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Abstract. Parameterization in climate models often involves parameters that are 17 

poorly constrained by observations or theoretical understanding alone. Manual tuning 18 

by experts can be time-consuming, subjective, and prone to underestimating 19 

uncertainties. Automated tuning methods offer a promising alternative, enabling faster, 20 

objective improvements in model performance and better uncertainty quantification. 21 

This study presents an automated parameter-tuning framework that employs a 22 

derivative-free optimization solver (DFO-LS) to simultaneously perturb and tune 23 

multiple convection-related and microphysics parameters. The framework explicitly 24 

accounts for observational and initial condition uncertainties (internal variability) to 25 

calibrate a 1-degree resolution atmospheric model (GAMIL3). To evaluate its 26 

performance, two main tuning experiments were conducted, targeting 10 and 20 27 

parameters, respectively. In addition, three sensitivity experiments tested the effect of 28 

varying initial parameter values in the 10-parameter case. Both tuning experiments 29 

achieved a rapid reduction in the cost function. The 10-parameter optimization 30 

improved model accuracy for 24 of 34 key variables, while expanding to 20 parameters 31 
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yielded improvement for 25 variables, though some structural model biases appeared. 32 

Ten-year AMIP simulations validated the robustness and stability of the tuning results, 33 

showing that the improvements persisted over extended simulations. Additionally, 34 

evaluations of the coupled model with optimized parameters showed, compared to the 35 

default parameters settings, reduced climate drift, a more stable climate system, and 36 

more realistic sea surface temperatures, despite a residual global energy imbalance of 37 

2.0 W/m² (about 1.4 W/m² arising from the intrinsic imbalance of the atmospheric 38 

component) and some remaining regional biases. The sensitivity experiments further 39 

underscored the efficiency of the tuning algorithm and highlight the importance of 40 

expert judgment in selecting initial parameter values. This tuning framework is broadly 41 

applicable to other general circulation models (GCMs), supporting comprehensive 42 

parameter tuning and advancing model development. 43 

1 Introduction 44 

Assessing current and future climate change risks to natural and human systems 45 

heavily relies on numerical simulations using advanced climate or Earth System 46 

Models (ESMs). In recent decades, significant progress has been made in advancing 47 

the major components of the Earth system—such as the atmosphere, ocean, land, and 48 

human systems (Prinn 2012; Bogenschutz et al., 2018; Fox-Kemper et al., 2019; 49 

Blockley et al., 2020; Blyth et al., 2021)—as well as in developing the coupling 50 

techniques required to form fully integrated ESMs (Valcke et al., 2012; Smith et al., 51 

2021; Liu et al., 2023). However, many unresolved issues remain in the development 52 

of ESMs, including but not limited to simulation bias in air-sea interactions (Ham et al., 53 

2013; Bellucci et al., 2021; Wei et al., 2021; Meng et al., 2022), the double Intertropical 54 

Convergence Zone (ITCZ) problem (Tian et al., 2020), and the coupling of 55 

biogeochemical cycles such as the carbon cycle or nutrient cycles with the physical 56 

climate system (Erickson et al., 2008). The complexity of the Earth's climate system 57 

and the inherent uncertainties in climate models present significant challenges in 58 

achieving reliable projections. One of the key sources of uncertainty arises from the 59 

representation of unresolved physical processes through parameterizations (Gentine et 60 
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al., 2021; Jebeile et al., 2023).  61 

Parameterizations are crucial when accounting for processes that occur at 62 

unresolved scales or are missing from the model formulation. Parameterizations 63 

provide simplified representations of sub-grid processes like cloud convection and 64 

turbulence, which cannot be explicitly resolved at scales smaller than the model's grid 65 

resolution. For example, processes such as atmospheric radiative transfer and cloud 66 

microphysics are too complex to be represented in full detail within ESMs, so 67 

parameterizations offer simplified approximations to capture their essential effects. 68 

Parameterization often involves parameters whose values are frequently not well-69 

constrained by either observations or theory alone (Ludovic, 2021), which can directly 70 

affect the performance of the model simulation. Consequently, parameter tuning, the 71 

process of estimating these uncertain parameters to minimize the discrepancy between 72 

specific observations and model results, becomes a critical step in climate model 73 

development (Hourdin et al., 2017).  74 

Appropriate parameter tuning enhances the accuracy and skill of climate models 75 

by optimizing parameter values to better match observations or high-resolution 76 

simulations used as calibration targets (Mauritsen et al., 2012; Bhouri et al., 2023). For 77 

example, parameter tuning allows adjusting the values of parameters in 78 

parameterizations that approximate these unresolved processes like cloud convection, 79 

turbulence, etc (Golaz et al., 2013; Zou et al., 2014; Mignot et al., 2021; Xie et al., 80 

2023). By tuning parameter values during the model calibration process, modelers can 81 

partly compensate for known structural errors, deficiencies, or missing processes in the 82 

underlying model formulation itself (Williamson et al., 2015a; Hourdin et al., 2017; 83 

Tett et al., 2017; Schneider et al., 2024). What’s more, exploring the range of plausible 84 

parameter values through tuning allows quantifying parametric uncertainties and their 85 

impacts on model outputs and projections (Jackson et al., 2004; Neelin et al, 2010; 86 

Williamson et al., 2013; Tett et al., 2013; Qian et al., 2016). 87 

Broadly speaking, parameter tuning methods aim to quickly optimize a cost 88 

function that measures the distance between model simulations and a small collection 89 

of observations. Applications of such methods in climate science include studies by 90 
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Bellprat et al. (2012), Tett et al. (2013), Yang et al. (2013), Zou et al. (2014), Zhang et 91 

al. (2015b), and Tett et al. (2017). For instance, in the experiments conducted by Tett et 92 

al. (2017) with an atmospheric GCM, 7 and 14 parameters related to the convection, 93 

cloud microphysics, and boundary-layer dynamics (Yamazaki et al., 2013) were 94 

estimated using variants of the Gauss-Newton algorithm (Tett et al., 2013) to minimize 95 

the differences between simulated and observed large-scale, multi-year averaged net 96 

radiative fluxes. These optimized parameters were then applied in a coupled GCM. 97 

Zhang et al. (2015b) employed an improved downhill simplex method to optimize 98 

seven parameters selected from the convection and cloud-fraction parameterization 99 

scheme, and reported successful improvement of an atmospheric model’s performance. 100 

This improved method overcomes the limitations of the traditional downhill simplex 101 

method and offers better computational efficiency compared to evolutionary 102 

optimization algorithms.  103 

Traditionally, uncertain parameters have been tuned manually through extensive 104 

comparisons of model simulations with available observations. This approach is 105 

subjective, labor-intensive, computationally expensive, and can lead to under-106 

exploration of the parameter space, potentially underestimating uncertainties and 107 

leaving model biases unresolved (Allen et al., 2000; Hakkarainen et al., 2012; Hourdin 108 

et al. 2017; Hourdin et al., 2023). By contrast, automatic and objective parameter 109 

calibration techniques have advanced rapidly due to their efficiency, effectiveness, and 110 

wider applicability (Chen et al., 1999; Elkinton et al., 2008; Bardenet et al., 2013; 111 

Zhang et al., 2015b). Bardenet et al. (2013) combined surrogate-based ranking and 112 

optimization techniques for surrogate-based collaborative tuning, proposing a generic 113 

method to incorporate knowledge from previous experiments. This approach can 114 

effectively improve upon manual hyperparameter tuning. Zhang et al. (2015b) proposed 115 

a "three-step" methodology for parameters tuning. Before the final step of applying the 116 

downhill simplex method, they introduced two preliminary steps: determining the 117 

model's sensitivity to the parameters and selecting the optimum initial values for those 118 

sensitive parameters. By following this process, they were able to automatically and 119 

effectively obtain the optimal combination of key parameters in cloud and convective 120 
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parameterizations.  121 

However, previous studies were either semi-automatic or lacked sufficient 122 

observational constraints, such as the net flux at the top of the atmosphere (TOA). 123 

Moreover, earlier objective tuning methods that relied on cost functions often 124 

overlooked key sources of uncertainty, including observational uncertainty and the 125 

internal variability of variables. To address these limitations, we developed a new 126 

objective and automatic parameter tuning framework that is more efficient for tuning 127 

parameters in GCMs. Compared to previous automatic tuning efforts, this system 128 

operates entirely within a Python environment and includes several new optimization 129 

algorithms, including Gauss-Newton (Burke et al., 1995; Kim et al., 2008; Tett et al., 130 

2017), the Python Surrogate Optimization Toolbox (pySOT; Regis and Shoemaker, 131 

2012), and the Derivative-Free Optimizer for Least-Squares (DFO-LS; Cartis et al., 132 

2019; Hough et al., 2022). The DFO-LS package is designed to find local solutions to 133 

nonlinear least-squares minimization problems without requiring derivatives of the 134 

objective function, and has been numerically tested to be particularly effective in 135 

finding global optimization solutions. Our framework supports multiple observations 136 

and constraints as optimization targets. Additionally, it considers the internal variability 137 

of GCMs and integrates sensitivity analysis with the optimization process, making it a 138 

more flexible and efficient model tuning system overall. Moreover, systematically and 139 

simultaneously perturbing multiple parameters addresses the concern that optimizing a 140 

single objective may lead to suboptimal solutions for other objectives and might 141 

overlook the global optimum for the overall tuning metric (Qian et al., 2015; 142 

Williamson et al., 2015a). We have designed and implemented an automatic workflow 143 

to streamline the calibration process, enhancing efficiency. This method and workflow 144 

are readily applicable to GCMs, facilitating accelerated model development processes. 145 

Using this framework, we tune the latest released version 3 of the Grid-Point 146 

Atmospheric Model developed at the State Key Laboratory of Numerical Modeling for 147 

Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) in the Institute of 148 

Atmospheric Physics (IAP), named GAMIL3 (Li et al., 2020a). This study 149 

demonstrates how the tuning framework can automatically and effectively optimize 150 
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model parameters to achieve better performance against observations. 151 

