Comments:

This paper focuses on the long-term changes in ozone concentration in the Pearl
River Delta (PRD) region during 2001-2020, as well as the contribution of climate-
driven biogenic volatile organic compounds (BVOC:s) to ozone formation. By using
the WRF-CMAQ model and the MEGAN model, in combination with machine
learning analysis, the study reveals the key influence of BVOCs on ozone
formation potential. Climate-driven BVOC emissions enhance the atmospheric
oxidation capacity and accelerate ozone formation, thereby weakening or even
offsetting the effects of anthropogenic emission reductions. These emissions
contribute 6.2 ppb to ozone production, leading to an unexpected rise in ozone
levels. This research deepens the understanding the complex interactions between
natural source emissions and anthropogenic control strategies, and it provides
practical reference value for the formulation of regional air pollution control
policies. However, some clarifications and changes are necessary.

We sincerely appreciate your time and effort in reviewing
this manuscript. Your insightful comments and suggestions have greatly helped us
improve the quality of our work. We have carefully revised the manuscript with
revisions made in red color. We believe this revised version is better organized, and our

point-by-point responses and revisions are detailed below.

Point-to-point response

1. The study utilizes a random forest (RF) model to analyze the primary driving
factors of BVOC emissions and employs SHAP values to explain the
contributions of various meteorological factors. However, the validation
process of the RF model is insufficiently detailed, with no mention of cross-
validation methods. It is recommended that the authors supplement the model
validation.

Reply: Thanks for the suggestion. We have added a 10-fold cross-validation in this

manuscript. Please see our revision “To ensure the robustness of the results, we

performed a 10-fold cross-validation, achieving an R? (coefficient of determination) of

0.78 and an MAE (mean absolute error) of 0.73 (Fig S1). These metrics indicate that



the machine learning model effectively reproduces BVOC emissions.” in the

manuscript.
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Fig S1 Evaluation of Random Forest model using a 10-fold cross-validation
2. Figure 4 presents the spatial distribution of sensitivity coefficients for ozone
formation with respect to BVOC:s. It is suggested that the authors include a
percentage difference plot to more intuitively display the influence of BVOC
emissions on the spatial distribution of sensitivity coefficients. Additionally,
incorporating comparative charts for different years would better illustrate
the long-term trends.
Reply: Thanks for the suggestions. Please note that the Os sensitivity coefficient could
be zero in some grids in both the AVOC ONLY and Add BVOC scenarios, making
percentage calculations undefined in these cases, which means it is impossible to
provide a percentage difference plot. However, as suggested by the reviewer, we have
added a difference plot between the AVOC ONLY scenario and the Add BVOC
scenario. Hopefully, the revised Figure 4 could provide a more intuitive representation
of the influence of BVOC emissions on the spatial distribution of sensitivity

coefficients.
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Figure 4. (A) Spatial distribution of O3 sensitivity coefficients to NOy emissions under
AVOC_ONLY and Add_BVOC scenario. (B) Difference of O3 sensitivity coefficients to NOx
emissions between Add_BVOC and AVOC_ONLY scenario. (C) Same as (A) but for sensitivity
coefficients to VOCs emissions. (D) Same as (B) but for O3 sensitivity coefficients to VOCs
emissions (E) difference of production rate of NO» (via chemical pathway of RO»+NO and
HO>+NO) and net production rate of O3 at 14:00 between Add_BVOC and AVOC_ONLY
scenario

We agree that incorporating comparative charts for different years would better
illustrate long-term trends. However, due to the non-linear nature of these responses,
the calculations are inherently complex. As you may know, HDDM is a highly
computationally intensive model, as it computes Os sensitivity coefficients—including
first-order, second-order, and higher-order terms—for each precursor (e.g., NO, NOx,
and various VOC species). Running long-term simulations would require extensive
computational resources, exceeding the capacity of available supercomputing
infrastructure. Moreover, our primary objective is to highlight the significant impact of

BVOC emissions on Os concentrations. To achieve this, we designed two scenarios:



AVOC_ONLY (considers only anthropogenic VOCs), and ADD BVOC (accounts for

both anthropogenic and biogenic emissions). Both simulations were driven by 2020

meteorological conditions. While comparative charts across multiple years would

provide deeper insight into long-term trends, the conclusion regarding the importance
of BVOCs emissions on O3 formation holds true.

