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Abstract. Parameterization in climate models often involves parameters that are 17 

poorly constrained by observations or theoretical understanding alone. Manual tuning 18 

by experts can be time-consuming, subjective, and prone to underestimating 19 

uncertainties. Automated tuning methods offer a promising alternative, enabling faster, 20 

objective improvements in model performance and better uncertainty quantification. 21 

This study presents an automated parameter-tuning framework that employs a 22 

derivative-free optimization solver (DFO-LS) to simultaneously perturb and tune 23 

multiple convection-related and microphysics parameters. The framework explicitly 24 

accounts for observational and initial condition uncertainties (internal variability) to 25 

calibrate a 1-degree resolution atmospheric model (GAMIL3).  To evaluate its 26 

performance, tTwo  main tuning experiments were conducted, adjusting targeting 10 27 

and 20 parameters, respectively. were conducted alongsideIn addition, three sensitivity 28 

experiments tested the effect of that varyinged initial parameter values for in thea 10-29 

parameter case. Both of the first two tuning experiments showed achieved a rapid 30 

decrease reduction in the cost function. , with tThe 10-parameter optimization 31 
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significantly improvinged model accuracy in for 24 out of 34 key variables, while. 32 

eExpanding to 20 parameters yielded further enhanced accuracy, with improvement in 33 

for 25 of 34 variables, though some structural model errors biases appearedemerged.  34 

Ten-year AMIP simulations validated the robustness and stability of the tuning results, 35 

showing that the improvements persisted over extended simulations. Additionally, 36 

evaluations of the coupled model with optimized parameters showed, compared to the 37 

default parameters settings, reduced climate drift, a more stable climate system, and 38 

more realistic sea surface temperatures, despite an residual global overall energy 39 

imbalance of 2.0 W/m², (approximately about 1.4 W/m² arising of which originates 40 

from the intrinsic imbalance of the atmospheric component), and the presence of some 41 

remaining regional biases. The sensitivity experiments further underscored the 42 

efficiency of the tuning algorithm and highlight the importance of expert judgment in 43 

selecting initial parameter values. This tuning framework is broadly applicable to other 44 

general circulation models (GCMs), supporting comprehensive parameter tuning and 45 

advancing model development. 46 

1 Introduction 47 

Assessing current and future climate change risks to natural and human systems 48 

heavily relies on numerical simulations using advanced climate or Earth System 49 

Models (ESMs). In recent decades, significant progress has been made in advancing 50 

the major components of the Earth system—such as the atmosphere, ocean, land, and 51 

human systems (Prinn 2012; Bogenschutz et al., 2018; Fox-Kemper et al., 2019; 52 

Blockley et al., 2020; Blyth et al., 2021)—as well as in developing the coupling 53 

techniques required to form fully integrated ESMs (Valcke et al., 2012; Smith et al., 54 

2021; Liu et al., 2023). However, many unresolved issues remain in the development 55 

of ESMs, including but not limited to simulation bias in air-sea interactions (Ham et al., 56 

2013; Bellucci et al., 2021; Wei et al., 2021; Meng et al., 2022), the double Intertropical 57 

Convergence Zone (ITCZ) problem (Tian et al., 2020), and the coupling of 58 

biogeochemical cycles such as the carbon cycle or nutrient cycles with the physical 59 

climate system (Erickson et al., 2008). The complexity of the Earth's climate system 60 
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and the inherent uncertainties in climate models present significant challenges in 61 

achieving reliable projections. One of the key sources of uncertainty arises from the 62 

representation of unresolved physical processes through parameterizations (Gentine et 63 

al., 2021; Jebeile et al., 2023).  64 

Parameterizations are crucial when accounting for processes that occur at 65 

unresolved scales or are missing from the model formulation. Parameterizations 66 

provide simplified representations of sub-grid processes like cloud convection and 67 

turbulence, which cannot be explicitly resolved at scales smaller than the model's grid 68 

resolution. For example, processes such as atmospheric radiative transfer and cloud 69 

microphysics are too complex to be represented in full detail within ESMs, so 70 

parameterizations offer simplified approximations to capture their essential effects. 71 

Parameterization often involves parameters whose values are frequently not well-72 

constrained by either observations or theory alone (Ludovic, 2021), which can directly 73 

affect the performance of the model simulation. Consequently, parameter tuning, the 74 

process of estimating these uncertain parameters to minimize the discrepancy between 75 

specific observations and model results, becomes a critical step in climate model 76 

development (Hourdin et al., 2017).  77 

Appropriate parameter tuning can improveenhances the accuracy and skill of 78 

climate models  outputs by optimizing parameter values to better match observations 79 

or high-resolution simulations used as calibration targets (Mauritsen et al., 2012; Bhouri 80 

et al., 2023). For example, parameter tuning allows adjusting the values of parameters 81 

in parameterizations that approximate these unresolved processes like cloud convection, 82 

turbulence, etc (Golaz et al., 2013; Zou et al., 2014; Mignot et al., 2021; Xie et al., 83 

2023). By tuning parameter values during the model calibration process, modelers can 84 

partly compensate for known structural errors, deficiencies, or missing processes in the 85 

underlying model formulation itself (Williamson et al., 2015a; Hourdin et al., 2017; 86 

Tett et al., 2017; Schneider et al., 2024). What’s more, exploring the range of plausible 87 

parameter values through tuning allows quantifying parametric uncertainties and their 88 

impacts on model outputs and projections (Jackson et al., 2004; Neelin et al, 2010; 89 

Williamson et al., 2013; Tett et al., 2013; Qian et al., 2016). 90 



4 
 

Broadly speaking, parameter tuning methods aim to quickly optimize a cost 91 

function that measures the distance between model simulations and a small collection 92 

of observations. Applications of such methods in climate science include studies by 93 

Bellprat et al. (2012), Tett et al. (2013), Yang et al. (2013), Zou et al. (2014), Zhang et 94 

al. (2015b), and Tett et al. (2017). For instance, in the experiments conducted by Tett et 95 

al. (2017) with an atmospheric GCM, 7 and 14 parameters related to the convection, 96 

cloud microphysics, and boundary-layer dynamics (Yamazaki et al., 2013) were 97 

estimated using variants of the Gauss-Newton algorithm (Tett et al., 2013) to minimize 98 

the differences between simulated and observed large-scale, multi-year averaged net 99 

radiative fluxes. These optimized parameters were then applied in a coupled GCM. 100 

Zhang et al. (2015b) utilized employed an improved downhill simplex method, 101 

focusing on to optimize seven parameters selected ,from the convection and cloud-102 

fraction parameterization scheme, and reported successful optimization improvement 103 

of an atmospheric model’s performance. This improved method overcomes the 104 

limitations of the traditional downhill simplex method and offers better computational 105 

efficiency compared to evolutionary optimization algorithms.  106 

Traditionally, uncertain parameters have been tuned manually through extensive 107 

comparisons of model simulations with available observations. This approach is 108 

subjective, labor-intensive, computationally expensive, and can lead to under-109 

exploration of the parameter space, potentially underestimating uncertainties and 110 

leaving model biases unresolved (Allen et al., 2000; Hakkarainen et al., 2012; Hourdin 111 

et al. 2017; Hourdin et al., 2023). By contrast, automatic and objective parameter 112 

calibration techniques have advanced rapidly due to their efficiency, effectiveness, and 113 

wider applicability (Chen et al., 1999; Elkinton et al., 2008; Bardenet et al., 2013; 114 

Zhang et al., 2015b). Bardenet et al. (2013) combined surrogate-based ranking and 115 

optimization techniques for surrogate-based collaborative tuning, proposing a generic 116 

method to incorporate knowledge from previous experiments. This approach can 117 

effectively improve upon manual hyperparameter tuning. Zhang et al. (2015b) proposed 118 

a "three-step" methodology for parameters tuning. Before the final step of applying the 119 

downhill simplex method, they introduced two preliminary steps: determining the 120 
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model's sensitivity to the parameters and selecting the optimum initial values for those 121 

sensitive parameters. By following this process, they were able to automatically and 122 

effectively obtain the optimal combination of key parameters in cloud and convective 123 

parameterizations.  124 

However, previous studies were either semi-automatic or lacked sufficient 125 

observational constraints, such as the net flux at the top of the atmosphere (TOA). 126 

Moreover, earlier objective tuning methods that relied on cost functions often 127 

overlooked key sources of uncertainty, including observational uncertainty and the 128 

internal variability of variables. To address these limitations, we developed a new 129 

objective and automatic parameter tuning framework that is more efficient for tuning 130 

parameters in GCMs. Compared to previous automatic tuning efforts, this system 131 

operates entirely within a Python environment and includes several new optimization 132 

algorithms, including Gauss-Newton (Burke et al., 1995; Kim et al., 2008; Tett et al., 133 

2017), the Python Surrogate Optimization Toolbox (pySOT; Regis and Shoemaker, 134 

2012), and the Derivative-Free Optimizer for Least-Squares (DFO-LS; Cartis et al., 135 

2019; Hough et al., 2022). The DFO-LS package is designed to find local solutions to 136 

nonlinear least-squares minimization problems without requiring derivatives of the 137 

objective function, and has been numerically tested to be particularly effective in 138 

finding global optimization solutions. Our framework supports multiple observations 139 

and constraints as optimization targets. Additionally, it considers the internal variability 140 

of GCMs and integrates sensitivity analysis with the optimization process, making it a 141 

more flexible and efficient model tuning system overall. Moreover, systematically and 142 

simultaneously perturbing multiple parameters addresses the concern that optimizing a 143 

single objective may lead to suboptimal solutions for other objectives and might 144 

overlook the global optimum for the overall tuning metric (Qian et al., 2015; 145 

Williamson et al., 2015a). We have designed and implemented an automatic workflow 146 

to streamline the calibration process, enhancing efficiency. This method and workflow 147 

are readily applicable to GCMs, facilitating accelerated model development processes. 148 

Using this framework, we tune the latest released version 3 of the Grid-Point 149 

Atmospheric Model developed at the State Key Laboratory of Numerical Modeling for 150 
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Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) in the Institute of 151 

Atmospheric Physics (IAP), named GAMIL3 (Li et al., 2020a). GAMIL3 has a higher 152 

horizontal resolution (~1°) and a shorter dynamical time step (60s) compared to its 153 

CMIP6 version (~2° and 120s; Li et al., 2020b). This adjustment requires re-tuning, as 154 

climate model performance is highly sensitive to changes in resolution and time step. 155 

This study demonstrates how the tuning framework can automatically and effectively 156 

optimize model parameters to achieve better performance against observations. 157 