Our objectives are as follows: 152 

1. To assess the performance of the tuning algorithm in the GAMIL3 atmospheric 153 

model; 154 

2. To investigate the impact of various parameters and initial values on the tuning 155 

results; 156 

3. To evaluate the performance of the optimized parameters in decadal simulations 157 

and long-term coupled model runs. 158 

The paper is organized as follows: Section 2 introduces the proposed automatic 159 

framework, the tuning model and experiments, observational data and metrics, and the 160 

tuning algorithm. Section 3 presents the evaluation of the tuning results in short- to 161 

long-tern simulations, including coupled model runs. This is followed by a discussion 162 

in Section 4 and a conclusion in Section 5. 163 

2 Methods 164 

2.1 The automatic tuning framework 165 

Here we present the automatic tuning framework (Fig. 1) we have developed, 166 

which includes, but is not limited to, functions such as model compiling, (re)submitting, 167 

parameter tuning, results evaluation, and diagnostics. Specifically, the framework 168 

comprises three main processing modules that collectively control the entire system: 169 

the model preprocessing module (the lower left panel in Fig. 1), the model optimizing 170 

module (the middle panel in Fig. 1), and the model post-processing module (the right 171 

panel in Fig. 1).  172 

The preprocessing module prepares various input data for the optimization process, 173 

with particular focus on model internal variations and observational uncertainties (Tett 174 

et al., 2017), which will be further discussed in a later section. The optimizing module, 175 

which uses the DFO-LS optimization method, is the core component of this tuning 176 

system and is primarily responsible for updating model parameters and running 177 

simulations. In the initialization of DFO-LS, we use the default parameter settings 178 

provided by the DFOLS software package, including the specification of the initial trust 179 
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region, which is an algorithm parameter that governs the size of the local search area. 180 

Any constraints on the simulated variables are also specified at this stage. The initial 181 

trust region radius (rhobeg) is set to 0.18 (normalized to parameter ranges) based on 182 

sensitivity tests. This choice ensures that the first iterations explore locally without 183 

overstepping physical plausibility, balancing efficient convergence and sufficient 184 

sampling of the parameter space (Cartis et al., 2019). In addition, we apply a constraint 185 

to a simulated variable using a parameter μ, which determines the weighting of the 186 

constraint term (1/(2μ); see Supplementary S1). In this study, following Tett et al (2017, 187 

2022), this constraint is applied to the global average TOA net flux. To tightly constrain 188 

this variable, μ is set to 0.18 which corresponds to a total uncertainty of 0.15 W/m² 189 

somewhat higher than the observational error of 0.1 W/m². 190 

The optimization process begins with a parameter perturbation phase, in which 191 

K+1 simulations are conducted: one reference simulation using the initial parameter set, 192 

and K additional simulations—each perturbing one of the K tunable parameters 193 

individually—relative to the reference. These initial simulations establish baseline 194 

parameter sensitivities and provide finite-difference gradient estimates for the DFO-LS 195 

algorithm. The subsequent optimization phase then iteratively modifies parameter 196 

values through trust-region managed steps, where each iteration evaluates candidate 197 

points, updates local quadratic models of the cost function, and adjusts parameters 198 

based on actual versus predicted improvement ratios until convergence criteria are 199 

satisfied. In addition to the initial K+1 simulation runs required to initialize the DFOLS 200 

algorithm for a K-parameter case, each iteration typically involves 1-3 additional model 201 

simulations, depending on the trust-region management strategy and the progress of the 202 

algorithm. The algorithm normally performs one simulation per iteration to evaluate a 203 

new candidate parameter set, but may conduct 3 simulations when the local quadratic 204 

model requires improvement or when the actual-to-predicted improvement ratio falls 205 

below zero (Cartis et al., 2019). Total evaluations include the initial runs plus all 206 

subsequent iterations evaluations. The post-processing module receives the output from 207 

the optimization module, including the optimized parameters, the sensitivity of 208 

variables to the parameters, and the cost function values from different iterations. It 209 
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then help us to conducts a comprehensive diagnostic analysis—examining spatial 210 

patterns, process-level responses, parameter sensitivities, and multi-variable metrics—211 

to assess the physical credibility of each solution. This structured yet flexible workflow 212 

shifts the modeller’s role from manual trial-and-error to the management and 213 

interpretation of automated explorations, thereby enhancing both the traceability and 214 

objectivity of the modeling process. 215 

2.2 Observations and parameter selection 216 

To set up our optimization problem, we focus on the large-scale performance of the 217 

model and consider the differences between land and ocean, particularly in the tropical 218 

region. This region is characterized by distinct air-sea interactions, such as those over 219 

the Western Pacific warm pool (Wyrtki, 1975), the Eastern Pacific equatorial cold 220 

tongue region (Philander, 1983), and the Indian Ocean Dipole region (Saji et al., 1999). 221 

Therefore, following the methods outlined by Tett et al. (2017), we separate the analysis 222 

into four regions based on latitude (θ, defined as positive northward from the equator): 223 

the northern hemispheric extra-tropical region (θ > 30° N), the tropical region (30° S ≥ 224 

θ ≤ 30° N), subdivided into tropical land and ocean, and the southern hemispheric extra-225 

tropical region (θ < 30° S). 226 

The observational variables used in this study are detailed in Table 1. While most 227 

variables are divided into four regions—labeled _TROPICSLAND (tropical land: 228 

30° S–30° N over land), _TROPICSOCEAN (tropical ocean: 30° S–30° N over ocean), 229 

_NHX (Northern Hemispheric extra-tropics: >30° N), and _SHX (Southern 230 

Hemispheric extra-tropics: <−30° S)—each with its own target and uncertainty, 231 

NETFLUX is averaged over all regions and serves as a global constraint. For the MSLP 232 

variable, regional mean values are expressed as anomalies relative to the global mean 233 

(delta global mean, denoted by the suffix "_DGM"), obtained by subtracting the global 234 

average from each regional mean. Specifically, the target values for variables T500, 235 

RH500, and MSLP are derived from ECMWF Reanalysis v5 data (ERA5; Hersbach et 236 

al., 2020); the radiation variables (OLR, OLRC, RSR, RSRC, and NETFLUX) are 237 

sourced from Clouds and the Earth's Radiant Energy System (CERES; Wielicki et al., 238 
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1998); and the Land Air Temperature (LAT) and Land precipitation (Lprecip) data 239 

come from the Climatic Research Unit (CRU; Jones et al., 2012; Harris et al., 2017). 240 

The uncertainties of the variables are derived from the absolute error among different 241 

data sources, which will be discussed further in section 2.4. All targets and uncertainties 242 

of the variables in Table 1 are for the year 2011, primarily used for model optimization.  243 

The atmospheric model parameters we calibrated are detailed in Table 2, 244 

encompassing selections from deep convection, shallow convection, microphysics, 245 

cloud fraction, and turbulence schemes. The selection of these parameters, along with 246 

their default values and plausible ranges, is based on expert judgment as recommended 247 

by the GAMIL3 developers and corresponds to the model configuration used in CMIP6 248 

experiments. This approach prevents the optimization from exploring unrealistic 249 

regions of parameter space. While the plausible ranges are defined as the maximum 250 

physically meaningful bounds (e.g., rhcrit: 0.65–0.95), the constraint on the global 251 

average TOA net flux ensures it closely matches the observations after tuning. For 252 

visualization, all parameters are normalized based on their plausible ranges, with 0 253 

representing the minimum value of the range and 1 representing the maximum one. 254 

Then two experiments are conducted to assess the impacts of varying the number of 255 

parameters on the optimized results: 256 

1. We selected the first 10 parameters (listed in the first column of Table 2) from 257 

deep convection, shallow convection, microphysics, and cloud fraction 258 

schemes. These parameters are identified as the most sensitive to the model's 259 

performance based on Xie et al. (2023), and are therefore chosen for tuning. 260 

This case is denoted as the “10-param.” case in the captions of all relevant 261 

figures. 262 

2. An additional set of the next 10 parameters (also listed in the first column of 263 

Table 2), related to microphysics and turbulence schemes, is included alongside 264 

the initial 10 parameters. This approach aims to explore the impact of varying 265 

the number of tuning parameters on the optimization results. This case is 266 

denoted as the “20-param.” case in the captions of all relevant figures. 267 
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2.3 Model description and experiments 268 

In this study, we employ GAMIL3, which adopts a finite difference dynamical core 269 

and a weighted equal-area longitude-latitude grid to maintain numerical stability near 270 

the polars without the need for filtering or smoothing (Wang et al., 2004; Li et al., 271 

2020a). GAMIL3, with an approximate 2° (180×80) horizontal resolution, serves as the 272 

atmospheric component of the Flexible Global Ocean–Atmosphere–Land System 273 

Model Grid-point Version 3 (FGOALS-g3), which participated in CMIP6 (Li et al., 274 

2020b). For this study, the model’s horizontal resolution is refined to about 1° (360 × 275 

160), with 26 vertical σ-layers extending to the model top at 2.19 hPa. To ensure 276 

numerical stability at the higher resolution, the dynamical core time step is reduced 277 

from 120s to 60s, while the physical parameterizations and their time step (600s) remain 278 

unchanged. As in many other climate models (e.g., Santos et al., 2021; Wan et al., 2021; 279 

Schneider et al., 2024), the performance of GAMIL3 is sensitive to the resolution, the 280 

model time step, and the coupling frequency between dynamics and physics. Therefore, 281 

it is necessary to re-tune the uncertain parameters for the new 1° configuration. 282 

During optimization, each model simulation is performed for 15 months, forced by 283 

observed sea-surface temperature (SST) and sea ice, in an Atmospheric Model 284 

Intercomparison Project (AMIP) experiment (Eyring et al., 2016). The period runs from 285 

