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Abstract. Parameterization in climate models often involves parameters that are 16 

poorly constrained by observations or theoretical understanding alone. Manual tuning 17 

by experts can be time-consuming, subjective, and prone to underestimating 18 

uncertainties. Automated tuning methods offer a promising alternative, enabling faster, 19 

objective improvements in model performance and better uncertainty quantification. 20 

This study presents an automated parameter-tuning framework that employs a 21 

derivative-free optimization solver (DFO-LS) to simultaneously perturb and tune 22 

multiple convection-related and microphysics parameters. The framework explicitly 23 

accounts for observational and initial condition uncertainties (internal variability) to 24 

calibrate a 1-degree resolution atmospheric model (GAMIL3). Two experiments, 25 

adjusting 10 and 20 parameters, were conducted alongside three sensitivity experiments 26 

that varied initial parameter values for a 10-parameter case. Both of the first two 27 

experiments showed a rapid decrease in the cost function, with the 10-parameter 28 

optimization significantly improving model accuracy in 24 out of 34 variables. 29 

Expanding to 20 parameters further enhanced accuracy, with improvement in 25 of 34 30 
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variables, though some structural model errors emerged. Ten-year AMIP simulations 31 

validated the robustness and stability of the tuning results, showing that the 32 

improvements persisted over extended simulations. Additionally, evaluations of the 33 

coupled model with optimized parameters showed, --compared to the default 34 

parameters settings, --reduced climate drift, a more stable climate system, and more 35 

realistic sea surface temperatures, despite an overall energy imbalance of 2.0 W/m², 36 

approximately 1.4 W/m² of which originates from the intrinsic imbalance of the 37 

atmospheric component, slight energy imbalance  and the presence of some regional 38 

biases. The sensitivity experiments underscored the efficiency of the tuning algorithm 39 

and highlight the importance of expert judgment in selecting initial parameter values. 40 

This tuning framework is broadly applicable to other general circulation models 41 

(GCMs), supporting comprehensive parameter tuning and advancing model 42 

development. 43 

1 Introduction 44 

Assessing current and future climate change risks to natural and human systems 45 

heavily relies on numerical simulations using advanced climate or Earth System 46 

Models (ESMs). In recent decades, significant progress has been made in advancing 47 

developing the major components of the Earth system— (i.e.,such as the atmosphere, 48 

ocean, land, and human systems, etc. (Prinn 2012; Bogenschutz et al., 2018; Fox-49 

Kemper et al., 2019; Blockley et al., 2020; Blyth et al., 2021)—as well as and in 50 

developing the coupling techniques required to form fully integrated ESMs (Valcke et 51 

al., 2012; Smith et al., 2021; Liu et al., 2023). However, many unresolved issues remain 52 

in the development of ESMs, including but not limited to simulation bias in air-sea 53 

interactions (Ham et al., 20134; Bellucci et al., 2021; Wei et al., 2021; Meng et al., 54 

2022), the double Intertropical Convergence Zone (ITCZ) problem (Tian et al., 2020), 55 

and the coupling of biogeochemical cycles such as the carbon cycle or, nutrient cycles 56 

with the physical climate system (Erickson et al., 2008). The complexity of the Earth's 57 

climate system and the inherent uncertainties in climate models present significant 58 

challenges in achieving reliable projections. One of the key sources of uncertainty arises 59 
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from the representation of unresolved physical processes through parameterizations 60 

(Gentine et al., 2021; Jebeile et al., 2023).  61 

Parameterizations are crucial when accounting for processes that occur at 62 

unresolved scales or are missing from the model formulation. Parameterizations 63 

provide simplified representations of sub-grid processes like cloud convection and 64 

turbulence, which cannot be explicitly resolved at scales smaller than the model's grid 65 

resolution due to computational constraints. For example, processes such as 66 

atmospheric radiative transfer and cloud microphysics are too complex to be 67 

represented in full detail within ESMs, so parameterizations offer simplified 68 

approximations to capture their essential effects. Parameterization often involves 69 

parameters whose values are frequently not well-constrained by either observations or 70 

theory alone (Ludovic, 2021; Jeliele et al., 2023), which can directly affect the 71 

performance of the model simulation. Consequently, parameter tuning, the process of 72 

estimating these uncertain parameters to minimize the discrepancy between specific 73 

observations and model results, becomes a critical step in climate model development 74 

(Hourdin et al., 2017).  75 

Appropriate parameter tuning can improve the accuracy and skill of climate model 76 

outputs by optimizing parameter values to better match observations or high-resolution 77 

simulations used as calibration targets (Mauritsen et al., 2012; Bhouri et al., 2023). For 78 

example, parameter tuning allows adjusting the values of parameters in 79 

parameterizations that approximate these unresolved processes like cloud convection, 80 

turbulence, etc (Golaz et al., 2013; Zou et al., 2014; Mignot et al., 2021; Xie et al., 81 

2023). By tuning parameter values during the model calibration process, modelers can 82 

partly compensate for known structural errors, deficiencies, or missing processes in the 83 

underlying model formulation itself (Williamson et al., 2015; Hourdin et al., 2017; Tett 84 

et al., 2017; Schneider et al., 2024). What’s more, exploring the range of plausible 85 

parameter values through tuning allows quantifying parametric uncertainties and their 86 

impacts on model outputs and projections (Jackson et al., 2004; Neelin et al, 2010; 87 