Our objectives are as follows: 158 

1. To assess the performance of the tuning algorithm in the GAMIL3 atmospheric 159 

model; 160 

2. To investigate the impact of various parameters and initial values on the tuning 161 

results; 162 

3. To evaluate the performance of the optimized parameters in decadal simulations 163 

and long-term coupled model runs. 164 

The paper is organized as follows: Section 2 introduces the proposed automatic 165 

framework, the tuning model and experiments, observational data and metrics, and the 166 

tuning algorithm. Section 3 presents the evaluation of the tuning results in short- to 167 

long-tern simulations, including coupled model runs. This is followed by a discussion 168 

in Section 4 and a conclusion in Section 5. 169 

2 Methods 170 

2.1 The automatic tuning framework 171 

Here we present the automatic tuning framework (Fig. 1) we have developed, 172 

which includes, but is not limited to, functions such as model compiling, (re)submitting, 173 

parameter tuning, results evaluation, and diagnostics. Specifically, the framework 174 

comprises three main processing modules that collectively control the entire system: 175 

the model preprocessing module (the lower left panel in Fig. 1), the model optimizing 176 

module (the middle panel in Fig. 1), and the model post-processing module (the right 177 

panel in Fig. 1).  178 

The preprocessing module prepares various input data for the optimization process, 179 



7 
 

with particular focus on model internal variations and observational uncertainties (Tett 180 

et al., 2017), which will be further discussed in a later section. The optimizing module, 181 

which uses the DFO-LS optimization method, is the core component of this tuning 182 

system and is primarily responsible for updating model parameters and running 183 

simulations. In the initialization of DFO-LS, we use the default parameter settings 184 

provided by the DFOLS software package, including the specification of the initial trust 185 

region, which is an algorithm parameter that governs the size of the local search area. 186 

Any constraints on the simulated variables are also specified at this stage. The initial 187 

trust region radius (rhobeg) is set to 0.18 (normalized to parameter ranges) based on 188 

sensitivity tests. This choice ensures that the first iterations explore locally without 189 

overstepping physical plausibility, balancing efficient convergence and sufficient 190 

sampling of the parameter space (Cartis et al., 2019). In addition, we apply a constraint 191 

to a simulated variable using a parameter μ, which determines the weighting of the 192 

constraint term (1/(2μ); see Supplementary S1). In this study, following Tett et al (2017, 193 

2022), this constraint is applied to the global average TOA net flux. To tightly constrain 194 

this variable, μ is set to 0.18 which corresponds to a total uncertainty of 0.15 W/m² 195 

somewhat higher than the observational error of 0.1 W/m². 196 

The optimization process begins with a parameter perturbation phase, in which 197 

K+1 simulations are conducted: one reference simulation using the initial parameter set, 198 

and K additional simulations—each perturbing one of the K tunable parameters 199 

individually—relative to the reference. These initial simulations establish baseline 200 

parameter sensitivities and provide finite-difference gradient estimates for the DFO-LS 201 

algorithm. The subsequent optimization phase then iteratively modifies parameter 202 

values through trust-region managed steps, where each iteration evaluates candidate 203 

points, updates local quadratic models of the cost function, and adjusts parameters 204 

based on actual versus predicted improvement ratios until convergence criteria are 205 

satisfied. In addition to the initial K+1 simulation runs required to initialize the DFOLS 206 

algorithm for a K-parameter case, each iteration typically involves 1-3 additional model 207 

simulations, depending on the trust-region management strategy and the progress of the 208 

algorithm. The algorithm normally performs one simulation per iteration to evaluate a 209 
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new candidate parameter set, but may conduct 3 simulations when the local quadratic 210 

model requires improvement or when the actual-to-predicted improvement ratio falls 211 

below zero (Cartis et al., 2019). Total evaluations include the initial runs plus all 212 

subsequent iterations evaluations. The post-processing module receives the output from 213 

the optimization module, including the optimized parameters, the sensitivity of 214 

variables to the parameters, and the cost function values from different iterations., and  215 

It then help us to conducts a comprehensive diagnostic analysisfurther analyzes these 216 

results —examining spatial patterns, process-level responses, parameter sensitivities, 217 

and multi-variable metrics—to assess the physical credibility of each solutionbased on 218 

user requirements.. This structured yet flexible workflow shifts the modeller’s role from 219 

manual trial-and-error to the management and interpretation of automated explorations, 220 

thereby enhancing both the traceability and objectivity of the modeling process. 221 

2.2 Observations and parameter selection 222 

To set up our optimization problem, we focus on the large-scale performance of the 223 

model and consider the differences between land and ocean, particularly in the tropical 224 

region. This region is characterized by distinct air-sea interactions, such as those over 225 

the Western Pacific warm pool (Wyrtki, 1975), the Eastern Pacific equatorial cold 226 

tongue region (Philander, 1983), and the Indian Ocean Dipole region (Saji et al., 1999). 227 

Therefore, following the methods outlined by Tett et al. (2017), we separate the analysis 228 

into four regions based on latitude (θ, defined as positive northward from the equator): 229 

the northern hemispheric extra-tropical region (θ > 30° N), the tropical region (30° S ≥ 230 

θ ≤ 30° N), subdivided into tropical land and ocean, and the southern hemispheric extra-231 

tropical region (θ < 30° S). 232 

The observational variables used in this study are detailed in Table 1. While most 233 

variables are divided into four regions—labeled _TROPICSLAND (tropical land: 234 

30° S–30° N over land), _TROPICSOCEAN (tropical ocean: 30° S–30° N over ocean), 235 

_NHX (Northern Hemispheric extra-tropics: >30° N), and _SHX (Southern 236 

Hemispheric extra-tropics: <−30° S)—each with its own target and uncertainty, 237 

NETFLUX is averaged over all regions and serves as a global constraint. For the MSLP 238 
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variable, regional mean values are expressed as anomalies relative to the global mean 239 

(delta global mean, denoted by the suffix "_DGM"), obtained by subtracting the global 240 

average from each regional mean. Specifically, the target values for variables T500, 241 

RH500, and MSLP are derived from ECMWF Reanalysis v5 data (ERA5; Hersbach et 242 

al., 2020); the radiation variables (OLR, OLRC, RSR, RSRC, and NETFLUX) are 243 

sourced from Clouds and the Earth's Radiant Energy System (CERES; Wielicki et al., 244 

1998); and the Land Air Temperature (LAT) and Land precipitation (Lprecip) data 245 

come from the Climatic Research Unit (CRU; Jones et al., 2012; Harris et al., 2017). 246 

The uncertainties of the variables are derived from the absolute error among different 247 

data sources, which will be discussed further in section 2.4. All targets and uncertainties 248 

of the variables in Table 1 are for the year 2011, primarily used for model optimization.  249 

The atmospheric model parameters we calibrated are detailed in Table 2, 250 

encompassing selections from deep convection, shallow convection, microphysics, 251 

cloud fraction, and turbulence schemes. The selection of these parameters, along with 252 

their default values and plausible ranges, is based on expert judgment as recommended 253 

by the GAMIL3 developers and corresponds to the model configuration used in CMIP6 254 

experiments. This approach prevents the optimization from exploring unrealistic 255 

regions of parameter space. While the plausible ranges are defined as the maximum 256 

physically meaningful bounds (e.g., rhcrit: 0.65–0.95), the constraint on the global 257 

average TOA net flux ensures it closely matches the observations after tuning. For 258 

visualization, all parameters are normalized based on their plausible ranges, with 0 259 

representing the minimum value of the range and 1 representing the maximum one. 260 

Then two experiments are conducted to assess the impacts of varying the number of 261 

parameters on the optimized results: 262 

1. We selected the first 10 parameters (listed in the first column of Table 2) from 263 

deep convection, shallow convection, microphysics, and cloud fraction 264 

schemes. These parameters are identified as the most sensitive to the model's 265 

performance based on Xie et al. (2023), and are therefore chosen for tuning. 266 

This case is denoted as the “10-param.” case in the captions of all relevant 267 

figures. 268 
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2. An additional set of the next 10 parameters (also listed in the first column of 269 

Table 2), related to microphysics and turbulence schemes, is included alongside 270 

the initial 10 parameters. This approach aims to explore the impact of varying 271 

the number of tuning parameters on the optimization results. This case is 272 

denoted as the “20-param.” case in the captions of all relevant figures. 273 

2.22.3 Model description and experiments 274 

In this study, we employ GAMIL3, which adopts a finite difference dynamical core 275 

and a weighted equal-area longitude-latitude grid to maintain numerical stability near 276 

the polars without the need for filtering or smoothing (Wang et al., 2004; Li et al., 277 

2020a). GAMIL3, with an approximate 2° (180×80) horizontal resolution, serves as the 278 

atmospheric component of the Flexible Global Ocean–Atmosphere–Land System 279 

Model Grid-point Version 3 (FGOALS-g3), which participated in CMIP6 (Li et al., 280 

2020b). For this study, the model’s horizontal resolution is refined to about 1° (360 × 281 

160), with 26 vertical σ-layers extending to the model top at 2.19 hPa. To ensure 282 

numerical stability at the higher resolution, the dynamical core time step is reduced 283 

from 120s to 60s, while the physical parameterizations and their time step (600s) remain 284 

unchanged. As in many other climate models (e.g., Santos et al., 2021; Wan et al., 2021; 285 

Schneider et al., 2024), the performance of GAMIL3 is sensitive to the resolution, the 286 

model time step, and the coupling frequency between dynamics and physics. Therefore, 287 

it is necessary to re-tune the uncertain parameters for the new 1° configuration. 288 

During optimization, each model simulation is performed for 15 months, forced by 289 

observed sea-surface temperature (SST) and sea ice, in an Atmospheric Model 290 

Intercomparison Project (AMIP) experiment (Eyring et al., 2016). The period runs from 291 

1 October 2010 to 31 December 2011 (hereafter referred to as AMIP2011), with the 292 

first 3 months excluded for model spin-up, leaving 12 months for analysis against 293 

observations. This method is commonly used for model uncertainty quantification and 294 

parameter tuning (Yang et al., 2013; Xie et al., 2023; 2025). After optimization, the 295 

parameter set that best fits the observations is referred to as the optimized parameter 296 

set. We use this to conduct a 10-year AMIP simulation from January 1, 2005, to 297 
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December 31, 2014 (hereafter referred to as AMIP2005-2014), enabling comparison 298 

with observed climate data.  299 

To assess whether tuning atmospheric parameters results in a reasonable coupled 300 

model, the GAMIL3 atmospheric model is coupled with land (CAS-LSM; Xie et al., 301 

2020), ocean (LICOM3; Yu et al., 2018), and sea ice (CICE4) models, consistent with 302 

the configuration used in FGOALS-g3 (Li et al., 2020b), which participated in CMIP6. 303 