1 October 2010 to 31 December 2011 (hereafter referred to as AMIP2011), with the 286 

first 3 months excluded for model spin-up, leaving 12 months for analysis against 287 

observations. This method is commonly used for model uncertainty quantification and 288 

parameter tuning (Yang et al., 2013; Xie et al., 2023; 2025). After optimization, the 289 

parameter set that best fits the observations is referred to as the optimized parameter 290 

set. We use this to conduct a 10-year AMIP simulation from January 1, 2005, to 291 

December 31, 2014 (hereafter referred to as AMIP2005-2014), enabling comparison 292 

with observed climate data.  293 

To assess whether tuning atmospheric parameters results in a reasonable coupled 294 

model, the GAMIL3 atmospheric model is coupled with land (CAS-LSM; Xie et al., 295 

2020), ocean (LICOM3; Yu et al., 2018), and sea ice (CICE4) models, consistent with 296 
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the configuration used in FGOALS-g3 (Li et al., 2020b), which participated in CMIP6. 297 

A 30-year piControl simulation (Eyring et al., 2016) was then conducted to assess the 298 

model’s long-term energy balance and stability under constant pre-industrial forcings. 299 

This experiment tests whether parameters performing well under observed forcings in 300 

AMIP simulations—such as prescribed SSTs, sea ice, and greenhouse gases—can also 301 

improve coupled performance. In AMIP runs, the TOA energy imbalance mainly results 302 

from greenhouse gases forcing, which traps outgoing longwave radiation. Under 303 

piControl conditions, where pre-industrial greenhouse gas concentrations are fixed, this 304 

radiative effect is absent; thus, if the AMIP-tuned parameters are physically consistent, 305 

the coupled model should yield a near-zero TOA net flux. The initial condition for the 306 

atmospheric model was the climatological mean state from atmospheric reanalysis 307 

(default configuration), while the ocean model was initialized from the equilibrated 308 

state of an OMIP simulation (a long ocean-only run forced by atmospheric reanalysis). 309 

The land model was not provided with a prescribed initial condition; instead, its state 310 

was generated dynamically during the coupled integration. To minimize the influence 311 

of potential initialization drift, the first 15 years were treated as a spin-up period and 312 

excluded from the analysis. Lastly, three additional sensitivity experiments, varying the 313 

initial values of the first 10 parameters mentioned above, are carried out to examine the 314 

impact of initial parameter selection on the optimization results. These three cases are 315 

referred to as the “random1”, “random2”, and “random3” cases in the captions of all 316 

relevant figures. All experiments conducted in this study are illustrated in Fig. 2 317 

2.4 Covariance matrices for observations and model 318 

Two covariance matrices need to be prepared before the optimization process 319 

begins. The first matrix assesses the internal variability of the model system (𝐶𝑖). To 320 

derive this, perturbed initial condition experiments are conducted. In this study, these 321 

experiments involve running a total of 20 simulations, each with the three-dimensional 322 

atmospheric temperature initial state perturbed by increments of +1e-20, while all other 323 

settings remain identical to those used in the optimization. This design ensures that 324 

simulated observations within the range of internal variability receive reduced penalties, 325 
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guiding the optimization to correct systematic biases while avoiding overfitting to 326 

random climatic fluctuations. The second matrix estimates the uncertainty of 327 

observations (𝐶0), which set to be diagonal, assuming no correlation between different 328 

observations, and its values are derived from absolute difference between the two 329 

available datasets for each variable after regridding and area-weighting. Specifically, 330 

data from ERA5 and National Center for Environmental Predictions/Department of 331 

Energy (DOE) 2 Reanalysis dataset (NCEP2; Kanamitsu et al., 2002) are used to derive 332 

the observation error for variable T500, RH500, and MSLP. Precipitation data from 333 

CRU and Global Precipitation Climatology Project (GPCP; Adler et al., 2003) are used 334 

for Land Precipitation (Lprecip). Data from CRU and Berkeley Earth Surface 335 

Temperature (BEST; Muller et al., 2013) are used for LAT. For the four radiation 336 

variables (OLR, OLRC, RSR, and RSRC), uncertainties are based on the estimates from 337 

Loeb et al. (2018). Both matrices contribute to the total uncertainty in the variables 338 

relative to the target observations. The total covariance matrix 𝐶 is composed of the 339 

two uncertainties introduced above, calculated as: 340 

                           𝐶 = 𝐶0 + 2𝐶𝑖                            (1) 341 

Consistent with Tett et al., (2022), we account for internal variability in both model 342 

simulations and observations by doubling the model-based estimate, reflecting a 343 

conservative assumption of comparable noise contributions. During optimization, all 344 

observation values are standardized using the square root of the diagonal elements of 345 

matrix 𝐶. 346 

2.5 Evaluation methods 347 

 The cost function F(p) is used to measure the difference between the simulated 348 

values S and the target observations O based on the parameters p. The cost function is 349 

given by: 350 

                          𝐹2(𝑝) =
1

𝑁
(𝑆 − 𝑂)𝑇𝐶−1(𝑆 − 𝑂)              (2), 351 

 where S is the simulated values; O is the target (observed) values; N is the number 352 

of observations; (𝑆 − 𝑂)𝑇 is the transpose of the difference between simulated and 353 

observed values; 𝐶−1 is the inverse of the covariance matrix 𝐶 discussed above. This 354 
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cost function quantifies how far the simulation is from the observations, considering 355 

the uncertainty (through C) and correlation between different observations. The cost 356 

function can be modified to include additional constraints, such as the net radiation flux 357 

at the TOA, along with global averages for surface air temperature and precipitation. 358 

 The Jacobian matrix, J, defined as the partial derivatives of the simulated outputs 359 

with respect to the parameters being optimized, is used to assess the influence of tuning 360 

parameters on the simulated variables. For each simulated model output 𝑆𝑖  and 361 

parameter 𝑝𝑗, the Jacobian element 𝐽𝑖𝑗 is given by: 362 

                          𝐽𝑖𝑗 =
𝜕𝑆𝑖(𝑝)

𝜕𝑝𝑗
                              (3) 363 

This measures how much a small change in the parameter 𝑝𝑗  will affect the 364 

simulated model outputs 𝑆𝑖(𝑝), revealing the impact of each parameter on the variables 365 

and providing insights into their sensitivity. The Jacobians are normalized by the 366 

parameter range and internal variability. Further details about the cost function and the 367 

Jacobian are available in Tett et al. (2017). 368 

In order to assess the extent to which the optimization has improved the 369 

performance of the simulated values, the ratios (Z) of the difference between the 370 

optimized and the default one to the standard error was adopted:  371 

       𝑍 =
|𝑉Default−𝑉Observation|−|𝑉Optimized−𝑉Observation|

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟
                 (4) 372 

The 𝑉Observation  𝑉Default  , and 𝑉Optimized  represent the observation value, 373 

simulated values using the default and optimized parameter sets, respectively. The 374 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟  represents the observation error of the corresponding variables. 375 

Improvement is expected for the variable if Z > 0, while if Z < 0, no improvement 376 

is anticipated, and performance may even worsen.  377 

2.6 Optimization algorithm 378 

The challenge of optimizing the model parameters numerically lies in the high 379 

computational cost and potential noise associated with model evaluations, making 380 

traditional derivative-based optimization methods impractical. There are several 381 

optimization algorithms the system provides, such as (derivative-free) Gauss-Newton 382 

variants, the pySOT algorithm, and the DFO-LS algorithm. We use the DFO-LS 383 
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algorithm as it appears to have better performance in model calibration (Oliver et al., 384 

2022, 2024; Tett et al., 2022) relative to other algorithms such as Gauss-Newton (Tett 385 

et at., 2017) or CMA-ES (Hansen, 2016). This algorithm is a sophisticated optimization 386 

method designed to handle nonlinear least-squares problems without requiring 387 

derivative information. This algorithm is particularly useful in scenarios where function 388 

evaluations are expensive or noisy. Inspired by the Gauss-Newton method, DFO-LS 389 

constructs simplified linear regression models for the residuals, allowing it to make 390 

progress with a minimal number of objective evaluations (Cartis et al., 2019). 391 

The underlying algorithmic methodology for the DFO-LS algorithm is detailed in 392 

Cartis et al. (2019). Here, we provide a brief overview of the algorithm, with a detailed 393 

description of its parameter settings available in Supplementary S1. The optimization 394 

problem is defined as minimizing the sum of the squared residuals  395 

                       𝑓(𝑝): =
∑ 𝑟𝑖

𝑁
𝑖=1 (𝑝)2

𝑁
                        (5), 396 

where 𝑟(𝑝) represents the differences between model outputs and observations; 397 

in our case, 𝑟𝑖(𝑝) ≔ 𝐶
1

2(𝑆𝑖 − 𝑂𝑖) . DFO-LS approximates the residuals without 398 

derivatives by creating a linear regression model at the current iteration. DFO-LS 399 

employs a trust region framework for stable optimization, which dynamically adjusts 400 

the search region to balance exploration and exploitation. After constructing the 401 

regression model, the algorithm solves the trust region subproblem to determine the 402 

step size and direction for updating parameters. The actual versus predicted reduction 403 

in the cost function is calculated to decide whether to accept or reject the step, with 404 

adjustments made to the trust region size accordingly. The algorithm follows these steps: 405 

initialization of parameters and trust region, model construction at each iteration, 406 

solving the trust region subproblem, accepting or rejecting steps, updating the 407 

interpolation set, and checking termination criteria. This structured approach ensures 408 

robust and efficient optimization in minimizing model discrepancies. 409 

3 Results 410 

3.1 AMIP2011 simulations 411 
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3.1.1 GAMIL3 10-parameter case 412 

The first experiment aims to optimize the ten sensitive parameters related to 413 

convection and microphysics parameterization schemes (Table 2). In this experiment, 414 

several parameters—such as ke and captlmt—changed significantly from their default 415 

values, while cmftau and c0 showed only small changes (Fig. 3a). Fig. 3b shows the 416 

progression of the cost function over iterations for the 10- and 20-parameter cases. Note 417 

that the cost function is divided by the number of observations, and a smaller cost 418 

function indicates better simulation accuracy against observations. In the 10-parameter 419 

case, the optimization required 29 total model evaluations (11 initial perturbation runs 420 