Williamson et al., 2013; Tett et al., 2013; Qian et al., 2016). 88 

Broadly speaking, parameter tuning methods aim to quickly optimize a cost 89 
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function that measures the distance between model simulations and a small collection 90 

of observations. Applications of such methods in climate science include studies by 91 

Bellprat et al. (2012), Tett et al. (2013), Yang et al. (2013), Zou et al. (2014), Zhang et 92 

al. (2015b), and Tett et al. (2017). For instance, in the experiments conducted by Tett et 93 

al. (2017) with an atmospheric GCM, 7 and 14 parameters were estimated using 94 

variants of the Gauss-Newton algorithm (Tett et al., 2013) to minimize the difference 95 

between simulated and observed large-scale, multi-year averaged net radiative fluxes. 96 

These optimized parameters were then applied in a coupled GCM. Zhang et al. (2015) 97 

utilized an improved downhill simplex method, focusing on seven parameters, and 98 

reported successful optimization of an atmospheric model. This improved method 99 

overcomes the limitations of the traditional downhill simplex method and offers better 100 

computational efficiency compared to evolutionary optimization algorithms.  101 

Traditionally, uncertain parameters have been tuned manually through extensive 102 

comparisons of model simulations with available observations. This approach is 103 

subjective, labor-intensive, computationally expensive, and can lead to under-104 

exploration of the parameter space, potentially underestimating uncertainties and 105 

leaving model biases unresolved (Allen et al., 2000; Hakkarainen et al., 2012; Hourdin 106 

et al. 2017; Hourdin et al., 2023). By contrast, automatic and objective parameter 107 

calibration techniques have advanced rapidly due to their efficiency, effectiveness, and 108 

wider applicability (Chen et al., 1999; Elkinton et al., 2008; Bardenet et al., 2013; 109 

Zhang et al., 2015). Bardenet et al. (2013) combined surrogate-based ranking and 110 

optimization techniques for surrogate-based collaborative tuning, proposing a generic 111 

method to incorporate knowledge from previous experiments. This approach can 112 

effectively improve upon manual hyperparameter tuning. Zhang et al. (2015) proposed 113 

a "three-step" methodology for parameters tuning. Before the final step of applying the 114 

downhill simplex method, they introduced two preliminary steps: determining the 115 

model's sensitivity to the parameters and selecting the optimum initial values for those 116 

sensitive parameters. By following this process, they were able to automatically and 117 

effectively obtain the optimal combination of key parameters in cloud and convective 118 

parameterizations.  119 
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However, previous studies were either semi-automatic or lacked sufficient 120 

observational constraints, such as the net flux at the top of the atmosphere (TOA). 121 

Moreover, earlier objective tuning methods that relied on cost functions often 122 

overlooked key sources of uncertainty, including observational uncertainty and the 123 

internal variability of variables. To address these limitations, we developed a new 124 

objective and automatic parameter tuning framework that is more efficient for tuning 125 

parameters in GCMs. Compared to previous automatic tuning efforts, this system 126 

operates entirely within a Python environment and includes several new optimization 127 

algorithms, including Gauss-Newton (Burke et al., 1995; Kim et al., 2008; Tett et al., 128 

2017), the Python Surrogate Optimization Toolbox (pySOT; Regis and Shoemaker, 129 

2012), and the Derivative-Free Optimizer for Least-Squares (DFO-LS; Cartis et al., 130 

2019; Hough et al., 2022). The DFO-LS package is designed to find local solutions to 131 

nonlinear least-squares minimization problems without requiring derivatives of the 132 

objective function, and has been numerically tested to be particularly effective in 133 

finding global optimization solutions. Our framework supports multiple observations 134 

and constraints as optimization targets. Additionally, it considers the internal variability 135 

of GCMs and integrates sensitivity analysis with the optimization process, making it a 136 

more flexible and efficient model tuning system overall. Moreover, systematically and 137 

simultaneously perturbing multiple parameters addresses the concern that optimizing a 138 

single objective may lead to suboptimal solutions for other objectives and might 139 

overlook the global optimum for the overall tuning metric (Qian et al., 2015; 140 

Williamson et al., 2015). We have designed and implemented an automatic workflow 141 

to streamline the calibration process, enhancing efficiency. This method and workflow 142 

are readily applicable to GCMs, facilitating accelerated model development processes. 143 

Using this framework, we tune the latest released version 3 of the Grid-Point 144 

Atmospheric Model developed at the State Key Laboratory of Numerical Modeling for 145 

Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) in the Institute of 146 

Atmospheric Physics (IAP), named GAMIL3 (Li et al., 2020a). The newly released 147 

GAMIL3 has a higher horizontal resolution (~1°) and a shorter dynamical time step 148 

(60s) compared to the previous version 2its CMIP6 version (~2.8° and 120s; Li et al., 149 
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2020b). This adjustment requires re-tuning, as climate model performance is highly 150 

sensitive to changes in resolution and time step, and several parameterization schemes 151 

related to cloud processes and microphysics have been updated but not well-tuned. This 152 

study demonstrates how the tuning framework can automatically and effectively 153 

optimize model parameters to achieve better performance against observations. 154 

