Supplementary file for "Climate-driven Biogenic Emissions alleviate the impact of man-made emission reduction on O<sub>3</sub> control in Pearl River Delta region, southern China"

Nan WANG<sup>1,2</sup>\*, Song LIU<sup>1</sup>, Jiawei XU<sup>3</sup>, Yanyu WANG<sup>2</sup>, Chun LI<sup>1</sup>, Hua LU<sup>4</sup>\*, Fumo YANG<sup>1</sup>

<sup>1</sup>College of carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P. R. China

<sup>2</sup>State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai 200233, P. R. China

<sup>3</sup>Centre for Geography and Environmental Science, University of Exeter, Penryn, United Kingdom

<sup>4</sup>Chongqing Institute of Meteorological Sciences, Chongqing 401147, P. R. China

\*Correspondence: WANG Nan (<u>nan.wang@scu.edu.cn</u>) and LU Hua (vibgyor0113@163.com)

## **Supporting Information**

Supporting Information includes 5 pages, 1 figures and 3 tables

SI Figures S1-S2, p3

SI Tables S1-S3, p4-p5

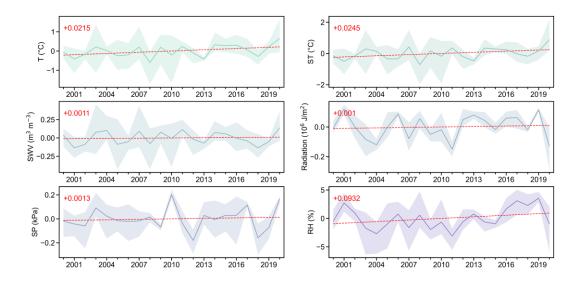



Fig S1 Annual variations of meteorological parameters in the PRD region from 2000-2020

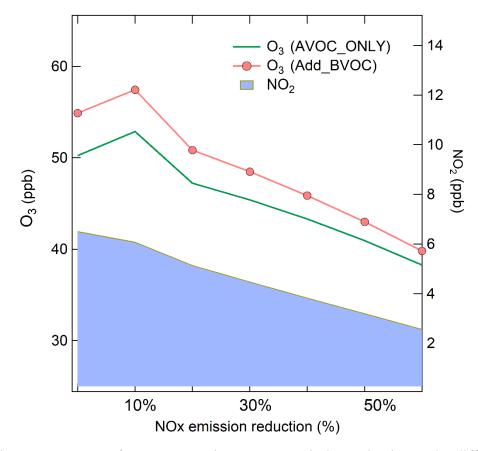



Fig S2 Responses of O<sub>3</sub> concentration to NOx emission reduction under different scenarios.

Table S1: Mapping of MODIS vegetation types to MEGAN-PFT based on climatic standards and climate data