+ 18 iteration runs), reaching the lowest cost function value of approximately 3.5. The 421 

cost function drops rapidly from about 7.5 to 3.5 in the first iteration run, followed by 422 

a slower decline with some fluctuations. 423 

Fig. 4 shows the reduction or increase in simulation error in terms of the number 424 

of standard errors through optimization. In the 10-parameter case (solid dots), 24 out of 425 

34 variables (approximately 71%) show Z values greater than zero, indicating improved 426 

performance against the default case. Moreover, for 11 of these 24 variables, the 427 

optimization reduced the error by more than 1 standard error, with 5 of these showing 428 

improvements greater than 3. This is particularly evident in the RSR, MSLP, and the 429 

tropical variables of T500. While most variables can be effectively tuned, several 430 

variables, such as OLR, OLRC, and LAT, are worse than the default case. However, 431 

except for LAT_NHX, the performance of these variables did not degrade by more than 432 

one standard error. The blue dots in Fig. 5 represent the global area-weighted mean of 433 

different variables for the tuning year (2011) in the 10-parameter case. Comparing to 434 

the observational values, the optimization successfully improved most variables (9 out 435 

of 10), bringing them closer to the observations. Although some variables showed slight 436 

deviations from the observations after optimization, nearly all remained within their 437 

uncertainty range (except for OLRC), which is also reasonable in model tuning. 438 

Since the cost function is a simple statistical indicator of the distance between the 439 

area-weighted mean of the simulations and the observations, analyzing the spatial 440 
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distribution of the variables is crucial when evaluating the performance of the optimized 441 

parameter sets. Fig. 6a presents Taylor diagrams for all tuning variables under three 442 

parameter cases for the optimized year (2011). The results indicate that, compared to 443 

the default case (yellow), most variables' performance improved to varying degrees in 444 

the 10-parameter case (blue). For instance, while the standard deviation (SD) of the 445 

MSLP in the default result was much closer to the observations, the 10-parameter case 446 

exhibited a larger pattern correlation (PC) coefficient and a smaller root mean square 447 

deviation (RMSD). Some variables, including Lprecip, NETFLUX, and T500, showed 448 

improvements in all three metrics (SD, PC, and RMSD). However, other variables, such 449 

as OLR and RH500, showed slight deterioration after optimization, as partially 450 

suggested in Fig. 4. 451 

The "optimized" parameter set referred to in this study is the set where the cost 452 

function reaches its lowest value. However, the robustness of this parameter set, 453 

compared to others with similar cost function values, remains to be evaluated. To 454 

address this, two additional experiments were conducted (Table S1 and Fig. S1), 455 

selecting parameter sets with cost function values closest to the optimized one to 456 

evaluate the potential impact of this choice. Table S1 shows that the parameter values 457 

for the two sets (Experiment1 and Experiment2), which have cost function values close 458 

to the minimum (Optimized), are quite similar, particularly for Experiment1, which has 459 

the closest cost function value. The results from the AMIP2005-2014 simulations show 460 

that, while most variables exhibit similar behaviors to those of the Optimized set, 461 

notable differences are observed in T2M and Lprecip. Overall, although differences in 462 

model behavior arise from the choice of the optimized parameter set, these differences 463 

are not substantial enough to significantly alter the model’s performance. 464 

3.1.2 GAMIL3 20-parameter case 465 

To investigate the impact of different numbers of tuning parameters on 466 

optimization and the robustness of the tuning results, additional 10 parameters related 467 

to microphysics and turbulence schemes (Table 2) were included alongside the existing 468 

10 parameters. In the 20-parameter case, the initial perturbations for the original 10 469 
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parameters were kept the same as in the 10-parameter case to ensure a fair comparison. 470 

Comparing the optimal values of the 20-parameter case with the default values shows 471 

that several parameters had large changes. Parameters such as c0_conv, ke, capelmt, 472 

dzmin, Dcs, and ecr showed significant deviations from their default values (Fig. 3a). 473 

Comparing the two sets of optimal parameters reveals both differences and 474 

consistencies. While most parameters, such as capelmt, alfa, and rhcrit, change in the 475 

same direction and display similar magnitudes, some parameters, like ke and cmftau, 476 

are adjusted in the opposite direction. These differences may be attributed to the 477 

compensating errors within in the model, where adjustments to one parameter can offset 478 

or amplify the effects of another—a phenomenon further explored in Section 3.3. When 479 

examining the tuning procedure (Fig. 3b), it is evident that the cost function dropped 480 

rapidly to a value very close to the minimum in the first iteration run, similar to the 10-481 

parameter case. The system required a total of 31 runs (21 initial perturbation runs + 10 482 

iteration runs) to reach the lowest cost function value (2.87), which is only two more 483 

than that required for the 10-parameter case. This suggests that adding ten additional 484 

parameters increases the total number of evaluations only marginally, indicating that 485 

when optimizing with DFOLS, there is no need to be overly selective about parameter 486 

choice. The minimum cost achieved is comparable to that of the 10-parameter case, 487 

with fewer additional runs required after the initial perturbation phase to reach the 488 

minimum. This implies that including more tuning parameters has a small impact on 489 

the total cost but enhances tuning efficiency. This improvement can be attributed to the 490 

inclusion of additional parameters related to other parameterization schemes, which 491 

enhances model tuning and yields more realistic results compared to observations. 492 

Comparing the Z values from the 20-parameter case to those from the 10-parameter 493 

case (Fig. 4), we find that 25 out of 34 variables (approximately 74%) have Z values 494 

greater than zero, slightly higher than in the 10-parameter case. Among these, 11 495 

variables show improvements of more than 1 standard error, with 6 exhibiting 496 

significant improvements of over 3 standard errors (notably in T500 and MSLP), which 497 

is also better than the 10-parameter case. While most variables in the 20-parameter case 498 

demonstrate equal or greater improvements than in the 10-parameter case, some, like 499 
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OLR and OLRC, perform worse. The global area-weighted mean of all variables 500 

(shown by red dots in Fig. 5) indicates that, except for OLR, RH500 and Lprecip, 501 

variables improved compared to the default case. Although RH500 shows a greater 502 

deviation from observation, it still falls within the uncertainty range. Significant 503 

differences between the 20-parameter and 10-parameter cases are observed in the two 504 

radiation variables (OLR and RSR) and the two surface-related variables (T2M and 505 

Lprecip). These differences may partly result from certain parameters compensating for 506 

each other, which will be discussed later. The Taylor diagram in Fig. 6a shows that most 507 

variables have improved compared to the default case. Relative to the 10-parameter 508 

case, OLR, RSR, RSRC, MSLP, and Lprecip perform better in the 20-parameter case. 509 

However, NETFLUX and T2M perform worse. 510 

3.2 AMIP2005-2014 simulations 511 

Although our cost function explicitly accounts for internal variability (Eq. 1), 512 

tuning and evaluating the model using only a one-year simulation may still introduce 513 

uncertainties due to atmospheric internal variability (Bonnet et al., 2025), such as phase 514 

shifts in the North Atlantic Oscillation (NAO) or stochastic tropical convection patterns 515 

like the Madden-Julian Oscillation. Therefore, a longer simulation with adjusted 516 

parameter settings using AMIP drivers is necessary to assess the robustness of the 517 

tuning across different phases of intrinsic variability. Thus 10-year simulations from 1 518 

January 2005 to 31 December 2014 are conducted for the default and two optimized 519 

parameter sets. Compared to the results from 2011, the average AMIP2005-2014 results 520 

(Fig. 4b) show no significant differences between the two cases, as both exhibit similar 521 

changes across most variables. For example, T500 and RSR show much improvement 522 

in both cases, while OLR and OLRC perform worse. However, several variables show 523 

differences between the two conditions. For instance, while the 524 

MSLP_TROPICSOCEAN_DGM shows an improvement of more than 20 standard 525 

errors relative to observations in the 2011 simulation with the 10-parameter case, it 526 

deviates from the observation by over 10 standard errors in the 10-year simulation. 527 

Additionally, while the 20-parameter case demonstrated improvement in the 2011 528 
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simulation, its performance declined in the 10-year simulation. This temporal 529 

inconsistency suggests that certain parameter adjustments may be sensitive to the 530 

specific climate state of 2011, which was characterized by a moderate La Niña. In 531 

contrast, variables such as T500, RSR, and NETFLUX exhibit consistent improvements 532 

across both simulations, indicating a robust response to parameter tuning that is less 533 

dependent on interannual variability. 534 

The time series of the AMIP2005-2014 simulations in Fig. 5 show that, for the 10-535 

parameter case, 8 out of 10 variables are either much closer to the observations or very 536 

similar (OLR, OLRC, and RSRC) to those in the default case. Only two variables, 537 

RH500 and Lprecip, are slightly further from the observations but still within 538 

uncertainty. The most striking finding is the improvement of the variables related to the 539 

energy balance of the climate system (RSR and NETFLUX). For the default case, due 540 

to the large outgoing shortwave radiation, NETFLUX has an error of about 5 W/m2. In 541 

addition, T500 in the default case is too cold by almost 2K. After optimization, while 542 