Our objectives are as follows: 155 

1. To assess the performance of the tuning algorithm in the GAMIL3 atmospheric 156 

model; 157 

2. To investigate the impact of various parameters and initial values on the tuning 158 

results; 159 

3. To evaluate the performance of the optimized parameters in decadal simulations 160 

and long-term coupled model runs. 161 

The paper is organized as follows: Section 2 introduces the proposed automatic 162 

framework, the tuning model and experiments, observational data and metrics, and the 163 

tuning algorithm. Section 3 presents the evaluation of the tuning results in short- to 164 

long-tern simulations, including coupled model runs. This is followed by a discussion 165 

in Section 4 and a conclusion in Section 5. 166 

2 Methods 167 

2.1 The automatic tuning framework 168 

Here we present the automatic tuning framework (Fig. 1) we have developed, 169 

which includes, but is not limited to, functions such as model compiling, (re)submitting, 170 

parameter tuning, results evaluation, and diagnostics. Specifically, the framework 171 

comprises three main processing modules that collectively control the entire system: 172 

the model preprocessing module (the lower left panel in Fig. 1), the model optimizing 173 

module (the middle panel in Fig. 1), and the model post-processing module (the right 174 

panel in Fig. 1).  175 

The preprocessing module prepares various input data for the optimization process, 176 

with particular focus on model internal variations and observational uncertainties (Tett 177 

et al., 2017), which will be further discussed in a later section. The optimizing module, 178 
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which uses the DFO-LS optimization method, is the core component of this tuning 179 

system and is primarily responsible for updating model parameters and running 180 

simulations. In the initialization of DFO-LS, the module defines thewe use the default 181 

initial parameters ,settings  provided by the DFOLS software package, including the 182 

specification of the initial trust region, which  (which is an algorithm parameter that 183 

governs the size of the local search area) for these parameters, and any parameter 184 

constraints. Any constraints on the simulated variables are also specified at this stage. 185 

The initial trust region radius (rhobeg) is set to 0.18 (normalized to parameter ranges) 186 

based on sensitivity tests. This choice ensures that the first iterations explore locally 187 

without overstepping physical plausibility, balancing efficient convergence and 188 

sufficient sampling of the parameter space (Cartis et al., 2019). In addition, we apply a 189 

constraint to a simulated variable using a parameter μ, which determines the weighting 190 

of the constraint term (1/(2μ); see Supplementary S1). In this study, following Tett et al 191 

(2017, 2022), this constraint is applied to the global average TOA netflux. To tightly 192 

constrain this variable, μ is set to 0.18 which corresponds to a total uncertainty of 0.15 193 

W/m² somewhat higher than the observational error of 0.1 W/m². 194 

The optimization process begins with a parameter perturbation phase, in which 195 

K+1 simulations are conducted: one reference simulation using the initial parameter set, 196 

and K additional simulations—each perturbing one of the K tunable parameters 197 

individually—relative to the reference. These initial simulations establish baseline 198 

parameter sensitivities and provide finite-difference gradient estimates for the DFO-LS 199 

algorithm. The subsequent optimization phase then iteratively modifies parameter 200 

values through trust-region managed steps, where each iteration evaluates candidate 201 

points, updates local quadratic models of the cost function, and adjusts parameters 202 

based on actual versus predicted improvement ratios until convergence criteria are 203 

satisfied. In this step, the system first automatically conducts perturbed parameter 204 

experiments for each parameter individually, resulting in N simulations when N 205 

parameters are expected to be tuned. The results from this step can be used to assess the 206 

sensitivity of the variables to variations in different parameters. Next, the iteration 207 

process of DFO-LS begins, involving several steps essential for determining the 208 
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optimal parameter values. In each iteration, the algorithm refines the parameter 209 

estimates and continues until the termination criteria are met, resulting in optimized 210 

parameters. In addition to the initial K+1 simulation runs required to initialize the 211 

DFOLS algorithm for a K-parameter case, each iteration typically involves 1-3 212 

additional model simulations, depending on the trust-region management strategy and 213 

the progress of the algorithm. The algorithm normally performs one simulation per 214 

iteration to evaluate a new candidate parameter set, but may conduct 3 simulations 215 

when the local quadratic model requires improvement or when the actual-to-predicted 216 

improvement ratio falls below zero (Cartis et al., 2019). Total evaluations include the 217 

initial runs plus all subsequent iterations evaluations. The post-processing module 218 

receives the output from the optimization module, including the optimized parameters, 219 

the sensitivity of variables to the parameters, and the cost function values from different 220 

iterations, and further analyzes these results based on user requirements. 221 

2.2 Model description and experiments 222 

In this study, we utilize employ the latest version 3 of the Grid-point Atmospheric 223 

