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Abstract. Parameterization in climate models often involves parameters that are 16 

poorly constrained by observations or theoretical understanding alone. Manual tuning 17 

by experts can be time-consuming, subjective, and prone to underestimating 18 

uncertainties. Automated tuning methods offer a promising alternative, enabling faster, 19 

objective improvements in model performance and better uncertainty quantification. 20 

This study presents an automated parameter-tuning framework that employs a 21 

derivative-free optimization solver (DFO-LS) to simultaneously perturb and tune 22 

multiple convection-related and microphysics parameters. The framework explicitly 23 

accounts for observational and initial condition uncertainties (internal variability) to 24 

calibrate a 1-degree resolution atmospheric model (GAMIL3). Two experiments, 25 

adjusting 10 and 20 parameters, were conducted alongside three sensitivity experiments 26 

that varied initial parameter values for a 10-parameter case. Both of the first two 27 

experiments showed a rapid decrease in the cost function, with the 10-parameter 28 

optimization significantly improving model accuracy in 24 out of 34 variables. 29 

Expanding to 20 parameters further enhanced accuracy, with improvement in 25 of 34 30 
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variables, though some structural model errors emerged. Ten-year AMIP simulations 31 

validated the robustness and stability of the tuning results, showing that the 32 

improvements persisted over extended simulations. Additionally, evaluations of the 33 

coupled model with optimized parameters showed, compared to the default parameters 34 

settings, reduced climate drift, a more stable climate system, and more realistic sea 35 

surface temperatures, despite an overall energy imbalance of 2.0 W/m², approximately 36 

1.4 W/m² of which originates from the intrinsic imbalance of the atmospheric 37 

component, and the presence of some regional biases. The sensitivity experiments 38 

underscored the efficiency of the tuning algorithm and highlight the importance of 39 

expert judgment in selecting initial parameter values. This tuning framework is broadly 40 

applicable to other general circulation models (GCMs), supporting comprehensive 41 

parameter tuning and advancing model development. 42 

1 Introduction 43 

Assessing current and future climate change risks to natural and human systems 44 

heavily relies on numerical simulations using advanced climate or Earth System 45 

Models (ESMs). In recent decades, significant progress has been made in advancing 46 

the major components of the Earth system—such as the atmosphere, ocean, land, and 47 

human systems (Prinn 2012; Bogenschutz et al., 2018; Fox-Kemper et al., 2019; 48 

Blockley et al., 2020; Blyth et al., 2021)—as well as in developing the coupling 49 

techniques required to form fully integrated ESMs (Valcke et al., 2012; Smith et al., 50 

2021; Liu et al., 2023). However, many unresolved issues remain in the development 51 

of ESMs, including but not limited to simulation bias in air-sea interactions (Ham et al., 52 

2013; Bellucci et al., 2021; Wei et al., 2021; Meng et al., 2022), the double Intertropical 53 

Convergence Zone (ITCZ) problem (Tian et al., 2020), and the coupling of 54 

biogeochemical cycles such as the carbon cycle or nutrient cycles with the physical 55 

climate system (Erickson et al., 2008). The complexity of the Earth's climate system 56 

and the inherent uncertainties in climate models present significant challenges in 57 

achieving reliable projections. One of the key sources of uncertainty arises from the 58 

representation of unresolved physical processes through parameterizations (Gentine et 59 
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al., 2021; Jebeile et al., 2023).  60 

Parameterizations are crucial when accounting for processes that occur at 61 

unresolved scales or are missing from the model formulation. Parameterizations 62 

provide simplified representations of sub-grid processes like cloud convection and 63 

turbulence, which cannot be explicitly resolved at scales smaller than the model's grid 64 

resolution. For example, processes such as atmospheric radiative transfer and cloud 65 

microphysics are too complex to be represented in full detail within ESMs, so 66 

parameterizations offer simplified approximations to capture their essential effects. 67 

Parameterization often involves parameters whose values are frequently not well-68 

constrained by either observations or theory alone (Ludovic, 2021), which can directly 69 

affect the performance of the model simulation. Consequently, parameter tuning, the 70 

process of estimating these uncertain parameters to minimize the discrepancy between 71 

specific observations and model results, becomes a critical step in climate model 72 

development (Hourdin et al., 2017).  73 

Appropriate parameter tuning can improve the accuracy and skill of climate model 74 

outputs by optimizing parameter values to better match observations or high-resolution 75 

simulations used as calibration targets (Mauritsen et al., 2012; Bhouri et al., 2023). For 76 

example, parameter tuning allows adjusting the values of parameters in 77 

parameterizations that approximate these unresolved processes like cloud convection, 78 

turbulence, etc (Golaz et al., 2013; Zou et al., 2014; Mignot et al., 2021; Xie et al., 79 

2023). By tuning parameter values during the model calibration process, modelers can 80 

partly compensate for known structural errors, deficiencies, or missing processes in the 81 

underlying model formulation itself (Williamson et al., 2015; Hourdin et al., 2017; Tett 82 

et al., 2017; Schneider et al., 2024). What’s more, exploring the range of plausible 83 

parameter values through tuning allows quantifying parametric uncertainties and their 84 

impacts on model outputs and projections (Jackson et al., 2004; Neelin et al, 2010; 85 

Williamson et al., 2013; Tett et al., 2013; Qian et al., 2016). 86 

Broadly speaking, parameter tuning methods aim to quickly optimize a cost 87 

function that measures the distance between model simulations and a small collection 88 

of observations. Applications of such methods in climate science include studies by 89 
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Bellprat et al. (2012), Tett et al. (2013), Yang et al. (2013), Zou et al. (2014), Zhang et 90 

al. (2015b), and Tett et al. (2017). For instance, in the experiments conducted by Tett et 91 

al. (2017) with an atmospheric GCM, 7 and 14 parameters were estimated using 92 

variants of the Gauss-Newton algorithm (Tett et al., 2013) to minimize the difference 93 

between simulated and observed large-scale, multi-year averaged net radiative fluxes. 94 

These optimized parameters were then applied in a coupled GCM. Zhang et al. (2015) 95 

utilized an improved downhill simplex method, focusing on seven parameters, and 96 

reported successful optimization of an atmospheric model. This improved method 97 

overcomes the limitations of the traditional downhill simplex method and offers better 98 

computational efficiency compared to evolutionary optimization algorithms.  99 

Traditionally, uncertain parameters have been tuned manually through extensive 100 

comparisons of model simulations with available observations. This approach is 101 

subjective, labor-intensive, computationally expensive, and can lead to under-102 

exploration of the parameter space, potentially underestimating uncertainties and 103 

leaving model biases unresolved (Allen et al., 2000; Hakkarainen et al., 2012; Hourdin 104 

et al. 2017; Hourdin et al., 2023). By contrast, automatic and objective parameter 105 

calibration techniques have advanced rapidly due to their efficiency, effectiveness, and 106 

wider applicability (Chen et al., 1999; Elkinton et al., 2008; Bardenet et al., 2013; 107 

Zhang et al., 2015). Bardenet et al. (2013) combined surrogate-based ranking and 108 

optimization techniques for surrogate-based collaborative tuning, proposing a generic 109 

method to incorporate knowledge from previous experiments. This approach can 110 

effectively improve upon manual hyperparameter tuning. Zhang et al. (2015) proposed 111 

a "three-step" methodology for parameters tuning. Before the final step of applying the 112 

downhill simplex method, they introduced two preliminary steps: determining the 113 

model's sensitivity to the parameters and selecting the optimum initial values for those 114 

sensitive parameters. By following this process, they were able to automatically and 115 

effectively obtain the optimal combination of key parameters in cloud and convective 116 

parameterizations.  117 

However, previous studies were either semi-automatic or lacked sufficient 118 

observational constraints, such as the net flux at the top of the atmosphere (TOA). 119 
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Moreover, earlier objective tuning methods that relied on cost functions often 120 

overlooked key sources of uncertainty, including observational uncertainty and the 121 

internal variability of variables. To address these limitations, we developed a new 122 

objective and automatic parameter tuning framework that is more efficient for tuning 123 

parameters in GCMs. Compared to previous automatic tuning efforts, this system 124 

operates entirely within a Python environment and includes several new optimization 125 

algorithms, including Gauss-Newton (Burke et al., 1995; Kim et al., 2008; Tett et al., 126 

2017), the Python Surrogate Optimization Toolbox (pySOT; Regis and Shoemaker, 127 

2012), and the Derivative-Free Optimizer for Least-Squares (DFO-LS; Cartis et al., 128 

2019; Hough et al., 2022). The DFO-LS package is designed to find local solutions to 129 

nonlinear least-squares minimization problems without requiring derivatives of the 130 

objective function, and has been numerically tested to be particularly effective in 131 

finding global optimization solutions. Our framework supports multiple observations 132 

and constraints as optimization targets. Additionally, it considers the internal variability 133 

of GCMs and integrates sensitivity analysis with the optimization process, making it a 134 

more flexible and efficient model tuning system overall. Moreover, systematically and 135 

simultaneously perturbing multiple parameters addresses the concern that optimizing a 136 

single objective may lead to suboptimal solutions for other objectives and might 137 

overlook the global optimum for the overall tuning metric (Qian et al., 2015; 138 

Williamson et al., 2015). We have designed and implemented an automatic workflow 139 

to streamline the calibration process, enhancing efficiency. This method and workflow 140 

are readily applicable to GCMs, facilitating accelerated model development processes. 141 

Using this framework, we tune the latest released version 3 of the Grid-Point 142 

Atmospheric Model developed at the State Key Laboratory of Numerical Modeling for 143 

Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) in the Institute of 144 

Atmospheric Physics (IAP), named GAMIL3 (Li et al., 2020a). GAMIL3 has a higher 145 

horizontal resolution (~1°) and a shorter dynamical time step (60s) compared to its 146 

CMIP6 version (~2° and 120s; Li et al., 2020b). This adjustment requires re-tuning, as 147 

climate model performance is highly sensitive to changes in resolution and time step. 148 

This study demonstrates how the tuning framework can automatically and effectively 149 
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optimize model parameters to achieve better performance against observations. 150 

Our objectives are as follows: 151 

1. To assess the performance of the tuning algorithm in the GAMIL3 atmospheric 152 

model; 153 

2. To investigate the impact of various parameters and initial values on the tuning 154 

results; 155 

3. To evaluate the performance of the optimized parameters in decadal simulations 156 

and long-term coupled model runs. 157 

The paper is organized as follows: Section 2 introduces the proposed automatic 158 

framework, the tuning model and experiments, observational data and metrics, and the 159 

tuning algorithm. Section 3 presents the evaluation of the tuning results in short- to 160 

long-tern simulations, including coupled model runs. This is followed by a discussion 161 

in Section 4 and a conclusion in Section 5. 162 

2 Methods 163 

2.1 The automatic tuning framework 164 

Here we present the automatic tuning framework (Fig. 1) we have developed, 165 

which includes, but is not limited to, functions such as model compiling, (re)submitting, 166 

parameter tuning, results evaluation, and diagnostics. Specifically, the framework 167 

comprises three main processing modules that collectively control the entire system: 168 

the model preprocessing module (the lower left panel in Fig. 1), the model optimizing 169 

module (the middle panel in Fig. 1), and the model post-processing module (the right 170 

panel in Fig. 1).  171 

The preprocessing module prepares various input data for the optimization process, 172 

with particular focus on model internal variations and observational uncertainties (Tett 173 

et al., 2017), which will be further discussed in a later section. The optimizing module, 174 

which uses the DFO-LS optimization method, is the core component of this tuning 175 

system and is primarily responsible for updating model parameters and running 176 

simulations. In the initialization of DFO-LS, we use the default parameter settings 177 

provided by the DFOLS software package, including the specification of the initial trust 178 
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region, which is an algorithm parameter that governs the size of the local search area. 179 

Any constraints on the simulated variables are also specified at this stage. The initial 180 

trust region radius (rhobeg) is set to 0.18 (normalized to parameter ranges) based on 181 

sensitivity tests. This choice ensures that the first iterations explore locally without 182 

overstepping physical plausibility, balancing efficient convergence and sufficient 183 

sampling of the parameter space (Cartis et al., 2019). In addition, we apply a constraint 184 

to a simulated variable using a parameter μ, which determines the weighting of the 185 

constraint term (1/(2μ); see Supplementary S1). In this study, following Tett et al (2017, 186 

2022), this constraint is applied to the global average TOA netflux. To tightly constrain 187 

this variable, μ is set to 0.18 which corresponds to a total uncertainty of 0.15 W/m² 188 

somewhat higher than the observational error of 0.1 W/m². 189 

The optimization process begins with a parameter perturbation phase, in which 190 

K+1 simulations are conducted: one reference simulation using the initial parameter set, 191 

and K additional simulations—each perturbing one of the K tunable parameters 192 

individually—relative to the reference. These initial simulations establish baseline 193 

parameter sensitivities and provide finite-difference gradient estimates for the DFO-LS 194 

algorithm. The subsequent optimization phase then iteratively modifies parameter 195 

values through trust-region managed steps, where each iteration evaluates candidate 196 

points, updates local quadratic models of the cost function, and adjusts parameters 197 

based on actual versus predicted improvement ratios until convergence criteria are 198 

satisfied. In addition to the initial K+1 simulation runs required to initialize the DFOLS 199 

algorithm for a K-parameter case, each iteration typically involves 1-3 additional model 200 

simulations, depending on the trust-region management strategy and the progress of the 201 

algorithm. The algorithm normally performs one simulation per iteration to evaluate a 202 

new candidate parameter set, but may conduct 3 simulations when the local quadratic 203 

model requires improvement or when the actual-to-predicted improvement ratio falls 204 

below zero (Cartis et al., 2019). Total evaluations include the initial runs plus all 205 

subsequent iterations evaluations. The post-processing module receives the output from 206 

the optimization module, including the optimized parameters, the sensitivity of 207 

variables to the parameters, and the cost function values from different iterations, and 208 
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further analyzes these results based on user requirements. 209 

2.2 Model description and experiments 210 

In this study, we employ GAMIL3, which adopts a finite difference dynamical core 211 

and a weighted equal-area longitude-latitude grid to maintain numerical stability near 212 

the polars without the need for filtering or smoothing (Wang et al., 2004; Li et al., 213 

2020a). GAMIL3, with an approximate 2° (180×80) horizontal resolution, serves as the 214 

atmospheric component of the Flexible Global Ocean–Atmosphere–Land System 215 

Model Grid-point Version 3 (FGOALS-g3), which participated in CMIP6 (Li et al., 216 

2020b). For this study, the model’s horizontal resolution is refined to about 1° (360 × 217 

160), with 26 vertical σ-layers extending to the model top at 2.19 hPa. To ensure 218 

numerical stability at the higher resolution, the dynamical core time step is reduced 219 

from 120s to 60s, while the physical parameterizations and their time step (600s) remain 220 

unchanged. As in many other climate models (e.g., Santos et al., 2021; Wan et al., 2021; 221 

Schneider et al., 2024), the performance of GAMIL3 is sensitive to the resolution, the 222 

model time step, and the coupling frequency between dynamics and physics. Therefore, 223 

it is necessary to re-tune the uncertain parameters for the new 1° configuration. 224 

During optimization, each model simulation is performed for 15 months, forced by 225 

observed sea-surface temperature (SST) and sea ice, in an Atmospheric Model 226 

Intercomparison Project (AMIP) experiment (Eyring et al., 2016). The period runs from 227 

1 October 2010 to 31 December 2011 (hereafter referred to as AMIP2011), with the 228 

first 3 months excluded for model spin-up, leaving 12 months for analysis against 229 

observations. This method is commonly used for model uncertainty quantification and 230 

parameter tuning (Yang et al., 2013; Xie et al., 2023; 2025). After optimization, the 231 

parameter set that best fits the observations is referred to as the optimized parameter 232 

set. We use this to conduct a 10-year AMIP simulation from January 1, 2005, to 233 

December 31, 2014 (hereafter referred to as AMIP2005-2014), enabling comparison 234 

with observed climate data.  235 

To assess whether tuning atmospheric parameters results in a reasonable coupled 236 

model, the GAMIL3 atmospheric model is coupled with land (CAS-LSM; Xie et al., 237 
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2020), ocean (LICOM3; Yu et al., 2018), and sea ice (CICE4) models, consistent with 238 

the configuration used in FGOALS-g3 (Li et al., 2020b), which participated in CMIP6. 239 

A 30-year piControl simulation (Eyring et al., 2016) was then conducted using the 240 

optimized parameter set, based on the assumption that parameters performing well 241 

under observed forcings (e.g., prescribed SST, sea ice, and greenhouse gases) in the 242 

standalone atmospheric model will also improve performance in the coupled system. In 243 

our case, the TOA energy imbalance in the AMIP run mainly results from the radiative 244 

forcing of greenhouse gases, which trap outgoing longwave radiation. Since the 245 

piControl experiment is forced by constant pre-industrial greenhouse gas levels, this 246 

radiative effect is absent. Therefore, if the AMIP-tuned parameters correctly capture 247 

this effect, the coupled model under piControl conditions should yield a near-zero TOA 248 

net flux, as expected. The initial condition for the atmospheric model was the 249 

climatological mean state from atmospheric reanalysis (default configuration), while 250 

the ocean model was initialized from the equilibrated state of an OMIP simulation (a 251 

long ocean-only run forced by atmospheric reanalysis). The land model was not 252 

provided with a prescribed initial condition; instead, its state was generated 253 

dynamically during the coupled integration. To minimize the influence of potential 254 

initialization drift, the first 15 years were treated as a spin-up period and excluded from 255 

the analysis. Lastly, three additional sensitivity experiments, varying the initial values 256 

of the first 10 parameters, are carried out to examine the impact of initial parameter 257 

selection on the optimized results. These three cases are referred to as the “random1”, 258 

“random2”, and “random3” cases in the captions of all relevant figures. All experiments 259 

conducted in this study are illustrated in Fig. 2 260 

2.3 Observations and parameter selection 261 

To set up our optimization problem, we focus on the large-scale performance of the 262 

model and consider the differences between land and ocean, particularly in the tropical 263 

region. This region is characterized by distinct air-sea interactions, such as those over 264 

the Western Pacific warm pool (Wyrtki, 1975), the Eastern Pacific equatorial cold 265 

tongue region (Philander, 1983), and the Indian Ocean Dipole region (Saji et al., 1999). 266 
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Therefore, following the methods outlined by Tett et al. (2017), we separate the analysis 267 

into four regions based on latitude (θ, defined as positive northward from the equator): 268 

the northern hemispheric extra-tropical region (θ > 30° N), the tropical region (30° S ≥ 269 

θ ≤ 30° N), subdivided into tropical land and ocean, and the southern hemispheric extra-270 

tropical region (θ < 30° S). 271 

The observational variables used in this study are detailed in Table 1. While most 272 

variables are divided into four regions—labeled _TROPICSLAND (tropical land: 273 

30° S–30° N over land), _TROPICSOCEAN (tropical ocean: 30° S–30° N over ocean), 274 

_NHX (Northern Hemispheric extra-tropics: >30° N), and _SHX (Southern 275 

Hemispheric extra-tropics: <−30° S)—each with its own target and uncertainty, 276 