OLR shows little change, RSR decreased by nearly 5 W/m2, considerably reducing the 543 

model bias and leading to smaller biases in NETFLUX and T500. Furthermore, the 544 

results suggest that MSLP, RSRC and OLRC are hard to tune. In the 20-parameter case, 545 

compared to the default, all variables—except RH500, OLR, T2M and Lprecip—show 546 

either reduced biases or biases that are very close (OLRC and RSRC) to those in the 547 

default case. Both OLR and Lprecip perform notably worse than in the default case, 548 

with both variables being too low compared to the observations. This is less successful, 549 

in relative terms, than the 10 parameter case, where 8 variables exhibit reduced or 550 

similar bias relative to the default. However, T500 and the MSLP—two variables that 551 

deviated significantly from the observations in the default and 10-parameter cases—552 

have been further tuned and now align more closely with observation. 553 

 Similar to the Taylor diagram of the AMIP2011 results, the AMIP2005-2014 554 

simulations (Fig. 6b) also demonstrate varying degrees of improvement across the three 555 

metrics for most variables in both optimized cases. For instance, both cases improve all 556 

three metrics for Lprecip, NETFLUX, and RSRC compared to the default case, 557 

consistent with the AMIP2011 results. While Lprecip, RSRC, T2M, and NETFLUX in 558 
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both optimized cases exhibit similar behavior to the AMIP2011 results, MSLP, RH500, 559 

and RSR behave differently. Comparing this with Figs. 4 and 5, the results suggest that 560 

this tuning yields only minor improvements to the spatial patterns of the variables but 561 

primarily reduces their biases relative to observations. Examining zonal averages (Fig. 562 

7) reveals more specific details, particularly the differences between tropical and extra-563 

tropical regions. T500 and RSR have large tropical biases which tuning considerably 564 

reduces. In contrast, RH500, OLR, RSRC, and MSLP have larger biases in extra-565 

tropical, especially polar regions. These regional biases may come from uncertainties 566 

in complex high-latitude processes, such as sea ice and snow cover feedback 567 

mechanisms, which are not well represented in the model (Goosse et al., 2018). Across 568 

the three cases, average performance is similar to that found earlier, with T500, RH500, 569 

OLR, RSR, T2M, and Lprecip most affected by tuning and most sensitive to parameter 570 

changes, while OLRC, RSRC, and MSLP are little impacted by optimizing. Specifically, 571 

MSLP is highly sensitive to unresolved gravity wave drag processes (Sandu et al., 2015; 572 

Williams et al., 2020), which were not included in our parameter tuning. Previous 573 

experiments with the IFS model indicate that increasing orographic and surface drag in 574 

the Northern Hemisphere can reduce MSLP biases (Kanehama et al., 2022). While the 575 

global mean OLRC is similar across cases due to regional compensation (Fig. 5d), the 576 

meridional distribution reveals notable differences (Fig. 7d). In the tropics, increased 577 

upper tropospheric water vapor—particularly in the 20-parameter case (Fig. 9a–9b)—578 

enhances the greenhouse effect and reduces outgoing clear sky longwave radiation. In 579 

contrast, decreased water vapor in high-latitude regions, especially in the 20-parameter 580 

case, leads to increased OLRC. RSRC remains nearly unchanged across all simulations 581 

due to the use of identical surface albedo. Additionally, while changing physical 582 

parameters generally affects the entire atmosphere, some variables respond differently 583 

in specific regions. For example, RH500 shows a more pronounced response in tropical 584 

regions, while land T2M responds more noticeably in the extra-tropics. 585 

3.3 Impacts of tuning on GAMIL3 586 

What parameters and processes would affect these model tuning behaviors? As 587 
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shown in Fig. 8, parameters such as c0_conv, cmftau, rhcrit, rhminl, rhminh, and Dcs 588 

significantly affect simulated variables, particularly NETFLUX, 589 

Lprecip_TROPICSLAND, RSR_TROPICSOCEAN, OLR_TROPICSOCEAN, and 590 

TEMP@500. Notably, most of these parameters have also been adjusted significantly 591 

in the 10- and 20-parameter cases compared to the default. rhcrit defines the RH 592 

threshold for triggering deep convection and is a parameter with a strong influence on 593 

RH. Fig. 3a shows that rhcrit decreased from the default case, whose value is 0.85, to 594 

the 10-paramter case and 20-parameter case, whose values are 0.83 and 0.82, 595 

respectively. A lower rhcrit significantly promotes deep convection by reducing the 596 

triggering threshold, which enhances water vapor transport from the lower to the mid 597 

and upper atmospheric layers. This could lead to a drop in RH below troposphere and 598 

a rise above it (Fig. 9a). This effect is especially pronounced in the tropics, where deep 599 

convection dominates vertical moisture transport (Fig. 5b, 7b, and 9b). While a lower 600 

rhcrit threshold would theoretically enhance precipitation by promoting deeper 601 

convection, our simulations instead show an overall decrease in precipitation. This 602 

apparent discrepancy suggests the parameter's effect is modulated by compensating 603 

atmospheric processes. Specifically, enhanced vertical moisture transport (Fig. 9a-9b) 604 

reduces low-level humidity availability, thereby weakening updrafts and ultimately 605 

decreasing total precipitation (blue line in Fig. 5h). 606 

A deficit in low-level cloud fraction is evident in Fig. 9c-9d, primary due to the 607 

increase in rhminl from the default value of 0.95 to 0.97 and 0.96 in the 10- and 20-608 

parameter cases, respectively. Although the 10-parameter case has a higher threshold 609 

for low level cloud formation than the 20-parameter case, Fig. 9c-9d shows the different 610 

result, which can be explained by the compensatory effects of other parameters. 611 

Optimized results indicate that cmftau, another key parameter, has a lower value in the 612 

20-parameter case (~4284) compared to the default (~4800) and the 10-parameter case 613 

(~4931). This decrease in cmftau likely strengthens shallow convection while 614 

weakening deep convection, reducing upward water transport and RH throughout the 615 

troposphere, contributing to the decreased low-level cloud fraction (Xie et al., 2018) 616 

and further reducing precipitation (Fig. 5h). Consequently, the lower low-level cloud 617 



22 
 

fraction in the 20-parameter case, compared to the 10-parameter case, reflects the 618 

compensatory effects of these key parameters, with the influence of the reduced cmftau 619 

outweighing that of rhminl. Low-level clouds strongly reflect shortwave radiation, 620 

producing a cooling effect. Therefore, a reduction in low-level clouds allows more 621 

shortwave radiation to penetrate the lower atmosphere, reducing outgoing shortwave 622 

radiation to space (blue lines in Fig. 5e and 7e) and warming the region (blue lines in 623 

Fig. 5a and 7a; Fig. 9e), including near the surface (blue lines in Fig. 5g). 624 

Comparing the 20-parameter case to the default case, the tuning results show that 625 

one sensitive parameter, Dcs—the autoconversion size threshold for ice to snow—has 626 

been significantly increased. This adjustment suggests that a higher Dcs leads to 627 

increased RSR and T2M, while also resulting in lower OLR and Lprecip (Fig. 8). ccrit, 628 

which sets the minimum turbulent threshold for triggering shallow convection, affects 629 

both OLR and Lprecip in a manner similar to Dcs. Specifically, clouds with higher ice 630 

content trap more OLR from the Earth's surface, potentially amplifying the greenhouse 631 

effect by retaining more infrared radiation (red lines in Fig. 6c and 8c). This results in 632 

a warming effect, particularly at lower atmospheric levels and even near the surface, 633 

especially during nighttime or in polar regions (red lines in Fig. 5a, 5g, 7a, and 7g; Fig. 634 

9f). Additionally, raising the autoconversion threshold from ice to snow is expected to 635 

allow more ice to remain in the atmosphere, directly leading to a reduction in 636 

precipitation (red line in Fig. 5h), and increased cloud optical thickness, thereby 637 

enhancing the reflection of incoming shortwave radiation. This enhanced reflectivity 638 

partially offsets the impact of reduced low-level cloud cover on the RSR in the 20-639 

parameter case, leading to a smaller decrease in RSR compared to the 10-parameter 640 

case (Fig. 5e and 7e), consistent with known radiative differences among cloud types 641 

(Chen et al., 2000). Increasing ccrit suppresses shallow convection by requiring 642 

stronger turbulence to initiate cloud formation, thereby reducing low-level cloud cover. 643 

This reduction enhances outgoing longwave radiation and surface solar heating, which 644 

in turn promotes evaporation and increases Lprecip. Therefore, adjusting Dcs and ccrit 645 

in future work may offer a promising approach for improving the simulation of OLR 646 

and Lprecip, both of which are underestimated relative to the default case. 647 
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3.4 Coupled model evaluation 648 

In order to evaluate the performance of different parameter sets in long-term 649 

climate simulations, it is essential to apply them to a coupled model. To assess the 650 

impacts of atmospheric parameter tuning on coupled model performance, we conducted 651 

a 30-year piControl simulation using GAMIL3 coupled to land, ocean, and sea ice 652 

components (see Methods 2.2), analyzing the final 15-year period after model spin-up. 653 

In the default case the model starts with a large negative NETFLUX of around -4 654 

W/m² (Fig. 10a), consistent with the results in Fig. 5j, indicating that the climate system 655 

is losing energy at this stage. As the model integrates, the NETFLUX increases, 656 

approaching zero after approximately five model years, achieving a stable energy 657 

budget for the remaining simulation period. This change in NETFLUX is found to be 658 

almost equally driven by a ~2 W/m² reduction in both RSR (Fig. 10b) and OLR (Fig. 659 

10c) simultaneously. However, despite these radiation variables, particularly the 660 

NETFLUX, approaching a stable state, the ocean continues to lose energy rapidly (Fig. 661 

10d) with no signs of stabilization by the end of the simulation. For T2M (Fig. 10e), 662 

the simulated values in the piControl run deviate significantly from the target range of 663 

13.6 ± 0.5°C (Williamson et al., 2013). While the decrease in OLR is physically 664 

consistent with the cooling of T2M, the reduction in RSR is primarily attributed to 665 

oceanic adjustment processes. In particular, a cold SST bias (Fig. S3b) induced by the 666 

original parameter settings leads to a rapid decline in low-level cloud cover over 667 

tropical and subtropical ocean basins—especially in the western Pacific warm pool 668 

region and the South Atlantic (Fig. S3c). Most areas of cloud reduction spatially 669 

coincide with regions of diminished reflected shortwave radiation (Fig. S3d), a 670 

relationship further supported by changes in shortwave cloud forcing (SWCF; Fig. S3e). 671 