| Original            | Mapped vegetation type              | Climate standard                                                  |  |
|---------------------|-------------------------------------|-------------------------------------------------------------------|--|
| vegetation type     |                                     |                                                                   |  |
| Evergreen           | Needleleaf evergreen temperate tree | Tc > -19°C and GDD > 1200                                         |  |
| Needle leaf Forests |                                     |                                                                   |  |
| Deciduous           | Needleleaf deciduous boreal tree    | -                                                                 |  |
| Needle leaf Forests |                                     |                                                                   |  |
| Evergreen           | Needleleaf evergreen boreal tree    | $Tc \le -19$ °C or $GDD \le 1200$                                 |  |
| Needle leaf Forests |                                     |                                                                   |  |
| Evergreen           | Broadleaf evergreen tropical tree   | Tc > 15.5°C                                                       |  |
| Broadleaf Forests   |                                     |                                                                   |  |
| Evergreen           | Broadleaf evergreen temperate tree  | Te ≤ 15.5°C                                                       |  |
| Broadleaf Forests   |                                     |                                                                   |  |
| Deciduous           | Broadleaf deciduous tropical tree   | Te > 15.5°C                                                       |  |
| Broadleaf Forests   |                                     |                                                                   |  |
| Deciduous           | Broadleaf deciduous temperate tree  | $-15^{\circ}\text{C} < \text{Tc} \leq 15.5^{\circ}\text{C}$ , and |  |
| Broadleaf Forests   |                                     | GDD>1200                                                          |  |
| Deciduous           | Broadleaf deciduous boreal tree     | $Tc \le -15$ °C or $GDD \le 1200$                                 |  |
| Broadleaf Forests   |                                     |                                                                   |  |
| Shrublands          | Broadleaf evergreen temperate shrub | Tc > -19°C , $GDD > 1200$ ,                                       |  |
|                     |                                     | $P_{ann} > 520 \ mmand \ P_{win} > 2/3 \ P_{ann}$                 |  |
| Shrublands          | Broadleaf deciduous temperate shrub | Tc > -19°C , $GDD > 1200$ ,                                       |  |
|                     |                                     | and meeting either one of the                                     |  |
|                     |                                     | following standard                                                |  |
|                     |                                     | (1) $P_{ann} \leq 520 \text{ mm}$                                 |  |
|                     |                                     | $(2) 	 P_{win} \le 2/3 P_{ann}$                                   |  |
| Shrublands          | Broadleaf deciduous boreal shrub    | $Tc \le -19$ °C or $GDD \le 1200$                                 |  |
| Grasslands          | Cold C3 grass                       | GDD < 1000                                                        |  |
| Grasslands          | Cool C3 grass                       | GDD > 1000, and meeting                                           |  |
|                     |                                     | either one of the following standard                              |  |
|                     |                                     | (1) $T_w \le 22$ °C                                               |  |
|                     |                                     | (2) For months with temperatures                                  |  |
|                     |                                     | exceeding 22°C, Pmon ≤ 25                                         |  |
|                     |                                     | mm.                                                               |  |
| Grasslands          | Warm C3 grass                       | GDD $> 1000$ , $T_c > 22$ °C and                                  |  |
|                     | -                                   | $P_{mon} > 25$ mm in the driest month                             |  |
| Croplands           | Other crops                         | -                                                                 |  |

Noting:  $T_c$  is the average temperature of the coldest month of the year,  $T_w$  is the average temperature of the warmest month, GDD represents the growing degree days (temperature above 5°C),  $P_{ann}$  refers to annual precipitation,  $P_{win}$  is winter precipitation, and  $P_{min}$  denotes monthly precipitation.

Table S2 Statistical validation of WRF-CMAQ performance in PRD region

|                      | MB    | RMSE  | IOA  |
|----------------------|-------|-------|------|
| T2 (°C)              | -0.6  | 2.1   | 0.91 |
| RH(%)                | -4.5  | 8.6   | 0.99 |
| Pressure (hPa)       | -15.1 | 28.5  | 0.89 |
| WS10 (m/s)           | 1.6   | 1.8   | 0.97 |
| O <sub>3</sub> (ppb) | 3.5   | 27.05 | 0.78 |

Noting: T2 indicates 2-meter temperature, WS10 indicates 10m wind speed. MB is mean bias, RMSE is root mean square and IOA is index of agreement.

Table S3 Parallel numerical simulation experiments

|                     |            |           |                 | 1               |               |
|---------------------|------------|-----------|-----------------|-----------------|---------------|
| Impact of each      | Parallel   | Land      | Meteorology for | Meteorology for | Anthropogenic |
| process             | numerical  | cover and | BVOC emission   | Chemistry       | emission      |
|                     | experiment | LAI       |                 |                 |               |
| Man-made            | EXP1       | 2020      | 2020            | 2020            | 2012          |
| emission<br>control | EXP2       | 2020      | 2020            | 2020            | 2020          |
| Vegetation-         | EXP1       | 2001      | 2020            | 2020            | 2020          |
| Change BVOC         | EXP2       | 2020      | 2020            | 2020            | 2020          |
| Climate-driven      | EXP1       | 2020      | 2001            | 2020            | 2020          |
| BVOC                | EXP2       | 2020      | 2020            | 2020            | 2020          |
| Climate-driven      | EXP1       | 2020      | 2020            | 2001            | 2020          |
| meteorology         | EXP2       | 2020      | 2020            | 2020            | 2020          |