A A 30-year piControl simulation (Eyring et al., 2016) was then conducted to assess 304 

the model’s long-term energy balance and stability under constant pre-industrial 305 

forcings. This experiment tests whether using the optimized parameters set, based on 306 

the assumption that parameters performing well under observed forcings (e.g., 307 

prescribed SST, sea ice, and greenhouse gases) in the standalone atmospheric 308 

modelAMIP simulations—such as prescribed SSTs, sea ice, and greenhouse gases— 309 

willcan also improve improve coupled performance in the coupled system. In AMIP 310 

runsour case, the TOA energy imbalance in the AMIP run mainly results from the 311 

radiative forcing of greenhouse gases forcing, which traps outgoing longwave radiation. 312 

Since the Under piControl conditions, experiment is forced by constantwhere pre-313 

industrial greenhouse gas levelsconcentrations are fixed, this radiative effect is absent;. 314 

Thereforethus, if the AMIP-tuned parameters are physically consistent, correctly 315 

capture this effect, the coupled model should yield a near-zero TOA net fluxunder 316 

piControl conditions should yield a near-zero TOA net flux, as expected. The initial 317 

condition for the atmospheric model was the climatological mean state from 318 

atmospheric reanalysis (default configuration), while the ocean model was initialized 319 

from the equilibrated state of an OMIP simulation (a long ocean-only run forced by 320 

atmospheric reanalysis). The land model was not provided with a prescribed initial 321 

condition; instead, its state was generated dynamically during the coupled integration. 322 

To minimize the influence of potential initialization drift, the first 15 years were treated 323 

as a spin-up period and excluded from the analysis. Lastly, three additional sensitivity 324 

experiments, varying the initial values of the first 10 parameters mentioned above, are 325 

carried out to examine the impact of initial parameter selection on the optimizationed 326 

results. These three cases are referred to as the “random1”, “random2”, and “random3” 327 
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cases in the captions of all relevant figures. All experiments conducted in this study are 328 

illustrated in Fig. 2 329 

2.3 Observations and parameter selection 330 

To set up our optimization problem, we focus on the large-scale performance of the 331 

model and consider the differences between land and ocean, particularly in the tropical 332 

region. This region is characterized by distinct air-sea interactions, such as those over 333 

the Western Pacific warm pool (Wyrtki, 1975), the Eastern Pacific equatorial cold 334 

tongue region (Philander, 1983), and the Indian Ocean Dipole region (Saji et al., 1999). 335 

Therefore, following the methods outlined by Tett et al. (2017), we separate the analysis 336 

into four regions based on latitude (θ, defined as positive northward from the equator): 337 

the northern hemispheric extra-tropical region (θ > 30° N), the tropical region (30° S ≥ 338 

θ ≤ 30° N), subdivided into tropical land and ocean, and the southern hemispheric extra-339 

tropical region (θ < 30° S). 340 

The observational variables used in this study are detailed in Table 1. While most 341 

variables are divided into four regions—labeled _TROPICSLAND (tropical land: 342 

30° S–30° N over land), _TROPICSOCEAN (tropical ocean: 30° S–30° N over ocean), 343 

_NHX (Northern Hemispheric extra-tropics: >30° N), and _SHX (Southern 344 

Hemispheric extra-tropics: <−30° S)—each with its own target and uncertainty, 345 

NETFLUX is averaged over all regions and serves as a global constraint. Specifically, 346 

the target values for variables T500, RH500, and MSLP are derived from ECMWF 347 

Reanalysis v5 data (ERA5; Hersbach et al., 2020); the radiation variables (OLR, OLRC, 348 

RSR, RSRC, and NETFLUX) are sourced from Clouds and the Earth's Radiant Energy 349 

System (CERES; Wielicki et al., 1998); and the Land Air Temperature (LAT) and Land 350 

precipitation (Lprecip) data come from the Climatic Research Unit (CRU; Jones et al., 351 

2012; Harris et al., 2017). The uncertainties of the variables are derived from the 352 

absolute error among different data sources, which will be discussed further in section 353 

2.4. All targets and uncertainties of the variables in Table 1 are for the year 2011, 354 

primarily used for model optimization.  355 

The atmospheric model parameters we calibrated are detailed in Table 2, 356 
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encompassing selections from deep convection, shallow convection, microphysics, 357 

cloud fraction, and turbulence schemes. The selection of these parameters, along with 358 

their default values and plausible ranges, is based on expert judgment as recommended 359 

by the GAMIL3 developers and corresponds to the model configuration used in CMIP6 360 

experiments. While the plausible ranges are defined as the maximum physically 361 

meaningful bounds (e.g., rhcrit: 0.65–0.95), the constraint on the global average TOA 362 

net flux ensures it closely matches the observations after tuning. For visualization, all 363 

parameters are normalized based on their plausible ranges, with 0 representing the 364 

minimum value of the range and 1 representing the maximum one. Then two 365 

experiments are conducted to assess the impacts of varying the number of parameters 366 

on the optimized results: 367 

0. We selected the first 10 parameters (listed in the first column of Table 2) from 368 

deep convection, shallow convection, microphysics, and cloud fraction 369 

schemes. These parameters are identified as the most sensitive to the model's 370 

performance based on Xie et al. (2023), and are therefore chosen for tuning. 371 

This case is denoted as the “10-param.” case in the captions of all relevant 372 

figures. 373 

0. An additional set of the next 10 parameters (also listed in the first column of 374 

Table 2), related to microphysics and turbulence schemes, is included alongside 375 

the initial 10 parameters. This approach aims to explore the impact of varying 376 

the number of tuning parameters on the optimization results. This case is 377 

denoted as the “20-param.” case in the captions of all relevant figures. 378 

2.92.4 Covariance matrices for observations and model 379 

Two covariance matrices need to be prepared before the optimization process 380 

begins. The first matrix assesses the internal variability of the model system (𝐶𝑖). To 381 

derive this, perturbed initial condition experiments are conducted. In this study, these 382 

experiments involve running a total of 20 simulations, each with the three-dimensional 383 

atmospheric temperature initial state perturbed by increments of +1e-20, while all other 384 

settings remain identical to those used in the optimization. This design ensures that 385 
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simulated observations within the range of internal variability receive reduced penalties, 386 

guiding the optimization to correct systematic biases while avoiding overfitting to 387 

random climatic fluctuations. The second matrix estimates the uncertainty of 388 

observations (𝐶0), which set to be diagonal, assuming no correlation between different 389 

observations, and its values are derived from absolute difference between the two 390 

available datasets for each variable after regridding and area-weighting. Specifically, 391 

data from ERA5 and National Center for Environmental Predictions/Department of 392 

Energy (DOE) 2 Reanalysis dataset (NCEP2; Kanamitsu et al., 2002) are used to derive 393 

the observation error for variable T500, RH500, and MSLP. Precipitation data from 394 

CRU and Global Precipitation Climatology Project (GPCP; Adler et al., 2003) are used 395 

for Land Precipitation (Lprecip). Data from CRU and Berkeley Earth Surface 396 

Temperature (BEST; Muller et al., 2013) are used for LAT. For the four radiation 397 

variables (OLR, OLRC, RSR, and RSRC), uncertainties are based on the estimates from 398 

Loeb et al. (2018). Both matrices contribute to the total uncertainty in the variables 399 

relative to the target observations. The total covariance matrix 𝐶 is composed of the 400 

two uncertainties introduced above, calculated as: 401 

                           𝐶 = 𝐶0 + 2𝐶𝑖                            (1) 402 

Consistent with Tett et al., (2022), we account for internal variability in both model 403 

simulations and observations by doubling the model-based estimate, reflecting a 404 

conservative assumption of comparable noise contributions. During optimization, all 405 

observation values are standardized using the square root of the diagonal elements of 406 

matrix 𝐶. 407 

2.102.5 Evaluation methods 408 

 The cost function F(p) is used to measure the difference between the simulated 409 

values S and the target observations O based on the parameters p. The cost function is 410 

given by: 411 

                          𝐹2(𝑝) =
1

𝑁
(𝑆 − 𝑂)𝑇𝐶−1(𝑆 − 𝑂)              (2), 412 

 where S is the simulated values; O is the target (observed) values; N is the number 413 

of observations; (𝑆 − 𝑂)𝑇 is the transpose of the difference between simulated and 414 
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observed values; 𝐶−1 is the inverse of the covariance matrix 𝐶 discussed above. This 415 

cost function quantifies how far the simulation is from the observations, considering 416 

the uncertainty (through C) and correlation between different observations. The cost 417 

function can be modified to include additional constraints, such as the net radiation flux 418 

at the TOA, along with global averages for surface air temperature and precipitation. 419 

 The Jacobian matrix, J, defined as the partial derivatives of the simulated outputs 420 

with respect to the parameters being optimized, is used to assess the influence of tuning 421 

parameters on the simulated variables. For each simulated model output 𝑆𝑖  and 422 

parameter 𝑝𝑗, the Jacobian element 𝐽𝑖𝑗 is given by: 423 

                          𝐽𝑖𝑗 =
𝜕𝑆𝑖(𝑝)

𝜕𝑝𝑗
                              (3) 424 

This measures how much a small change in the parameter 𝑝𝑗  will affect the 425 

simulated model outputs 𝑆𝑖(𝑝), revealing the impact of each parameter on the variables 426 

and providing insights into their sensitivity. The Jacobians are normalized by the 427 

parameter range and internal variability. Further details about the cost function and the 428 

Jacobian are available in Tett et al. (2017). 429 

In order to assess the extent to which the optimization has improved the 430 

performance of the simulated values, the ratios (Z) of the difference between the 431 

optimized and the default one to the standard error was adopted:  432 

       𝑍 =
|𝑉Default−𝑉Observation|−|𝑉Optimized−𝑉Observation|

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟
                 (4) 433 

The 𝑉Observation  𝑉Default  , and 𝑉Optimized  represent the observation value, 434 

simulated values using the default and optimized parameter sets, respectively. The 435 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟  represents the observation error of the corresponding variables. 436 

Improvement is expected for the variable if Z > 0, while if Z < 0, no improvement 437 

is anticipated, and performance may even worsen.  438 

2.112.6 Optimization algorithm 439 

The challenge of optimizing the model parameters numerically lies in the high 440 

computational cost and potential noise associated with model evaluations, making 441 

traditional derivative-based optimization methods impractical. There are several 442 

optimization algorithms the system provides, such as (derivative-free) Gauss-Newton 443 
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variants, the pySOT algorithm, and the DFO-LS algorithm. We use the DFO-LS 444 

algorithm as it appears to have better performance in model calibration (Oliver et al., 445 