Overall, although the NETFLUX appears to reach a stable state, the system continues 672 

to lose energy and remains far from the tuning target in the default case. 673 

 For both optimized cases, the NETFLUX (Fig. 10a) remains stable throughout the 674 

30-year simulations, with values of about 2 W/m². Although not exactly reaching the 675 

target of 0 W/m², they are still within the model spread range of -3 to 4 W/m² (Mauritsen 676 
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et al., 2012). Further analysis revealed that the relatively large energy imbalance 677 

primarily originates from the GAMIL3 atmospheric model, which exhibits a persistent 678 

imbalance of approximately 1.4 W/m² in its AMIP configuration—a feature also 679 

observed in the piControl runs—due to non-conservation in the dynamical core. This 680 

systematic issue is consistent with other atmospheric or coupled models (e.g., up to 681 

1.0 W/m² for CAM6 at 1° resolution (Lauritzen and Williamson, 2019), 1.3 W/m² for 682 

FGOALS-g3, and 3.3 W/m² for INM-CM4-8, calculated from Wild, 2020). Notably, 683 

this energy leakage nearly identical (±0.1 W/m²) between the default and optimized 684 

runs, indicating that the model improvements, such as reduced climate drift, result from 685 

genuine parameter tuning rather than compensation for the energy bias. This conclusion 686 

is further supported by the coupled model’s stabilized energy budget following the spin-687 

up period (Fig. 10). The change in NETFLUX in the 10-parameter case is primarily 688 

driven by a decrease in RSR (Fig. 10b), while in the 20-parameter case, it is mostly due 689 

to a reduction in OLR (Fig. 10c), consistent with the results in Fig. 5c and 5e. Both the 690 

volume-averaged ocean temperature (Fig. 10d) and the T2M (Fig. 10e) exhibit a slight 691 

initial adjustment during the initial few years, followed by stabilization. Drift may occur 692 

during the initial integration period due to inconsistencies between the OMIP-forced 693 

ocean state and the reanalysis-based atmospheric initial conditions. However, in both 694 

cases using atmosphere-optimized parameters, the system stabilized rapidly, and 695 

neither the TOA net flux nor ocean temperature exhibits significant trends beyond the 696 

initial adjustment period of a few years. A small long-term drift is still evident in Fig. 697 

10d, which may be related to the adjustment of deep ocean processes. This demonstrates 698 

that the parameters optimized for the atmospheric model remain effective in the coupled 699 

system configuration, with no clear evidence of compensation for ocean-related drift. 700 

Results from the simulated SST biases in Fig. 11a–11c for the default case show 701 

strong cold biases relative to observations, with maximum deviations exceeding -4°C 702 

over the North of Pacific and Atlantic. The simulated SST biases in Fig. 11d–11i 703 

indicate that both optimized cases show substantial improvement over the default case 704 

in terms of SST patterns and deviations, although some negative deviations in the 705 

northern Pacific and Atlantic persist—a common issue for most GCMs (Zhang and 706 
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Zhao, 2015a; Wang et al., 2018). Previous findings suggest that the two optimized cases 707 

exhibit cloud fraction significantly different from the default case, with simulated 708 

radiation improvements primarily observed in shortwave radiation for the 10-parameter 709 

case and in longwave radiation for the 20-parameter case. Therefore, it is necessary to 710 

investigate the shortwave and longwave cloud forcing in these two cases (Fig. 12). The 711 

results for both cases show that the combined effect of these two cloud forcings acts as 712 

a significant positive influence globally, contributing to the flux of energy towards the 713 

ocean and increasing ocean temperature. Specifically, the shortwave cloud forcing has 714 

a greater weight than the longwave in the 10-parameter case, mainly due to the 715 

parameters rhcrit and rhminl, as mentioned earlier. In contrast, the longwave cloud 716 

forcing outweighs the shortwave in the 20-parameter case, primarily due to the effects 717 

of Dcs. While the shortwave cloud forcing exerts a negative effect over the tropical 718 

ocean, the longwave cloud forcing provides a significant compensatory effect. A similar 719 

behavior is observed in the 20-parameter case. 720 

Overall, the two optimized cases result in a more realistic coupled model, not only 721 

maintaining the model's energy balance and reducing climate drift, but also improving 722 

the simulated ocean state, such as SST distribution. Although the two optimized cases 723 

exhibit different behaviors—with the 10-parameter case showing lower RSR and the 724 

20-parameter case showing lower OLR—tuning has allowed them to achieve stability 725 

through distinct mechanisms. While we acknowledge that multi-century integrations 726 

would provide additional insight into the model’s equilibrium climate response, our 727 

primary goal was to test whether AMIP-tuned parameters remain valid in a coupled 728 

setup. For this purpose, a 30-year piControl run is scientifically adequate. The results 729 

show that the model quickly reaches energy balance stability for both the 10- and 20-730 

parameter cases (TOA net flux drift < 0.05 W m⁻² per decade) and that ocean heat 731 

content drift remains minimal (< 0.008 °C per decade) after year 15, indicating that 732 

the system achieves a quasi-equilibrium state. This timescale is reasonable, since the 733 

upper ocean—where much of the adjustment occurs—has a relatively short adjustment 734 

timescale of about 1–5 years. The stabilized climate indicators and consistent system 735 

behavior (Figs. 9 and 10) confirm that the tuned parameters yield a credible coupled 736 
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climate without introducing systematic drifts. Similar integration lengths have been 737 

used in other studies (e.g., Tett et al., 2017). While longer runs could refine the 738 

equilibrium further, they are unlikely to change our main conclusion that the parameter 739 

transfer is robust. 740 

3.5 Sensitivity of initial parameters 741 

As stated in the previous section, the initial parameter values used for tuning are 742 

primarily informed by expert judgment, which has been recognized as crucial and 743 

necessary in other studies (Hourdin et al., 2017; Williamson et al., 2017; Jebeile et al., 744 

2023; Lguensat et al., 2023). To further investigate the extent to which initial parameter 745 

choices influence tuning results, we conducted three additional sensitivity experiments 746 

with randomly selected initial parameter values (Table S2), focusing on the first 10 747 

parameters. 748 

The optimized parameter values in these randomized experiments (represented by 749 

stars in Fig. 3a) exhibit significantly larger spreads compared to the default and original 750 

optimized values (blue dots), particularly for parameters such as c0_conv, capelmt, and 751 

c0, which nearly span their entire plausible ranges. This finding indicates that the model 752 

could reach entirely different optimized states depending on initial values. During the 753 

tuning process, the cost function (Fig. 3c) for these cases exhibited a rapid decrease, 754 

stabilizing at similar values across all three experiments after approximately 10 755 

iterations, with an additional 10–20 runs required to reach the optimized state. This 756 

pattern further demonstrates the efficiency and robustness of the tuning algorithm. 757 

Given the substantial differences in the optimized parameters, it is worthwhile to 758 

further investigate their Jacobian differences to gain a more comprehensive 759 

understanding of each parameter's impact on the variables. Fig. 13 shows the Jacobian 760 

ranges for four cases (including the original optimized case), with Jacobian calculated 761 

around the optimized parameter set for each case. The results generally demonstrate 762 

consistency with the parameter sensitivities shown in Fig. 8. Variables sensitive to most 763 

parameters exhibit substantial variability, while highly sensitive parameters, such as 764 

c0_conv, cmftau, rhcrit, rhminl, and rhminh, introduce considerable uncertainty across 765 
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multiple variables, depending on their initial values and interactions with other 766 

parameters. Conversely, RSRC and OLRC remain largely insensitive to parameter 767 

changes, whereas MSLP, NETFLUX, Lprecip, and TEM@500hPa are influenced by 768 

most parameters, also aligning with the findings in Fig. 8. 769 

The performance of these three optimized parameter sets in the AMIP2005-2014 770 

simulations is shown in Fig. S2. Generally, NETFLUX was most closely aligned with 771 

observations across all cases, primarily due to the additional constraint incorporated 772 

into the tuning algorithm. However, notable differences across different cases remain, 773 

with each case following a distinct optimization pathway, though most results still fall 774 

within uncertainty ranges. For example, the third experiment achieved the closest 775 

alignment for T500 but at the expense of T2M and Lprecip compared to other cases, 776 

highlighting inherent trade-offs and model structural errors that hinder simultaneous 777 

optimization of these variables. As seen in prior findings, RSRC and MSLP proved 778 

difficult to tune, while OLRC was adjustable but deviated in the opposite direction from 779 

observations, accompanied by a discrepancy in RH500 alignment. 780 

Overall, these sensitivity experiments confirm the efficiency of the tuning 781 

algorithm and underscore the importance of expert judgment in selecting initial 782 

parameter values. Expert selection not only ensures satisfactory model performance at 783 

the start of tuning but also enhances tuning effectiveness, even though structural errors 784 

in the model remain. 785 

4 Discussion 786 

In this study, we developed an objective and automatic parameter tuning 787 

framework using the Derivative-Free Optimizer for Least-Squares (DFO-LS) method 788 

to tune the newest version of the Grid-Point Atmospheric Model (GAMIL3). The 789 

results highlight the effectiveness of this method in tuning atmospheric parameters, 790 

particularly those initially set based on expert judgment, as demonstrated by notable 791 

improvements in model accuracy across multiple variables and enhanced climate 792 

system stability. However, several aspects of this work require further clarification. 793 

