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Abstract. Parameterization in climate models often involves parameters that are

poorly constrained by observations or theoretical understanding alone. Manual tuning
by experts can be time-consuming, subjective, and prone to underestimating
uncertainties. Automated tuning methods offer a promising alternative, enabling faster,
objective improvements in model performance and better uncertainty quantification.
This study presents an automated parameter-tuning framework that employs a
derivative-free optimization solver (DFO-LS) to simultaneously perturb and tune
multiple convection-related and microphysics parameters. The framework explicitly
accounts for observational and initial condition uncertainties (internal variability) to
calibrate a 1-degree resolution atmospheric model (GAMIL3). To evaluate its
performance, two main tuning experiments were conducted, targeting 10 and 20
parameters, respectively. In addition, three sensitivity experiments tested the effect of
varying initial parameter values in the 10-parameter case. Both tuning experiments
achieved a rapid reduction in the cost function. The 10-parameter optimization

improved model accuracy for 24 of 34 key variables, while expanding to 20 parameters
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yielded improvement for 25 variables, though some structural model biases appeared.
Ten-year AMIP simulations validated the robustness and stability of the tuning results,
showing that the improvements persisted over extended simulations. Additionally,
evaluations of the coupled model with optimized parameters showed, compared to the
default parameters settings, reduced climate drift, a more stable climate system, and
more realistic sea surface temperatures, despite a residual global energy imbalance of
2.0 W/m? (about 1.4 W/m? arising from the intrinsic imbalance of the atmospheric
component) and some remaining regional biases. The sensitivity experiments further
underscored the efficiency of the tuning algorithm and highlight the importance of
expert judgment in selecting initial parameter values. This tuning framework is broadly
applicable to other general circulation models (GCMs), supporting comprehensive

parameter tuning and advancing model development.

1 Introduction

Assessing current and future climate change risks to natural and human systems
heavily relies on numerical simulations using advanced climate or Earth System
Models (ESMs). In recent decades, significant progress has been made in advancing
the major components of the Earth system—such as the atmosphere, ocean, land, and
human systems (Prinn 2012; Bogenschutz et al., 2018; Fox-Kemper et al., 2019;
Blockley et al., 2020; Blyth et al., 2021)—as well as in developing the coupling
techniques required to form fully integrated ESMs (Valcke et al., 2012; Smith et al.,
2021; Liu et al., 2023). However, many unresolved issues remain in the development
of ESMs, including but not limited to simulation bias in air-sea interactions (Ham et al.,
2013; Bellucci et al., 2021; Wei et al., 2021; Meng et al., 2022), the double Intertropical
Convergence Zone (ITCZ) problem (Tian et al., 2020), and the coupling of
biogeochemical cycles such as the carbon cycle or nutrient cycles with the physical
climate system (Erickson et al., 2008). The complexity of the Earth's climate system
and the inherent uncertainties in climate models present significant challenges in
achieving reliable projections. One of the key sources of uncertainty arises from the

representation of unresolved physical processes through parameterizations (Gentine et
2
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al., 2021; Jebeile et al., 2023).

Parameterizations are crucial when accounting for processes that occur at
unresolved scales or are missing from the model formulation. Parameterizations
provide simplified representations of sub-grid processes like cloud convection and
turbulence, which cannot be explicitly resolved at scales smaller than the model's grid
resolution. For example, processes such as atmospheric radiative transfer and cloud
microphysics are too complex to be represented in full detail within ESMs, so
parameterizations offer simplified approximations to capture their essential effects.
Parameterization often involves parameters whose values are frequently not well-
constrained by either observations or theory alone (Ludovic, 2021), which can directly
affect the performance of the model simulation. Consequently, parameter tuning, the
process of estimating these uncertain parameters to minimize the discrepancy between
specific observations and model results, becomes a critical step in climate model
development (Hourdin et al., 2017).

Appropriate parameter tuning enhances the accuracy and skill of climate models
by optimizing parameter values to better match observations or high-resolution
simulations used as calibration targets (Mauritsen et al., 2012; Bhouri et al., 2023). For
example, parameter tuning allows adjusting the values of parameters in
parameterizations that approximate these unresolved processes like cloud convection,
turbulence, etc (Golaz et al., 2013; Zou et al., 2014; Mignot et al., 2021; Xie et al.,
2023). By tuning parameter values during the model calibration process, modelers can
partly compensate for known structural errors, deficiencies, or missing processes in the
underlying model formulation itself (Williamson et al., 2015a; Hourdin et al., 2017;
Tett et al., 2017; Schneider et al., 2024). What’s more, exploring the range of plausible
parameter values through tuning allows quantifying parametric uncertainties and their
impacts on model outputs and projections (Jackson et al., 2004; Neelin et al, 2010;
Williamson et al., 2013; Tett et al., 2013; Qian et al., 2016).

Broadly speaking, parameter tuning methods aim to quickly optimize a cost
function that measures the distance between model simulations and a small collection

of observations. Applications of such methods in climate science include studies by
3
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Bellprat et al. (2012), Tett et al. (2013), Yang et al. (2013), Zou et al. (2014), Zhang et
al. (2015b), and Tett et al. (2017). For instance, in the experiments conducted by Tett et
al. (2017) with an atmospheric GCM, 7 and 14 parameters related to the convection,
cloud microphysics, and boundary-layer dynamics (Yamazaki et al., 2013) were
estimated using variants of the Gauss-Newton algorithm (Tett et al., 2013) to minimize
the differences between simulated and observed large-scale, multi-year averaged net
radiative fluxes. These optimized parameters were then applied in a coupled GCM.
Zhang et al. (2015b) employed an improved downhill simplex method to optimize
seven parameters selected from the convection and cloud-fraction parameterization
scheme, and reported successful improvement of an atmospheric model’s performance.
This improved method overcomes the limitations of the traditional downhill simplex
method and offers better computational efficiency compared to evolutionary
optimization algorithms.

Traditionally, uncertain parameters have been tuned manually through extensive
comparisons of model simulations with available observations. This approach is
subjective, labor-intensive, computationally expensive, and can lead to under-
exploration of the parameter space, potentially underestimating uncertainties and
leaving model biases unresolved (Allen et al., 2000; Hakkarainen et al., 2012; Hourdin
et al. 2017; Hourdin et al., 2023). By contrast, automatic and objective parameter
calibration techniques have advanced rapidly due to their efficiency, effectiveness, and
wider applicability (Chen et al., 1999; Elkinton et al., 2008; Bardenet et al., 2013;
Zhang et al., 2015b). Bardenet et al. (2013) combined surrogate-based ranking and
optimization techniques for surrogate-based collaborative tuning, proposing a generic
method to incorporate knowledge from previous experiments. This approach can
effectively improve upon manual hyperparameter tuning. Zhang et al. (2015b) proposed
a "three-step" methodology for parameters tuning. Before the final step of applying the
downhill simplex method, they introduced two preliminary steps: determining the
model's sensitivity to the parameters and selecting the optimum initial values for those
sensitive parameters. By following this process, they were able to automatically and

effectively obtain the optimal combination of key parameters in cloud and convective
4
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parameterizations.

However, previous studies were either semi-automatic or lacked sufficient
observational constraints, such as the net flux at the top of the atmosphere (TOA).
Moreover, earlier objective tuning methods that relied on cost functions often
overlooked key sources of uncertainty, including observational uncertainty and the
internal variability of variables. To address these limitations, we developed a new
objective and automatic parameter tuning framework that is more efficient for tuning
parameters in GCMs. Compared to previous automatic tuning efforts, this system
operates entirely within a Python environment and includes several new optimization
algorithms, including Gauss-Newton (Burke et al., 1995; Kim et al., 2008; Tett et al.,
2017), the Python Surrogate Optimization Toolbox (pySOT; Regis and Shoemaker,
2012), and the Derivative-Free Optimizer for Least-Squares (DFO-LS; Cartis et al.,
2019; Hough et al., 2022). The DFO-LS package is designed to find local solutions to
nonlinear least-squares minimization problems without requiring derivatives of the
objective function, and has been numerically tested to be particularly effective in
finding global optimization solutions. Our framework supports multiple observations
and constraints as optimization targets. Additionally, it considers the internal variability
of GCMs and integrates sensitivity analysis with the optimization process, making it a
more flexible and efficient model tuning system overall. Moreover, systematically and
simultaneously perturbing multiple parameters addresses the concern that optimizing a
single objective may lead to suboptimal solutions for other objectives and might
overlook the global optimum for the overall tuning metric (Qian et al., 2015;
Williamson et al., 2015a). We have designed and implemented an automatic workflow
to streamline the calibration process, enhancing efficiency. This method and workflow
are readily applicable to GCMs, facilitating accelerated model development processes.
Using this framework, we tune the latest released version 3 of the Grid-Point
Atmospheric Model developed at the State Key Laboratory of Numerical Modeling for
Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) in the Institute of
Atmospheric Physics (IAP), named GAMIL3 (Li et al.,, 2020a). This study

demonstrates how the tuning framework can automatically and effectively optimize
5
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model parameters to achieve better performance against observations.