2022, 2024; Tett et al., 2022) relative to other algorithms such as Gauss-Newton (Tett 446 

et at., 2017) or CMA-ES (Hansen, 2016). This algorithm is a sophisticated optimization 447 

method designed to handle nonlinear least-squares problems without requiring 448 

derivative information. This algorithm is particularly useful in scenarios where function 449 

evaluations are expensive or noisy. Inspired by the Gauss-Newton method, DFO-LS 450 

constructs simplified linear regression models for the residuals, allowing it to make 451 

progress with a minimal number of objective evaluations (Cartis et al., 2019). 452 

The underlying algorithmic methodology for the DFO-LS algorithm is detailed in 453 

Cartis et al. (2019). Here, we provide a brief overview of the algorithm, with a detailed 454 

description of its parameter settings available in Supplementary S1. The optimization 455 

problem is defined as minimizing the sum of the squared residuals  456 

                       𝑓(𝑝): =
∑ 𝑟𝑖

𝑁
𝑖=1 (𝑝)2

𝑁
                        (5), 457 

where 𝑟(𝑝) represents the differences between model outputs and observations; 458 

in our case, 𝑟𝑖(𝑝) ≔ 𝐶
1

2(𝑆𝑖 − 𝑂𝑖) . DFO-LS approximates the residuals without 459 

derivatives by creating a linear regression model at the current iteration. DFO-LS 460 

employs a trust region framework for stable optimization, which dynamically adjusts 461 

the search region to balance exploration and exploitation. After constructing the 462 

regression model, the algorithm solves the trust region subproblem to determine the 463 

step size and direction for updating parameters. The actual versus predicted reduction 464 

in the cost function is calculated to decide whether to accept or reject the step, with 465 

adjustments made to the trust region size accordingly. The algorithm follows these steps: 466 

initialization of parameters and trust region, model construction at each iteration, 467 

solving the trust region subproblem, accepting or rejecting steps, updating the 468 

interpolation set, and checking termination criteria. This structured approach ensures 469 

robust and efficient optimization in minimizing model discrepancies. 470 

3 Results 471 
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3.1 AMIP2011 simulations 472 

3.1.1 GAMIL3 10-parameter case 473 

The first experiment aims to optimize the ten sensitive parameters related to 474 

convection and microphysics parameterization schemes (Table 2). In this experiment, 475 

several parameters—such as ke and captlmt—changed significantly from their default 476 

values, while cmftau and c0 showed only small changes (Fig. 3a). Fig. 3b shows the 477 

progression of the cost function over iterations for the 10- and 20-parameter cases. Note 478 

that the cost function is divided by the number of observations, and a smaller cost 479 

function indicates better simulation accuracy against observations. In the 10-parameter 480 

case, the optimization required 29 total model evaluations (11 initial perturbation runs 481 

+ 18 iteration runs), reaching the lowest cost function value of approximately 3.5. The 482 

cost function drops rapidly from about 7.5 to 3.5 during in the initial first perturbation 483 

phaseiteration run, followed by a slower decline with some fluctuations. 484 

Fig. 4 shows the reduction or increase in simulation error in terms of the number 485 

of standard errors through optimization. In the 10-parameter case (solid dots), 24 out of 486 

34 variables (approximately 71%) show Z values greater than zero, indicating improved 487 

performance against the default case. Moreover, for 11 of these 24 variables, the 488 

optimization reduced the error by more than 1 standard error, with 5 of these showing 489 

improvements greater than 3. This is particularly evident in the RSR, MSLP, and the 490 

tropical variables of T500. While most variables can be effectively tuned, several 491 

variables, such as OLR, OLRC, and LAT, are worse than the default case. However, 492 

except for LAT_NHX, the performance of these variables did not degrade by more than 493 

one standard error. The blue dots in Fig. 5 represent the global area-weighted mean of 494 

different variables for the tuning year (2011) in the 10-parameter case. Comparing to 495 

the observational values, the optimization successfully improved most variables (9 out 496 

of 10), bringing them closer to the observations. Although some variables showed slight 497 

deviations from the observations after optimization, nearly all remained within their 498 

uncertainty range (except for OLRC), which is also reasonable in model tuning. 499 

Since the cost function is a simple statistical indicator of the distance between the 500 



18 
 

area-weighted mean of the simulations and the observations, analyzing the spatial 501 

distribution of the variables is crucial when evaluating the performance of the optimized 502 

parameter sets. Fig. 6a presents Taylor diagrams for all tuning variables under three 503 

parameter cases for the optimized year (2011). The results indicate that, compared to 504 

the default case (yellowgreen patterns), most variables' performance improved to 505 

varying degrees in the 10-parameter case (blue patterns). For instance, while the 506 

standard deviation (SD) of the MSLP in the default result was much closer to the 507 

observations, the 10-parameter case exhibited a larger pattern correlation (PC) 508 

coefficient and a smaller root mean square deviation (RMSD). Some variables, 509 

including Lprecip, NETFLUX, and T500, showed improvements in all three metrics 510 

(SD, PC, and RMSD). However, other variables, such as OLR and RH500, showed 511 

slight deterioration after optimization, as partially suggested in Fig. 4. 512 

The "optimized" parameter set referred to in this study is the set where the cost 513 

function reaches its lowest value. However, the robustness of this parameter set, 514 

compared to others with similar cost function values, remains to be evaluated. To 515 

address this, two additional experiments were conducted (Table S1 and Fig. S1), 516 

selecting parameter sets with cost function values closest to the optimized one to 517 

evaluate the potential impact of this choice. Table S1 shows that the parameter values 518 

for the two sets (Experiment1 and Experiment2), which have cost function values close 519 

to the minimum (Optimized), are quite similar, particularly for Experiment1, which has 520 

the closest cost function value. The results from the AMIP2005-2014 simulations show 521 

that, while most variables exhibit patterns similar behaviors to those of the Optimized 522 

set, notable differences are observed in T2M and Lprecip. Overall, although differences 523 

in model behavior arise from the choice of the optimized parameter set, these 524 

differences are not substantial enough to significantly alter the model’s performance. 525 

3.1.2 GAMIL3 20-parameter case 526 

To investigate the impact of different numbers of tuning parameters on 527 

optimization and the robustness of the tuning results, additional 10 parameters related 528 

to microphysics and turbulence schemes (Table 2) were included alongside the existing 529 
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10 parameters. In the 20-parameter case, the initial perturbations for the original 10 530 

parameters were kept the same as in the 10-parameter case to ensure a fair comparison. 531 

Comparing the optimal values of the 20-parameter case with the default values shows 532 

that several parameters had large changes. Parameters such as c0_conv, ke, capelmt, 533 

dzmin, Dcs, and ecr showed significant deviations from their default values (Fig. 3a). 534 

Comparing the two sets of optimal parameters reveals both differences and 535 

consistencies. While most parameters, such as capelmt, alfa, and rhcrit, change in the 536 

same direction and display similar magnitudes, some parameters, like ke and cmftau, 537 

are adjusted in the opposite direction. These differences may be attributed to the 538 

compensating errors within in the model, where adjustments to one parameter can offset 539 

or amplify the effects of another—a phenomenon further explored in Section 3.3. When 540 

examining the tuning procedure (Fig. 3b), it is evident that the cost function dropped 541 

rapidly to a value very close to the minimum in the first after the initial 20 542 

perturbationiteration runs, similar to the 10-parameter case. The system required a total 543 

of 31 runs (21 initial perturbation runs + 10 iteration runs) to reach the lowest cost 544 

function value (2.87), which is only two more than that required for the 10-parameter 545 

case. This suggests that adding ten additional parameters increases the total number of 546 

evaluations only marginally, indicating that when optimizing with DFOLS, there is no 547 

need to be overly selective about parameter choice. The minimum cost achieved is 548 

comparable to that of the 10-parameter case, with fewer additional runs required after 549 

the initial perturbation phase to reach the minimum. This implies that including more 550 

tuning parameters has a small impact on the total cost but enhances tuning efficiency. 551 

This improvement can be attributed to the inclusion of additional parameters related to 552 

other parameterization schemes, which enhances model tuning and yields more realistic 553 

results compared to observations. 554 

Comparing the Z values from the 20-parameter case to those from the 10-parameter 555 

case (Fig. 4), we find that 25 out of 34 variables (approximately 74%) have Z values 556 

greater than zero, slightly higher than in the 10-parameter case. Among these, 11 557 

variables show improvements of more than 1 standard error, with 6 exhibiting 558 

significant improvements of over 3 standard errors (notably in T500 and MSLP), which 559 
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is also better than the 10-parameter case. While most variables in the 20-parameter case 560 

demonstrate equal or greater improvements than in the 10-parameter case, some, like 561 

OLR and OLRC, perform worse. The global area-weighted mean of all variables 562 

(shown by red dots in Fig. 5) indicates that, except for OLR, RH500 and Lprecip, 563 

variables improved compared to the default case. Although RH500 shows a greater 564 

deviation from observation, it still falls within the uncertainty range. Significant 565 

differences between the 20-parameter and 10-parameter cases are observed in the two 566 

radiation variables (OLR and RSR) and the two surface-related variables (T2M and 567 

Lprecip). These differences may partly result from certain parameters compensating for 568 

each other, which will be discussed later. The Taylor diagram in Fig. 6a shows that most 569 

variables have improved compared to the default case. Relative to the 10-parameter 570 

case, OLR, RSR, RSRC, MSLP, and Lprecip perform better in the 20-parameter case. 571 

However, NETFLUX and T2M perform worse. 572 

3.2 AMIP2005-2014 simulations 573 

Although our cost function explicitly accounts for internal variability (Eq. 1), 574 

tuning and evaluating the model using only a one-year simulation may still introduce 575 

uncertainties due to atmospheric internal variability (Bonnet et al., 2025), such as phase 576 

shifts in the North Atlantic Oscillation (NAO) or stochastic tropical convection patterns 577 

like the Madden-Julian Oscillation. Therefore, a longer simulation with adjusted 578 

parameter settings using AMIP drivers is necessary to assess the robustness of the 579 

tuning across different phases of intrinsic variability. Thus 10-year simulations from 1 580 

January 2005 to 31 December 2014 are conducted for the default and two optimized 581 

parameter sets. Compared to the results from 2011, the average AMIP2005-2014 results 582 