NETFLUX is averaged over all regions and serves as a global constraint. Specifically, 277 

the target values for variables T500, RH500, and MSLP are derived from ECMWF 278 

Reanalysis v5 data (ERA5; Hersbach et al., 2020); the radiation variables (OLR, OLRC, 279 

RSR, RSRC, and NETFLUX) are sourced from Clouds and the Earth's Radiant Energy 280 

System (CERES; Wielicki et al., 1998); and the Land Air Temperature (LAT) and Land 281 

precipitation (Lprecip) data come from the Climatic Research Unit (CRU; Jones et al., 282 

2012; Harris et al., 2017). The uncertainties of the variables are derived from the 283 

absolute error among different data sources, which will be discussed further in section 284 

2.4. All targets and uncertainties of the variables in Table 1 are for the year 2011, 285 

primarily used for model optimization.  286 

The atmospheric model parameters we calibrated are detailed in Table 2, 287 

encompassing selections from deep convection, shallow convection, microphysics, 288 

cloud fraction, and turbulence schemes. The selection of these parameters, along with 289 

their default values and plausible ranges, is based on expert judgment as recommended 290 

by the GAMIL3 developers and corresponds to the model configuration used in CMIP6 291 

experiments. While the plausible ranges are defined as the maximum physically 292 

meaningful bounds (e.g., rhcrit: 0.65–0.95), the constraint on the global average TOA 293 

net flux ensures it closely matches the observations after tuning. For visualization, all 294 

parameters are normalized based on their plausible ranges, with 0 representing the 295 

minimum value of the range and 1 representing the maximum one. Then two 296 
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experiments are conducted to assess the impacts of varying the number of parameters 297 

on the optimized results: 298 

1. We selected the first 10 parameters (listed in the first column of Table 2) from 299 

deep convection, shallow convection, microphysics, and cloud fraction 300 

schemes. These parameters are identified as the most sensitive to the model's 301 

performance based on Xie et al. (2023), and are therefore chosen for tuning. 302 

This case is denoted as the “10-param.” case in the captions of all relevant 303 

figures. 304 

2. An additional set of the next 10 parameters (also listed in the first column of 305 

Table 2), related to microphysics and turbulence schemes, is included alongside 306 

the initial 10 parameters. This approach aims to explore the impact of varying 307 

the number of tuning parameters on the optimization results. This case is 308 

denoted as the “20-param.” case in the captions of all relevant figures. 309 

2.4 Covariance matrices for observations and model 310 

Two covariance matrices need to be prepared before the optimization process 311 

begins. The first matrix assesses the internal variability of the model system (𝐶𝑖). To 312 

derive this, perturbed initial condition experiments are conducted. In this study, these 313 

experiments involve running a total of 20 simulations, each with the three-dimensional 314 

atmospheric temperature initial state perturbed by increments of +1e-20, while all other 315 

settings remain identical to those used in the optimization. The second matrix estimates 316 

the uncertainty of observations (𝐶0), which set to be diagonal, assuming no correlation 317 

between different observations, and its values are derived from absolute difference 318 

between the two available datasets for each variable after regridding and area-weighting. 319 

Specifically, data from ERA5 and National Center for Environmental 320 

Predictions/Department of Energy (DOE) 2 Reanalysis dataset (NCEP2; Kanamitsu et 321 

al., 2002) are used to derive the observation error for variable T500, RH500, and MSLP. 322 

Precipitation data from CRU and Global Precipitation Climatology Project (GPCP; 323 

Adler et al., 2003) are used for Land Precipitation (Lprecip). Data from CRU and 324 

Berkeley Earth Surface Temperature (BEST; Muller et al., 2013) are used for LAT. For 325 
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the four radiation variables (OLR, OLRC, RSR, and RSRC), uncertainties are based on 326 

the estimates from Loeb et al. (2018). Both matrices contribute to the total uncertainty 327 

in the variables relative to the target observations. The total covariance matrix 𝐶 is 328 

composed of the two uncertainties introduced above, calculated as: 329 

                           𝐶 = 𝐶0 + 2𝐶𝑖                           (1) 330 

Consistent with Tett et al., (2022), we account for internal variability in both model 331 

simulations and observations by doubling the model-based estimate, reflecting a 332 

conservative assumption of comparable noise contributions. During optimization, all 333 

observation values are standardized using the square root of the diagonal elements of 334 

matrix 𝐶. 335 

2.5 Evaluation methods 336 

 The cost function F(p) is used to measure the difference between the simulated 337 

values S and the target observations O based on the parameters p. The cost function is 338 

given by: 339 

                          𝐹2(𝑝) =
1

𝑁
(𝑆 − 𝑂)𝑇𝐶−1(𝑆 − 𝑂)              (2), 340 

 where S is the simulated values; O is the target (observed) values; N is the number 341 

of observations; (𝑆 − 𝑂)𝑇 is the transpose of the difference between simulated and 342 

observed values; 𝐶−1 is the inverse of the covariance matrix 𝐶 discussed above. This 343 

cost function quantifies how far the simulation is from the observations, considering 344 

the uncertainty (through C) and correlation between different observations. The cost 345 

function can be modified to include additional constraints, such as the net radiation flux 346 

at the TOA, along with global averages for surface air temperature and precipitation. 347 

 The Jacobian matrix, J, defined as the partial derivatives of the simulated outputs 348 

with respect to the parameters being optimized, is used to assess the influence of tuning 349 

parameters on the simulated variables. For each simulated model output 𝑆𝑖  and 350 

parameter 𝑝𝑗, the Jacobian element 𝐽𝑖𝑗 is given by: 351 

                          𝐽𝑖𝑗 =
𝜕𝑆𝑖(𝑝)

𝜕𝑝𝑗
                              (3) 352 

This measures how much a small change in the parameter 𝑝𝑗  will affect the 353 

simulated model outputs 𝑆𝑖(𝑝), revealing the impact of each parameter on the variables 354 
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and providing insights into their sensitivity. The Jacobians are normalized by the 355 

parameter range and internal variability. Further details about the cost function and the 356 

Jacobian are available in Tett et al. (2017). 357 

In order to assess the extent to which the optimization has improved the 358 

performance of the simulated values, the ratios (Z) of the difference between the 359 

optimized and the default one to the standard error was adopted:  360 

       𝑍 =
|𝑉Default−𝑉Observation|−|𝑉Optimized−𝑉Observation|

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟
                 (4) 361 

The 𝑉Observation  𝑉Default  , and 𝑉Optimized  represent the observation value, 362 

simulated values using the default and optimized parameter sets, respectively. The 363 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟  represents the observation error of the corresponding variables. 364 

Improvement is expected for the variable if Z > 0, while if Z < 0, no improvement 365 

is anticipated, and performance may even worsen.  366 

2.6 Optimization algorithm 367 

The challenge of optimizing the model parameters numerically lies in the high 368 

computational cost and potential noise associated with model evaluations, making 369 

traditional derivative-based optimization methods impractical. There are several 370 

optimization algorithms the system provides, such as (derivative-free) Gauss-Newton 371 

variants, the pySOT algorithm, and the DFO-LS algorithm. We use the DFO-LS 372 

algorithm as it appears to have better performance in model calibration (Oliver et al., 373 

2022, 2024; Tett et al., 2022) relative to other algorithms such as Gauss-Newton (Tett 374 

et at., 2017) or CMA-ES (Hansen, 2016). This algorithm is a sophisticated optimization 375 

method designed to handle nonlinear least-squares problems without requiring 376 

derivative information. This algorithm is particularly useful in scenarios where function 377 

evaluations are expensive or noisy. Inspired by the Gauss-Newton method, DFO-LS 378 

constructs simplified linear regression models for the residuals, allowing it to make 379 

progress with a minimal number of objective evaluations (Cartis et al., 2019). 380 

The underlying algorithmic methodology for the DFO-LS algorithm is detailed in 381 

Cartis et al. (2019). Here, we provide a brief overview of the algorithm, with a detailed 382 

description of its parameter settings available in Supplementary S1. The optimization 383 
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problem is defined as minimizing the sum of the squared residuals  384 

                       𝑓(𝑝): =
∑ 𝑟𝑖

𝑁
𝑖=1 (𝑝)2

𝑁
                        (5), 385 

where 𝑟(𝑝) represents the differences between model outputs and observations; 386 

in our case, 𝑟𝑖(𝑝) ≔ 𝐶
1

2(𝑆𝑖 − 𝑂𝑖) . DFO-LS approximates the residuals without 387 

derivatives by creating a linear regression model at the current iteration. DFO-LS 388 

employs a trust region framework for stable optimization, which dynamically adjusts 389 

the search region to balance exploration and exploitation. After constructing the 390 

regression model, the algorithm solves the trust region subproblem to determine the 391 

step size and direction for updating parameters. The actual versus predicted reduction 392 

in the cost function is calculated to decide whether to accept or reject the step, with 393 

adjustments made to the trust region size accordingly. The algorithm follows these steps: 394 

initialization of parameters and trust region, model construction at each iteration, 395 

solving the trust region subproblem, accepting or rejecting steps, updating the 396 

interpolation set, and checking termination criteria. This structured approach ensures 397 

robust and efficient optimization in minimizing model discrepancies. 398 

3 Results 399 

3.1 AMIP2011 simulations 400 

3.1.1 GAMIL3 10-parameter case 401 

The first experiment aims to optimize the ten sensitive parameters related to 402 

convection and microphysics parameterization schemes (Table 2). In this experiment, 403 

several parameters—such as ke and captlmt—changed significantly from their default 404 

values, while cmftau and c0 showed only small changes (Fig. 3a). Fig. 3b shows the 405 

progression of the cost function over iterations for the 10- and 20-parameter cases. Note 406 

that the cost function is divided by the number of observations, and a smaller cost 407 

function indicates better simulation accuracy against observations. In the 10-parameter 408 

case, the optimization required 29 total model evaluations (11 initial perturbation runs 409 