Our objectives are as follows:

1. To assess the performance of the tuning algorithm in the GAMIL3 atmospheric
model;

2. To investigate the impact of various parameters and initial values on the tuning
results;

3. To evaluate the performance of the optimized parameters in decadal simulations
and long-term coupled model runs.

The paper is organized as follows: Section 2 introduces the proposed automatic
framework, the tuning model and experiments, observational data and metrics, and the
tuning algorithm. Section 3 presents the evaluation of the tuning results in short- to
long-tern simulations, including coupled model runs. This is followed by a discussion

in Section 4 and a conclusion in Section 5.

2  Methods

2.1 The automatic tuning framework

Here we present the automatic tuning framework (Fig. 1) we have developed,
which includes, but is not limited to, functions such as model compiling, (re)submitting,
parameter tuning, results evaluation, and diagnostics. Specifically, the framework
comprises three main processing modules that collectively control the entire system:
the model preprocessing module (the lower left panel in Fig. 1), the model optimizing
module (the middle panel in Fig. 1), and the model post-processing module (the right
panel in Fig. 1).

The preprocessing module prepares various input data for the optimization process,
with particular focus on model internal variations and observational uncertainties (Tett
et al., 2017), which will be further discussed in a later section. The optimizing module,
which uses the DFO-LS optimization method, is the core component of this tuning
system and is primarily responsible for updating model parameters and running
simulations. In the initialization of DFO-LS, we use the default parameter settings

provided by the DFOLS software package, including the specification of the initial trust
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region, which is an algorithm parameter that governs the size of the local search area.
Any constraints on the simulated variables are also specified at this stage. The initial
trust region radius (rhobeg) is set to 0.18 (normalized to parameter ranges) based on
sensitivity tests. This choice ensures that the first iterations explore locally without
overstepping physical plausibility, balancing efficient convergence and sufficient
sampling of the parameter space (Cartis et al., 2019). In addition, we apply a constraint
to a simulated variable using a parameter p, which determines the weighting of the
constraint term (1/(2p); see Supplementary S1). In this study, following Tett et al (2017,
2022), this constraint is applied to the global average TOA net flux. To tightly constrain
this variable, p is set to 0.18 which corresponds to a total uncertainty of 0.15 W/m?
somewhat higher than the observational error of 0.1 W/m?.

The optimization process begins with a parameter perturbation phase, in which
K+1 simulations are conducted: one reference simulation using the initial parameter set,
and K additional simulations—each perturbing one of the K tunable parameters
individually—relative to the reference. These initial simulations establish baseline
parameter sensitivities and provide finite-difference gradient estimates for the DFO-LS
algorithm. The subsequent optimization phase then iteratively modifies parameter
values through trust-region managed steps, where each iteration evaluates candidate
points, updates local quadratic models of the cost function, and adjusts parameters
based on actual versus predicted improvement ratios until convergence criteria are
satisfied. In addition to the initial K+1 simulation runs required to initialize the DFOLS
algorithm for a K-parameter case, each iteration typically involves 1-3 additional model
simulations, depending on the trust-region management strategy and the progress of the
algorithm. The algorithm normally performs one simulation per iteration to evaluate a
new candidate parameter set, but may conduct 3 simulations when the local quadratic
model requires improvement or when the actual-to-predicted improvement ratio falls
below zero (Cartis et al., 2019). Total evaluations include the initial runs plus all
subsequent iterations evaluations. The post-processing module receives the output from
the optimization module, including the optimized parameters, the sensitivity of

variables to the parameters, and the cost function values from different iterations. It
7
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then help us to conducts a comprehensive diagnostic analysis—examining spatial
patterns, process-level responses, parameter sensitivities, and multi-variable metrics—
to assess the physical credibility of each solution. This structured yet flexible workflow
shifts the modeller’s role from manual trial-and-error to the management and
interpretation of automated explorations, thereby enhancing both the traceability and

objectivity of the modeling process.

2.2 Observations and parameter selection

To set up our optimization problem, we focus on the large-scale performance of the
model and consider the differences between land and ocean, particularly in the tropical
region. This region is characterized by distinct air-sea interactions, such as those over
the Western Pacific warm pool (Wyrtki, 1975), the Eastern Pacific equatorial cold
tongue region (Philander, 1983), and the Indian Ocean Dipole region (Saji et al., 1999).
Therefore, following the methods outlined by Tett et al. (2017), we separate the analysis
into four regions based on latitude (0, defined as positive northward from the equator):
the northern hemispheric extra-tropical region (6 > 30° N), the tropical region (30° S >
0 <30° N), subdivided into tropical land and ocean, and the southern hemispheric extra-
tropical region (0 <30° S).

The observational variables used in this study are detailed in Table 1. While most
variables are divided into four regions—labeled TROPICSLAND (tropical land:
30° S-30° N over land), TROPICSOCEAN (tropical ocean: 30° S—30° N over ocean),
_NHX (Northern Hemispheric extra-tropics: >30°N), and SHX (Southern
Hemispheric extra-tropics: <—30° S)—each with its own target and uncertainty,
NETFLUX is averaged over all regions and serves as a global constraint. For the MSLP
variable, regional mean values are expressed as anomalies relative to the global mean
(delta global mean, denoted by the suffix " _DGM"), obtained by subtracting the global
average from each regional mean. Specifically, the target values for variables T500,
RHS500, and MSLP are derived from ECMWF Reanalysis v5 data (ERAS; Hersbach et
al., 2020); the radiation variables (OLR, OLRC, RSR, RSRC, and NETFLUX) are
sourced from Clouds and the Earth's Radiant Energy System (CERES; Wielicki et al.,

8



239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

1998); and the Land Air Temperature (LAT) and Land precipitation (Lprecip) data
come from the Climatic Research Unit (CRU; Jones et al., 2012; Harris et al., 2017).
The uncertainties of the variables are derived from the absolute error among different
data sources, which will be discussed further in section 2.4. All targets and uncertainties
of the variables in Table 1 are for the year 2011, primarily used for model optimization.

The atmospheric model parameters we calibrated are detailed in Table 2,

encompassing selections from deep convection, shallow convection, microphysics,
cloud fraction, and turbulence schemes. The selection of these parameters, along with
their default values and plausible ranges, is based on expert judgment as recommended
by the GAMIL3 developers and corresponds to the model configuration used in CMIP6
experiments. This approach prevents the optimization from exploring unrealistic
regions of parameter space. While the plausible ranges are defined as the maximum
physically meaningful bounds (e.g., rherit: 0.65-0.95), the constraint on the global
average TOA net flux ensures it closely matches the observations after tuning. For
visualization, all parameters are normalized based on their plausible ranges, with 0
representing the minimum value of the range and 1 representing the maximum one.
Then two experiments are conducted to assess the impacts of varying the number of
parameters on the optimized results:

1. We selected the first 10 parameters (listed in the first column of Table 2) from
deep convection, shallow convection, microphysics, and cloud fraction
schemes. These parameters are identified as the most sensitive to the model's
performance based on Xie et al. (2023), and are therefore chosen for tuning.
This case is denoted as the “10-param.” case in the captions of all relevant
figures.

2. An additional set of the next 10 parameters (also listed in the first column of
Table 2), related to microphysics and turbulence schemes, is included alongside
the initial 10 parameters. This approach aims to explore the impact of varying
the number of tuning parameters on the optimization results. This case is

denoted as the “20-param.” case in the captions of all relevant figures.
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2.3 Model description and experiments

In this study, we employ GAMIL3, which adopts a finite difference dynamical core
and a weighted equal-area longitude-latitude grid to maintain numerical stability near
the polars without the need for filtering or smoothing (Wang et al., 2004; Li et al.,
2020a). GAMIL3, with an approximate 2° (180x80) horizontal resolution, serves as the
atmospheric component of the Flexible Global Ocean—Atmosphere—Land System
Model Grid-point Version 3 (FGOALS-g3), which participated in CMIP6 (Li et al.,
2020b). For this study, the model’s horizontal resolution is refined to about 1° (360 X
160), with 26 vertical o-layers extending to the model top at 2.19 hPa. To ensure
numerical stability at the higher resolution, the dynamical core time step is reduced
from 120s to 60s, while the physical parameterizations and their time step (600s) remain
unchanged. As in many other climate models (e.g., Santos et al., 2021; Wan et al., 2021;
Schneider et al., 2024), the performance of GAMIL3 is sensitive to the resolution, the
model time step, and the coupling frequency between dynamics and physics. Therefore,
it is necessary to re-tune the uncertain parameters for the new 1° configuration.