(Fig. 4b) show no significant differences between the two cases, as both exhibit similar 583 

changes across most variables. For example, T500 and RSR show much improvement 584 

in both cases, while OLR and OLRC perform worse. However, several variables show 585 

differences between the two conditions. For instance, while the standardized 586 

MSLP_TROPICSOCEAN_DGM shows an improvementd by overof more than 20 587 

standard errors relative to observations in the 2011 simulation with the 10-parameter 588 
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case, it deviates from the observation by more thanover 10 standard errors in the 10-589 

year simulation. Additionally, while the 20-parameter case demonstrated improvement 590 

in the 2011 simulation, its performance declined in the 10-year simulation. This 591 

temporal inconsistency suggests that certain parameter adjustments may be sensitive to 592 

the specific climate state of 2011, which was characterized by a moderate La Niña. In 593 

contrast, variables such as T500, RSR, and NETFLUX exhibit consistent improvements 594 

across both simulations, indicating a robust response to parameter tuning that is less 595 

dependent on interannual variability. 596 

The time series of the AMIP2005-2014 simulations in Fig. 5 show that, for the 10-597 

parameter case, 8 out of 10 variables are either much closer to the observations or very 598 

similar (OLR, OLRC, and RSRC) to those in the default case. Only two variables, 599 

RH500 and Lprecip, are slightly further from the observations but still within 600 

uncertainty. The most striking finding is the improvement of the variables related to the 601 

energy balance of the climate system (RSR and NETFLUX). For the default case, due 602 

to the large outgoing shortwave radiation, NETFLUX has an error of about 5 W/m2. In 603 

addition, T500 in the default case is too cold by almost 2K. After optimization, while 604 

OLR shows little change, RSR decreased by nearly 5 W/m2, considerably reducing the 605 

model bias and leading to smaller biases in NETFLUX and T500. Furthermore, the 606 

results suggest that MSLP, RSRC and OLRC are hard to tune. In the 20-parameter case, 607 

compared to the default, all variables—except RH500, OLR, T2M and Lprecip—show 608 

either reduced biases or biases that are very close (OLRC and RSRC) to those in the 609 

default case. Both OLR and Lprecip perform notably worse than in the default case, 610 

with both variables being too low compared to the observations. This is less successful, 611 

in relative terms, than the 10 parameter case, where 8 variables exhibit reduced or 612 

similar bias relative to the default. However, T500 and the MSLP—two variables that 613 

deviated significantly from the observations in the default and 10-parameter cases—614 

have been further tuned and now align more closely with observation. 615 

 Similar to the Taylor diagram of the AMIP2011 results, the AMIP2005-2014 616 

simulations (Fig. 6b) also demonstrate varying degrees of improvement across the three 617 

metrics for most variables in both optimized cases. For instance, both cases improve all 618 
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three metrics for Lprecip, NETFLUX, and RSRC compared to the default case, 619 

consistent with the AMIP2011 results. While Lprecip, RSRC, T2M, and NETFLUX in 620 

both optimized cases exhibit similar behavior to the AMIP2011 results, MSLP, RH500, 621 

and RSR behave differently. Comparing this with Figs. 4 and 5, the results suggest that 622 

this tuning yields only minor improvements to the spatial patterns of the variables but 623 

primarily reduces their biases relative to observations. Examining zonal averages (Fig. 624 

7) reveals more specific details, particularly the differences between tropical and extra-625 

tropical regions. T500 and RSR have large tropical biases which tuning considerably 626 

reduces. In contrast, RH500, OLR, RSRC, and MSLP have larger biases in extra-627 

tropical, especially polar regions. These regional biases may come from uncertainties 628 

in complex high-latitude processes, such as sea ice and snow cover feedback 629 

mechanisms, which are not well represented in the model (Goosse et al., 2018). Across 630 

the three cases, average performance is similar to that found earlier, with T500, RH500, 631 

OLR, RSR, T2M, and Lprecip most affected by tuning and most sensitive to parameter 632 

changes, while OLRC, RSRC, and MSLP are little impacted by optimizing. Specifically, 633 

MSLP is highly sensitive to unresolved gravity wave drag processes (Sandu et al., 2015; 634 

Williams et al., 2020), which were not included in our parameter tuning. Previous 635 

experiments with the IFS model indicate that increasing orographic and surface drag in 636 

the Northern Hemisphere can reduce MSLP biases (Kanehama et al., 2022). While the 637 

global mean OLRC is similar across cases due to regional compensation (Fig. 5d), the 638 

meridional distribution reveals notable differences (Fig. 7d). In the tropics, increased 639 

upper tropospheric water vapor—particularly in the 20-parameter case (Fig. 9a–9b)—640 

enhances the greenhouse effect and reduces outgoing clear sky longwave radiation. In 641 

contrast, decreased water vapor in high-latitude regions, especially in the 20-parameter 642 

case, leads to increased OLRC. RSRC remains nearly unchanged across all simulations 643 

due to the use of identical surface albedo. Additionally, while changing physical 644 

parameters generally affects the entire atmosphere, some variables respond differently 645 

in specific regions. For example, RH500 shows a more pronounced response in tropical 646 

regions, while land T2M responds more noticeably in the extra-tropics. 647 
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3.3 Impacts of tuning on GAMIL3 648 

What parameters and processes would affect these model tuning behaviors? As 649 

shown in Fig. 8, parameters such as c0_conv, cmftau, rhcrit, rhminl, rhminh, and Dcs 650 

significantly affect simulated variables, particularly NETFLUX, 651 

Lprecip_TROPICSLAND, RSR_TROPICSOCEAN, OLR_TROPICSOCEAN, and 652 

TEMP@500. Notably, most of these parameters have also been adjusted significantly 653 

in the 10- and 20-parameter cases compared to the default. rhcrit defines the RH 654 

threshold for triggering deep convection and is a parameter with a strong influence on 655 

RH. Fig. 3a shows that rhcrit decreased from the default case, whose value is 0.85, to 656 

the 10-paramter case and 20-parameter case, whose values are 0.83 and 0.82, 657 

respectively. A lower rhcrit significantly promotes deep convection by reducing the 658 

triggering threshold, which enhances water vapor transport from the lower to the mid 659 

and upper atmospheric layers. This could lead to a drop in RH below troposphere and 660 

a rise above it (Fig. 9a). This effect is especially pronounced in the tropics, where deep 661 

convection dominates vertical moisture transport (Fig. 5b, 7b, and 9b). While a lower 662 

rhcrit threshold would theoretically enhance precipitation by promoting deeper 663 

convection, our simulations instead show an overall decrease in precipitation. This 664 

apparent discrepancy suggests the parameter's effect is modulated by compensating 665 

atmospheric processes. Specifically, enhanced vertical moisture transport (Fig. 9a-9b) 666 

reduces low-level humidity availability, thereby weakening updrafts and ultimately 667 

decreasing total precipitation (blue line in Fig. 5h). 668 

A deficit in low-level cloud fraction is evident in Fig. 9c-9d, primary due to the 669 

increase in rhminl from the default value of 0.95 to 0.97 and 0.96 in the 10- and 20-670 

parameter cases, respectively. Although the 10-parameter case has a higher threshold 671 

for low level cloud formation than the 20-parameter case, Fig. 9c-9d shows the different 672 

result, which can be explained by the compensatory effects of other parameters. 673 

Optimized results indicate that cmftau, another key parameter, has a lower value in the 674 

20-parameter case (~4284) compared to the default (~4800) and the 10-parameter case 675 

(~4931). This decrease in cmftau likely strengthens shallow convection while 676 
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weakening deep convection, reducing upward water transport and RH throughout the 677 

troposphere, contributing to the decreased low-level cloud fraction (Xie et al., 2018) 678 

and further reducing precipitation (Fig. 5h). Consequently, the lower low-level cloud 679 

fraction in the 20-parameter case, compared to the 10-parameter case, reflects the 680 

compensatory effects of these key parameters, with the influence of the reduced cmftau 681 

outweighing that of rhminl. Low-level clouds strongly reflect shortwave radiation, 682 

producing a cooling effect. Therefore, a reduction in low-level clouds allows more 683 

shortwave radiation to penetrate the lower atmosphere, reducing outgoing shortwave 684 

radiation to space (blue lines in Fig. 5e and 7e) and warming the region (blue lines in 685 

Fig. 5a and 7a; Fig. 9e), including near the surface (blue lines in Fig. 5g). 686 

Comparing the 20-parameter case to the default case, the tuning results show that 687 

one sensitive parameter, Dcs—the autoconversion size threshold for ice to snow—has 688 

been significantly increased. This adjustment suggests that a higher Dcs leads to 689 

increased RSR and T2M, while also resulting in lower OLR and Lprecip (Fig. 8). ccrit, 690 

which sets the minimum turbulent threshold for triggering shallow convection, affects 691 

both OLR and Lprecip in a manner similar to Dcs. Specifically, clouds with higher ice 692 

content trap more OLR from the Earth's surface, potentially amplifying the greenhouse 693 

effect by retaining more infrared radiation (red lines in Fig. 6c and 8c). This results in 694 

a warming effect, particularly at lower atmospheric levels and even near the surface, 695 

especially during nighttime or in polar regions (red lines in Fig. 5a, 5g, 7a, and 7g; Fig. 696 

9f). Additionally, raising the autoconversion threshold from ice to snow is expected to 697 

allow more ice to remain in the atmosphere, directly leading to a reduction in 698 

precipitation (red line in Fig. 5h), and increased cloud optical thickness, thereby 699 

enhancing the reflection of incoming shortwave radiation. This enhanced reflectivity 700 

partially offsets the impact of reduced low-level cloud cover on the RSR in the 20-701 

parameter case, leading to a smaller decrease in RSR compared to the 10-parameter 702 

case (Fig. 5e and 7e), consistent with known radiative differences among cloud types 703 

(Chen et al., 2000). Increasing ccrit suppresses shallow convection by requiring 704 

stronger turbulence to initiate cloud formation, thereby reducing low-level cloud cover. 705 

This reduction enhances outgoing longwave radiation and surface solar heating, which 706 
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in turn promotes evaporation and increases Lprecip. Therefore, adjusting Dcs and ccrit 707 

in future work may offer a promising approach for improving the simulation of OLR 708 

and Lprecip, both of which are underestimated relative to the default case. 709 

3.4 Coupled model evaluation 710 

In order to evaluate the performance of different parameter sets in long-term 711 

climate simulations, it is essential to apply them to a coupled model. To assess the 712 

impacts of atmospheric parameter tuning on coupled model performance, we conducted 713 

a 30-year piControl simulation using GAMIL3 coupled to land, ocean, and sea ice 714 

components (see Methods 2.2), analyzing the final 15-year period after model spin-up. 715 

In the default case the model starts with a large negative NETFLUX of around -4 716 

W/m² (Fig. 10a), consistent with the results in Fig. 5j, indicating that the climate system 717 

is losing energy at this stage. As the model integrates, the NETFLUX increases, 718 

approaching zero after approximately five model years, achieving a stable energy 719 

budget for the remaining simulation period. This change in NETFLUX is found to be 720 

almost equally driven by a ~2 W/m² reduction in both RSR (Fig. 10b) and OLR (Fig. 721 