+ 18 iteration runs), reaching the lowest cost function value of approximately 3.5. The 410 

cost function drops rapidly from about 7.5 to 3.5 during the initial perturbation phase, 411 
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followed by a slower decline with some fluctuations. 412 

Fig. 4 shows the reduction or increase in simulation error in terms of the number 413 

of standard errors through optimization. In the 10-parameter case (solid dots), 24 out of 414 

34 variables (approximately 71%) show Z values greater than zero, indicating improved 415 

performance against the default case. Moreover, for 11 of these 24 variables, the 416 

optimization reduced the error by more than 1 standard error, with 5 of these showing 417 

improvements greater than 3. This is particularly evident in the RSR, MSLP, and the 418 

tropical variables of T500. While most variables can be effectively tuned, several 419 

variables, such as OLR, OLRC, and LAT, are worse than the default case. However, 420 

except for LAT_NHX, the performance of these variables did not degrade by more than 421 

one standard error. The blue dots in Fig. 5 represent the global area-weighted mean of 422 

different variables for the tuning year (2011) in the 10-parameter case. Comparing to 423 

the observational values, the optimization successfully improved most variables (9 out 424 

of 10), bringing them closer to the observations. Although some variables showed slight 425 

deviations from the observations after optimization, nearly all remained within their 426 

uncertainty range (except for OLRC), which is also reasonable in model tuning. 427 

Since the cost function is a simple statistical indicator of the distance between the 428 

area-weighted mean of the simulations and the observations, analyzing the spatial 429 

distribution of the variables is crucial when evaluating the performance of the optimized 430 

parameter sets. Fig. 6a presents Taylor diagrams for all tuning variables under three 431 

parameter cases for the optimized year (2011). The results indicate that, compared to 432 

the default case (green patterns), most variables' performance improved to varying 433 

degrees in the 10-parameter case (blue patterns). For instance, while the standard 434 

deviation (SD) of the MSLP in the default result was much closer to the observations, 435 

the 10-parameter case exhibited a larger pattern correlation (PC) coefficient and a 436 

smaller root mean square deviation (RMSD). Some variables, including Lprecip, 437 

NETFLUX, and T500, showed improvements in all three metrics (SD, PC, and RMSD). 438 

However, other variables, such as OLR and RH500, showed slight deterioration after 439 

optimization, as partially suggested in Fig. 4. 440 

The "optimized" parameter set referred to in this study is the set where the cost 441 
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function reaches its lowest value. However, the robustness of this parameter set, 442 

compared to others with similar cost function values, remains to be evaluated. To 443 

address this, two additional experiments were conducted (Table S1 and Fig. S1), 444 

selecting parameter sets with cost function values closest to the optimized one to 445 

evaluate the potential impact of this choice. Table S1 shows that the parameter values 446 

for the two sets (Experiment1 and Experiment2), which have cost function values close 447 

to the minimum (Optimized), are quite similar, particularly for Experiment1, which has 448 

the closest cost function value. The results from the AMIP2005-2014 simulations show 449 

that, while most variables exhibit patterns similar to those of the Optimized set, notable 450 

differences are observed in T2M and Lprecip. Overall, although differences in model 451 

behavior arise from the choice of the optimized parameter set, these differences are not 452 

substantial enough to significantly alter the model’s performance. 453 

3.1.2 GAMIL3 20-parameter case 454 

To investigate the impact of different numbers of tuning parameters on 455 

optimization and the robustness of the tuning results, additional 10 parameters related 456 

to microphysics and turbulence schemes (Table 2) were included alongside the existing 457 

10 parameters. In the 20-parameter case, the initial perturbations for the original 10 458 

parameters were kept the same as in the 10-parameter case to ensure a fair comparison. 459 

Comparing the optimal values of the 20-parameter case with the default values shows 460 

that several parameters had large changes. Parameters such as c0_conv, ke, capelmt, 461 

dzmin, Dcs, and ecr showed significant deviations from their default values (Fig. 3a). 462 

Comparing the two sets of optimal parameters reveals both differences and 463 

consistencies. While most parameters, such as capelmt, alfa, and rhcrit, change in the 464 

same direction and display similar magnitudes, some parameters, like ke and cmftau, 465 

are adjusted in the opposite direction. These differences may be attributed to the 466 

compensating errors within in the model, where adjustments to one parameter can offset 467 

or amplify the effects of another—a phenomenon further explored in Section 3.3. When 468 

examining the tuning procedure (Fig. 3b), it is evident that the cost function dropped 469 

rapidly to a value very close to the minimum after the initial 20 perturbation runs, 470 
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similar to the 10-parameter case. The system required a total of 31 runs (21 initial 471 

perturbation runs + 10 iteration runs) to reach the lowest cost function value (2.87), 472 

which is only two more than that required for the 10-parameter case. This suggests that 473 

adding ten additional parameters increases the total number of evaluations only 474 

marginally, indicating that when optimizing with DFOLS, there is no need to be overly 475 

selective about parameter choice. The minimum cost achieved is comparable to that of 476 

the 10-parameter case, with fewer additional runs required after the initial phase to 477 

reach the minimum. This implies that including more tuning parameters has a small 478 

impact on the total cost but enhances tuning efficiency. This improvement can be 479 

attributed to the inclusion of additional parameters related to other parameterization 480 

schemes, which enhances model tuning and yields more realistic results compared to 481 

observations. 482 

Comparing the Z values from the 20-parameter case to those from the 10-parameter 483 

case (Fig. 4), we find that 25 out of 34 variables (approximately 74%) have Z values 484 

greater than zero, slightly higher than in the 10-parameter case. Among these, 11 485 

variables show improvements of more than 1 standard error, with 6 exhibiting 486 

significant improvements of over 3 standard errors (notably in T500 and MSLP), which 487 

is also better than the 10-parameter case. While most variables in the 20-parameter case 488 

demonstrate equal or greater improvements than in the 10-parameter case, some, like 489 

OLR and OLRC, perform worse. The global area-weighted mean of all variables 490 

(shown by red dots in Fig. 5) indicates that, except for OLR, RH500 and Lprecip, 491 

variables improved compared to the default case. Although RH500 shows a greater 492 

deviation from observation, it still falls within the uncertainty range. Significant 493 

differences between the 20-parameter and 10-parameter cases are observed in the two 494 

radiation variables (OLR and RSR) and the two surface-related variables (T2M and 495 

Lprecip). These differences may partly result from certain parameters compensating for 496 

each other, which will be discussed later. The Taylor diagram in Fig. 6a shows that most 497 

variables have improved compared to the default case. Relative to the 10-parameter 498 

case, OLR, RSR, RSRC, MSLP, and Lprecip perform better in the 20-parameter case. 499 

However, NETFLUX and T2M perform worse. 500 
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3.2 AMIP2005-2014 simulations 501 

Although our cost function explicitly accounts for internal variability (Eq. 1), 502 

tuning and evaluating the model using only a one-year simulation may still introduce 503 

uncertainties due to atmospheric internal variability (Bonnet et al., 2025), such as phase 504 

shifts in the North Atlantic Oscillation (NAO) or stochastic tropical convection patterns 505 

like the Madden-Julian Oscillation. Therefore, a longer simulation with adjusted 506 

parameter settings using AMIP drivers is necessary to assess the robustness of the 507 

tuning across different phases of intrinsic variability. Thus 10-year simulations from 1 508 

January 2005 to 31 December 2014 are conducted for the default and two optimized 509 

parameter sets. Compared to the results from 2011, the average AMIP2005-2014 results 510 

(Fig. 4b) show no significant differences between the two cases, as both exhibit similar 511 

changes across most variables. For example, T500 and RSR show much improvement 512 

in both cases, while OLR and OLRC perform worse. However, several variables show 513 

differences between the two conditions. For instance, while the standardized 514 

MSLP_TROPICSOCEAN_DGM improved by over 20 in the 2011 simulation with the 515 

10-parameter case, it deviates from the observation by more than 10 standard errors in 516 

the 10-year simulation. Additionally, while the 20-parameter case demonstrated 517 

improvement in the 2011 simulation, its performance declined in the 10-year simulation. 518 

This temporal inconsistency suggests that certain parameter adjustments may be 519 

sensitive to the specific climate state of 2011, which was characterized by a moderate 520 

La Niña. In contrast, variables such as T500, RSR, and NETFLUX exhibit consistent 521 

improvements across both simulations, indicating a robust response to parameter tuning 522 

that is less dependent on interannual variability. 523 

The time series of the AMIP2005-2014 simulations in Fig. 5 show that, for the 10-524 

parameter case, 8 out of 10 variables are either much closer to the observations or very 525 

similar (OLR, OLRC, and RSRC) to those in the default case. Only two variables, 526 

RH500 and Lprecip, are slightly further from the observations but still within 527 

uncertainty. The most striking finding is the improvement of the variables related to the 528 

energy balance of the climate system (RSR and NETFLUX). For the default case, due 529 
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to the large outgoing shortwave radiation, NETFLUX has an error of about 5 W/m2. In 530 

addition, T500 in the default case is too cold by almost 2K. After optimization, while 531 