Model developed at the Institute of Atmospheric Physics, Chinese Academy of 224 

Sciences, Beijing, China (IAP LASG GAMIL3GAMIL3, which adopts a finite 225 

difference dynamical core and a weighted equal-area longitude-latitude grid to maintain 226 

numerical stability near the polars without the need for filtering or smoothing (Wang et 227 

al., 2004; Li et al., 2020a). GAMIL3, with an approximate 2° (180×80) horizontal 228 

resolution, serves as the atmospheric component of the Flexible Global Ocean–229 

Atmosphere–Land System Model Grid-point Version 3 (FGOALS-g3), which 230 

participated in CMIP6 (Li et al., 2020b). For this study, the model’s horizontal 231 

resolution is refined to about 1°This version represents a significant advancement over 232 

its predecessor, GAMIL2 (Li et al., 2013), by introducing a hybrid 2D decomposition 233 

that enhances parallel scalability, replacing the one-dimensional parallel decomposition 234 

in the meridional direction used in GAMIL2 (Liu et al., 2014). GAMIL3 features a grid 235 

structure of (360 × 160), with 26 vertical σ-layers extending to the model top at 2.19 236 

hPa. To ensure numerical stability at the higher resolution, the dynamical core time step 237 
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is reduced from 120s to 60s, while the physical parameterizations and their time step 238 

(600s) remain unchangedlongitude-latitude cells, providing a horizontal resolution of 239 

approximately 1°, with 26 vertical σ-layers (pressure normalized by surface pressure) 240 

extending to the model top at 2.19 hPa. Significant updates in GAMIL3 include 241 

improvements in the two-step shape-preserving advection scheme (TSPAS; Yu, 1994) 242 

compared to GAMIL2 (Li et al., 2013), the inclusion of a convective momentum 243 

transport scheme (Wu et al., 2007), updates to the planetary boundary layer scheme, 244 

and enhancements in the stratocumulus cloud-fraction scheme based on turbulence 245 

kinetic energy and estimated inversion strength (Guo and Zhou, 2014; Sun et al., 2016). 246 

Additionally, GAMIL3 integrates several parameterizations recommended by CMIP6 247 

to represent anthropogenic aerosol effects (Stevens et al., 2017; Shi et al., 2019). As in 248 

many other climate models (e.g., Santos et al., 2021; Wan et al., 2021; Schneider et al., 249 

2024), the performance of GAMIL3 is sensitive to the resolution, the model time step, 250 

and the coupling frequency between dynamics and physics. Therefore, it is necessary 251 

to re-tune the uncertain parameters for the new 1° configuration. 252 

During optimization, each model simulation is performed for 15 months, forced by 253 

observed sea-surface temperature (SST) and sea ice, in an Atmospheric Model 254 

Intercomparison Project (AMIP) experiment (Eyring et al., 2016). The period runs from 255 

1 October 2010 to 31 December 2011 (hereafter referred to as AMIP2011), with the 256 

first 3 months excluded for model spin-up, leaving 12 months for analysis against 257 

observations. This method is commonly used for model uncertainty quantification and 258 

parameter tuning (Yang et al., 2013; Xie et al., 2023; 2025). After optimization, the 259 

parameter set that best fits the observations is referred to as the optimized parameter 260 

set. We use this to conduct a 10-year AMIP simulation from January 1, 2005, to 261 

December 31, 2014 (hereafter referred to as AMIP2005-2014), enabling comparison 262 

with observed climate data.  263 

Additionally, tTo assess whether tuning atmospheric parameters results in a 264 

reasonable coupled model, the GAMIL3 atmospheric model is coupled with land (CAS-265 

LSM; Xie et al., 2020), ocean (LICOM3; Yu et al., 2018), and sea ice (CICE4) models, 266 

consistent with the configuration used in FGOALS-g3 (Li et al., 2020b), which 267 
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participated in CMIP6. Aand a 30-year piControl simulation (Eyring et al., 2016) is was 268 

then conducted using the optimized parameter set (Eyring et al., 2016). , based on the 269 

assumption that parameters performing well under observed forcings (e.g., prescribed 270 

SST, sea ice, and greenhouse gases) in the standalone atmospheric model will also 271 

improve performance in the coupled system. In our case, the TOA energy imbalance in 272 

the AMIP run mainly results from the radiative forcing of greenhouse gases, which trap 273 

outgoing longwave radiation. Since the piControl experiment is forced by constant pre-274 

industrial greenhouse gas levels, this radiative effect is absent. Therefore, if the AMIP-275 

tuned parameters correctly capture this effect, the coupled model under piControl 276 

conditions should yield a near-zero TOA net flux, as expected. The initial condition for 277 

the atmospheric model was the climatological mean state from atmospheric reanalysis 278 

(default configuration), while the ocean model was initialized from the equilibrated 279 

state of an OMIP simulation (a long ocean-only run forced by atmospheric reanalysis). 280 

The land model was not provided with a prescribed initial condition; instead, its state 281 

was generated dynamically during the coupled integration. To minimize the influence 282 

of potential initialization drift, the first 15 years were treated as a spin-up period and 283 

excluded from the analysis. Lastly, three additional sensitivity experiments, varying the 284 

initial values of the first 10 parameters, are carried out to examine the impact of initial 285 

parameter selection on the optimized results. These three cases are referred to as the 286 