During optimization, each model simulation is performed for 15 months, forced by
observed sea-surface temperature (SST) and sea ice, in an Atmospheric Model
Intercomparison Project (AMIP) experiment (Eyring et al., 2016). The period runs from
1 October 2010 to 31 December 2011 (hereafter referred to as AMIP2011), with the
first 3 months excluded for model spin-up, leaving 12 months for analysis against
observations. This method is commonly used for model uncertainty quantification and
parameter tuning (Yang et al., 2013; Xie et al., 2023; 2025). After optimization, the
parameter set that best fits the observations is referred to as the optimized parameter
set. We use this to conduct a 10-year AMIP simulation from January 1, 2005, to
December 31, 2014 (hereafter referred to as AMIP2005-2014), enabling comparison
with observed climate data.

To assess whether tuning atmospheric parameters results in a reasonable coupled
model, the GAMIL3 atmospheric model is coupled with land (CAS-LSM; Xie et al.,
2020), ocean (LICOM3; Yu et al., 2018), and sea ice (CICE4) models, consistent with

10
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the configuration used in FGOALS-g3 (Li et al., 2020b), which participated in CMIP6.
A 30-year piControl simulation (Eyring et al., 2016) was then conducted to assess the
model’s long-term energy balance and stability under constant pre-industrial forcings.
This experiment tests whether parameters performing well under observed forcings in
AMIP simulations—such as prescribed SSTs, sea ice, and greenhouse gases—can also
improve coupled performance. In AMIP runs, the TOA energy imbalance mainly results
from greenhouse gases forcing, which traps outgoing longwave radiation. Under
piControl conditions, where pre-industrial greenhouse gas concentrations are fixed, this
radiative effect is absent; thus, if the AMIP-tuned parameters are physically consistent,
the coupled model should yield a near-zero TOA net flux. The initial condition for the
atmospheric model was the climatological mean state from atmospheric reanalysis
(default configuration), while the ocean model was initialized from the equilibrated
state of an OMIP simulation (a long ocean-only run forced by atmospheric reanalysis).
The land model was not provided with a prescribed initial condition; instead, its state
was generated dynamically during the coupled integration. To minimize the influence
of potential initialization drift, the first 15 years were treated as a spin-up period and
excluded from the analysis. Lastly, three additional sensitivity experiments, varying the
initial values of the first 10 parameters mentioned above, are carried out to examine the
impact of initial parameter selection on the optimization results. These three cases are
referred to as the “random1”, “random2”, and “random3” cases in the captions of all

relevant figures. All experiments conducted in this study are illustrated in Fig. 2

2.4 Covariance matrices for observations and model

Two covariance matrices need to be prepared before the optimization process
begins. The first matrix assesses the internal variability of the model system (C;). To
derive this, perturbed initial condition experiments are conducted. In this study, these
experiments involve running a total of 20 simulations, each with the three-dimensional
atmospheric temperature initial state perturbed by increments of +1e-20, while all other
settings remain identical to those used in the optimization. This design ensures that

simulated observations within the range of internal variability receive reduced penalties,
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guiding the optimization to correct systematic biases while avoiding overfitting to
random climatic fluctuations. The second matrix estimates the uncertainty of
observations (Cj), which set to be diagonal, assuming no correlation between different
observations, and its values are derived from absolute difference between the two
available datasets for each variable after regridding and area-weighting. Specifically,
data from ERAS and National Center for Environmental Predictions/Department of
Energy (DOE) 2 Reanalysis dataset (NCEP2; Kanamitsu et al., 2002) are used to derive
the observation error for variable T500, RH500, and MSLP. Precipitation data from
CRU and Global Precipitation Climatology Project (GPCP; Adler et al., 2003) are used
for Land Precipitation (Lprecip). Data from CRU and Berkeley Earth Surface
Temperature (BEST; Muller et al., 2013) are used for LAT. For the four radiation
variables (OLR, OLRC, RSR, and RSRC), uncertainties are based on the estimates from
Loeb et al. (2018). Both matrices contribute to the total uncertainty in the variables
relative to the target observations. The total covariance matrix C is composed of the
two uncertainties introduced above, calculated as:
C =Cy+ 2C; (1)

Consistent with Tett et al., (2022), we account for internal variability in both model
simulations and observations by doubling the model-based estimate, reflecting a
conservative assumption of comparable noise contributions. During optimization, all
observation values are standardized using the square root of the diagonal elements of

matrix C.

2.5 Evaluation methods

The cost function F(p) is used to measure the difference between the simulated
values S and the target observations O based on the parameters p. The cost function is
given by:

F2(p) =~(S—0)'C™(S - 0) @.
where S is the simulated values; O is the target (observed) values; N is the number

of observations; (S — 0)7T is the transpose of the difference between simulated and

observed values; C~! is the inverse of the covariance matrix C discussed above. This
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cost function quantifies how far the simulation is from the observations, considering
the uncertainty (through C) and correlation between different observations. The cost
function can be modified to include additional constraints, such as the net radiation flux
at the TOA, along with global averages for surface air temperature and precipitation.
The Jacobian matrix, J, defined as the partial derivatives of the simulated outputs
with respect to the parameters being optimized, is used to assess the influence of tuning
parameters on the simulated variables. For each simulated model output S; and

parameter pj, the Jacobian element J;; is given by:

95i(p)
Jij = =7 A3)

This measures how much a small change in the parameter p; will affect the
simulated model outputs S;(p), revealing the impact of each parameter on the variables
and providing insights into their sensitivity. The Jacobians are normalized by the
parameter range and internal variability. Further details about the cost function and the
Jacobian are available in Tett et al. (2017).

In order to assess the extent to which the optimization has improved the
performance of the simulated values, the ratios (Z) of the difference between the

optimized and the default one to the standard error was adopted:

7 = |VDefau1t_VObservation|_|V0ptimized_V0bservation| (4)
Standard error

The Vopservation  Vbefaurt > and Voptimizea represent the observation value,
simulated values using the default and optimized parameter sets, respectively. The
Standard error represents the observation error of the corresponding variables.
Improvement is expected for the variable if Z > 0, while if Z < 0, no improvement

is anticipated, and performance may even worsen.

2.6 Optimization algorithm

The challenge of optimizing the model parameters numerically lies in the high
computational cost and potential noise associated with model evaluations, making
traditional derivative-based optimization methods impractical. There are several
optimization algorithms the system provides, such as (derivative-free) Gauss-Newton

variants, the pySOT algorithm, and the DFO-LS algorithm. We use the DFO-LS
13
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algorithm as it appears to have better performance in model calibration (Oliver et al.,
2022, 2024; Tett et al., 2022) relative to other algorithms such as Gauss-Newton (Tett
etat.,2017) or CMA-ES (Hansen, 2016). This algorithm is a sophisticated optimization
method designed to handle nonlinear least-squares problems without requiring
derivative information. This algorithm is particularly useful in scenarios where function
evaluations are expensive or noisy. Inspired by the Gauss-Newton method, DFO-LS
constructs simplified linear regression models for the residuals, allowing it to make
progress with a minimal number of objective evaluations (Cartis et al., 2019).

The underlying algorithmic methodology for the DFO-LS algorithm is detailed in
Cartis et al. (2019). Here, we provide a brief overview of the algorithm, with a detailed
description of its parameter settings available in Supplementary S1. The optimization

problem is defined as minimizing the sum of the squared residuals

N ri(p)?
f(p): = 2=®r )

where r(p) represents the differences between model outputs and observations;

in our case, ri(p):=C %(Si — 0;). DFO-LS approximates the residuals without
derivatives by creating a linear regression model at the current iteration. DFO-LS
employs a trust region framework for stable optimization, which dynamically adjusts
the search region to balance exploration and exploitation. After constructing the
regression model, the algorithm solves the trust region subproblem to determine the
step size and direction for updating parameters. The actual versus predicted reduction
in the cost function is calculated to decide whether to accept or reject the step, with
adjustments made to the trust region size accordingly. The algorithm follows these steps:
initialization of parameters and trust region, model construction at each iteration,
solving the trust region subproblem, accepting or rejecting steps, updating the
interpolation set, and checking termination criteria. This structured approach ensures

robust and efficient optimization in minimizing model discrepancies.

3 Results
3.1 AMIP2011 simulations
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3.1.1 GAMIL3 10-parameter case

The first experiment aims to optimize the ten sensitive parameters related to
convection and microphysics parameterization schemes (Table 2). In this experiment,
several parameters—such as ke and capt/mt—changed significantly from their default
values, while cmftau and c0 showed only small changes (Fig. 3a). Fig. 3b shows the
progression of the cost function over iterations for the 10- and 20-parameter cases. Note
that the cost function is divided by the number of observations, and a smaller cost
function indicates better simulation accuracy against observations. In the 10-parameter
case, the optimization required 29 total model evaluations (11 initial perturbation runs
+ 18 iteration runs), reaching the lowest cost function value of approximately 3.5. The
cost function drops rapidly from about 7.5 to 3.5 in the first iteration run, followed by
a slower decline with some fluctuations.