OLR shows little change, RSR decreased by nearly 5 W/m2, considerably reducing the 532 

model bias and leading to smaller biases in NETFLUX and T500. Furthermore, the 533 

results suggest that MSLP, RSRC and OLRC are hard to tune. In the 20-parameter case, 534 

compared to the default, all variables—except RH500, OLR, T2M and Lprecip—show 535 

either reduced biases or biases that are very close (OLRC and RSRC) to those in the 536 

default case. Both OLR and Lprecip perform notably worse than in the default case, 537 

with both variables being too low compared to the observations. This is less successful, 538 

in relative terms, than the 10 parameter case, where 8 variables exhibit reduced or 539 

similar bias relative to the default. However, T500 and the MSLP—two variables that 540 

deviated significantly from the observations in the default and 10-parameter cases—541 

have been further tuned and now align more closely with observation. 542 

 Similar to the Taylor diagram of the AMIP2011 results, the AMIP2005-2014 543 

simulations (Fig. 6b) also demonstrate varying degrees of improvement across the three 544 

metrics for most variables in both optimized cases. For instance, both cases improve all 545 

three metrics for Lprecip, NETFLUX, and RSRC compared to the default case, 546 

consistent with the AMIP2011 results. While Lprecip, RSRC, T2M, and NETFLUX in 547 

both optimized cases exhibit similar behavior to the AMIP2011 results, MSLP, RH500, 548 

and RSR behave differently. Comparing this with Figs. 4 and 5, the results suggest that 549 

this tuning yields only minor improvements to the spatial patterns of the variables but 550 

primarily reduces their biases relative to observations. Examining zonal averages (Fig. 551 

7) reveals more specific details, particularly the differences between tropical and extra-552 

tropical regions. T500 and RSR have large tropical biases which tuning considerably 553 

reduces. In contrast, RH500, OLR, RSRC, and MSLP have larger biases in extra-554 

tropical, especially polar regions. These regional biases may come from uncertainties 555 

in complex high-latitude processes, such as sea ice and snow cover feedback 556 

mechanisms, which are not well represented in the model (Goosse et al., 2018). Across 557 

the three cases, average performance is similar to that found earlier, with T500, RH500, 558 

OLR, RSR, T2M, and Lprecip most affected by tuning and most sensitive to parameter 559 
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changes, while OLRC, RSRC, and MSLP are little impacted by optimizing. Specifically, 560 

MSLP is highly sensitive to unresolved gravity wave drag processes (Sandu et al., 2015; 561 

Williams et al., 2020), which were not included in our parameter tuning. Previous 562 

experiments with the IFS model indicate that increasing orographic and surface drag in 563 

the Northern Hemisphere can reduce MSLP biases (Kanehama et al., 2022). While the 564 

global mean OLRC is similar across cases due to regional compensation (Fig. 5d), the 565 

meridional distribution reveals notable differences (Fig. 7d). In the tropics, increased 566 

upper tropospheric water vapor—particularly in the 20-parameter case (Fig. 9a–9b)—567 

enhances the greenhouse effect and reduces outgoing clear sky longwave radiation. In 568 

contrast, decreased water vapor in high-latitude regions, especially in the 20-parameter 569 

case, leads to increased OLRC. RSRC remains nearly unchanged across all simulations 570 

due to the use of identical surface albedo. Additionally, while changing physical 571 

parameters generally affects the entire atmosphere, some variables respond differently 572 

in specific regions. For example, RH500 shows a more pronounced response in tropical 573 

regions, while land T2M responds more noticeably in the extra-tropics. 574 

3.3 Impacts of tuning on GAMIL3 575 

What parameters and processes would affect these model tuning behaviors? As 576 

shown in Fig. 8, parameters such as c0_conv, cmftau, rhcrit, rhminl, rhminh, and Dcs 577 

significantly affect simulated variables, particularly NETFLUX, 578 

Lprecip_TROPICSLAND, RSR_TROPICSOCEAN, OLR_TROPICSOCEAN, and 579 

TEMP@500. Notably, most of these parameters have also been adjusted significantly 580 

in the 10- and 20-parameter cases compared to the default. rhcrit defines the RH 581 

threshold for triggering deep convection and is a parameter with a strong influence on 582 

RH. Fig. 3a shows that rhcrit decreased from the default case, whose value is 0.85, to 583 

the 10-paramter case and 20-parameter case, whose values are 0.83 and 0.82, 584 

respectively. A lower rhcrit significantly promotes deep convection by reducing the 585 

triggering threshold, which enhances water vapor transport from the lower to the mid 586 

and upper atmospheric layers. This could lead to a drop in RH below troposphere and 587 

a rise above it (Fig. 9a). This effect is especially pronounced in the tropics, where deep 588 
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convection dominates vertical moisture transport (Fig. 5b, 7b, and 9b). While a lower 589 

rhcrit threshold would theoretically enhance precipitation by promoting deeper 590 

convection, our simulations instead show an overall decrease in precipitation. This 591 

apparent discrepancy suggests the parameter's effect is modulated by compensating 592 

atmospheric processes. Specifically, enhanced vertical moisture transport (Fig. 9a-9b) 593 

reduces low-level humidity availability, thereby weakening updrafts and ultimately 594 

decreasing total precipitation (blue line in Fig. 5h). 595 

A deficit in low-level cloud fraction is evident in Fig. 9c-9d, primary due to the 596 

increase in rhminl from the default value of 0.95 to 0.97 and 0.96 in the 10- and 20-597 

parameter cases, respectively. Although the 10-parameter case has a higher threshold 598 

for low level cloud formation than the 20-parameter case, Fig. 9c-9d shows the different 599 

result, which can be explained by the compensatory effects of other parameters. 600 

Optimized results indicate that cmftau, another key parameter, has a lower value in the 601 

20-parameter case (~4284) compared to the default (~4800) and the 10-parameter case 602 

(~4931). This decrease in cmftau likely strengthens shallow convection while 603 

weakening deep convection, reducing upward water transport and RH throughout the 604 

troposphere, contributing to the decreased low-level cloud fraction (Xie et al., 2018) 605 

and further reducing precipitation (Fig. 5h). Consequently, the lower low-level cloud 606 

fraction in the 20-parameter case, compared to the 10-parameter case, reflects the 607 

compensatory effects of these key parameters, with the influence of the reduced cmftau 608 

outweighing that of rhminl. Low-level clouds strongly reflect shortwave radiation, 609 

producing a cooling effect. Therefore, a reduction in low-level clouds allows more 610 

shortwave radiation to penetrate the lower atmosphere, reducing outgoing shortwave 611 

radiation to space (blue lines in Fig. 5e and 7e) and warming the region (blue lines in 612 

Fig. 5a and 7a; Fig. 9e), including near the surface (blue lines in Fig. 5g). 613 

Comparing the 20-parameter case to the default case, the tuning results show that 614 

one sensitive parameter, Dcs—the autoconversion size threshold for ice to snow—has 615 

been significantly increased. This adjustment suggests that a higher Dcs leads to 616 

increased RSR and T2M, while also resulting in lower OLR and Lprecip (Fig. 8). ccrit, 617 

which sets the minimum turbulent threshold for triggering shallow convection, affects 618 
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both OLR and Lprecip in a manner similar to Dcs. Specifically, clouds with higher ice 619 

content trap more OLR from the Earth's surface, potentially amplifying the greenhouse 620 

effect by retaining more infrared radiation (red lines in Fig. 6c and 8c). This results in 621 

a warming effect, particularly at lower atmospheric levels and even near the surface, 622 

especially during nighttime or in polar regions (red lines in Fig. 5a, 5g, 7a, and 7g; Fig. 623 

9f). Additionally, raising the autoconversion threshold from ice to snow is expected to 624 

allow more ice to remain in the atmosphere, directly leading to a reduction in 625 

precipitation (red line in Fig. 5h), and increased cloud optical thickness, thereby 626 

enhancing the reflection of incoming shortwave radiation. This enhanced reflectivity 627 

partially offsets the impact of reduced low-level cloud cover on the RSR in the 20-628 

parameter case, leading to a smaller decrease in RSR compared to the 10-parameter 629 

case (Fig. 5e and 7e), consistent with known radiative differences among cloud types 630 

(Chen et al., 2000). Increasing ccrit suppresses shallow convection by requiring 631 

stronger turbulence to initiate cloud formation, thereby reducing low-level cloud cover. 632 

This reduction enhances outgoing longwave radiation and surface solar heating, which 633 

in turn promotes evaporation and increases Lprecip. Therefore, adjusting Dcs and ccrit 634 

in future work may offer a promising approach for improving the simulation of OLR 635 

and Lprecip, both of which are underestimated relative to the default case. 636 

3.4 Coupled model evaluation 637 

In order to evaluate the performance of different parameter sets in long-term 638 

climate simulations, it is essential to apply them to a coupled model. To assess the 639 

impacts of atmospheric parameter tuning on coupled model performance, we conducted 640 

a 30-year piControl simulation using GAMIL3 coupled to land, ocean, and sea ice 641 

components (see Methods 2.2), analyzing the final 15-year period after model spin-up. 642 

In the default case the model starts with a large negative NETFLUX of around -4 643 

W/m² (Fig. 10a), consistent with the results in Fig. 5j, indicating that the climate system 644 

is losing energy at this stage. As the model integrates, the NETFLUX increases, 645 

approaching zero after approximately five model years, achieving a stable energy 646 

budget for the remaining simulation period. This change in NETFLUX is found to be 647 
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almost equally driven by a ~2 W/m² reduction in both RSR (Fig. 10b) and OLR (Fig. 648 

10c) simultaneously. However, despite these radiation variables, particularly the 649 

NETFLUX, approaching a stable state, the ocean continues to lose energy rapidly (Fig. 650 

10d) with no signs of stabilization by the end of the simulation. For T2M (Fig. 10e), 651 

the simulated values in the piControl run deviate significantly from the target range of 652 