“random1”, “random2”, and “random3” cases in the captions of all relevant figures. All 287 

experiments conducted in this study are illustrated in Fig. 2 288 

2.3 Observations and parameter selection 289 

To set up our optimization problem, we focus on the large-scale performance of the 290 

model and consider the differences between land and ocean, particularly in the tropical 291 

region. This region is characterized by distinct air-sea interactions, such as those over 292 

the Western Pacific warm pool (Wyrtki, 1975), the Eastern Pacific equatorial cold 293 

tongue region (Philander, 1983), and the Indian Ocean Dipole region (Saji et al., 1999). 294 

Therefore, following the methods outlined by Tett et al. (2017), we separate the analysis 295 

into four regions based on latitude (θ, defined as positive northward from the equator): 296 
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the northern hemispheric extra-tropical region (θ > 30° N), the tropical region (30° S ≥ 297 

θ ≤ 30° N), subdivided into tropical land and ocean, and the southern hemispheric extra-298 

tropical region (θ < 30° S). 299 

The observational variables used in this study are detailed in Table 1. While most 300 

variables are divided into four regions—labeled _TROPICSLAND (tropical land: 301 

30° S–30° N over land), _TROPICSOCEAN (tropical ocean: 30° S–30° N over ocean), 302 

_NHX (Northern Hemispheric extra-tropics: >30° N), and _SHX (Southern 303 

Hemispheric extra-tropics: <−30° S)—each with its own target and uncertainty, 304 

NETFLUX is averaged over all regions and serves as a global constraint. Specifically, 305 

the target values for variables T500, RH500, and MSLP are derived from ECMWF 306 

Reanalysis v5 data (ERA5; Hersbach et al., 2020); the radiation variables (OLR, OLRC, 307 

RSR, RSRC, and NETFLUX) are sourced from Clouds and the Earth's Radiant Energy 308 

System (CERES; Wielicki et al., 1998); and the Land Air Temperature (LAT) and Land 309 

precipitation (LprecipPRECIP) data come from the Climatic Research Unit (CRU; 310 

Jones et al., 2012; Harris et al., 2017). The uncertainties of the variables are derived 311 

from the absolute error among different data sources, which will be discussed further 312 

in a later section 2.4. All targets and uncertainties of the variables in Table 1 are for the 313 

year 2011, primarily used for model optimization.  314 

The atmospheric model parameters we calibrated are detailed in Table 2, 315 

encompassing selections from deep convection, shallow convection, microphysics, 316 

cloud fraction, and turbulence schemes. The selection of these parameters, along with 317 

their default values and plausible ranges, is based on expert judgment as recommended 318 

by the GAMIL3 developers and corresponds to the model configuration used in CMIP6 319 

experiments. While the plausible ranges are defined as the maximum physically 320 

meaningful bounds (e.g., rhcrit: 0.65–0.95), the constraint on the global average TOA 321 

net flux ensures it closely matches the observations after tuning. For visualization, all 322 

parameters are normalized based on their plausible ranges, with 0 representing the 323 

minimum value of the range and 1 representing the maximum one. Then two 324 

experiments are conducted to assess the impacts of varying the number of parameters 325 

on the optimized results: 326 
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1. We selected the first 10 parameters (listed in the last first column of Table 2) 327 

from deep convection, shallow convection, microphysics, and cloud fraction 328 

schemes. These parameters are identified as the most sensitive to the model's 329 

performance based on Xie et al. (2023), and are therefore chosen for tuning. 330 

This case is denoted as the “10-param.” case in the captions of all relevant 331 

figures. 332 

2. An additional set of the next 10 parameters (also listed in the last first column 333 

of Table 2), related to microphysics and turbulence schemes, is included 334 

alongside the initial 10 parameters. This approach aims to explore the impact 335 

of varying the number of tuning parameters on the optimization results. This 336 

case is denoted as the “20-param.” case in the captions of all relevant figures. 337 

2.4 Covariance matrices for observations and model 338 

Two covariance matrices need to be prepared before the optimization process 339 

begins. The first matrix assesses the internal variability of the model system (𝐶𝑖). To 340 

derive this, perturbed initial condition experiments are conducted. In this study, these 341 

experiments involve running a total of 20 simulations, each with the three-dimensional 342 

atmospheric temperature initial state perturbed by increments of +1e-20, while all other 343 

settings remain identical to those used in the optimization. The second matrix estimates 344 

the uncertainty of observations (𝐶0), which is generallyset to be diagonal, assuming no 345 

correlation between different observations, and its values are derived from absolute 346 

difference between the two available datasets for each variable after regridding and 347 

area-weightingthe difference between two observation datasets. . Specifically, data 348 

from ERA5 and National Center for Environmental Predictions/Department of Energy 349 

(DOE) 2 Reanalysis dataset (NCEP2; Kanamitsu et al., 2002) are used to derive the 350 

observation error for variable T500, RH500, and MSLP. Precipitation data from CRU 351 

and Global Precipitation Climatology Project (GPCP; Adler et al., 2003) are used for 352 

Land Precipitation (Lprecip). Data from CRU and Berkeley Earth Surface Temperature 353 

(BEST; Muller et al., 2013) are used for Land Air Temperature (LAT). For the four 354 

radiation variables (OLR, OLRC, RSR, and RSRC), uncertainties are based on results 355 
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the estimates from Loeb et al. (2018), giving that a TOA imbalance range of 0-2 W/m² 356 

is typical for single-year simulations (Mauritsen et al., 2012), we set the uncertainty of 357 