10c) simultaneously. However, despite these radiation variables, particularly the 722 

NETFLUX, approaching a stable state, the ocean continues to lose energy rapidly (Fig. 723 

10d) with no signs of stabilization by the end of the simulation. For T2M (Fig. 10e), 724 

the simulated values in the piControl run deviate significantly from the target range of 725 

13.6 ± 0.5°C (Williamson et al., 2013). While the decrease in OLR is physically 726 

consistent with the cooling of T2M, the reduction in RSR is primarily attributed to 727 

oceanic adjustment processes. In particular, a cold SST bias (Fig. S3b) induced by the 728 

original parameter settings leads to a rapid decline in low-level cloud cover over 729 

tropical and subtropical ocean basins—especially in the western Pacific warm pool 730 

region and the South Atlantic (Fig. S3c). Most areas of cloud reduction spatially 731 

coincide with regions of diminished reflected shortwave radiation (Fig. S3d), a 732 

relationship further supported by changes in shortwave cloud forcing (SWCF; Fig. S3e). 733 

Overall, although the NETFLUX appears to reach a stable state, the system continues 734 

to lose energy and remains far from the tuning target in the default case. 735 
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 For both optimized cases, the NETFLUX (Fig. 10a) remains stable throughout the 736 

30-year simulations, with values of about 2 W/m². Although not exactly 737 

reachingslightly further from the target of 0 W/m², they are still within the model spread 738 

range of -3 to 4 W/m² (Mauritsen et al., 2012). Further analysis revealed that the 739 

relatively large energy imbalance primarily originates from the GAMIL3 atmospheric 740 

model, which exhibits a persistent imbalance of approximately 1.4 W/m² in its AMIP 741 

configuration—a feature also observed in the piControl runs—due to non-conservation 742 

in the dynamical core. This systematic issue is consistent with other atmospheric or 743 

coupled models (e.g., up to 1.0 W/m² for CAM6 at 1° resolution (Lauritzen and 744 

Williamson, 2019), 1.3 W/m² for FGOALS-g3, and 3.3 W/m² for INM-CM4-8, 745 

calculated from Wild, 2020). Notably, this energy leakage remains stablenearly 746 

identical  (±0.1 W/m²) across bothbetween the default and optimized runs, indicating 747 

that the model improvements, such as reduced climate drift, result from genuine 748 

parameter tuning rather than compensation for the energy bias. This conclusion is 749 

further supported by the coupled model’s stabilized energy budget following the spin-750 

up period (Fig. 10). The change in NETFLUX in the 10-parameter case is primarily 751 

driven by a decrease in RSR (Fig. 10b), while in the 20-parameter case, it is mostly due 752 

to a reduction in OLR (Fig. 10c), consistent with the results in Fig. 5c and 5e. Both the 753 

volume-averaged ocean temperature (Fig. 10d) and the T2M (Fig. 10e) exhibit a slight 754 

initial adjustment during the initial few years, followed by stabilization. Drift may occur 755 

during the initial integration period due to inconsistencies between the OMIP-forced 756 

ocean state and the reanalysis-based atmospheric initial conditions. However, in both 757 

cases using atmosphere-optimized parameters, the system stabilized rapidly, and 758 

neither the TOA net flux nor ocean temperature exhibits significant trends beyond the 759 

initial adjustment period of a few years. A small long-term drift is still evident in Fig. 760 

10d, which may be related to the adjustment of deep ocean processes. This demonstrates 761 

that the parameters optimized for the atmospheric model remain effective in the coupled 762 

system configuration, with no clear evidence of compensation for ocean-related drift. 763 

Results from the simulated SST biases in Fig. 11a–11c for the default case show 764 

strong cold biases relative to observations, with maximum deviations exceeding -4°C 765 
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over the North of Pacific and Atlantic. The simulated SST biases in Fig. 11d–11i 766 

indicate that both optimized cases show substantial improvement over the default case 767 

in terms of SST patterns and deviations, although some negative deviations in the 768 

northern Pacific and Atlantic persist—a common issue for most GCMs (Zhang and 769 

Zhao, 2015a; Wang et al., 2018). Previous findings suggest that the two optimized cases 770 

exhibit cloud fraction significantly different from the default case, with simulated 771 

radiation improvements primarily observed in shortwave radiation for the 10-parameter 772 

case and in longwave radiation for the 20-parameter case. Therefore, it is necessary to 773 

investigate the shortwave and longwave cloud forcing in these two cases (Fig. 12). The 774 

results for both cases show that the combined effect of these two cloud forcings acts as 775 

a significant positive influence globally, contributing to the flux of energy towards the 776 

ocean and increasing ocean temperature. Specifically, the shortwave cloud forcing has 777 

a greater weight than the longwave in the 10-parameter case, mainly due to the 778 

parameters rhcrit and rhminl, as mentioned earlier. In contrast, the longwave cloud 779 

forcing outweighs the shortwave in the 20-parameter case, primarily due to the effects 780 

of Dcs. While the shortwave cloud forcing exerts a negative effect over the tropical 781 

ocean, the longwave cloud forcing provides a significant compensatory effect. A similar 782 

behavior is observed in the 20-parameter case. 783 

Overall, the two optimized cases result in a more realistic coupled model, not only 784 

maintaining the model's energy balance and reducing climate drift, but also improving 785 

the simulated ocean state, such as SST distribution. Although the two optimized cases 786 

exhibit different behaviors—with the 10-parameter case showing lower RSR and the 787 

20-parameter case showing lower OLR—tuning has allowed them to achieve stability 788 

through distinct mechanisms. While we acknowledge that multi-century integrations 789 

would provide additional insight into the model’s equilibrium climate response, our 790 

primary goal was to test whether AMIP-tuned parameters remain valid in a coupled 791 

setup. For this purpose, a 30-year piControl run is scientifically adequate. The results 792 

show that the model quickly reaches energy balance stability for both the 10- and 20-793 

parameter cases (TOA net flux drift < 0.05 W m⁻² per decade) and that ocean heat 794 
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content drift remains minimal (< 0.008 °C per decade) after year 15, indicating that 795 

the system achieves a quasi-equilibrium state. This timescale is reasonable, since the 796 

upper ocean—where much of the adjustment occurs—has a relatively short adjustment 797 

timescale of about 1–5 years. The stabilized climate indicators and consistent system 798 

behavior (Figs. 9 and 10) confirm that the tuned parameters yield a credible coupled 799 

climate without introducing systematic drifts. Similar integration lengths have been 800 

used in other studies (e.g., Tett et al., 2017). While longer runs could refine the 801 

equilibrium further, they are unlikely to change our main conclusion that the parameter 802 

transfer is robust. 803 

3.5 Sensitivity of initial parameters 804 

As stated in the previous section, the initial parameter values used for tuning are 805 

primarily informed by expert judgment, which has been recognized as crucial and 806 

necessary in other studies (Hourdin et al., 2017; Williamson et al., 2017; Jebeile et al., 807 

2023; Lguensat et al., 2023). To further investigate the extent to which initial parameter 808 

choices influence tuning results, we conducted three additional sensitivity experiments 809 

with randomly selected initial parameter values (Table S2), focusing on the first 10 810 

parameters. 811 

The optimized parameter values in these randomized experiments (represented by 812 

stars in Fig. 3a) exhibit significantly larger spreads compared to the default and original 813 

optimized values (blue dots), particularly for parameters such as c0_conv, capelmt, and 814 

c0, which nearly span their entire plausible ranges. This finding indicates that the model 815 

could reach entirely different optimized states depending on initial values. During the 816 

tuning process, the cost function (Fig. 3c) for these cases exhibited a rapid decrease, 817 

stabilizing at similar values across all three experiments after approximately 10 818 

iterations, with an additional 10–20 runs required to reach the optimized state. This 819 

pattern further demonstrates the efficiency and robustness of the tuning algorithm. 820 

Given the substantial differences in the optimized parameters, it is worthwhile to 821 

further investigate their Jacobian differences to gain a more comprehensive 822 

understanding of each parameter's impact on the variables. Fig. 13 shows the Jacobian 823 
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ranges for four cases (including the original optimized case), with Jacobian calculated 824 

around the optimized parameter set for each case. The results generally demonstrate 825 

consistency with the parameter sensitivities shown in Fig. 8. Variables sensitive to most 826 

parameters exhibit substantial variability, while highly sensitive parameters, such as 827 

c0_conv, cmftau, rhcrit, rhminl, and rhminh, introduce considerable uncertainty across 828 

multiple variables, depending on their initial values and interactions with other 829 

parameters. Conversely, RSRC and OLRC remain largely insensitive to parameter 830 

changes, whereas MSLP, NETFLUX, Lprecip, and TEM@500hPa are influenced by 831 

most parameters, also aligning with the findings in Fig. 8. 832 

The performance of these three optimized parameter sets in the AMIP2005-2014 833 

simulations is shown in Fig. S2. Generally, NETFLUX was most closely aligned with 834 

observations across all cases, primarily due to the additional constraint incorporated 835 

into the tuning algorithm. However, notable differences across different cases remain, 836 

with each case following a distinct optimization pathway, though most results still fall 837 

within uncertainty ranges. For example, the third experiment achieved the closest 838 

alignment for T500 but at the expense of T2M and Lprecip compared to other cases, 839 

highlighting inherent trade-offs and model structural errors that hinder simultaneous 840 

optimization of these variables. As seen in prior findings, RSRC and MSLP proved 841 

difficult to tune, while OLRC was adjustable but deviated in the opposite direction from 842 

observations, accompanied by a discrepancy in RH500 alignment. 843 

Overall, these sensitivity experiments confirm the efficiency of the tuning 844 

algorithm and underscore the importance of expert judgment in selecting initial 845 

parameter values. Expert selection not only ensures satisfactory model performance at 846 

the start of tuning but also enhances tuning effectiveness, even though structural errors 847 

in the model remain. 848 

4 Discussion 849 

In this study, we developed an objective and automatic parameter tuning 850 

framework using the Derivative-Free Optimizer for Least-Squares (DFO-LS) method 851 

to tune the newest version of the Grid-Point Atmospheric Model (GAMIL3). The 852 
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results highlight the effectiveness of this method in tuning atmospheric parameters, 853 

particularly those initially set based on expert judgment, as demonstrated by notable 854 

improvements in model accuracy across multiple variables and enhanced climate 855 

system stability. However, several aspects of this work require further clarification. 856 