13.6 ± 0.5°C (Williamson et al., 2013). While the decrease in OLR is physically 653 

consistent with the cooling of T2M, the reduction in RSR is primarily attributed to 654 

oceanic adjustment processes. In particular, a cold SST bias (Fig. S3b) induced by the 655 

original parameter settings leads to a rapid decline in low-level cloud cover over 656 

tropical and subtropical ocean basins—especially in the western Pacific warm pool 657 

region and the South Atlantic (Fig. S3c). Most areas of cloud reduction spatially 658 

coincide with regions of diminished reflected shortwave radiation (Fig. S3d), a 659 

relationship further supported by changes in shortwave cloud forcing (SWCF; Fig. S3e). 660 

Overall, although the NETFLUX appears to reach a stable state, the system continues 661 

to lose energy and remains far from the tuning target in the default case. 662 

 For both optimized cases, the NETFLUX (Fig. 10a) remains stable throughout the 663 

30-year simulations, with values of about 2 W/m². Although slightly further from the 664 

target of 0 W/m², they are still within the model spread range of -3 to 4 W/m² (Mauritsen 665 

et al., 2012). Further analysis revealed that the relatively large energy imbalance 666 

primarily originates from the GAMIL3 atmospheric model, which exhibits a persistent 667 

imbalance of approximately 1.4 W/m² in its AMIP configuration—a feature also 668 

observed in the piControl runs—due to non-conservation in the dynamical core. This 669 

systematic issue is consistent with other atmospheric or coupled models (e.g., up to 670 

1.0 W/m² for CAM6 at 1° resolution (Lauritzen and Williamson, 2019), 1.3 W/m² for 671 

FGOALS-g3, and 3.3 W/m² for INM-CM4-8, calculated from Wild, 2020). Notably, 672 

this energy leakage remains stable (±0.1 W/m²) across both default and optimized runs, 673 

indicating that the model improvements, such as reduced climate drift, result from 674 

genuine parameter tuning rather than compensation for the energy bias. This conclusion 675 

is further supported by the coupled model’s stabilized energy budget following the spin-676 

up period (Fig. 10). The change in NETFLUX in the 10-parameter case is primarily 677 
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driven by a decrease in RSR (Fig. 10b), while in the 20-parameter case, it is mostly due 678 

to a reduction in OLR (Fig. 10c), consistent with the results in Fig. 5c and 5e. Both the 679 

volume-averaged ocean temperature (Fig. 10d) and the T2M (Fig. 10e) exhibit a slight 680 

initial adjustment during the initial few years, followed by stabilization. Drift may occur 681 

during the initial integration period due to inconsistencies between the OMIP-forced 682 

ocean state and the reanalysis-based atmospheric initial conditions. However, in both 683 

cases using atmosphere-optimized parameters, the system stabilized rapidly, and 684 

neither the TOA net flux nor ocean temperature exhibits significant trends beyond the 685 

initial adjustment period of a few years. A small long-term drift is still evident in Fig. 686 

10d, which may be related to the adjustment of deep ocean processes. This demonstrates 687 

that the parameters optimized for the atmospheric model remain effective in the coupled 688 

system configuration, with no clear evidence of compensation for ocean-related drift. 689 

Results from the simulated SST biases in Fig. 11a–11c for the default case show 690 

strong cold biases relative to observations, with maximum deviations exceeding -4°C 691 

over the North of Pacific and Atlantic. The simulated SST biases in Fig. 11d–11i 692 

indicate that both optimized cases show substantial improvement over the default case 693 

in terms of SST patterns and deviations, although some negative deviations in the 694 

northern Pacific and Atlantic persist—a common issue for most GCMs (Zhang and 695 

Zhao, 2015a; Wang et al., 2018). Previous findings suggest that the two optimized cases 696 

exhibit cloud fraction significantly different from the default case, with simulated 697 

radiation improvements primarily observed in shortwave radiation for the 10-parameter 698 

case and in longwave radiation for the 20-parameter case. Therefore, it is necessary to 699 

investigate the shortwave and longwave cloud forcing in these two cases (Fig. 12). The 700 

results for both cases show that the combined effect of these two cloud forcings acts as 701 

a significant positive influence globally, contributing to the flux of energy towards the 702 

ocean and increasing ocean temperature. Specifically, the shortwave cloud forcing has 703 

a greater weight than the longwave in the 10-parameter case, mainly due to the 704 

parameters rhcrit and rhminl, as mentioned earlier. In contrast, the longwave cloud 705 

forcing outweighs the shortwave in the 20-parameter case, primarily due to the effects 706 

of Dcs. While the shortwave cloud forcing exerts a negative effect over the tropical 707 
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ocean, the longwave cloud forcing provides a significant compensatory effect. A similar 708 

behavior is observed in the 20-parameter case. 709 

Overall, the two optimized cases result in a more realistic coupled model, not only 710 

maintaining the model's energy balance and reducing climate drift, but also improving 711 

the simulated ocean state, such as SST distribution. Although the two optimized cases 712 

exhibit different behaviors—with the 10-parameter case showing lower RSR and the 713 

20-parameter case showing lower OLR—tuning has allowed them to achieve stability 714 

through distinct mechanisms. While we acknowledge that multi-century integrations 715 

would provide additional insight into the model’s equilibrium climate response, our 716 

primary goal was to test whether AMIP-tuned parameters remain valid in a coupled 717 

setup. For this purpose, a 30-year piControl run is scientifically adequate. The results 718 

show that the model quickly reaches energy balance stability for both the 10- and 20-719 

parameter cases (TOA net flux drift < 0.05 W m⁻² per decade) and that ocean heat 720 

content drift remains minimal (< 0.008 °C per decade) after year 15, indicating that 721 

the system achieves a quasi-equilibrium state. This timescale is reasonable, since the 722 

upper ocean—where much of the adjustment occurs—has a relatively short adjustment 723 

timescale of about 1–5 years. The stabilized climate indicators and consistent system 724 

behavior (Figs. 9 and 10) confirm that the tuned parameters yield a credible coupled 725 

climate without introducing systematic drifts. Similar integration lengths have been 726 

used in other studies (e.g., Tett et al., 2017). While longer runs could refine the 727 

equilibrium further, they are unlikely to change our main conclusion that the parameter 728 

transfer is robust. 729 

3.5 Sensitivity of initial parameters 730 

As stated in the previous section, the initial parameter values used for tuning are 731 

primarily informed by expert judgment, which has been recognized as crucial and 732 

necessary in other studies (Hourdin et al., 2017; Williamson et al., 2017; Jebeile et al., 733 

2023; Lguensat et al., 2023). To further investigate the extent to which initial parameter 734 

choices influence tuning results, we conducted three additional sensitivity experiments 735 

with randomly selected initial parameter values (Table S2), focusing on the first 10 736 
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parameters. 737 

The optimized parameter values in these randomized experiments (represented by 738 

stars in Fig. 3a) exhibit significantly larger spreads compared to the default and original 739 

optimized values (blue dots), particularly for parameters such as c0_conv, capelmt, and 740 

c0, which nearly span their entire plausible ranges. This finding indicates that the model 741 

could reach entirely different optimized states depending on initial values. During the 742 

tuning process, the cost function (Fig. 3c) for these cases exhibited a rapid decrease, 743 

stabilizing at similar values across all three experiments after approximately 10 744 

iterations, with an additional 10–20 runs required to reach the optimized state. This 745 

pattern further demonstrates the efficiency and robustness of the tuning algorithm. 746 

Given the substantial differences in the optimized parameters, it is worthwhile to 747 

further investigate their Jacobian differences to gain a more comprehensive 748 

understanding of each parameter's impact on the variables. Fig. 13 shows the Jacobian 749 

ranges for four cases (including the original optimized case), with Jacobian calculated 750 

around the optimized parameter set for each case. The results generally demonstrate 751 

consistency with the parameter sensitivities shown in Fig. 8. Variables sensitive to most 752 

parameters exhibit substantial variability, while highly sensitive parameters, such as 753 

c0_conv, cmftau, rhcrit, rhminl, and rhminh, introduce considerable uncertainty across 754 

multiple variables, depending on their initial values and interactions with other 755 

parameters. Conversely, RSRC and OLRC remain largely insensitive to parameter 756 

changes, whereas MSLP, NETFLUX, Lprecip, and TEM@500hPa are influenced by 757 

most parameters, also aligning with the findings in Fig. 8. 758 

The performance of these three optimized parameter sets in the AMIP2005-2014 759 

simulations is shown in Fig. S2. Generally, NETFLUX was most closely aligned with 760 

observations across all cases, primarily due to the additional constraint incorporated 761 

into the tuning algorithm. However, notable differences across different cases remain, 762 

with each case following a distinct optimization pathway, though most results still fall 763 

within uncertainty ranges. For example, the third experiment achieved the closest 764 

alignment for T500 but at the expense of T2M and Lprecip compared to other cases, 765 

highlighting inherent trade-offs and model structural errors that hinder simultaneous 766 
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optimization of these variables. As seen in prior findings, RSRC and MSLP proved 767 

difficult to tune, while OLRC was adjustable but deviated in the opposite direction from 768 

observations, accompanied by a discrepancy in RH500 alignment. 769 

Overall, these sensitivity experiments confirm the efficiency of the tuning 770 

algorithm and underscore the importance of expert judgment in selecting initial 771 

parameter values. Expert selection not only ensures satisfactory model performance at 772 

the start of tuning but also enhances tuning effectiveness, even though structural errors 773 

in the model remain. 774 

4 Discussion 775 

In this study, we developed an objective and automatic parameter tuning 776 

framework using the Derivative-Free Optimizer for Least-Squares (DFO-LS) method 777 

to tune the newest version of the Grid-Point Atmospheric Model (GAMIL3). The 778 

results highlight the effectiveness of this method in tuning atmospheric parameters, 779 

particularly those initially set based on expert judgment, as demonstrated by notable 780 

improvements in model accuracy across multiple variables and enhanced climate 781 

system stability. However, several aspects of this work require further clarification. 782 