Firstly, as noted earlier, the 'optimized' parameter set in this study refers to the set 794 
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at which the cost function achieves its minimum value. However, results in Figs. 3b 795 

and 3c indicate that, for each case, there are several cost function values close to this 796 

minimum. We have shown that these differences are not substantial enough to 797 

significantly alter the model’s performance. However, this finding suggests that 798 

parameter ranges associated with similar cost function values may provide valuable 799 

insights into the acceptable parameter space for model optimization. We acknowledge 800 

that focusing exclusively on minimizing cost function values to obtain a single 801 

optimized parameter set during tuning can increase the risk of overfitting and 802 

compensating errors, which is a common challenge in model tuning. Although the 803 

results of this study show no clear signs of overfitting—both the 10- and 20-parameter 804 

optimized cases, starting from expert-judged initial values, ultimately produce 805 

reasonable coupled model results—it remains important to carefully consider potential 806 

overfitting impacts. 807 

Secondly, this study shows that tuning either different numbers of parameters or 808 

varying initial parameter values can yield diverse optimized results, each improving 809 

certain aspects of the model. This suggests that although tuning can lower the cost 810 

function to comparable levels, the final tuned state of the model is not necessarily 811 

unique—a common issue encountered in model tuning (Hakkarainen et al., 2013; 812 

Hourdin et al., 2017; Eidhammer et al., 2024), likely due to the compensating errors 813 

within the model and uncertainties in the observational data. On one hand, introducing 814 

constraints, such as assigning greater weight in key variables during tuning, could help 815 

achieve more realistic results. For instance, applying constraints on NETFLUX during 816 

tuning ensures consistently good performance across all the cases in the AMIP2005-817 

2014 simulations. In the 20-parameter case, adding constraints on OLR and RSR would 818 

maintain their performance while also improving T500 and MSLP. On the other hand, 819 

while different parameter sets satisfied the lowest cost function in different ways, it is 820 

important to remember that the cost function is simply a statistical measure of the 821 

distance between the area-weighted mean of the simulations and observations. 822 

Therefore, a comprehensive evaluation is essential to identify the most suitable 823 

parameter set (Eidhammer et al., 2024). Beyond minimizing cost function values and 824 
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aligning statistical indicators with observations, it is crucial to evaluate the spatial 825 

distributions of variables, the equilibrium state of the climate system in coupled models, 826 

and the model’s climate sensitivity (Tett et al., 2022; Eidhammer et al., 2024). These 827 

aspects should be further evaluated to ensure robust model performance. 828 

Thirdly, while our 1-year optimization produced parameters that remain effective 829 

in extended runs (as shown by the AMIP2005–2014 and 30-year piControl validations) 830 

and internal variability was explicitly accounted for in the cost function (Eq. 1), 831 

including interannual variability—using a longer tuning period like the 5-year approach 832 

of Tett et al. (2022)—could further improve results, especially for variables with large 833 

interannual variability (e.g., MSLP, Lprecip) and dynamical outputs sensitive to the 834 

chosen year. This is supported by Bonnet et al. (2025), who show that short-term tuning 835 

works well for physical variables with low interannual variability but multi-year tuning 836 

better captures dynamical variability. Based on Bonnet et al. (2025) and our own 837 

results—such as the difference observed between 1-year and 10-year simulations for 838 

MSLP_TROPICSOCEAN_DGM, which degraded from +20σ to −10σ—we might 839 

expect approximately 10–20 % better performance for variables that are particularly 840 

sensitive to interannual variability, such as tropical precipitation patterns or 841 

extratropical circulation indices, since a longer tuning period would better sample 842 

different climate regimes and reduce sensitivity to single-year anomalies. However, 843 

longer tuning greatly increases computational cost—about 5–6 times higher for 5-year 844 

runs. Our current strategy balances efficiency and robustness, but certain metrics like 845 

T2M and Lprecip might still benefit from longer tuning. This trade-off warrants further 846 

study, particularly where an accurate representation of interannual variability is crucial. 847 

Lastly, to assess how the number of tuning parameters affects the optimization 848 

process, we used the same initial perturbation runs for the ten shared parameters in both 849 

the 10- and 20-parameter cases, enabling a consistent evaluation of their sensitivity to 850 

the simulated results. While this approach allows a straight forward comparison, it may 851 

also constrain the optimization in the 20-parameter case by introducing bias into the 852 

initial search space. To address this potential limitation, we conducted additional 853 

experiments in which all twenty parameters were initialized with independent 854 
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perturbations (Fig. S4–S6) by adjusting the rhobeg parameter in the DFO-LS algorithm 855 

from its default value of 0.18 to 0.23. These additional experiments yielded several 856 

important insights that strengthen our original conclusions. First, although the 857 

optimized parameter values in the new 20-parameter case differ somewhat from those 858 

in the original setup, most shift in the same direction relative to the default values (Fig. 859 

S4). Moreover, the optimization consistently converged to similar cost function values 860 

(2.68 vs. 2.87), despite differences in the initial perturbations and optimization 861 

pathways, highlighting the robustness of our tuning framework. Second, both 862 

approaches produced nearly identical simulation performance in the 10-year AMIP and 863 

30-year piControl experiments (Fig. S5–S6), despite relying on different parameter sets. 864 

This suggests that the performance in the 20-parameter case may be dominated by a 865 

subset of the most sensitive parameters, such as Dcs, rhcrit, c0_conv, and cmftau, which 866 

have been shown to strongly influence the simulated results. These findings provide 867 

strong evidence that our conclusions regarding the robustness of the optimization and 868 

the effect of increasing the number of tuning parameters remain valid. 869 

 Some limitations remain. For instance, although the coupled model simulations 870 

show improvements in energy stability and reduced climate drift, certain regional biases 871 

in SST persist. These biases suggest that while tuning enhances model performance, 872 

there may be systematic issues within the model’s physics that cannot be fully addressed 873 

through parameter tuning alone. Resolving these regional discrepancies may require 874 

further refinement of model physics or additional modifications to the tuning 875 

framework. Additionally, the optimized cases show a relatively large TOA energy 876 

imbalance (~2.0 W/m²) despite a well-tuned NETFLUX in AMIP runs, which 877 

originates from energy non-conservation in the atmospheric model's dynamical core. In 878 

the AMIP configuration, prescribed SSTs act as an infinite energy source/sink, masking 879 

this internal leakage in the dynamical processes. By contrast, the coupled system 880 

exposes the dynamical core's non-conservation as a stable but imbalanced energy state. 881 

This interpretation is supported by our ongoing experiments (not shown) following 882 

Williamson et al. (2015b), where correcting energy conservation in the dynamical core 883 

reduced the TOA imbalance in the piControl runs to about 0.5 W m⁻² within the same 884 
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tuning framework. These results underscore that while parameter tuning can improve 885 

model fidelity, structural errors in the dynamical core—particularly its energy non-886 

conservation—must be addressed to achieve physically consistent climate simulations. 887 

Finally, because variables such as lower tropospheric temperature, humidity, cloud 888 

fraction, and cloud radiative effects are highly sensitive to the model time step and the 889 

coupling frequency between dynamics and physics, it would be valuable to explore the 890 

tuning performance under different time step settings in future work. 891 

5 Conclusions 892 

The study focuses on optimizing an atmospheric model by simultaneously 893 

perturbing and tuning multiple parameters associated with convection, microphysics, 894 

turbulence, and other physical schemes. Two primary experiments were conducted 895 

using AMIP2011 simulations (2011, with 3-month spin-up): one adjusted 10 parameters 896 

and another adjusted 20 parameters. Validation was then performed through extended 897 

independent decadal AMIP (AMIP2005-2014) simulations and 30-year coupled 898 

piControl simulations. Consistent performance across timescales and model 899 

configurations confirmed that the tuning corrected systematic biases rather than 900 

overfitting. In the 10-parameter tuning, significant changes were made to several 901 

sensitive parameters, resulting in a notable reduction in the cost function and improved 902 

model accuracy. Out of 34 variables, 24 showed improved performance, although some 903 

remained challenging to optimize due to structure errors in the model. In the 20-904 

parameter tuning, additional parameters related to microphysics and turbulence were 905 

introduced, resulting in slight performance improvements for 25 out 34 variables. 906 

However, certain variables experienced a decline in performance. While the 20-907 

parameter case achieved a lower cost function more quickly than the 10-parameter case, 908 

the increased complexity required careful management of parameter interactions and 909 

compensatory effects.  910 

To evaluate the robustness of the tuning results, we conducted AMIP2005-2014 911 

simulations. The findings showed that the optimized parameter sets maintained their 912 

performance improvements over extended simulation periods, though variables like 913 
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MSLP exhibited variability depending on the specific period analyzed. Time series 914 

analyses indicated that the optimized models more accurately captured the energy 915 

balance of the climate system, particularly by improving the balance of outgoing 916 

shortwave and longwave radiation and stabilizing surface temperatures. However, some 917 

variables remained challenging to optimize consistently across different regions and 918 

timescales. The optimized parameter sets were further tested in a coupled model setup 919 

that integrated land, ocean, and sea ice components. The results demonstrated improved 920 

energy budget stability, reducing climate drift and leading to more realistic SST 921 

simulations. Both the 10- and 20-parameter optimizations yielded more reasonable 922 

behavior in the coupled model, though persistent regional biases, particularly in the 923 

northern Pacific and Atlantic, remained. 924 

Three additional experiments, in which the initial values of the first 10 parameters 925 

were randomly selected, were conducted to evaluate its impact on the optimized results. 926 

The results further confirm the efficiency and robustness of the algorithm, as it rapidly 927 

minimizes the cost function after the first 10 runs, although the optimized parameter 928 

values and their performance across different cases show significant variation. Overall, 929 

these findings emphasize the importance of expert judgment in parameter selection and 930 

its role in enhancing model performance. 931 

In conclusion, the proposed DFO-LS-based tuning framework presents a robust 932 

and efficient approach for enhancing climate model performance. By combining 933 

Jacobian estimation with sensitivity analysis, the framework quantitatively maps how 934 

parameters affect key variables and thereby exposes compensating errors between 935 

physical schemes (for example, interactions between deep convection and 936 

microphysics). These parameter–variable mappings yield direct insight into model 937 

structural uncertainties and supply objective diagnostics that guide development. When 938 

model physics are changed, the framework supports rapid retuning and systematic inter-939 

version comparison: systematic shifts in optimal parameter values then serve as 940 

concrete evidence of how structural modifications alter model behaviour. Implemented 941 

and exercised primarily by a single researcher within 12 months, the approach also 942 

demonstrates high human-resource efficiency and practical scalability. Although no 943 
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single parameter set is expected to transfer unchanged across model generations, 944 

automating the exploration process transforms development from manual trial-and-945 

error into an efficient, reproducible, and more objective workflow. Applied across 946 