Firstly, as noted earlier, the 'optimized' parameter set in this study refers to the set 857 

at which the cost function achieves its minimum value. However, results in Figs. 3b 858 

and 3c indicate that, for each case, there are several cost function values close to this 859 

minimum. We have shown that these differences are not substantial enough to 860 

significantly alter the model’s performance. However, this finding suggests that 861 

parameter ranges associated with similar cost function values may provide valuable 862 

insights into the acceptable parameter space for model optimization. We acknowledge 863 

that focusing exclusively on minimizing cost function values to obtain a single 864 

optimized parameter set during tuning can increase the risk of overfitting and 865 

compensating errors, which is a common challenge in model tuning. Although the 866 

results of this study show no clear signs of overfitting—both the 10- and 20-parameter 867 

optimized cases, starting from expert-judged initial values, ultimately produce 868 

reasonable coupled model results—it remains important to carefully consider potential 869 

overfitting impacts. 870 

Secondly, this study shows that tuning either different numbers of parameters or 871 

varying initial parameter values can yield diverse optimized results, each improving 872 

certain aspects of the model. This suggests that although tuning can lower the cost 873 

function to comparable levels, the final tuned state of the model is not necessarily 874 

unique—a common issue encountered in model tuning (Hakkarainen et al., 2013; 875 

Hourdin et al., 2017; Eidhammer et al., 2024), likely due to the compensating errors 876 

within the model and uncertainties in the observational data. On one hand, introducing 877 

constraints, such as assigning greater weight in key variables during tuning, could help 878 

achieve more realistic results. For instance, applying constraints on NETFLUX during 879 

tuning ensures consistently good performance across all the cases in the AMIP2005-880 

2014 simulations. In the 20-parameter case, adding constraints on OLR and RSR would 881 

maintain their performance while also improving T500 and MSLP. On the other hand, 882 
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while different parameter sets satisfied the lowest cost function in different ways, it is 883 

important to remember that the cost function is simply a statistical measure of the 884 

distance between the area-weighted mean of the simulations and observations. 885 

Therefore, a comprehensive evaluation is essential to identify the most suitable 886 

parameter set (Eidhammer et al., 2024). Beyond minimizing cost function values and 887 

aligning statistical indicators with observations, it is crucial to evaluate the spatial 888 

distributions of variables, the equilibrium state of the climate system in coupled models, 889 

and the model’s climate sensitivity (Tett et al., 2022; Eidhammer et al., 2024). These 890 

aspects should be further evaluated to ensure robust model performance. 891 

Thirdly, while our 1-year optimization produced parameters that remain effective 892 

in extended runs (as shown by the AMIP2005–2014 and 30-year piControl validations) 893 

and internal variability was explicitly accounted for in the cost function (Eq. 1), 894 

including interannual variability—using a longer tuning period like the 5-year approach 895 

of Tett et al. (2022)—could further improve results, especially for variables with large 896 

interannual variability (e.g., MSLP, Lprecip) and dynamical outputs sensitive to the 897 

chosen year. This is supported by Bonnet et al. (2025), who show that short-term tuning 898 

works well for physical variables with low interannual variability but multi-year tuning 899 

better captures dynamical variability. Based on Bonnet et al. (2025) and our own 900 

results—such as the difference observed between 1-year and 10-year simulations for 901 

MSLP_TROPICSOCEAN_DGM, which degraded from +20σ to −10σ—we might 902 

expect approximately 10–20 % better performance for variables that are particularly 903 

sensitive to interannual variability, such as tropical precipitation patterns or 904 

extratropical circulation indices, since a longer tuning period would better sample 905 

different climate regimes and reduce sensitivity to single-year anomalies. However, 906 

longer tuning greatly increases computational cost—about 5–6 times higher for 5-year 907 

runs. Our current strategy balances efficiency and robustness, but certain metrics like 908 

T2M and Lprecip might still benefit from longer tuning. This trade-off warrants further 909 

study, particularly where an accurate representation of interannual variability is crucial. 910 

Lastly, to assess how the number of tuning parameters affects the optimization 911 

process, we used the same initial perturbation runs for the ten shared parameters in both 912 
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the 10- and 20-parameter cases, enabling a consistent evaluation of their sensitivity to 913 

the simulated results. While this approach allows a straight forward comparison, it may 914 

also constrain the optimization in the 20-parameter case by introducing bias into the 915 

initial search space. To address this potential limitation, we conducted additional 916 

experiments in which all twenty parameters were initialized with independent 917 

perturbations (Fig. S4–S6) by adjusting the rhobeg parameter in the DFO-LS algorithm 918 

from its default value of 0.18 to 0.23. These additional experiments yielded several 919 

important insights that strengthen our original conclusions. First, although the 920 

optimized parameter values in the new 20-parameter case differ somewhat from those 921 

in the original setup, most shift in the same direction relative to the default values (Fig. 922 

S4). Moreover, the optimization consistently converged to similar cost function values 923 

(2.68 vs. 2.87), despite differences in the initial perturbations and optimization 924 

pathways, highlighting the robustness of our tuning framework. Second, both 925 

approaches produced nearly identical simulation performance in the 10-year AMIP and 926 

30-year piControl experiments (Fig. S5–S6), despite relying on different parameter sets. 927 

This suggests that the performance in the 20-parameter case may be dominated by a 928 

subset of the most sensitive parameters, such as Dcs, rhcrit, c0_conv, and cmftau, which 929 

have been shown to strongly influence the simulated results. These findings provide 930 

strong evidence that our conclusions regarding the robustness of the optimization and 931 

the effect of increasing the number of tuning parameters remain valid. 932 

 Some limitations remain. For instance, although the coupled model simulations 933 

show improvements in energy stability and reduced climate drift, certain regional biases 934 

in SST persist. These biases suggest that while tuning enhances model performance, 935 

there may be systematic issues within the model’s physics that cannot be fully addressed 936 

through parameter tuning alone. Resolving these regional discrepancies may require 937 

further refinement of model physics or additional modifications to the tuning 938 

framework. Additionally, the optimized cases show a relatively large TOA energy 939 

imbalance (~2.0 W/m²) at the TOAdespite a well-tuned NETFLUX in AMIP runs, 940 

which originates from energy non-conservation in the atmospheric model's dynamical 941 

core.. In the AMIP configuration, prescribed SSTs act as an infinite energy source/sink, 942 
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masking this internal leakage in the dynamical processes. By contrast, the coupled 943 

system exposes the dynamical core's non-conservation as a stable but imbalanced 944 

energy state. This interpretation is supported by our ongoing experiments (not shown) 945 

following Williamson et al. (2015b), where correcting energy conservation in the 946 

dynamical core reduced the TOA imbalance in the piControl runs to about 0.5 W m⁻² 947 

within the same tuning framework. These results underscore that while parameter 948 

tuning can improve model fidelity, structural errors in the dynamical core—particularly 949 

its energy non-conservation—must be addressed to achieve physically consistent 950 

climate simulations. Although still within model uncertainty, this issue warrants further 951 

investigation. One possible cause could be the non-conservation of energy in the 952 

atmospheric model. Preliminary results indicate that the difference between the TOA 953 

and Earth’s surface energy imbalances in the AMIP2011 tuning is approximately 1.4 954 

W/m², and remains similar at 1.5 W/m² in the piControl runs, highlighting a persistent 955 

structural bias in the model. This suggests that even in the optimized cases, the 956 

atmospheric model may be consuming excess energy, a bias that could carry over to the 957 

coupled model. Consequently, one of the lessons from this study is that when tuning 958 

the model, attention should also be paid to structural errors, particularly those related 959 

to energy conservation. Finally, because variables such as lower tropospheric 960 

temperature, humidity, cloud fraction, and cloud radiative effects are highly sensitive 961 

to the model time step and the coupling frequency between dynamics and physics, it 962 

would be valuable to explore the tuning performance under different time step settings 963 

in future work. 964 

5 Conclusions 965 

The study focuses on optimizing an atmospheric model by simultaneously 966 

perturbing and tuning multiple parameters associated with convection, microphysics, 967 

turbulence, and other physical schemes. Two primary experiments were conducted 968 

using AMIP2011 simulations (2011, with 3-month spin-up): one adjusted 10 parameters 969 

and another adjusted 20 parameters. Validation was then performed through extended 970 

independent decadal AMIP (AMIP2005-2014) simulations and 30-year coupled 971 
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piControl simulations. Consistent performance across timescales and model 972 

configurations confirmed that the tuning corrected systematic biases rather than 973 

overfitting.AMIP2005-2014 and 30-year coupled piControl simulations to assess 974 

robustness across timescales. In the 10-parameter tuning, significant changes were 975 

made to several sensitive parameters, resulting in a notable reduction in the cost 976 

function and improved model accuracy. Out of 34 variables, 24 showed improved 977 

performance, although some remained challenging to optimize due to structure errors 978 

in the model. In the 20-parameter tuning, additional parameters related to microphysics 979 

and turbulence were introduced, resulting in slight performance improvements for 25 980 

out 34 variables. However, certain variables experienced a decline in performance. 981 

While the 20-parameter case achieved a lower cost function more quickly than the 10-982 

parameter case, the increased complexity required careful management of parameter 983 

interactions and compensatory effects.  984 

To evaluate the robustness of the tuning results, we conducted AMIP2005-2014 985 

simulations. The findings showed that the optimized parameter sets maintained their 986 

performance improvements over extended simulation periods, though variables like 987 

MSLP exhibited variability depending on the specific period analyzed. Time series 988 

analyses indicated that the optimized models more accurately captured the energy 989 

balance of the climate system, particularly by improving the balance of outgoing 990 

shortwave and longwave radiation and stabilizing surface temperatures. However, some 991 

variables remained challenging to optimize consistently across different regions and 992 

timescales. The optimized parameter sets were further tested in a coupled model setup 993 

that integrated land, ocean, and sea ice components. The results demonstrated improved 994 

energy budget stability, reducing climate drift and leading to more realistic SST 995 

simulations. Both the 10- and 20-parameter optimizations yielded more reasonable 996 

behavior in the coupled model, though persistent regional biases, particularly in the 997 

northern Pacific and Atlantic, remained. 998 

Three additional experiments, in which the initial values of the first 10 parameters 999 

were randomly selected, were conducted to evaluate its impact on the optimized results. 1000 

The results further confirm the efficiency and robustness of the algorithm, as it rapidly 1001 
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minimizes the cost function after the first 10 runs, although the optimized parameter 1002 

values and their performance across different cases show significant variation. Overall, 1003 

these findings emphasize the importance of expert judgment in parameter selection and 1004 

its role in enhancing model performance. 1005 

In conclusion, the proposed DFO-LS-based tuning framework presents a robust 1006 

and efficient approach for enhancing climate model performance. By combining 1007 