Firstly, as noted earlier, the 'optimized' parameter set in this study refers to the set 783 

at which the cost function achieves its minimum value. However, results in Figs. 3b 784 

and 3c indicate that, for each case, there are several cost function values close to this 785 

minimum. We have shown that these differences are not substantial enough to 786 

significantly alter the model’s performance. However, this finding suggests that 787 

parameter ranges associated with similar cost function values may provide valuable 788 

insights into the acceptable parameter space for model optimization. We acknowledge 789 

that focusing exclusively on minimizing cost function values to obtain a single 790 

optimized parameter set during tuning can increase the risk of overfitting and 791 

compensating errors, which is a common challenge in model tuning. Although the 792 

results of this study show no clear signs of overfitting—both the 10- and 20-parameter 793 

optimized cases, starting from expert-judged initial values, ultimately produce 794 

reasonable coupled model results—it remains important to carefully consider potential 795 
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overfitting impacts. 796 

Secondly, this study shows that tuning either different numbers of parameters or 797 

varying initial parameter values can yield diverse optimized results, each improving 798 

certain aspects of the model. This suggests that although tuning can lower the cost 799 

function to comparable levels, the final tuned state of the model is not necessarily 800 

unique—a common issue encountered in model tuning (Hakkarainen et al., 2013; 801 

Hourdin et al., 2017; Eidhammer et al., 2024), likely due to the compensating errors 802 

within the model and uncertainties in the observational data. On one hand, introducing 803 

constraints, such as assigning greater weight in key variables during tuning, could help 804 

achieve more realistic results. For instance, applying constraints on NETFLUX during 805 

tuning ensures consistently good performance across all the cases in the AMIP2005-806 

2014 simulations. In the 20-parameter case, adding constraints on OLR and RSR would 807 

maintain their performance while also improving T500 and MSLP. On the other hand, 808 

while different parameter sets satisfied the lowest cost function in different ways, it is 809 

important to remember that the cost function is simply a statistical measure of the 810 

distance between the area-weighted mean of the simulations and observations. 811 

Therefore, a comprehensive evaluation is essential to identify the most suitable 812 

parameter set (Eidhammer et al., 2024). Beyond minimizing cost function values and 813 

aligning statistical indicators with observations, it is crucial to evaluate the spatial 814 

distributions of variables, the equilibrium state of the climate system in coupled models, 815 

and the model’s climate sensitivity (Tett et al., 2022; Eidhammer et al., 2024). These 816 

aspects should be further evaluated to ensure robust model performance. 817 

Thirdly, while our 1-year optimization produced parameters that remain effective 818 

in extended runs (as shown by the AMIP2005–2014 and 30-year piControl validations) 819 

and internal variability was explicitly accounted for in the cost function (Eq. 1), 820 

including interannual variability—using a longer tuning period like the 5-year approach 821 

of Tett et al. (2022)—could further improve results, especially for variables with large 822 

interannual variability (e.g., MSLP, Lprecip) and dynamical outputs sensitive to the 823 

chosen year. This is supported by Bonnet et al. (2025), who show that short-term tuning 824 

works well for physical variables with low interannual variability but multi-year tuning 825 
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better captures dynamical variability. Based on Bonnet et al. (2025) and our own 826 

results—such as the difference observed between 1-year and 10-year simulations for 827 

MSLP_TROPICSOCEAN_DGM, which degraded from +20σ to −10σ—we might 828 

expect approximately 10–20 % better performance for variables that are particularly 829 

sensitive to interannual variability, such as tropical precipitation patterns or 830 

extratropical circulation indices, since a longer tuning period would better sample 831 

different climate regimes and reduce sensitivity to single-year anomalies. However, 832 

longer tuning greatly increases computational cost—about 5–6 times higher for 5-year 833 

runs. Our current strategy balances efficiency and robustness, but certain metrics like 834 

T2M and Lprecip might still benefit from longer tuning. This trade-off warrants further 835 

study, particularly where an accurate representation of interannual variability is crucial. 836 

Lastly, to assess how the number of tuning parameters affects the optimization 837 

process, we used the same initial perturbation runs for the ten shared parameters in both 838 

the 10- and 20-parameter cases, enabling a consistent evaluation of their sensitivity to 839 

the simulated results. While this approach allows a straight forward comparison, it may 840 

also constrain the optimization in the 20-parameter case by introducing bias into the 841 

initial search space. To address this potential limitation, we conducted additional 842 

experiments in which all twenty parameters were initialized with independent 843 

perturbations (Fig. S4–S6) by adjusting the rhobeg parameter in the DFO-LS algorithm 844 

from its default value of 0.18 to 0.23. These additional experiments yielded several 845 

important insights that strengthen our original conclusions. First, although the 846 

optimized parameter values in the new 20-parameter case differ somewhat from those 847 

in the original setup, most shift in the same direction relative to the default values (Fig. 848 

S4). Moreover, the optimization consistently converged to similar cost function values 849 

(2.68 vs. 2.87), despite differences in the initial perturbations and optimization 850 

pathways, highlighting the robustness of our tuning framework. Second, both 851 

approaches produced nearly identical simulation performance in the 10-year AMIP and 852 

30-year piControl experiments (Fig. S5–S6), despite relying on different parameter sets. 853 

This suggests that the performance in the 20-parameter case may be dominated by a 854 

subset of the most sensitive parameters, such as Dcs, rhcrit, c0_conv, and cmftau, which 855 
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have been shown to strongly influence the simulated results. These findings provide 856 

strong evidence that our conclusions regarding the robustness of the optimization and 857 

the effect of increasing the number of tuning parameters remain valid. 858 

 Some limitations remain. For instance, although the coupled model simulations 859 

show improvements in energy stability and reduced climate drift, certain regional biases 860 

in SST persist. These biases suggest that while tuning enhances model performance, 861 

there may be systematic issues within the model’s physics that cannot be fully addressed 862 

through parameter tuning alone. Resolving these regional discrepancies may require 863 

further refinement of model physics or additional modifications to the tuning 864 

framework. Additionally, the optimized cases show a relatively large energy imbalance 865 

at the TOA. Although still within model uncertainty, this issue warrants further 866 

investigation. One possible cause could be the non-conservation of energy in the 867 

atmospheric model. Preliminary results indicate that the difference between the TOA 868 

and Earth’s surface energy imbalances in the AMIP2011 tuning is approximately 1.4 869 

W/m², and remains similar at 1.5 W/m² in the piControl runs, highlighting a persistent 870 

structural bias in the model. This suggests that even in the optimized cases, the 871 

atmospheric model may be consuming excess energy, a bias that could carry over to the 872 

coupled model. Consequently, one of the lessons from this study is that when tuning 873 

the model, attention should also be paid to structural errors, particularly those related 874 

to energy conservation. Finally, because variables such as lower tropospheric 875 

temperature, humidity, cloud fraction, and cloud radiative effects are highly sensitive 876 

to the model time step and the coupling frequency between dynamics and physics, it 877 

would be valuable to explore the tuning performance under different time step settings 878 

in future work. 879 

5 Conclusions 880 

The study focuses on optimizing an atmospheric model by simultaneously 881 

perturbing and tuning multiple parameters associated with convection, microphysics, 882 

turbulence, and other physical schemes. Two primary experiments were conducted 883 

using AMIP2011 simulations (2011, with 3-month spin-up): one adjusted 10 parameters 884 
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and another adjusted 20 parameters. Validation was then performed through extended 885 

AMIP2005-2014 and 30-year coupled piControl simulations to assess robustness across 886 

timescales. In the 10-parameter tuning, significant changes were made to several 887 

sensitive parameters, resulting in a notable reduction in the cost function and improved 888 

model accuracy. Out of 34 variables, 24 showed improved performance, although some 889 

remained challenging to optimize due to structure errors in the model. In the 20-890 

parameter tuning, additional parameters related to microphysics and turbulence were 891 

introduced, resulting in slight performance improvements for 25 out 34 variables. 892 

However, certain variables experienced a decline in performance. While the 20-893 

parameter case achieved a lower cost function more quickly than the 10-parameter case, 894 

the increased complexity required careful management of parameter interactions and 895 

compensatory effects.  896 

To evaluate the robustness of the tuning results, we conducted AMIP2005-2014 897 

simulations. The findings showed that the optimized parameter sets maintained their 898 

performance improvements over extended simulation periods, though variables like 899 

MSLP exhibited variability depending on the specific period analyzed. Time series 900 

analyses indicated that the optimized models more accurately captured the energy 901 

balance of the climate system, particularly by improving the balance of outgoing 902 

shortwave and longwave radiation and stabilizing surface temperatures. However, some 903 

variables remained challenging to optimize consistently across different regions and 904 

timescales. The optimized parameter sets were further tested in a coupled model setup 905 

that integrated land, ocean, and sea ice components. The results demonstrated improved 906 

energy budget stability, reducing climate drift and leading to more realistic SST 907 

simulations. Both the 10- and 20-parameter optimizations yielded more reasonable 908 

behavior in the coupled model, though persistent regional biases, particularly in the 909 

northern Pacific and Atlantic, remained. 910 

Three additional experiments, in which the initial values of the first 10 parameters 911 

were randomly selected, were conducted to evaluate its impact on the optimized results. 912 