Fig. 4 shows the reduction or increase in simulation error in terms of the number
of standard errors through optimization. In the 10-parameter case (solid dots), 24 out of
34 variables (approximately 71%) show Z values greater than zero, indicating improved
performance against the default case. Moreover, for 11 of these 24 variables, the
optimization reduced the error by more than 1 standard error, with 5 of these showing
improvements greater than 3. This is particularly evident in the RSR, MSLP, and the
tropical variables of T500. While most variables can be effectively tuned, several
variables, such as OLR, OLRC, and LAT, are worse than the default case. However,
except for LAT NHX, the performance of these variables did not degrade by more than
one standard error. The blue dots in Fig. 5 represent the global area-weighted mean of
different variables for the tuning year (2011) in the 10-parameter case. Comparing to
the observational values, the optimization successfully improved most variables (9 out
of 10), bringing them closer to the observations. Although some variables showed slight
deviations from the observations after optimization, nearly all remained within their
uncertainty range (except for OLRC), which is also reasonable in model tuning.

Since the cost function is a simple statistical indicator of the distance between the

area-weighted mean of the simulations and the observations, analyzing the spatial
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distribution of the variables is crucial when evaluating the performance of the optimized
parameter sets. Fig. 6a presents Taylor diagrams for all tuning variables under three
parameter cases for the optimized year (2011). The results indicate that, compared to
the default case (yellow), most variables' performance improved to varying degrees in
the 10-parameter case (blue). For instance, while the standard deviation (SD) of the
MSLP in the default result was much closer to the observations, the 10-parameter case
exhibited a larger pattern correlation (PC) coefficient and a smaller root mean square
deviation (RMSD). Some variables, including Lprecip, NETFLUX, and T500, showed
improvements in all three metrics (SD, PC, and RMSD). However, other variables, such
as OLR and RH500, showed slight deterioration after optimization, as partially
suggested in Fig. 4.

The "optimized" parameter set referred to in this study is the set where the cost
function reaches its lowest value. However, the robustness of this parameter set,
compared to others with similar cost function values, remains to be evaluated. To
address this, two additional experiments were conducted (Table S1 and Fig. S1),
selecting parameter sets with cost function values closest to the optimized one to
evaluate the potential impact of this choice. Table S1 shows that the parameter values
for the two sets (Experiment] and Experiment2), which have cost function values close
to the minimum (Optimized), are quite similar, particularly for Experiment1, which has
the closest cost function value. The results from the AMIP2005-2014 simulations show
that, while most variables exhibit similar behaviors to those of the Optimized set,
notable differences are observed in T2M and Lprecip. Overall, although differences in
model behavior arise from the choice of the optimized parameter set, these differences

are not substantial enough to significantly alter the model’s performance.

3.1.2 GAMIL3 20-parameter case

To investigate the impact of different numbers of tuning parameters on
optimization and the robustness of the tuning results, additional 10 parameters related
to microphysics and turbulence schemes (Table 2) were included alongside the existing

10 parameters. In the 20-parameter case, the initial perturbations for the original 10
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parameters were kept the same as in the 10-parameter case to ensure a fair comparison.
Comparing the optimal values of the 20-parameter case with the default values shows
that several parameters had large changes. Parameters such as c0 conv, ke, capelmt,
dzmin, Dcs, and ecr showed significant deviations from their default values (Fig. 3a).
Comparing the two sets of optimal parameters reveals both differences and
consistencies. While most parameters, such as capelmt, alfa, and rhcrit, change in the
same direction and display similar magnitudes, some parameters, like ke and cmftau,
are adjusted in the opposite direction. These differences may be attributed to the
compensating errors within in the model, where adjustments to one parameter can offset
or amplify the effects of another—a phenomenon further explored in Section 3.3. When
examining the tuning procedure (Fig. 3b), it is evident that the cost function dropped
rapidly to a value very close to the minimum in the first iteration run, similar to the 10-
parameter case. The system required a total of 31 runs (21 initial perturbation runs + 10
iteration runs) to reach the lowest cost function value (2.87), which is only two more
than that required for the 10-parameter case. This suggests that adding ten additional
parameters increases the total number of evaluations only marginally, indicating that
when optimizing with DFOLS, there is no need to be overly selective about parameter
choice. The minimum cost achieved is comparable to that of the 10-parameter case,
with fewer additional runs required after the initial perturbation phase to reach the
minimum. This implies that including more tuning parameters has a small impact on
the total cost but enhances tuning efficiency. This improvement can be attributed to the
inclusion of additional parameters related to other parameterization schemes, which
enhances model tuning and yields more realistic results compared to observations.
Comparing the Z values from the 20-parameter case to those from the 10-parameter
case (Fig. 4), we find that 25 out of 34 variables (approximately 74%) have Z values
greater than zero, slightly higher than in the 10-parameter case. Among these, 11
variables show improvements of more than 1 standard error, with 6 exhibiting
significant improvements of over 3 standard errors (notably in T500 and MSLP), which
is also better than the 10-parameter case. While most variables in the 20-parameter case

demonstrate equal or greater improvements than in the 10-parameter case, some, like
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OLR and OLRC, perform worse. The global area-weighted mean of all variables
(shown by red dots in Fig. 5) indicates that, except for OLR, RH500 and Lprecip,
variables improved compared to the default case. Although RH500 shows a greater
deviation from observation, it still falls within the uncertainty range. Significant
differences between the 20-parameter and 10-parameter cases are observed in the two
radiation variables (OLR and RSR) and the two surface-related variables (T2M and
Lprecip). These differences may partly result from certain parameters compensating for
each other, which will be discussed later. The Taylor diagram in Fig. 6a shows that most
variables have improved compared to the default case. Relative to the 10-parameter
case, OLR, RSR, RSRC, MSLP, and Lprecip perform better in the 20-parameter case.
However, NETFLUX and T2M perform worse.

3.2 AMIP2005-2014 simulations

Although our cost function explicitly accounts for internal variability (Eq. 1),
tuning and evaluating the model using only a one-year simulation may still introduce
uncertainties due to atmospheric internal variability (Bonnet et al., 2025), such as phase
shifts in the North Atlantic Oscillation (NAO) or stochastic tropical convection patterns
like the Madden-Julian Oscillation. Therefore, a longer simulation with adjusted
parameter settings using AMIP drivers is necessary to assess the robustness of the
tuning across different phases of intrinsic variability. Thus 10-year simulations from 1
January 2005 to 31 December 2014 are conducted for the default and two optimized
parameter sets. Compared to the results from 2011, the average AMIP2005-2014 results
(Fig. 4b) show no significant differences between the two cases, as both exhibit similar
changes across most variables. For example, T500 and RSR show much improvement
in both cases, while OLR and OLRC perform worse. However, several variables show
differences between the two conditions. For instance, while the
MSLP_TROPICSOCEAN DGM shows an improvement of more than 20 standard
errors relative to observations in the 2011 simulation with the 10-parameter case, it
deviates from the observation by over 10 standard errors in the 10-year simulation.

Additionally, while the 20-parameter case demonstrated improvement in the 2011
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simulation, its performance declined in the 10-year simulation. This temporal
inconsistency suggests that certain parameter adjustments may be sensitive to the
specific climate state of 2011, which was characterized by a moderate La Nifia. In
contrast, variables such as T500, RSR, and NETFLUX exhibit consistent improvements
across both simulations, indicating a robust response to parameter tuning that is less
dependent on interannual variability.

The time series of the AMIP2005-2014 simulations in Fig. 5 show that, for the 10-
parameter case, 8 out of 10 variables are either much closer to the observations or very
similar (OLR, OLRC, and RSRC) to those in the default case. Only two variables,
RH500 and Lprecip, are slightly further from the observations but still within
uncertainty. The most striking finding is the improvement of the variables related to the
energy balance of the climate system (RSR and NETFLUX). For the default case, due
to the large outgoing shortwave radiation, NETFLUX has an error of about 5 W/m?. In
addition, T500 in the default case is too cold by almost 2K. After optimization, while
OLR shows little change, RSR decreased by nearly 5 W/m?, considerably reducing the
model bias and leading to smaller biases in NETFLUX and T500. Furthermore, the
results suggest that MSLP, RSRC and OLRC are hard to tune. In the 20-parameter case,
compared to the default, all variables—except RH500, OLR, T2M and Lprecip—show
either reduced biases or biases that are very close (OLRC and RSRC) to those in the
default case. Both OLR and Lprecip perform notably worse than in the default case,
with both variables being too low compared to the observations. This is less successful,
in relative terms, than the 10 parameter case, where 8 variables exhibit reduced or
similar bias relative to the default. However, T500 and the MSLP—two variables that
deviated significantly from the observations in the default and 10-parameter cases—
have been further tuned and now align more closely with observation.