GCMs, this methodology can accelerate model development, reduce parametric 947 

uncertainty, and improve the reliability of climate projections. 948 
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 1275 

 1276 

 1277 

Figure 1. Automatic tuning framework structure. Perturbed simulation results for each parameter 1278 

are used for sensitivity analysis and determining the trust region size. Two key covariance metrics—1279 

observational error and model internal variation—help adjust parameter values in the objective 1280 

function. The DFO-LS algorithm optimizes the parameters, and the post-processing module 1281 

analyzes sensitivity, cost function results, and generates visualizations. 1282 

Table 1: Observations used for model evaluation, along with their target values and associated 1283 

uncertainties.  1284 

Variables 

name 
Description Classifications Target Uncertainty 

MSLP 
Mean sea level 

pressure (hPa); 

MSLP_NHX_DGM 277.52 22.85 

MSLP_TROPICSLAND_DGM 35.42 13.69 

MSLP_TROPICSOCEAN_DGM 187.34 1.04 

T500 
Temperature at 

500hPa (K) 

TEMP@500_NHX 251.42 0.12 

TEMP@500_SHX 249.38 0.56 

TEMP@500_TROPICSLAND 266.27 0.27 

TEMP@500_TROPICSOCEAN 266.60 0.23 

RH500 

Relative 

humidity at 

500hPa (%) 

RH@500_NHX 52.75 7.04 

RH@500_SHX 51.05 4.79 

RH@500_TROPICSLAND 40.36 6.67 

RH@500_TROPICSOCEAN 32.57 3.01 

NETFLUX 

Net heat flux at 

top of 

atmosphere 

(W/m2) 

netflux_GLOBAL 0.98 0.15 
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OLR 

Outgoing long 

wave flux at top 

of atmosphere 

(W/m2) 

OLR_NHX 223.57- 

2.5 
OLR_SHX 216.86 

OLR_TROPICSLAND 255.09 

OLR_TROPICSOCEAN 261.35 

OLRC 

Outgoing long 

wave clearsky 

flux at top of 

atmosphere 

(W/m2) 

OLRC_NHX 247.71 

4.5 
OLRC_SHX 243.59 

OLRC_TROPICSLAND 288.64 

OLRC_TROPICSOCEAN 290.21 

RSR 

Outgoing 

shortwave flux 

at top of 

atmosphere  

(W/m2) 

RSR_NHX 100.91 

2.5 
RSR_SHX 107.55 

RSR_TROPICSLAND 116.04 

RSR_TROPICSOCEAN 86.92 

RSRC 

Outgoing 

shortwave 

clearsky flux at 

top of 

atmosphere  

(W/m2) 

RSRC_NHX 57.98 

5.0 

RSRC_SHX 53.65 

RSRC_TROPICSLAND 75.67 

RSRC_TROPICSOCEAN 42.42 

Lprecip 

Land 

precipitation 

(m/s) 

Lprecip_NHX 1.60e-8 0.35e-9 

Lprecip_SHX 1.42e-8 4.29e-9 

Lprecip_TROPICSLAND 4.47e-8 0.37e-9 

T2M 
Temperature at 

2 meters (K) 

LAT_NHX 275.72- 0.06 

LAT_SHX 280.08 0.49 

LAT_TROPICSLAND 297.10 0.31 
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Table 2: Summary of tunable parameters in GAMIL3, including their default values and plausible 1286 

ranges. 1287 

Parameters Description (units if applicable) Range 
Default 

Values 

c0_conv Precipitation efficiency for deep convection 1.e-4-5.e-3 1.e-3 

rhcrit Threshold value for RH for deep convection 0.65-0.95 0.85 

capelmt Threshold value for cape for deep convection (J/kg) 20-200 70 

alfa Initial deep convection cloud downdraft mass flux 0.05-0.6 0.2 

ke 
Evaporation efficiency of deep convection 

precipitation (/) 
1.e-6-1.5e-5 9.e-6 

c0 Rain water autoconversion coefficient (1/m) 3.e-5-2.e-4 5.e-5 

cmftau Characteristic adjustment time scale (s) 1800-14400 4800 

rhminl Threshold RH for low stable clouds 0.8-0.99 0.95 
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rhminh Threshold RH for high stable clouds 0.4-0.99 0.5 

dthdpmn 
Most stable lapse rate below 750hPa, stability 

trigger for stratus clouds (K/mb) 
-0.15- -0.05 -0.08 

sh1 
Amplification factor (shallow convective cloud 

fraction) 
0.0-1.0 0.04 

sh2 Scale factor for shallow convective mass flux 10-1000 500 

dp1 
Amplification factor (deep convective cloud 

fraction) 
0.0-1.0 0.1 

dp2 Scale factor for deep convective mass flux 10-1000 500 

ccrit Minimum allowable sqrt(TKE)/wstar 0.0-1.0 0.5 

dzmin Minimum cloud depth to precipitate (m) 0.0-100.0 0.0 

Dcs Autoconversion size threshold for ice to snow (m) 1.e-5-1.e-3 2.e-4 

ecr Collection efficiency cloud droplets/rain 0.5-2.0 1.0 

ai Fall speed parameter for stratiform cloud ice (1/s) 500-1500 700 

qcvar 
Inverse relative variance of subgrid scale cloud 

water 
0.1-2.0 1.0 
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 1289 

Figure 2. All experiments conducted in this study, including the AMIP2011 optimization runs for 1290 

10- and 20-parameter cases, the AMIP2005-2014 simulations using the optimized parameter sets, 1291 

and the 30-year piControl simulations. Note that piControl simulations were not performed for the 1292 

sensitivity experiments that varied the initial values of the 10 parameters (shown in brown). 1293 
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 1294 

Figure 3. Normalized values of tuning parameters for the default and all five optimized cases (a); 1295 

changes in the cost function values over numbers of evaluations for the two main optimized cases 1296 

(b) and the three sensitivity experiment cases (c). The vertical solid lines indicate the 11 and 21 runs 1297 

from the initial perturbation phase, while vertical dashed lines mark the iterations at which the cost 1298 

function reach its minimum.1299 
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 1300 

 1301 
Figure 4. Z values for the AMIP2011 (a) and AMIP2005-2014 (b) simulations. Solid and hollow 1302 

dots represent tuning with 10 and 20 parameters, respectively. Blue dots indicate improved 1303 

performance, while red dots show deterioration. The black dashed line at Z = 0 separates improved 1304 

from non-improved variables. 1305 

 1306 
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 1307 

Figure 5. AMIP2011 results (dots) and time series (lines) for three cases for: T500 (a), RH500 (b), 1308 

OLR (c), OLRC (d), RSR (e), RSRC (f), T2M (g), Lprecip (h), MSLP (i) and NETFLUX (j). The 1309 

cases include the default case (orange lines and dots), 10-parameter case (blue lines and dots), and 1310 

20-parameter case (red lines and dots). The black lines and shadings represent the observations and 1311 

their associated uncertainties. 1312 

 1313 
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 1314 

Figure 6. Taylor-diagram showing all variables for three cases in 2011 (a) and the AMIP2005-2014 1315 

simulations (b). Shown are default case (yellow), 10-parameter case (blue), and 20-parameter case 1316 

(red). 1317 

 1318 

 1319 
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 1320 

Figure 7. Meridional distributions of the annual mean bias between three cases and observations 1321 

for: T500 (a), RH500 (b), OLR (c), OLRC (d), RSR (e), RSRC (f), T2M (g), Lprecip (h) and MSLP 1322 

(i) from the AMIP2005-2014 simulations. Shown are default case (orange), 10-parameter case 1323 

(blue), and 20-parameter case (red).  1324 
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 1325 

Figure 8. Normalized Jacobian for all 20 parameters, with values normalized by the total covariance 1326 

metrics. The x-axis shows the parameter names, while the y-axis represents the variables. Black 1327 

parameters are used in the 10-parameter case, and green ones are added in the 20-parameter case. 1328 

Red and blue indicate positive and negative effects, respectively, with darker shades showing greater 1329 

impact. 1330 

 1331 
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 1332 

Figure 9. Latitude-pressure anomaly distributions relative to the default case for relative humidity 1333 

(a, b), cloud fraction (c, d), and temperature (e, f) from AMIP2005-2014 simulations: 10-parameter 1334 

case (a, c, e) and 20-parameter case (b, d, f). 1335 

 1336 
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 1337 
Figure 10. Results from the 30-year piControl simulation for NETFLUX (a), RSR (b) and OLR (c) 1338 

radiation, mean volume-averaged ocean temperature (d), and T2M in the default (orange), 10- 1339 

parameter (blue), and 20-parameter cases (red) cases.  1340 

 1341 
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 1342 

Figure 11. Sea surface temperature biases relative to observations (HadISST; Rayner et al., 2003) 1343 

from the last 15 years of piControl simulations for the default case (a, b, c) and two optimized 1344 

cases (d-i). 1345 

 1346 

 1347 

Figure 12. Distribution of shortwave (a, b) and longwave (c, d) cloud forcing differences between 1348 

the two optimized cases and the default case. 1349 

 1350 
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 1351 
Figure 13. Similar as Fig. 7, but showing the range of Jacobians calculated from the optimized 1352 

parameter set across four cases: the original optimized case and three sensitivity cases. 1353 