NETFLUX at 2 W/m². Both matrices contribute to the total uncertainty in the variables 358 

relative to the target observations. The total covariance matrix 𝐶 is composed of the 359 

two uncertainties introduced above, calculated as: 360 

                           𝐶 = 𝐶0 + 2𝐶𝑖                           (1) 361 

Consistent with Tett et al., (2022), we account for internal variability in both model 362 

simulations and observations by doubling the model-based estimate, reflecting a 363 

conservative assumption of comparable noise contributions. During optimization, all 364 

observation values are standardized using the square root of the diagonal elements of 365 

matrix 𝐶. 366 

2.5 Evaluation methods 367 

 The cost function F(p) is used to measure the difference between the simulated 368 

values S and the target observations O based on the parameters p. The cost function is 369 

given by: 370 

                          𝐹2(𝑝) =
1

𝑁
(𝑆 − 𝑂)𝑇𝐶−1(𝑆 − 𝑂)              (2), 371 

 where S is the simulated values; O is the target (observed) values; C is the 372 

covariance matrix (as discussed above); N is the number of observations; (𝑆 − 𝑂)𝑇 is 373 

the transpose of the difference between simulated and observed values; 𝐶−1 is the 374 

inverse of the covariance matrix 𝐶  discussed above; N is the number of tuning 375 

parameters. This cost function quantifies how far the simulation is from the 376 

observations, considering the uncertainty (through C) and correlation between different 377 

observations. The cost function can be modified to include additional constraints, such 378 

as the net radiation flux at the TOA, along with global averages for surface air 379 

temperature and precipitation. 380 

 The Jacobian matrix, J, defined as The Jacobian matrix J is the partial derivatives 381 

of the simulated results outputs with respect to the parameters being optimized, is used 382 

to assess the influence of tuning parameters on the simulated variables. For each 383 

simulated model output 𝑆𝑖 and parameter 𝑝𝑗, the Jacobian element 𝐽𝑖𝑗 is given by: 384 
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                          𝐽𝑖𝑗 =
𝜕𝑆𝑖(𝑝)

𝜕𝑝𝑗
                              (3) 385 

This measures how much a small change in the parameter 𝑝𝑗  will affect the 386 

simulated model outputs 𝑆𝑖(𝑝), revealing the impact of each parameter on the variables 387 

and providing insights into their sensitivity. The Jacobians are normalized by the 388 

parameter range and internal variability. Further details about the cost function and the 389 

Jacobian are available in Tett et al. (2017). 390 

In order to assess the extent to which the optimization has improved the 391 

performance of the simulated values, the ratios (Z) of the difference between the 392 

optimized and the default one to the standard error was adopted:  393 

       𝑍 =
|𝑉Default−𝑉Observation|−|𝑉Optimized−𝑉Observation|

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟
                 (4) 394 

The 𝑉Observation  𝑉Default  , and 𝑉Optimized  represent the observation value, 395 

simulated values using the default and optimized parameter sets, respectively. The 396 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟  represents the observation error of the corresponding variables. 397 

Improvement is expected for the variable if Z > 0, while if Z < 0, no improvement 398 

is anticipated, and performance may even worsen.  399 

2.6 Optimization algorithm 400 

The challenge of optimizing the model parameters numerically lies in the high 401 

computational cost and potential noise associated with model evaluations, making 402 

traditional derivative-based optimization methods impractical. There are several 403 

optimization algorithms the system provides, such as (derivative-free) Gauss-Newton 404 

variants, the pySOT algorithm, and the DFO-LS algorithm. We use the DFO-LS 405 

algorithm as it appears to have better performance in model calibration (Oliver et al., 406 

2022, 2024; Tett et al., 2022) relative to other algorithms such as Gauss-Newton (Tett 407 

et at., 2017) or CMA-ES (Hansen, 2016). This algorithm is a sophisticated optimization 408 

method designed to handle nonlinear least-squares problems without requiring 409 

derivative information. This algorithm is particularly useful in scenarios where function 410 

evaluations are expensive or noisy. Inspired by the Gauss-Newton method, DFO-LS 411 

constructs simplified linear regression models for the residuals, allowing it to make 412 

progress with a minimal number of objective evaluations (Cartis et al., 2019). 413 
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The underlying algorithmic methodology for the DFO-LS algorithm is detailed in 414 

Cartis et al. (2019). Here, we provide a brief overview of the algorithm, with a detailed 415 

description of its parameter settings available in Supplementary S1. The optimization 416 

problem is defined as minimizing the sum of the squared residuals  417 

                       𝑓(𝑝): =
∑ 𝑟𝑖

𝑁
𝑖=1 (𝑝)2

𝑁
                        (5), 418 

where 𝑟(𝑝) represents the differences between model outputs and observations; 419 

in our case, 𝑟𝑖(𝑝) ≔ 𝐶
1

2(𝑆𝑖 − 𝑂𝑖) . DFO-LS approximates the residuals without 420 

derivatives by creating a linear regression model at the current iteration. DFO-LS 421 

employs a trust region framework for stable optimization, which dynamically adjusts 422 

the search region to balance exploration and exploitation. After constructing the 423 

regression model, the algorithm solves the trust region subproblem to determine the 424 

