1/012111>. 2024.
- 500 Pascual, L.A.C., Ong, A.K., Briggs, C.M., Diaz, J.F., and Josephine J.D.: Factors Affecting the Intention to Prepare for Flash Floods in the Philippines, International Journal of Disaster Risk Reduction, 112 (October): 1–8. <https://doi.org/10.1016/j.ijdrr.2024.104794>. 2024.
- 505 Pham, P. and Oh, S.: A Study on the Flood Safety Characteristics of Cham Ethnic Stilt Housing in Mekong Delta-Vietnam, Journal of the Korean Housing Association, 32 (4), 99–109. <https://doi.org/10.6107/jkha.2021.32.4.099>. 2021.
- Rahman, M.M., Shobuj, I.A., Hossain, M.T., and Tasnim, F.: Impact of Disaster on Mental Health of Women: A Case Study on 2022 Flash Flood in Bangladesh, International Journal of Disaster Risk Reduction, 96 (October), 1–9. <https://doi.org/10.1016/j.ijdrr.2023.103935>. 2023.
- Rifath, A.R., Muktadir, M.G., Hasan, M., and Islam, M.A.: Flash Flood Prediction Modeling in the Hilly Regions of Southeastern Bangladesh: A Machine Learning Attempt on Present and Future Climate Scenarios, Environmental Challenges, 17 (September), 101029. <https://doi.org/10.1016/j.envc.2024.101029>. 2024.
- Rozi, S.: Local Wisdom And Natural Disaster In West Sumatra, El-HARAKAH, 19 (1), 1. <https://doi.org/10.18860/el.v19i1.3952>. 2017.
- Sauer, I.J., Mester, B., Frieler, K., Zimmermann, S., Schewe, J., and Otto, C.: Limited Progress in Global Reduction of Vulnerability to Flood Impacts over the Past Two Decades, Communications Earth and Environment, 5 (1). <https://doi.org/10.1038/s43247-024-01401-y>. 2024.

- See, J., Cuaton, G.P., Placino, P., Vunibola, S., Thi, H.D., Dombroski, K., and McKinnon, K.: From Absences to Emergences: 510 Foregrounding Traditional and Indigenous Climate Change Adaptation Knowledges and Practices from Fiji, Vietnam and the Philippines, *World Development*, 176 (December 2023), 106503. <https://doi.org/10.1016/j.worlddev.2023.106503>. 2024.
- Setianingsih, P., Dafrina, A., and Lisa, N.P.: Analisis Semiotika Simbol Pada Umah Pitu Ruang Di Kabupaten Aceh Tengah, Temu Ilmiah IPLBI, I039–46. <https://doi.org/10.32315/ti.6.i039>. 2017.
- 515 Setten, G. and Lein, H.: We Draw on What We Know Anyway': The Meaning and Role of Local Knowledge in Natural Hazard Management, *International Journal of Disaster Risk Reduction*, 38 (May), 101184. <https://doi.org/10.1016/j.ijdrr.2019.101184>. 2019.
- Shrestha, A.B., Shah, S.H., and Karim, R.: Resource Manual on Flash Flood Risk Management Module 3: Structural Measures. 520 Kathmandu, Nepal: International Centre for Integrated Mountain Development. http://www.preventionweb.net/files/9298_flashfloodriskmanagement3.pdf. 2008.
- Smith, K. and Petley, D.N.: Environmental Hazards: Assessing Risk and Reducing Disaster. *Environmental Hazards: Assessing Risk and Reducing Disaster*. <https://doi.org/10.4324/9780203884805>. 2009.
- Sopiwati, N. d Hatuti.: The Role of Women in the Management of Flood Disasters in Bima District, Nusa Tenggara Barat, IOP Conference Series: Earth and Environmental Science, 271 (1), 0–8. [https://doi.org/10.1088/1755-1315/271/1/012030](https://doi.org/10.1088/1755-525). 2019.
- Sukrizal., Fatimah, E., and Nizamuddin.: Analysis of Landslide Hazards Area Using Geographic Information System in Gayo Lues District, *International Journal of Multicultural and Multireligious Understanding*, 6 (3): 193. <https://doi.org/10.18415/ijmmu.v6i3.807>. 2019.
- Syafwina. 2014.: Recognizing Indigenous Knowledge for Disaster Management: Smong, Early Warning System from 530 Simeulue Island, Aceh, *Procedia Environmental Sciences*, 20,573–82. <https://doi.org/10.1016/j.proenv.2014.03.070>. 2014.
- Syahputra, H.: Indigenous Knowledge Representation in Mitigation Process: A Study of Communities' Understandings of Natural Disasters in Aceh Province, Indonesia, *Collection and Curation*, 38 (4): 94–102. <https://doi.org/10.1108/CC-11-2017-0046>. 2019.
