
Response to Reviewer 2 

Comments: 

This paper focuses on the long-term changes in ozone concentration in the Pearl 

River Delta (PRD) region during 2001–2020, as well as the contribution of climate-

driven biogenic volatile organic compounds (BVOCs) to ozone formation. By using 

the WRF-CMAQ model and the MEGAN model, in combination with machine 

learning analysis, the study reveals the key influence of BVOCs on ozone 

formation potential. Climate-driven BVOC emissions enhance the atmospheric 

oxidation capacity and accelerate ozone formation, thereby weakening or even 

offsetting the effects of anthropogenic emission reductions. These emissions 

contribute 6.2 ppb to ozone production, leading to an unexpected rise in ozone 

levels. This research deepens the understanding the complex interactions between 

natural source emissions and anthropogenic control strategies, and it provides 

practical reference value for the formulation of regional air pollution control 

policies. However, some clarifications and changes are necessary.  

Response to Reviewer 2: We sincerely appreciate your time and effort in reviewing 

this manuscript. Your insightful comments and suggestions have greatly helped us 

improve the quality of our work. We have carefully revised the manuscript with 

revisions made in red color. We believe this revised version is better organized, and our 

point-by-point responses and revisions are detailed below. 

Point-to-point response 

1. The study utilizes a random forest (RF) model to analyze the primary driving 

factors of BVOC emissions and employs SHAP values to explain the 

contributions of various meteorological factors. However, the validation 

process of the RF model is insufficiently detailed, with no mention of cross-

validation methods. It is recommended that the authors supplement the model 

validation. 

Reply: Thanks for the suggestion. We have added a 10-fold cross-validation in this 

manuscript. Please see our revision “To ensure the robustness of the results, we 

performed a 10-fold cross-validation, achieving an R2 (coefficient of determination) of 

0.78 and an MAE (mean absolute error) of 0.73 (Fig S1). These metrics indicate that 



the machine learning model effectively reproduces BVOC emissions.” in the 

manuscript. 

 

Fig S1 Evaluation of Random Forest model using a 10-fold cross-validation 

2. Figure 4 presents the spatial distribution of sensitivity coefficients for ozone 

formation with respect to BVOCs. It is suggested that the authors include a 

percentage difference plot to more intuitively display the influence of BVOC 

emissions on the spatial distribution of sensitivity coefficients. Additionally, 

incorporating comparative charts for different years would better illustrate 

the long-term trends. 

Reply: Thanks for the suggestions. Please note that the O₃ sensitivity coefficient could 

be zero in some grids in both the AVOC_ONLY and Add_BVOC scenarios, making 

percentage calculations undefined in these cases, which means it is impossible to 

provide a percentage difference plot. However, as suggested by the reviewer, we have 

added a difference plot between the AVOC_ONLY scenario and the Add_BVOC 

scenario. Hopefully, the revised Figure 4 could provide a more intuitive representation 

of the influence of BVOC emissions on the spatial distribution of sensitivity 

coefficients. 



 

Figure 4. (A) Spatial distribution of O3 sensitivity coefficients to NOx emissions under 

AVOC_ONLY and Add_BVOC scenario. (B) Difference of O3 sensitivity coefficients to NOx 

emissions between Add_BVOC and AVOC_ONLY scenario. (C) Same as (A) but for sensitivity 

coefficients to VOCs emissions. (D) Same as (B) but for O3 sensitivity coefficients to VOCs 

emissions (E) difference of production rate of NO2 (via chemical pathway of RO2+NO and 

HO2+NO) and net production rate of O3 at 14:00 between Add_BVOC and AVOC_ONLY 

scenario 

We agree that incorporating comparative charts for different years would better 

illustrate long-term trends. However, due to the non-linear nature of these responses, 

the calculations are inherently complex. As you may know, HDDM is a highly 

computationally intensive model, as it computes O₃ sensitivity coefficients—including 

first-order, second-order, and higher-order terms—for each precursor (e.g., NO, NO₂, 

and various VOC species). Running long-term simulations would require extensive 

computational resources, exceeding the capacity of available supercomputing 

infrastructure. Moreover, our primary objective is to highlight the significant impact of 

BVOC emissions on O₃ concentrations. To achieve this, we designed two scenarios: 



AVOC_ONLY (considers only anthropogenic VOCs), and ADD_BVOC (accounts for 

both anthropogenic and biogenic emissions). Both simulations were driven by 2020 

meteorological conditions. While comparative charts across multiple years would 

provide deeper insight into long-term trends, the conclusion regarding the importance 

of BVOCs emissions on O3 formation holds true.  