Jacobian estimation with sensitivity analysis, the framework quantitatively maps how 1008 

parameters affect key variables and thereby exposes compensating errors between 1009 

physical schemes (for example, interactions between deep convection and 1010 

microphysics). These parameter–variable mappings yield direct insight into model 1011 

structural uncertainties and supply objective diagnostics that guide development. When 1012 

model physics are changed, the framework supports rapid retuning and systematic inter-1013 

version comparison: systematic shifts in optimal parameter values then serve as 1014 

concrete evidence of how structural modifications alter model behaviour. Implemented 1015 

and exercised primarily by a single researcher within 12 months, the approach also 1016 

demonstrates high human-resource efficiency and practical scalability. Although no 1017 

single parameter set is expected to transfer unchanged across model generations, 1018 

automating the exploration process transforms development from manual trial-and-1019 

error into an efficient, reproducible, and more objective workflow. Applied across 1020 

GCMs, this methodology can accelerate model development, reduce parametric 1021 

uncertainty, and improve the reliability of climate projectionsThis work was primarily 1022 

conducted by a researcher over 12 months, highlighting the efficiency of the approach 1023 

in terms of human resources. The adaptability of this methodology to other GCMs holds 1024 

great potential for accelerating model development and improving the accuracy and 1025 

reliability of future climate projections. By integrating this framework into broader 1026 

model tuning efforts, the climate modeling community can make significant strides in 1027 

addressing parametric uncertainties and advancing the precision of climate prediction. 1028 
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1356 

 1357 

 1358 

Figure 1. Automatic tuning framework structure. Perturbed simulation results for each parameter 1359 

are used for sensitivity analysis and determining the trust region size. Two key covariance metrics—1360 

observational error and model internal variation—help adjust parameter values in the objective 1361 

function. The DFO-LS algorithm optimizes the parameters, and the post-processing module 1362 

analyzes sensitivity, cost function results, and generates visualizations. 1363 
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 1364 

Figure 2. All experiments conducted in this study, including the AMIP2011 optimization runs for 1365 

10- and 20-parameter cases, the AMIP2005-2014 simulations using the optimized parameter sets, 1366 

and the 30-year piControl simulations. Note that piControl simulations were not performed for the 1367 

varying 10-parameter cases, which are shown in brown. 1368 

Table 1: Observations used for model evaluation, along with their target values and associated 1369 

uncertainties.  1370 

Variables 

name 
Description Classifications Target Uncertainty 

MSLP 
Mean sea level 

pressure (hPa); 

MSLP_NHX_DGM 277.52 22.85 

MSLP_TROPICSLAND_DGM 35.42 13.69 

MSLP_TROPICSOCEAN_DGM 187.34 1.04 

T500 
Temperature at 

500hPa (K) 

TEMP@500_NHX 251.42 0.12 

TEMP@500_SHX 249.38 0.56 

TEMP@500_TROPICSLAND 266.27 0.27 

TEMP@500_TROPICSOCEAN 266.60 0.23 

RH500 

Relative 

humidity at 

500hPa (%) 

RH@500_NHX 52.75 7.04 

RH@500_SHX 51.05 4.79 

RH@500_TROPICSLAND 40.36 6.67 

RH@500_TROPICSOCEAN 32.57 3.01 

NETFLUX 

Net heat flux at 

top of 

atmosphere 

(W/m2) 

netflux_GLOBAL 0.98 0.15 

OLR 

Outgoing long 

wave flux at top 

of atmosphere 

(W/m2) 

OLR_NHX 223.57- 

2.5 
OLR_SHX 216.86 

OLR_TROPICSLAND 255.09 

OLR_TROPICSOCEAN 261.35 

OLRC Outgoing long OLRC_NHX 247.71 4.5 
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wave clearsky 

flux at top of 

atmosphere 

(W/m2) 

OLRC_SHX 243.59 

OLRC_TROPICSLAND 288.64 

OLRC_TROPICSOCEAN 290.21 

RSR 

Outgoing 

shortwave flux 

at top of 

atmosphere  

(W/m2) 

RSR_NHX 100.91 

2.5 
RSR_SHX 107.55 

RSR_TROPICSLAND 116.04 

RSR_TROPICSOCEAN 86.92 

RSRC 

Outgoing 

shortwave 

clearsky flux at 

top of 

atmosphere  

(W/m2) 

RSRC_NHX 57.98 

5.0 

RSRC_SHX 53.65 

RSRC_TROPICSLAND 75.67 

RSRC_TROPICSOCEAN 42.42 

Lprecip 

Land 

precipitation 

(m/s) 

Lprecip_NHX 1.60e-8 0.35e-9 

Lprecip_SHX 1.42e-8 4.29e-9 

Lprecip_TROPICSLAND 4.47e-8 0.37e-9 

T2M 
Temperature at 

2 meters (K) 

LAT_NHX 275.72- 0.06 

LAT_SHX 280.08 0.49 

LAT_TROPICSLAND 297.10 0.31 

 1371 

Table 2: Summary of tunable parameters in GAMIL3, including their default values and plausible 1372 

ranges. 1373 

Parameters Description (units if applicable) Range 
Default 

Values 

c0_conv Precipitation efficiency for deep convection 1.e-4-5.e-3 1.e-3 

rhcrit Threshold value for RH for deep convection 0.65-0.95 0.85 

capelmt Threshold value for cape for deep convection (J/kg) 20-200 70 

alfa Initial deep convection cloud downdraft mass flux 0.05-0.6 0.2 

ke 
Evaporation efficiency of deep convection 

precipitation () 
1.e-6-1.5e-5 9.e-6 

c0 Rain water autoconversion coefficient (1/m) 3.e-5-2.e-4 5.e-5 

cmftau Characteristic adjustment time scale (s) 1800-14400 4800 

rhminl Threshold RH for low stable clouds 0.8-0.99 0.95 

rhminh Threshold RH for high stable clouds 0.4-0.99 0.5 

dthdpmn 
Most stable lapse rate below 750hPa, stability 

trigger for stratus clouds (K/mb) 
-0.15- -0.05 -0.08 

sh1 
Amplification factor (shallow convective cloud 

fraction) 
0.0-1.0 0.04 

sh2 Scale factor for shallow convective mass flux 10-1000 500 
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dp1 
Amplification factor (deep convective cloud 

fraction) 
0.0-1.0 0.1 

dp2 Scale factor for deep convective mass flux 10-1000 500 

ccrit Minimum allowable sqrt(TKE)/wstar 0.0-1.0 0.5 

dzmin Minimum cloud depth to precipitate (m) 0.0-100.0 0.0 

Dcs Autoconversion size threshold for ice to snow (m) 1.e-5-1.e-3 2.e-4 

ecr Collection efficiency cloud droplets/rain 0.5-2.0 1.0 

ai Fall speed parameter for stratiform cloud ice (1/s) 500-1500 700 

qcvar 
Inverse relative variance of subgrid scale cloud 

water 
0.1-2.0 1.0 

 1374 

 1375 

Figure 2. All experiments conducted in this study, including the AMIP2011 optimization runs for 1376 

10- and 20-parameter cases, the AMIP2005-2014 simulations using the optimized parameter sets, 1377 

and the 30-year piControl simulations. Note that piControl simulations were not performed for the 1378 

sensitivity experiments that varied the initial values of the 10 parameters (shown in brown). 1379 
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 1381 

Figure 3. Normalized values of tuning parameters for the default and all five optimized cases (a); 1382 

changes in the cost function values over iterations numbers of evaluations for the two main 1383 

optimized cases (b) and the three sensitivity experiment cases (c). The vertical solid lines indicate 1384 

the 11 and 21 runs from the initial perturbation phase, while vertical dashed lines mark the iterations 1385 

at which the cost function reach its minimum.1386 
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 1387 

 1388 
Figure 4. Z values for the AMIP2011 (a) and AMIP2005-2014 (b) simulations. Solid and hollow 1389 

dots represent tuning with 10 and 20 parameters, respectively. Blue dots indicate improved 1390 

performance, while red dots show deterioration. The black dashed line at Z = 0 separates improved 1391 

from non-improved variables. 1392 

 1393 
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 1395 

Figure 5. AMIP2011 results (dots) and time series (lines) for three cases for: T500 (a), RH500 (b), 1396 

OLR (c), OLRC (d), RSR (e), RSRC (f), T2M (g), Lprecip (h), MSLP (i) and NETFLUX (j). The 1397 

cases include the default case (orangegreen lines and dots), 10-parameter case (blue lines and dots), 1398 

and 20-parameter case (red lines and dots). The black lines and shadings represent the observations 1399 

and their associated uncertainties. 1400 
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 1403 

Figure 6. Taylor-diagram showing all variables for three cases in 2011 (a) and the AMIP2005-2014 1404 

simulations (b). Shown are default case (greenyellow), 10-parameter case (blue), and 20-parameter 1405 

case (red). 1406 
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Figure 7. Meridional distributions of the annual mean bias between three cases and observations 1411 

for: T500 (a), RH500 (b), OLR (c), OLRC (d), RSR (e), RSRC (f), T2M (g), Lprecip (h) and MSLP 1412 

(i) from the AMIP2005-2014 simulations. Shown are default case (greenorange), 10-parameter case 1413 

(blue), and 20-parameter case (red).  1414 

 1415 

Figure 8. Normalized Jacobian for all 20 parameters, with values normalized by the total covariance 1416 

metrics. The x-axis shows the parameter names, while the y-axis represents the variables. Black 1417 

parameters are used in the 10-parameter case, and green ones are added in the 20-parameter case. 1418 

Red and blue indicate positive and negative effects, respectively, with darker shades showing greater 1419 

impact. 1420 

 1421 
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 1422 

Figure 9. Latitude-pressure anomaly distributions relative to the default case for relative humidity 1423 

(a, b), cloud fraction (c, d), and temperature (e, f) from AMIP2005-2014 simulations: 10-parameter 1424 

case (a, c, e) and 20-parameter case (b, d, f). 1425 
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 1428 

Figure 10. Results from the 30-year piControl simulation for NETFLUX (a), RSR (b) and OLR (c) 1429 

radiation, mean volume-averaged ocean temperature (d), and T2M in the default (greenorange), 10- 1430 

parameter (blue), and 20-parameter cases (red) cases.  1431 
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 1433 

Figure 11. Sea surface temperature biases relative to observations (HadISST; Rayner et al., 2003) 1434 

from the last 15 years of piControl simulations for the default case (a, b, c) and two optimized 1435 

cases (d-i). 1436 

 1437 

 1438 

Figure 12. Distribution of shortwave (a, b) and longwave (c, d) cloud forcing differences between 1439 

the two optimized cases and the default case. 1440 

 1441 
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 1442 
Figure 13. Similar as Fig. 7, but showing the range of Jacobians calculated from the optimized 1443 

parameter set across four cases: the original optimized case and three sensitivity cases. 1444 