The results further confirm the efficiency and robustness of the algorithm, as it rapidly 913 

minimizes the cost function after the first 10 runs, although the optimized parameter 914 
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values and their performance across different cases show significant variation. Overall, 915 

these findings emphasize the importance of expert judgment in parameter selection and 916 

its role in enhancing model performance. 917 

In conclusion, the proposed DFO-LS-based tuning framework presents a robust 918 

and efficient approach for enhancing climate model performance. This work was 919 

primarily conducted by a researcher over 12 months, highlighting the efficiency of the 920 

approach in terms of human resources. The adaptability of this methodology to other 921 

GCMs holds great potential for accelerating model development and improving the 922 

accuracy and reliability of future climate projections. By integrating this framework 923 

into broader model tuning efforts, the climate modeling community can make 924 

significant strides in addressing parametric uncertainties and advancing the precision 925 

of climate prediction. 926 
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 1245 
Figure 1. Automatic tuning framework structure. Perturbed simulation results for each parameter 1246 

are used for sensitivity analysis and determining the trust region size. Two key covariance metrics—1247 

observational error and model internal variation—help adjust parameter values in the objective 1248 

function. The DFO-LS algorithm optimizes the parameters, and the post-processing module 1249 

analyzes sensitivity, cost function results, and generates visualizations. 1250 

 1251 

Figure 2. All experiments conducted in this study, including the AMIP2011 optimization runs for 1252 

10- and 20-parameter cases, the AMIP2005-2014 simulations using the optimized parameter sets, 1253 

and the 30-year piControl simulations. Note that piControl simulations were not performed for the 1254 

varying 10-parameter cases, which are shown in brown. 1255 

Table 1: Observations used for model evaluation, along with their target values and associated 1256 

uncertainties.  1257 

Variables 

name 
Description Classifications Target Uncertainty 

MSLP 
Mean sea level 

pressure (hPa); 

MSLP_NHX_DGM 277.52 22.85 

MSLP_TROPICSLAND_DGM 35.42 13.69 
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MSLP_TROPICSOCEAN_DGM 187.34 1.04 

T500 
Temperature at 

500hPa (K) 

TEMP@500_NHX 251.42 0.12 

TEMP@500_SHX 249.38 0.56 

TEMP@500_TROPICSLAND 266.27 0.27 

TEMP@500_TROPICSOCEAN 266.60 0.23 

RH500 

Relative 

humidity at 

500hPa (%) 

RH@500_NHX 52.75 7.04 

RH@500_SHX 51.05 4.79 

RH@500_TROPICSLAND 40.36 6.67 

RH@500_TROPICSOCEAN 32.57 3.01 

NETFLUX 

Net heat flux at 

top of 

atmosphere 

(W/m2) 

netflux_GLOBAL 0.98 0.15 

OLR 

Outgoing long 

wave flux at top 

of atmosphere 

(W/m2) 

OLR_NHX 223.57- 

2.5 
OLR_SHX 216.86 

OLR_TROPICSLAND 255.09 

OLR_TROPICSOCEAN 261.35 

OLRC 

Outgoing long 

wave clearsky 

flux at top of 

atmosphere 

(W/m2) 

OLRC_NHX 247.71 

4.5 
OLRC_SHX 243.59 

OLRC_TROPICSLAND 288.64 

OLRC_TROPICSOCEAN 290.21 

RSR 

Outgoing 

shortwave flux 

at top of 

atmosphere  

(W/m2) 

RSR_NHX 100.91 

2.5 
RSR_SHX 107.55 

RSR_TROPICSLAND 116.04 

RSR_TROPICSOCEAN 86.92 

RSRC 

Outgoing 

shortwave 

clearsky flux at 

top of 

atmosphere  

(W/m2) 

RSRC_NHX 57.98 

5.0 

RSRC_SHX 53.65 

RSRC_TROPICSLAND 75.67 

RSRC_TROPICSOCEAN 42.42 

Lprecip 

Land 

precipitation 

(m/s) 

Lprecip_NHX 1.60e-8 0.35e-9 

Lprecip_SHX 1.42e-8 4.29e-9 

Lprecip_TROPICSLAND 4.47e-8 0.37e-9 

T2M 
Temperature at 

2 meters (K) 

LAT_NHX 275.72- 0.06 

LAT_SHX 280.08 0.49 

LAT_TROPICSLAND 297.10 0.31 

 1258 
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Table 2: Summary of tunable parameters in GAMIL3, including their default values and plausible 1259 

ranges. 1260 

Parameters Description (units if applicable) Range 
Default 

Values 

c0_conv Precipitation efficiency for deep convection 1.e-4-5.e-3 1.e-3 

rhcrit Threshold value for RH for deep convection 0.65-0.95 0.85 

capelmt Threshold value for cape for deep convection (J/kg) 20-200 70 

alfa Initial deep convection cloud downdraft mass flux 0.05-0.6 0.2 

ke 
Evaporation efficiency of deep convection 

precipitation () 
1.e-6-1.5e-5 9.e-6 

c0 Rain water autoconversion coefficient (1/m) 3.e-5-2.e-4 5.e-5 

cmftau Characteristic adjustment time scale (s) 1800-14400 4800 

rhminl Threshold RH for low stable clouds 0.8-0.99 0.95 

rhminh Threshold RH for high stable clouds 0.4-0.99 0.5 

dthdpmn 
Most stable lapse rate below 750hPa, stability 

trigger for stratus clouds (K/mb) 
-0.15- -0.05 -0.08 

sh1 
Amplification factor (shallow convective cloud 

fraction) 
0.0-1.0 0.04 

sh2 Scale factor for shallow convective mass flux 10-1000 500 

dp1 
Amplification factor (deep convective cloud 

fraction) 
0.0-1.0 0.1 

dp2 Scale factor for deep convective mass flux 10-1000 500 

ccrit Minimum allowable sqrt(TKE)/wstar 0.0-1.0 0.5 

dzmin Minimum cloud depth to precipitate (m) 0.0-100.0 0.0 

Dcs Autoconversion size threshold for ice to snow (m) 1.e-5-1.e-3 2.e-4 

ecr Collection efficiency cloud droplets/rain 0.5-2.0 1.0 

ai Fall speed parameter for stratiform cloud ice (1/s) 500-1500 700 

qcvar 
Inverse relative variance of subgrid scale cloud 

water 
0.1-2.0 1.0 
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 1262 

Figure 3. Normalized values of tuning parameters for the default and all five optimized cases (a); 1263 

changes in the cost function values over iterations for the two main optimized cases (b) and the three 1264 

sensitivity experiment cases (c). The vertical solid lines indicate the 11 and 21 runs from the initial 1265 

perturbation phase, while vertical dashed lines mark the iterations at which the cost function reach 1266 

its minimum.1267 
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 1268 

 1269 
Figure 4. Z values for the AMIP2011 (a) and AMIP2005-2014 (b) simulations. Solid and hollow 1270 

dots represent tuning with 10 and 20 parameters, respectively. Blue dots indicate improved 1271 

performance, while red dots show deterioration. The black dashed line at Z = 0 separates improved 1272 

from non-improved variables. 1273 

 1274 



48 

 

 1275 

Figure 5. AMIP2011 results (dots) and time series (lines) for three cases for: T500 (a), RH500 (b), 1276 

OLR (c), OLRC (d), RSR (e), RSRC (f), T2M (g), Lprecip (h), MSLP (i) and NETFLUX (j). The 1277 

cases include the default case (green lines and dots), 10-parameter case (blue lines and dots), and 1278 

20-parameter case (red lines and dots). The black lines and shadings represent the observations and 1279 

their associated uncertainties. 1280 

 1281 
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 1282 

Figure 6. Taylor-diagram showing all variables for three cases in 2011 (a) and the AMIP2005-2014 1283 

simulations (b). Shown are default case (green), 10-parameter case (blue), and 20-parameter case 1284 

(red). 1285 

 1286 

 1287 
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 1288 

Figure 7. Meridional distributions of the annual mean bias between three cases and observations 1289 

for: T500 (a), RH500 (b), OLR (c), OLRC (d), RSR (e), RSRC (f), T2M (g), Lprecip (h) and MSLP 1290 

(i) from the AMIP2005-2014 simulations. Shown are default case (green), 10-parameter case (blue), 1291 

and 20-parameter case (red).  1292 
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 1293 

Figure 8. Normalized Jacobian for all 20 parameters, with values normalized by the total covariance 1294 

metrics. The x-axis shows the parameter names, while the y-axis represents the variables. Black 1295 

parameters are used in the 10-parameter case, and green ones are added in the 20-parameter case. 1296 

Red and blue indicate positive and negative effects, respectively, with darker shades showing greater 1297 

impact. 1298 
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 1300 

Figure 9. Latitude-pressure anomaly distributions relative to the default case for relative humidity 1301 

(a, b), cloud fraction (c, d), and temperature (e, f) from AMIP2005-2014 simulations: 10-parameter 1302 

case (a, c, e) and 20-parameter case (b, d, f). 1303 
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 1305 
Figure 10. Results from the 30-year piControl simulation for NETFLUX (a), RSR (b) and OLR (c) 1306 

radiation, mean volume-averaged ocean temperature (d), and T2M in the default (green), 10- 1307 

parameter (blue), and 20-parameter cases (red) cases.  1308 
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 1310 

Figure 11. Sea surface temperature biases relative to observations (HadISST; Rayner et al., 2003) 1311 

from the last 15 years of piControl simulations for the default case (a, b, c) and two optimized 1312 

cases (d-i). 1313 

 1314 

 1315 

Figure 12. Distribution of shortwave (a, b) and longwave (c, d) cloud forcing differences between 1316 

the two optimized cases and the default case. 1317 

 1318 
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 1319 
Figure 13. Similar as Fig. 7, but showing the range of Jacobians calculated from the optimized 1320 

parameter set across four cases: the original optimized case and three sensitivity cases. 1321 