3. The simulation only compares the years 2012 and 2020. This design may not 

fully capture the dynamic changes in ozone and BVOC emissions from 2001 to 

2020, especially since China implemented several significant emission 

reduction policies between 2012 and 2020, resulting in notable nonlinear 

changes in ozone concentrations and precursor emissions. Studies, for example, 

doi.org/10.1038/s41561-023-01284-2, have suggested that the anthropogenic 

emission reduction in different phases actually led to different impacts on 

ozone.  Did you find the similar results? It will be better to include some 

intermediate years to illustrate the effects. 

Reply: Thanks for the insightful questions. Indeed, previous studies—including the 

paper mentioned by the reviewer and our own publications—have already 

demonstrated that anthropogenic emission reductions at different phases have led to 

varying impacts on O₃. For instance, our earlier study found that emission control 

measures during 2012–2017 (Phase One) resulted in increased O₃ levels across most 

eastern city clusters of China due to NOₓ reductions in a VOC-limited regime. In 

contrast, the reference cited by the reviewer showed that during 2018–2021 (Phase 

Two), further emission reductions helped mitigate O₃ pollution. These contrasting 

effects largely stem from shifts in O₃-NOₓ-VOCs sensitivity, which have been widely 

discussed (Wang et al., 2019; Huang et al., 2021; Wang et al., 2023). Our findings align 

with this pattern, suggesting that nearly a decade of anthropogenic emission control has 

contributed to a decline in summer O₃ concentrations in the PRD. We did not evaluate 

year-to-year O₃ responses to emission reductions, as this topic has been extensively 

studied. To avoid redundancy, our assessment adopts a climatic-scale perspective, 

examining the anthropogenic controlling influences between 2012 (when 

anthropogenic emissions reached the peak during the past decade) and the present (2020, 

almost after a decade of control measures).  



Nonetheless, we have added a discussion on O₃ responses to anthropogenic emissions 

in the manuscript, citing these published studies, “These contrasting effects largely stem 

from shifts in O₃-NOₓ-VOCs sensitivity. Past studies suggested that O₃ levels would 

temporarily increase in the short term following NOₓ emission controls (Wang et al., 

2019; Huang et al., 2021). However, after a long-term (nearly a decade) emission 

reductions, our finding reveals that, when considering only anthropogenic emissions 

(AVOC_ONLY scenario), emission reductions could lead to varying degrees of O₃ 

decline in southern China. This result was consistent with a recent study by Wang et al. 

(2023)” 

Moreover, as our primary focus is on biogenic emissions, evaluating the year-by-year 

impact of anthropogenic emission reductions does not fully align with our research 

objectives. According to our study, we found BVOCs emissions were kept rising during 

the past two decades, therefore, we compared their contribution between 2001 and 2020 

in order to maxima the contribution of BVOCs to O3 (Please be noted that we didn’t 

only compare the year of 2012 and 2020). Actually, the O3 formation algorithm we 

proposed could maximally account for the influences of anthropogenic and biogenic 

sources to highlight their respective contributions in a climatic scale. (see our revision 

in lines 243-244) 

4. The authors employed WRF 3.9 and CMAQ 5.3 for the simulations. However, 

the MCIP module in CMAQ versions 5.2+ does not directly support handling 

data outputs from WRF versions below 4.0, which may result in data 

incompatibility or preprocessing errors. Was the MCIP module modified, or 

was an intermediate data conversion tool used? It should be clearly stated in 

the manuscript. 

Reply: Thanks for the very technical question. Yes, the MCIP module in CMAQ 5.3 

does not directly support data outputs from WRF versions below 4.0. To resolve this 

issue, we used an earlier version of MCIP (v5.2) to process meteorological data from 

WRF 3.9. Notably, CMAQ 5.3 remains compatible with MCIP outputs from lower 

versions (like MCIP v5.2). 
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