step size and direction for updating parameters. The actual versus predicted reduction 425 

in the cost function is calculated to decide whether to accept or reject the step, with 426 

adjustments made to the trust region size accordingly. The algorithm follows these steps: 427 

initialization of parameters and trust region, model construction at each iteration, 428 

solving the trust region subproblem, accepting or rejecting steps, updating the 429 

interpolation set, and checking termination criteria. This structured approach ensures 430 

robust and efficient optimization in minimizing model discrepancies. 431 

3 Results 432 

3.1 1-year AMIP2011 simulations 433 

3.1.1 GAMIL3 10-parameter case 434 

The first experiment aims to optimize the ten sensitive parameters related to 435 

convection and microphysics parameterization schemes (Table 2). In this experiment, 436 

several parameters—including such as ke and captlmt—were adjustedchanged 437 

significantly from their default values, , while cmftau and c0 showed only minor small 438 

adjustments changes (Fig. 2a3a). Fig. 2b 3b shows the progression of the cost function 439 

over iterations for the 10- and 20-parameter cases. Note that the cost function is divided 440 

by the number of observations, and a smaller cost function indicates better simulation 441 
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accuracy against observations. In the 10-parameter case, the optimization required 29 442 

total model evaluations (11 initial perturbation runs + 18 iteration runs), system 443 

reachinges its the lowest cost function value of approximately 3.5 after 19 iterations,. 444 

excluding the initial 10 runs. The cost function drops rapidly from about 7.5 to 3.5 445 

during the initial perturbation phaseafter the 10 initial runs, followed by a slower 446 

decline with some fluctuations. 447 

Fig. 3 4 shows the reduction or increase in simulation error in terms of the number 448 

of standard errors through optimization. In the 10-parameter case (solid dots), 24 out of 449 

34 variables (approximately 71%) show Z values greater than zero, indicating improved 450 

performance against the default case. Moreover, for 11 of these 24 variables, the 451 

optimization reduced the error by more than 1 standard error, with 5 of these showing 452 

improvements greater than 3. This is particularly evident in the RSR, MSLP, and the 453 

tropical variables of T500. While most variables can be effectively tuned, several 454 

variables, such as OLR, OLRC, and LAT, are worse than the default case. However, 455 

except for LAT_NHX, the performance of these variables did not degrade by more than 456 

one standard error. The blue dots in Fig. 4 5 represent the global area-weighted mean 457 

of different variables for the tuning year (2011) in the 10-parameter case. Comparing 458 

to the observational values, the optimization successfully improved most variables (9 459 

out of 10), bringing them closer to the observations. Although some variables showed 460 

slight deviations from the observations after optimization, nearly all remained within 461 

their uncertainty range (except for OLRC), which is also reasonable in model tuning. 462 

Since the cost function is a simple statistical indicator of the distance between the 463 

area-weighted mean of the simulations and the observations, analyzing the spatial 464 

distribution of the variables is crucial when evaluating the performance of the optimized 465 

parameter sets. Fig. 5a 6a presents Taylor diagrams for all tuning variables under three 466 

parameter cases for the optimized year (2011). The results indicate that, compared to 467 

the default case (green patterns), most variables' performance improved to varying 468 

degrees in the 10-parameter case (blue patterns). For instance, while the standard 469 

deviation (SD) of the MSLP in the default result was much closer to the observations, 470 

the 10-parameter case exhibited a larger pattern correlation (PC) coefficient and a 471 
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smaller root mean square deviation (RMSD). Some variables, including 472 

LprecipPRECIP, NETFLUX, and T500, showed improvements in all three metrics (SD, 473 

PC, and RMSD). However, other variables, such as OLR and RH500, showed slight 474 

deterioration after optimization, as partially suggested in Fig. 43. 475 

The "optimized" parameter set referred to in this study is the set where the cost 476 

function reaches its lowest value. However, the robustness of this parameter set, 477 

compared to others with similar cost function values, remains to be evaluated. To 478 

address this, two additional experiments were conducted (Table S1 and Fig. S1), 479 

selecting parameter sets with cost function values closest to the optimized one to 480 

evaluate the potential impact of this choice. Table S1 shows that the parameter values 481 

for the two sets (Experiment1 and Experiment2), which have cost function values close 482 

to the minimum (Optimized), are quite similar, particularly for Experiment1, which has 483 

the closest cost function value. The results from the 10-year AMIP2005-2014 484 

simulations show that, while most variables exhibit patterns similar to those of the 485 

Optimized set, notable differences are observed in T2M and LprecipPRECIP. Overall, 486 

although differences in model behavior arise from the choice of the optimized 487 

parameter set, these differences are not substantial enough to significantly alter the 488 

model’s performance. 489 

3.1.2 GAMIL3 20-parameter case 490 

To investigate the impact of different numbers of tuning parameters on 491 

optimization and the robustness of the tuning results, an additional 10 parameters 492 

related to microphysics and turbulence schemes (Table 2) were included alongside the 493 

existing 10 parameters. In the 20-parameter case, the initial perturbations for the 494 

original 10 parameters were kept the same as in the 10-parameter case to ensure a fair 495 

comparison. Comparing the optimal values of the 20-parameter case with the default 496 

values shows that several parameters had large changes. Parameters such as c0_conv, 497 

ke, capelmt, dzmin, Dcs, and ecr showed significant deviations from their default values 498 