Similar to the Taylor diagram of the AMIP2011 results, the AMIP2005-2014
simulations (Fig. 6b) also demonstrate varying degrees of improvement across the three
metrics for most variables in both optimized cases. For instance, both cases improve all
three metrics for Lprecip, NETFLUX, and RSRC compared to the default case,

consistent with the AMIP2011 results. While Lprecip, RSRC, T2M, and NETFLUX in
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both optimized cases exhibit similar behavior to the AMIP2011 results, MSLP, RH500,
and RSR behave differently. Comparing this with Figs. 4 and 5, the results suggest that
this tuning yields only minor improvements to the spatial patterns of the variables but
primarily reduces their biases relative to observations. Examining zonal averages (Fig.
7) reveals more specific details, particularly the differences between tropical and extra-
tropical regions. TS00 and RSR have large tropical biases which tuning considerably
reduces. In contrast, RH500, OLR, RSRC, and MSLP have larger biases in extra-
tropical, especially polar regions. These regional biases may come from uncertainties
in complex high-latitude processes, such as sea ice and snow cover feedback
mechanisms, which are not well represented in the model (Goosse et al., 2018). Across
the three cases, average performance is similar to that found earlier, with T500, RH500,
OLR, RSR, T2M, and Lprecip most affected by tuning and most sensitive to parameter
changes, while OLRC, RSRC, and MSLP are little impacted by optimizing. Specifically,
MSLP is highly sensitive to unresolved gravity wave drag processes (Sandu et al., 2015;
Williams et al., 2020), which were not included in our parameter tuning. Previous
experiments with the IFS model indicate that increasing orographic and surface drag in
the Northern Hemisphere can reduce MSLP biases (Kanehama et al., 2022). While the
global mean OLRC is similar across cases due to regional compensation (Fig. 5d), the
meridional distribution reveals notable differences (Fig. 7d). In the tropics, increased
upper tropospheric water vapor—particularly in the 20-parameter case (Fig. 9a—9b)—
enhances the greenhouse effect and reduces outgoing clear sky longwave radiation. In
contrast, decreased water vapor in high-latitude regions, especially in the 20-parameter
case, leads to increased OLRC. RSRC remains nearly unchanged across all simulations
due to the use of identical surface albedo. Additionally, while changing physical
parameters generally affects the entire atmosphere, some variables respond differently
in specific regions. For example, RH500 shows a more pronounced response in tropical

regions, while land T2M responds more noticeably in the extra-tropics.
3.3 Impacts of tuning on GAMIL3
What parameters and processes would affect these model tuning behaviors? As
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shown in Fig. 8, parameters such as c0 conv, cmftau, rhcrit, rhminl, rhminh, and Dcs
significantly affect simulated variables, particularly NETFLUX,
Lprecip TROPICSLAND, RSR TROPICSOCEAN, OLR TROPICSOCEAN, and
TEMP@500. Notably, most of these parameters have also been adjusted significantly
in the 10- and 20-parameter cases compared to the default. rAcrit defines the RH
threshold for triggering deep convection and is a parameter with a strong influence on
RH. Fig. 3a shows that rAcrit decreased from the default case, whose value is 0.85, to
the 10-paramter case and 20-parameter case, whose values are 0.83 and 0.82,
respectively. A lower rhcrit significantly promotes deep convection by reducing the
triggering threshold, which enhances water vapor transport from the lower to the mid
and upper atmospheric layers. This could lead to a drop in RH below troposphere and
arise above it (Fig. 9a). This effect is especially pronounced in the tropics, where deep
convection dominates vertical moisture transport (Fig. 5b, 7b, and 9b). While a lower
rherit threshold would theoretically enhance precipitation by promoting deeper
convection, our simulations instead show an overall decrease in precipitation. This
apparent discrepancy suggests the parameter's effect is modulated by compensating
atmospheric processes. Specifically, enhanced vertical moisture transport (Fig. 9a-9b)
reduces low-level humidity availability, thereby weakening updrafts and ultimately
decreasing total precipitation (blue line in Fig. 5h).

A deficit in low-level cloud fraction is evident in Fig. 9¢-9d, primary due to the
increase in rhminl from the default value of 0.95 to 0.97 and 0.96 in the 10- and 20-
parameter cases, respectively. Although the 10-parameter case has a higher threshold
for low level cloud formation than the 20-parameter case, Fig. 9c-9d shows the different
result, which can be explained by the compensatory effects of other parameters.
Optimized results indicate that cmffau, another key parameter, has a lower value in the
20-parameter case (~4284) compared to the default (~4800) and the 10-parameter case
(~4931). This decrease in cmftau likely strengthens shallow convection while
weakening deep convection, reducing upward water transport and RH throughout the
troposphere, contributing to the decreased low-level cloud fraction (Xie et al., 2018)

and further reducing precipitation (Fig. 5h). Consequently, the lower low-level cloud
21



618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

fraction in the 20-parameter case, compared to the 10-parameter case, reflects the
compensatory effects of these key parameters, with the influence of the reduced cmftau
outweighing that of rhminl. Low-level clouds strongly reflect shortwave radiation,
producing a cooling effect. Therefore, a reduction in low-level clouds allows more
shortwave radiation to penetrate the lower atmosphere, reducing outgoing shortwave
radiation to space (blue lines in Fig. 5e and 7¢) and warming the region (blue lines in
Fig. 5a and 7a; Fig. 9¢), including near the surface (blue lines in Fig. 5g).

Comparing the 20-parameter case to the default case, the tuning results show that
one sensitive parameter, Dcs—the autoconversion size threshold for ice to snow—has
been significantly increased. This adjustment suggests that a higher Dcs leads to
increased RSR and T2M, while also resulting in lower OLR and Lprecip (Fig. 8). ccrit,
which sets the minimum turbulent threshold for triggering shallow convection, affects
both OLR and Lprecip in a manner similar to Dcs. Specifically, clouds with higher ice
content trap more OLR from the Earth's surface, potentially amplifying the greenhouse
effect by retaining more infrared radiation (red lines in Fig. 6¢ and 8c). This results in
a warming effect, particularly at lower atmospheric levels and even near the surface,
especially during nighttime or in polar regions (red lines in Fig. 5a, 5g, 7a, and 7g; Fig.
91). Additionally, raising the autoconversion threshold from ice to snow is expected to
allow more ice to remain in the atmosphere, directly leading to a reduction in
precipitation (red line in Fig. 5h), and increased cloud optical thickness, thereby
enhancing the reflection of incoming shortwave radiation. This enhanced reflectivity
partially offsets the impact of reduced low-level cloud cover on the RSR in the 20-
parameter case, leading to a smaller decrease in RSR compared to the 10-parameter
case (Fig. 5e and 7e), consistent with known radiative differences among cloud types
(Chen et al., 2000). Increasing ccrit suppresses shallow convection by requiring
stronger turbulence to initiate cloud formation, thereby reducing low-level cloud cover.
This reduction enhances outgoing longwave radiation and surface solar heating, which
in turn promotes evaporation and increases Lprecip. Therefore, adjusting Dcs and ccrit
in future work may offer a promising approach for improving the simulation of OLR

and Lprecip, both of which are underestimated relative to the default case.
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3.4 Coupled model evaluation

In order to evaluate the performance of different parameter sets in long-term
climate simulations, it is essential to apply them to a coupled model. To assess the
impacts of atmospheric parameter tuning on coupled model performance, we conducted
a 30-year piControl simulation using GAMIL3 coupled to land, ocean, and sea ice
components (see Methods 2.2), analyzing the final 15-year period after model spin-up.

In the default case the model starts with a large negative NETFLUX of around -4
W/m? (Fig. 10a), consistent with the results in Fig. 5j, indicating that the climate system
is losing energy at this stage. As the model integrates, the NETFLUX increases,
approaching zero after approximately five model years, achieving a stable energy
budget for the remaining simulation period. This change in NETFLUX is found to be
almost equally driven by a ~2 W/m? reduction in both RSR (Fig. 10b) and OLR (Fig.
10c) simultaneously. However, despite these radiation variables, particularly the
NETFLUX, approaching a stable state, the ocean continues to lose energy rapidly (Fig.
10d) with no signs of stabilization by the end of the simulation. For T2M (Fig. 10e),
the simulated values in the piControl run deviate significantly from the target range of
13.6 £ 0.5°C (Williamson et al., 2013). While the decrease in OLR is physically
consistent with the cooling of T2M, the reduction in RSR is primarily attributed to
oceanic adjustment processes. In particular, a cold SST bias (Fig. S3b) induced by the
original parameter settings leads to a rapid decline in low-level cloud cover over
tropical and subtropical ocean basins—especially in the western Pacific warm pool
region and the South Atlantic (Fig. S3c). Most areas of cloud reduction spatially
coincide with regions of diminished reflected shortwave radiation (Fig. S3d), a
relationship further supported by changes in shortwave cloud forcing (SWCF; Fig. S3e).
Overall, although the NETFLUX appears to reach a stable state, the system continues
to lose energy and remains far from the tuning target in the default case.