3. The simulation only compares the years 2012 and 2020. This design may not
fully capture the dynamic changes in ozone and BYOC emissions from 2001 to
2020, especially since China implemented several significant emission
reduction policies between 2012 and 2020, resulting in notable nonlinear
changes in ozone concentrations and precursor emissions. Studies, for example,
doi.org/10.1038/s41561-023-01284-2, have suggested that the anthropogenic
emission reduction in different phases actually led to different impacts on
ozone. Did you find the similar results? It will be better to include some
intermediate years to illustrate the effects.

Reply: Thanks for the insightful questions. Indeed, previous studies—including the

paper mentioned by the reviewer and our own publications—have already

demonstrated that anthropogenic emission reductions at different phases have led to
varying impacts on Os. For instance, our earlier study found that emission control
measures during 2012-2017 (Phase One) resulted in increased O levels across most
eastern city clusters of China due to NOy reductions in a VOC-limited regime. In
contrast, the reference cited by the reviewer showed that during 20182021 (Phase
Two), further emission reductions helped mitigate Os pollution. These contrasting
effects largely stem from shifts in Os-NO,-VOCs sensitivity, which have been widely
discussed (Wang et al., 2019; Huang et al., 2021; Wang et al., 2023). Our findings align
with this pattern, suggesting that nearly a decade of anthropogenic emission control has
contributed to a decline in summer Os concentrations in the PRD. We did not evaluate
year-to-year Os responses to emission reductions, as this topic has been extensively
studied. To avoid redundancy, our assessment adopts a climatic-scale perspective,
examining the anthropogenic controlling influences between 2012 (when
anthropogenic emissions reached the peak during the past decade) and the present (2020,

almost after a decade of control measures).



Nonetheless, we have added a discussion on Os responses to anthropogenic emissions
in the manuscript, citing these published studies, “These contrasting effects largely stem
from shifts in Os-NOx-VOC:s sensitivity. Past studies suggested that Os levels would
temporarily increase in the short term following NOy emission controls (Wang et al.,
2019; Huang et al., 2021). However, after a long-term (nearly a decade) emission
reductions, our finding reveals that, when considering only anthropogenic emissions
(AVOC_ONLY scenario), emission reductions could lead to varying degrees of Os
decline in southern China. This result was consistent with a recent study by Wang et al.
(2023)”

Moreover, as our primary focus is on biogenic emissions, evaluating the year-by-year

impact of anthropogenic emission reductions does not fully align with our research

objectives. According to our study, we found BVOCs emissions were kept rising during

the past two decades, therefore, we compared their contribution between 2001 and 2020

in order to maxima the contribution of BVOCs to O3 (Please be noted that we didn’t

only compare the year of 2012 and 2020). Actually, the O3 formation algorithm we
proposed could maximally account for the influences of anthropogenic and biogenic
sources to highlight their respective contributions in a climatic scale. (see our revision

in lines 243-244)

4. The authors employed WRF 3.9 and CMAQ 5.3 for the simulations. However,
the MCIP module in CMAQ versions 5.2+ does not directly support handling
data outputs from WRF versions below 4.0, which may result in data
incompatibility or preprocessing errors. Was the MCIP module modified, or
was an intermediate data conversion tool used? It should be clearly stated in
the manuscript.

Reply: Thanks for the very technical question. Yes, the MCIP module in CMAQ 5.3

does not directly support data outputs from WRF versions below 4.0. To resolve this

issue, we used an earlier version of MCIP (v5.2) to process meteorological data from

WREF 3.9. Notably, CMAQ 5.3 remains compatible with MCIP outputs from lower

versions (like MCIP v5.2).
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