- 535 Syuryansyah, and Habibi, F.: The Role of Local Wisdom in Disaster Mitigation: A Systematic Literature Review (SLR) Approach, *International Journal of Disaster Management*, 6 (3), 327–44. <https://doi.org/10.24815/ijdm.v6i3.34734>. 2024.
- Tamura, J.: Between Tradition and Modernity : The Sociospatial Dynamics of Japanese Residential Architecture from Pre-War to Present, *Architecture*, 4,802–19. 2024.
- 540 Taufik, M., Torfs, P.J.J.F., Uijlenhoet, R., Jones, P.D., Murdiyarso, D. and Van Lanen, H.: Amplification of Wildfire Area Burnt by Hydrological Drought in the Humid Tropics, *Nature Climate Change*, 7 (6), 428–31. <https://doi.org/10.1038/nclimate3280>. 2017.

- 545 Thapa, P.S., Daimaru, H. and Yanai, S.: Analyzing Vegetation Recovery and Erosion Status after a Large Landslide at Mt. Hakusan, Central Japan, *Ecological Engineering*, 198 (January), 1–8. <https://doi.org/10.1016/j.ecoleng.2023.107144>.
2024.
- 550 Tran, P., Shaw, R., Chantry, G. and Norton, J.: GIS and Local Knowledge in Disaster Management: A Case Study of Flood Risk Mapping in Viet Nam, *Disasters*, 33 (1): 152–69. <https://doi.org/10.1111/j.1467-7717.2008.01067.x>. 2009.
- 555 Trogrić, R.Š., Wright, G.B., Duncan, M.J., Van den Homberg, M.J.C., Adeloye, A.J., Mwale, F.D. and Mwafulirwa, J.: Characterising Local Knowledge across the Flood Risk Management Cycle: A Case Study of Southern Malawi, *Sustainability* (Switzerland), 11 (6). <https://doi.org/10.3390/su11061681>. 2019.
- 560 UNDRR.: Thematic Report on Local, Indigenous and Traditional Knowledge for Disaster Risk Reduction in the Pacific. <https://www.undrr.org/contact-us>. 2023.
- 565 Wahba, M., Essam, R., El-Rawy, M., Al-Arif, N., Abdalla, F. and Elsadek, W.M.: Forecasting of Flash Flood Susceptibility Mapping Using Random Forest Regression Model and Geographic Information Systems, *Heliyon*, 10 (13), e33982. <https://doi.org/10.1016/j.heliyon.2024.e33982>. 2024.
- 570 Wulandari, E., Hidayah, M.F, Arafat, P., Djamaruddin, M. and Muliadi.: Karakteristik Struktur Ruang Permukiman Tradisional Dataran Tinggi Gayo Studi Kasus : Desa Linge , Kecamatan Linge, Kabupaten Aceh Tengah, Arsitekno, 11 (2), 108–20. 2024.
- 575 Yang, Q., Guan, M., Peng, Y. and Chen, H.: Numerical Investigation of Flash Flood Dynamics Due to Cascading Failures of Natural Landslide Dams, *Engineering Geology*, 276 (February), 105765. <https://doi.org/10.1016/j.enggeo.2020.105765>. 2020.
- 580 Zahrah, A., Dewi, C., Putra, R.A., Izziah. and Nichols, J.: The Umah Pitu Ruang Concept: Environmental Adaptation and the Covid-19 Pandemic, *IOP Conference Series: Earth and Environmental Science*, 881 (1). <https://doi.org/10.1088/1755-1315/881/1/012045>. 2021.
- 585 Zain, A., Legono, D., Rahardjo, A. P. and Jayadi, R.: Review on Co-Factors Triggering Flash Flood Occurrences in Indonesian Small Catchments, *IOP Conference Series: Earth and Environmental Science*, 930 (1), 0–9. <https://doi.org/10.1088/1755-1315/930/1/012087>. 2021.
- 590 Zhang, B., Zhang, G., Fang, H., Wu, S. and Li, C.: Risk Assessment of Flash Flood under Climate and Land Use and Land Cover Change in Tianshan Mountains, China., *International Journal of Disaster Risk Reduction*, 115 (December): 1–9. 2024.
- 595 Zhao, X., Li, Z., Zhu, D., Zhu, Q., Robeson, M.D. and Hu, J.: Revegetation Using the Deep Planting of Container Seedlings to Overcome the Limitations Associated with Topsoil Desiccation on Exposed Steep Earthy Road Slopes in the Semi-arid Loess Region of China., *Land Degradation and Development*, 29 (9), 2797–2807. <https://doi.org/10.1002/lde.2988>. 2018.