For both optimized cases, the NETFLUX (Fig. 10a) remains stable throughout the
30-year simulations, with values of about 2 W/m?. Although not exactly reaching the

target of 0 W/m?, they are still within the model spread range of -3 to 4 W/m? (Mauritsen

23



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

et al.,, 2012). Further analysis revealed that the relatively large energy imbalance
primarily originates from the GAMIL3 atmospheric model, which exhibits a persistent
imbalance of approximately 1.4 W/m? in its AMIP configuration—a feature also
observed in the piControl runs—due to non-conservation in the dynamical core. This
systematic issue is consistent with other atmospheric or coupled models (e.g., up to
1.0 W/m? for CAM6 at 1° resolution (Lauritzen and Williamson, 2019), 1.3 W/m? for
FGOALS-g3, and 3.3 W/m? for INM-CM4-8, calculated from Wild, 2020). Notably,
this energy leakage nearly identical (+0.1 W/m?) between the default and optimized
runs, indicating that the model improvements, such as reduced climate drift, result from
genuine parameter tuning rather than compensation for the energy bias. This conclusion
is further supported by the coupled model’s stabilized energy budget following the spin-
up period (Fig. 10). The change in NETFLUX in the 10-parameter case is primarily
driven by a decrease in RSR (Fig. 10b), while in the 20-parameter case, it is mostly due
to a reduction in OLR (Fig. 10c), consistent with the results in Fig. 5c and 5e. Both the
volume-averaged ocean temperature (Fig. 10d) and the T2M (Fig. 10e) exhibit a slight
initial adjustment during the initial few years, followed by stabilization. Drift may occur
during the initial integration period due to inconsistencies between the OMIP-forced
ocean state and the reanalysis-based atmospheric initial conditions. However, in both
cases using atmosphere-optimized parameters, the system stabilized rapidly, and
neither the TOA net flux nor ocean temperature exhibits significant trends beyond the
initial adjustment period of a few years. A small long-term drift is still evident in Fig.
10d, which may be related to the adjustment of deep ocean processes. This demonstrates
that the parameters optimized for the atmospheric model remain effective in the coupled
system configuration, with no clear evidence of compensation for ocean-related drift.
Results from the simulated SST biases in Fig. 11a—11c for the default case show
strong cold biases relative to observations, with maximum deviations exceeding -4°C
over the North of Pacific and Atlantic. The simulated SST biases in Fig. 11d-11i
indicate that both optimized cases show substantial improvement over the default case
in terms of SST patterns and deviations, although some negative deviations in the

northern Pacific and Atlantic persist—a common issue for most GCMs (Zhang and
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Zhao, 2015a; Wang et al., 2018). Previous findings suggest that the two optimized cases
exhibit cloud fraction significantly different from the default case, with simulated
radiation improvements primarily observed in shortwave radiation for the 10-parameter
case and in longwave radiation for the 20-parameter case. Therefore, it is necessary to
investigate the shortwave and longwave cloud forcing in these two cases (Fig. 12). The
results for both cases show that the combined effect of these two cloud forcings acts as
a significant positive influence globally, contributing to the flux of energy towards the
ocean and increasing ocean temperature. Specifically, the shortwave cloud forcing has
a greater weight than the longwave in the 10-parameter case, mainly due to the
parameters rhcrit and rhminl, as mentioned earlier. In contrast, the longwave cloud
forcing outweighs the shortwave in the 20-parameter case, primarily due to the effects
of Dcs. While the shortwave cloud forcing exerts a negative effect over the tropical
ocean, the longwave cloud forcing provides a significant compensatory effect. A similar
behavior is observed in the 20-parameter case.

Overall, the two optimized cases result in a more realistic coupled model, not only
maintaining the model's energy balance and reducing climate drift, but also improving
the simulated ocean state, such as SST distribution. Although the two optimized cases
exhibit different behaviors—with the 10-parameter case showing lower RSR and the
20-parameter case showing lower OLR—tuning has allowed them to achieve stability
through distinct mechanisms. While we acknowledge that multi-century integrations
would provide additional insight into the model’s equilibrium climate response, our
primary goal was to test whether AMIP-tuned parameters remain valid in a coupled
setup. For this purpose, a 30-year piControl run is scientifically adequate. The results
show that the model quickly reaches energy balance stability for both the 10- and 20-
parameter cases (TOA net flux drift < 0.05 W m™ per decade) and that ocean heat
content drift remains minimal (< 0.008 ° C per decade) after year 15, indicating that
the system achieves a quasi-equilibrium state. This timescale is reasonable, since the
upper ocean—where much of the adjustment occurs—has a relatively short adjustment
timescale of about 1-5 years. The stabilized climate indicators and consistent system

behavior (Figs. 9 and 10) confirm that the tuned parameters yield a credible coupled
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climate without introducing systematic drifts. Similar integration lengths have been
used in other studies (e.g., Tett et al., 2017). While longer runs could refine the
equilibrium further, they are unlikely to change our main conclusion that the parameter

transfer is robust.

3.5 Sensitivity of initial parameters

As stated in the previous section, the initial parameter values used for tuning are
primarily informed by expert judgment, which has been recognized as crucial and
necessary in other studies (Hourdin et al., 2017; Williamson et al., 2017; Jebeile et al.,
2023; Lguensat et al., 2023). To further investigate the extent to which initial parameter
choices influence tuning results, we conducted three additional sensitivity experiments
with randomly selected initial parameter values (Table S2), focusing on the first 10
parameters.

The optimized parameter values in these randomized experiments (represented by
stars in Fig. 3a) exhibit significantly larger spreads compared to the default and original
optimized values (blue dots), particularly for parameters such as c0_conv, capelmt, and
c0, which nearly span their entire plausible ranges. This finding indicates that the model
could reach entirely different optimized states depending on initial values. During the
tuning process, the cost function (Fig. 3c) for these cases exhibited a rapid decrease,
stabilizing at similar values across all three experiments after approximately 10
iterations, with an additional 10-20 runs required to reach the optimized state. This
pattern further demonstrates the efficiency and robustness of the tuning algorithm.

Given the substantial differences in the optimized parameters, it is worthwhile to
further investigate their Jacobian differences to gain a more comprehensive
understanding of each parameter's impact on the variables. Fig. 13 shows the Jacobian
ranges for four cases (including the original optimized case), with Jacobian calculated
around the optimized parameter set for each case. The results generally demonstrate
consistency with the parameter sensitivities shown in Fig. 8. Variables sensitive to most
parameters exhibit substantial variability, while highly sensitive parameters, such as

c0_conv, cmftau, rherit, rhminl, and rhminh, introduce considerable uncertainty across
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multiple variables, depending on their initial values and interactions with other
parameters. Conversely, RSRC and OLRC remain largely insensitive to parameter
changes, whereas MSLP, NETFLUX, Lprecip, and TEM@500hPa are influenced by
most parameters, also aligning with the findings in Fig. 8.

The performance of these three optimized parameter sets in the AMIP2005-2014
simulations is shown in Fig. S2. Generally, NETFLUX was most closely aligned with
observations across all cases, primarily due to the additional constraint incorporated
into the tuning algorithm. However, notable differences across different cases remain,
with each case following a distinct optimization pathway, though most results still fall
within uncertainty ranges. For example, the third experiment achieved the closest
alignment for T500 but at the expense of T2M and Lprecip compared to other cases,
highlighting inherent trade-offs and model structural errors that hinder simultaneous
optimization of these variables. As seen in prior findings, RSRC and MSLP proved
difficult to tune, while OLRC was adjustable but deviated in the opposite direction from
observations, accompanied by a discrepancy in RH500 alignment.

Overall, these sensitivity experiments confirm the efficiency of the tuning
algorithm and underscore the importance of expert judgment in selecting initial
parameter values. Expert selection not only ensures satisfactory model performance at
the start of tuning but also enhances tuning effectiveness, even though structural errors

in the model remain.

4 Discussion

In this study, we developed an objective and automatic parameter tuning
framework using the Derivative-Free Optimizer for Least-Squares (DFO-LS) method
to tune the newest version of the Grid-Point Atmospheric Model (GAMIL3). The
results highlight the effectiveness of this method in tuning atmospheric parameters,
particularly those initially set based on expert judgment, as demonstrated by notable
improvements in model accuracy across multiple variables and enhanced climate
system stability. However, several aspects of this work require further clarification.

Firstly, as noted earlier, the 'optimized' parameter set in this study refers to the set
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at which the cost function achieves its minimum value. However, results in Figs. 3b
and 3c indicate that, for each case, there are several cost function values close to this
minimum. We have shown that these differences are not substantial enough to
significantly alter the model’s performance. However, this finding suggests that
parameter ranges associated with similar cost function values may provide valuable
insights into the acceptable parameter space for model optimization. We acknowledge
that focusing exclusively on minimizing cost function values to obtain a single
optimized parameter set during tuning can increase the risk of overfitting and
compensating errors, which is a common challenge in model tuning. Although the
results of this study show no clear signs of overfitting—both the 10- and 20-parameter
optimized cases, starting from expert-judged initial values, ultimately produce
reasonable coupled model results—it remains important to carefully consider potential
overfitting impacts.

Secondly, this study shows that tuning either different numbers of parameters or
varying initial parameter values can yield diverse optimized results, each improving
certain aspects of the model. This suggests that although tuning can lower the cost
function to comparable levels, the final tuned state of the model is not necessarily
unique—a common issue encountered in model tuning (Hakkarainen et al., 2013;
Hourdin et al., 2017; Eidhammer et al., 2024), likely due to the compensating errors
within the model and uncertainties in the observational data. On one hand, introducing
constraints, such as assigning greater weight in key variables during tuning, could help
achieve more realistic results. For instance, applying constraints on NETFLUX during
tuning ensures consistently good performance across all the cases in the AMIP2005-
2014 simulations. In the 20-parameter case, adding constraints on OLR and RSR would
maintain their performance while also improving T500 and MSLP. On the other hand,
while different parameter sets satisfied the lowest cost function in different ways, it is
important to remember that the cost function is simply a statistical measure of the
distance between the area-weighted mean of the simulations and observations.
Therefore, a comprehensive evaluation is essential to identify the most suitable

parameter set (Eidhammer et al., 2024). Beyond minimizing cost function values and
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aligning statistical indicators with observations, it is crucial to evaluate the spatial
distributions of variables, the equilibrium state of the climate system in coupled models,
and the model’s climate sensitivity (Tett et al., 2022; Eidhammer et al., 2024). These
aspects should be further evaluated to ensure robust model performance.

Thirdly, while our 1-year optimization produced parameters that remain effective
in extended runs (as shown by the AMIP2005-2014 and 30-year piControl validations)
and internal variability was explicitly accounted for in the cost function (Eq. 1),
including interannual variability—using a longer tuning period like the 5-year approach
of Tett et al. (2022)—could further improve results, especially for variables with large
interannual variability (e.g., MSLP, Lprecip) and dynamical outputs sensitive to the
chosen year. This is supported by Bonnet et al. (2025), who show that short-term tuning
works well for physical variables with low interannual variability but multi-year tuning
better captures dynamical variability. Based on Bonnet et al. (2025) and our own
results—such as the difference observed between 1-year and 10-year simulations for
MSLP_TROPICSOCEAN DGM, which degraded from +20c to —10c—we might
expect approximately 10-20 % better performance for variables that are particularly
sensitive to interannual variability, such as tropical precipitation patterns or
extratropical circulation indices, since a longer tuning period would better sample
different climate regimes and reduce sensitivity to single-year anomalies. However,
longer tuning greatly increases computational cost—about 56 times higher for 5-year
runs. Our current strategy balances efficiency and robustness, but certain metrics like
T2M and Lprecip might still benefit from longer tuning. This trade-off warrants further
study, particularly where an accurate representation of interannual variability is crucial.

Lastly, to assess how the number of tuning parameters affects the optimization
process, we used the same initial perturbation runs for the ten shared parameters in both
the 10- and 20-parameter cases, enabling a consistent evaluation of their sensitivity to
the simulated results. While this approach allows a straight forward comparison, it may
also constrain the optimization in the 20-parameter case by introducing bias into the
initial search space. To address this potential limitation, we conducted additional

experiments in which all twenty parameters were initialized with independent
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perturbations (Fig. S4-S6) by adjusting the rhobeg parameter in the DFO-LS algorithm
from its default value of 0.18 to 0.23. These additional experiments yielded several
important insights that strengthen our original conclusions. First, although the
optimized parameter values in the new 20-parameter case differ somewhat from those
in the original setup, most shift in the same direction relative to the default values (Fig.
S4). Moreover, the optimization consistently converged to similar cost function values
(2.68 vs. 2.87), despite differences in the initial perturbations and optimization
pathways, highlighting the robustness of our tuning framework. Second, both
approaches produced nearly identical simulation performance in the 10-year AMIP and
30-year piControl experiments (Fig. S5-S6), despite relying on different parameter sets.
This suggests that the performance in the 20-parameter case may be dominated by a
subset of the most sensitive parameters, such as Dcs, rhcrit, c0_conv, and cmftau, which
have been shown to strongly influence the simulated results. These findings provide
strong evidence that our conclusions regarding the robustness of the optimization and
the effect of increasing the number of tuning parameters remain valid.

Some limitations remain. For instance, although the coupled model simulations
show improvements in energy stability and reduced climate drift, certain regional biases
in SST persist. These biases suggest that while tuning enhances model performance,
there may be systematic issues within the model’s physics that cannot be fully addressed
through parameter tuning alone. Resolving these regional discrepancies may require
further refinement of model physics or additional modifications to the tuning
framework. Additionally, the optimized cases show a relatively large TOA energy
imbalance (~2.0 W/m?) despite a well-tuned NETFLUX in AMIP runs, which
originates from energy non-conservation in the atmospheric model's dynamical core. In
the AMIP configuration, prescribed SSTs act as an infinite energy source/sink, masking
this internal leakage in the dynamical processes. By contrast, the coupled system
exposes the dynamical core's non-conservation as a stable but imbalanced energy state.
This interpretation is supported by our ongoing experiments (not shown) following
Williamson et al. (2015b), where correcting energy conservation in the dynamical core

reduced the TOA imbalance in the piControl runs to about 0.5 W m™ within the same
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tuning framework. These results underscore that while parameter tuning can improve
model fidelity, structural errors in the dynamical core—particularly its energy non-
conservation—must be addressed to achieve physically consistent climate simulations.
Finally, because variables such as lower tropospheric temperature, humidity, cloud
fraction, and cloud radiative effects are highly sensitive to the model time step and the
coupling frequency between dynamics and physics, it would be valuable to explore the

tuning performance under different time step settings in future work.

5 Conclusions

The study focuses on optimizing an atmospheric model by simultaneously
perturbing and tuning multiple parameters associated with convection, microphysics,
turbulence, and other physical schemes. Two primary experiments were conducted
using AMIP2011 simulations (2011, with 3-month spin-up): one adjusted 10 parameters
and another adjusted 20 parameters. Validation was then performed through extended
independent decadal AMIP (AMIP2005-2014) simulations and 30-year coupled
piControl simulations. Consistent performance across timescales and model
configurations confirmed that the tuning corrected systematic biases rather than
overfitting. In the 10-parameter tuning, significant changes were made to several
sensitive parameters, resulting in a notable reduction in the cost function and improved
model accuracy. Out of 34 variables, 24 showed improved performance, although some
remained challenging to optimize due to structure errors in the model. In the 20-
parameter tuning, additional parameters related to microphysics and turbulence were
introduced, resulting in slight performance improvements for 25 out 34 variables.
However, certain variables experienced a decline in performance. While the 20-
parameter case achieved a lower cost function more quickly than the 10-parameter case,
the increased complexity required careful management of parameter interactions and
compensatory effects.

To evaluate the robustness of the tuning results, we conducted AMIP2005-2014
simulations. The findings showed that the optimized parameter sets maintained their

performance improvements over extended simulation periods, though variables like
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MSLP exhibited variability depending on the specific period analyzed. Time series
analyses indicated that the optimized models more accurately captured the energy
balance of the climate system, particularly by improving the balance of outgoing
shortwave and longwave radiation and stabilizing surface temperatures. However, some
variables remained challenging to optimize consistently across different regions and
timescales. The optimized parameter sets were further tested in a coupled model setup
that integrated land, ocean, and sea ice components. The results demonstrated improved
energy budget stability, reducing climate drift and leading to more realistic SST
simulations. Both the 10- and 20-parameter optimizations yielded more reasonable
behavior in the coupled model, though persistent regional biases, particularly in the
northern Pacific and Atlantic, remained.

Three additional experiments, in which the initial values of the first 10 parameters
were randomly selected, were conducted to evaluate its impact on the optimized results.
The results further confirm the efficiency and robustness of the algorithm, as it rapidly
minimizes the cost function after the first 10 runs, although the optimized parameter
values and their performance across different cases show significant variation. Overall,
these findings emphasize the importance of expert judgment in parameter selection and
its role in enhancing model performance.

In conclusion, the proposed DFO-LS-based tuning framework presents a robust
and efficient approach for enhancing climate model performance. By combining
Jacobian estimation with sensitivity analysis, the framework quantitatively maps how
parameters affect key variables and thereby exposes compensating errors between
physical schemes (for example, interactions between deep convection and
microphysics). These parameter—variable mappings yield direct insight into model
structural uncertainties and supply objective diagnostics that guide development. When
model physics are changed, the framework supports rapid retuning and systematic inter-
version comparison: systematic shifts in optimal parameter values then serve as
concrete evidence of how structural modifications alter model behaviour. Implemented
and exercised primarily by a single researcher within 12 months, the approach also

demonstrates high human-resource efficiency and practical scalability. Although no
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single parameter set is expected to transfer unchanged across model generations,
automating the exploration process transforms development from manual trial-and-
error into an efficient, reproducible, and more objective workflow. Applied across
GCMs, this methodology can accelerate model development, reduce parametric

uncertainty, and improve the reliability of climate projections.
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1278  Figure 1. Automatic tuning framework structure. Perturbed simulation results for each parameter
1279  are used for sensitivity analysis and determining the trust region size. Two key covariance metrics—

1280  observational error and model internal variation—help adjust parameter values in the objective

1281  function. The DFO-LS algorithm optimizes the parameters, and the post-processing module

1282  analyzes sensitivity, cost function results, and generates visualizations.

1283  Table 1: Observations used for model evaluation, along with their target values and associated

1284 uncertainties.

Variables .. . . .
Description Classifications Target  Uncertainty
name
MSLP NHX DGM  277.52 22.85
Mean sea level - -
MSLP MSLP_TROPICSLAND DGM 35.42 13.69
pressure (hPa); - -
MSLP_TROPICSOCEAN DGM  187.34 1.04
TEMP@500 NHX  251.42 0.12
T500 Temperature at TEMP@500 SHX  249.38 0.56
500hPa (K) TEMP@500 TROPICSLAND  266.27 0.27
TEMP@500 TROPICSOCEAN  266.60 0.23
RH@500 NHX 52.75 7.04
Relative RH@500 SHX  51.05 479
RIS00 humidity a RH@500_ TROPICSLAND 40.36 6.67
500hPa (%) @s00_ ' '
RH@500 TROPICSOCEAN 32.57 3.01
Net heat flux at
top of
NETFLUX netflux. GLOBAL 0.98 0.15
atmosphere -
(W/m?)
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1286
1287

OLR

OLRC

RSR

RSRC

Lprecip

2M

Outgoing long
wave flux at top
of atmosphere
(W/m?)

Outgoing long
wave clearsky
flux at top of
atmosphere

(W/m?)

Outgoing
shortwave flux
at top of
atmosphere
(W/m?)

Outgoing
shortwave
clearsky flux at
top of
atmosphere
(W/m?)

Land
precipitation
(m/s)

Temperature at
2 meters (K)

OLR_NHX

OLR_SHX

OLR_TROPICSLAND
OLR_TROPICSOCEAN

OLRC_NHX
OLRC_SHX
OLRC_TROPICSLAND

OLRC_TROPICSOCEAN
RSR_NHX

RSR_SHX
RSR_TROPICSLAND
RSR_TROPICSOCEAN

RSRC_NHX
RSRC_SHX
RSRC_TROPICSLAND

RSRC_TROPICSOCEAN
Lprecip NHX

Lprecip SHX

Lprecip. TROPICSLAND
LAT NHX

LAT SHX

LAT TROPICSLAND

223.57-

216.86

255.09
261.35

247.71
243.59
288.64

290.21
100.91
107.55
116.04

86.92

57.98

53.65

75.67

42.42

1.60e-8
1.42e-8
4.47e-8
275.72-
280.08
297.10

2.5

4.5

2.5

5.0

0.35e-9
4.29¢-9
0.37e-9
0.06
0.49
0.31

Table 2: Summary of tunable parameters in GAMIL3, including their default values and plausible

ranges.
_ o . Default
Parameters Description (units if applicable) Range
Values
c0_conv Precipitation efficiency for deep convection 1.e-4-5.e-3 l.e-3
rherit Threshold value for RH for deep convection 0.65-0.95 0.85
capelmt Threshold value for cape for deep convection (J/kg) 20-200 70
alfa Initial deep convection cloud downdraft mass flux 0.05-0.6 0.2
Evaporation efficiency of deep convection
ke . 1.e-6-1.5e-5 9.e-6
precipitation ()
c0 Rain water autoconversion coefficient (1/m) 3.e-5-2.e-4 5.e-5
cmftau Characteristic adjustment time scale (s) 1800-14400 4800
rhminl Threshold RH for low stable clouds 0.8-0.99 0.95
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rhminh Threshold RH for high stable clouds 0.4-0.99 0.5
Most stable lapse rate below 750hPa, stability

dthdpmn _ -0.15--0.05 -0.08
trigger for stratus clouds (K/mb)

Amplification factor (shallow convective cloud

shl i 0.0-1.0 0.04
fraction)

sh2 Scale factor for shallow convective mass flux 10-1000 500
Amplification factor (deep convective cloud

dpl i 0.0-1.0 0.1
fraction)

dp2 Scale factor for deep convective mass flux 10-1000 500

cerit Minimum allowable sqrt(TKE)/wstar 0.0-1.0 0.5

dzmin Minimum cloud depth to precipitate (m) 0.0-100.0 0.0

Dcs Autoconversion size threshold for ice to snow (m) l.e-5-1.e-3 2.e-4

ecr Collection efficiency cloud droplets/rain 0.5-2.0 1.0

ai Fall speed parameter for stratiform cloud ice (1/s) 500-1500 700
Inverse relative variance of subgrid scale cloud

gcvar 0.1-2.0 1.0

water

1288

Experiments Design

AMIP2011 for 10
parameters

GAMILS3
atmospheric
model

AMIP 30-year
2005-2014 piControl runs

AMIP2011 for 20 /
parameters

AMIP2011 with varied
initial values of 10
parameters

1289

1290  Figure 2. All experiments conducted in this study, including the AMIP2011 optimization runs for
1291 10- and 20-parameter cases, the AMIP2005-2014 simulations using the optimized parameter sets,
1292 and the 30-year piControl simulations. Note that piControl simulations were not performed for the
1293  sensitivity experiments that varied the initial values of the 10 parameters (shown in brown).
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1308  Figure 5. AMIP2011 results (dots) and time series (lines) for three cases for: T500 (a), RH500 (b),
1309  OLR (c¢), OLRC (d), RSR (e), RSRC (f), T2M (g), Lprecip (h), MSLP (i) and NETFLUX (j). The
1310  cases include the default case (orange lines and dots), 10-parameter case (blue lines and dots), and
1311 20-parameter case (red lines and dots). The black lines and shadings represent the observations and

1312 their associated uncertainties.
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1315  Figure 6. Taylor-diagram showing all variables for three cases in 2011 (a) and the AMIP2005-2014
1316  simulations (b). Shown are default case (yellow), 10-parameter case (blue), and 20-parameter case
1317  (red).
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Figure 7. Meridional distributions of the annual mean bias between three cases and observations
for: T500 (a), RH500 (b), OLR (c¢), OLRC (d), RSR (e), RSRC (f), T2M (g), Lprecip (h) and MSLP
(i) from the AMIP2005-2014 simulations. Shown are default case (orange), 10-parameter case

(blue), and 20-parameter case (red).
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1326  Figure 8. Normalized Jacobian for all 20 parameters, with values normalized by the total covariance
1327  metrics. The x-axis shows the parameter names, while the y-axis represents the variables. Black
1328  parameters are used in the 10-parameter case, and green ones are added in the 20-parameter case.
1329  Red and blue indicate positive and negative effects, respectively, with darker shades showing greater
1330  impact.
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1333 Figure 9. Latitude-pressure anomaly distributions relative to the default case for relative humidity

1334  (a, b), cloud fraction (c, d), and temperature (e, f) from AMIP2005-2014 simulations: 10-parameter
1335  case (a, ¢, ) and 20-parameter case (b, d, f).
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1337
1338  Figure 10. Results from the 30-year piControl simulation for NETFLUX (a), RSR (b) and OLR (c)

1339  radiation, mean volume-averaged ocean temperature (d), and T2M in the default (orange), 10-
1340  parameter (blue), and 20-parameter cases (red) cases.
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Figure 11. Sea surface temperature biases relative to observations (HadISST; Rayner et al., 2003)
from the last 15 years of piControl simulations for the default case (a, b, ¢) and two optimized

cases (d-i).
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Figure 12. Distribution of shortwave (a, b) and longwave (c, d) cloud forcing differences between
the two optimized cases and the default case.
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1352 Figure 13. Similar as Fig. 7, but showing the range of Jacobians calculated from the optimized

1353  parameter set across four cases: the original optimized case and three sensitivity cases.
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