(Fig. 2a3a). Comparing the two sets of optimal parameters reveals both differences and 499 

consistencies. While most parameters, such as capelmt, alfa, and rhcrit, change in the 500 
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same direction and display similar magnitudes, some parameters, like ke and cmftau, 501 

are adjusted in the opposite direction. These differences may be attributed to the 502 

compensating errors within in the model, where adjustments to one parameter can offset 503 

or amplify the effects of another—a phenomenon further explored in Section 3.3..  504 

When examining the tuning procedure (Fig. 2b3b), it is evident that the cost function 505 

dropped rapidly to a value very close to the minimum after the initial 20 perturbation 506 

runs, similar to the 10-parameter case. The system required a total of 31 runs (21 initial 507 

perturbation runs + 10 iteration runs) to reach the lowest cost function value (2.87), 508 

which is only two more than that required for the 10-parameter casejust two more than 509 

the 10-parameter case. This suggests that adding ten additional parameters increases 510 

the total number of evaluations only marginally, indicating that when optimizing with 511 

DFOLS, there is no need to be overly selective about parameter choice. The minimum 512 

cost achieved is comparable to that of the 10-parameter case, with fewer additional runs 513 

required after the initial phase to reach the minimum. This implies that including more 514 

tuning parameters has a small impact on the total cost but enhances tuning efficiency. 515 

This improvement can be attributed to the inclusion of additional parameters related to 516 

other parameterization schemes, which enhances model tuning and yields more realistic 517 

results compared to observations. 518 

Comparing the Z values from the 20-parameter case to those from the 10-parameter 519 

case (Fig. 34), we find that 25 out of 34 variables (approximately 74%) have Z values 520 

greater than zero, slightly higher than in the 10-parameter case. Among these, 11 521 

variables show improvements of more than 1 standard error, with 6 exhibiting 522 

significant improvements of over 3 standard errors (notably in T500 and MSLP), which 523 

is also better than the 10-parameter case. While most variables in the 20-parameter case 524 

demonstrate equal or greater improvements than in the 10-parameter case, some, like 525 

OLR and OLRC, perform worse. The global area-weighted mean of all variables 526 

(shown by red dots in Fig. 45) indicates that, except for OLR, RH500 and 527 

LprecipPRECIP, variables improved compared to the default case. Although RH500 528 

shows a greater deviation from observation, it still falls within the uncertainty range. 529 

Significant differences between the 20-parameter and 10-parameter cases are observed 530 
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in the two radiation variables (OLR and RSR) and the two surface-related variables 531 

(T2M and LprecipPRECIP). These differences may partly result from certain 532 

parameters compensating for each other, which will be discussed later. The Taylor 533 

diagram in Fig. 5a 6a shows that most variables have improved compared to the default 534 

case. Relative to the 10-parameter case, OLR, RSR, RSRC, MSLP, and Lprecip 535 

PRECIP perform better in the 20-parameter case. However, NETFLUX and T2M 536 

perform worse. 537 

3.2 10-year AMIP2005-2014 simulations 538 

Although our cost function explicitly accounts for internal variability (Eq. 1), 539 

tTuning and evaluating the model using only a one-year simulation may still introduce 540 

uncertainties due to atmospheric the internal model's capacity to simulate phenomena 541 

with significant interannual variability (Bonnet et al., 20254), such as phase shifts in 542 

the North Atlantic Oscillation (NAO) or the stochastic tropical convection patterns like 543 

the Madden-Julian OscillationEl Niño-Southern Oscillation (ENSO). Therefore, a 544 

longer simulation with adjusted parameter settings using AMIP drivers is necessary to 545 

assess thethe robustness of the tuning across different phases of intrinsic variabilityof 546 

the tuning. Thus 10-year simulations from 1 January 2005 to 31 December 2014 are 547 

conducted for the default and two optimized parameter sets. Compared to the results 548 

from 2011, the 10-year average AMIP2005-2014 results (Fig. 3b4b) show no 549 

significant differences between the two cases, as both exhibit similar changes across 550 

most variables. For example, T500 and RSR show much improvement in both cases, 551 

while OLR and OLRC perform worse. However, several variables show differences 552 

between the two conditions. For instance, while the standardized 553 

MSLP_TROPICSOCEAN_DGM improved by over 20 in the 2011 simulation with the 554 

10-parameter case, it deviates from the observation by more than 10 standard errors in 555 

the 10-year simulation. Additionally, while the 20-parameter case demonstrated 556 

improvement in the 2011 simulation, its performance declined in the 10-year simulation. 557 

This temporal inconsistency suggests that certain parameter adjustments may be 558 

sensitive to the specific climate state of 2011, which was characterized by a moderate 559 
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La Niña. In contrast, variables such as T500, RSR, and NETFLUX exhibit consistent 560 

improvements across both simulations, indicating a robust response to parameter tuning 561 

that is less dependent on interannual variability. 562 

The time series of the 10-year AMIP2005-2014 simulations in Fig. 4 5 show that, 563 

for the 10-parameter case, 8 out of 10 variables are either much closer to the 564 

observations or very similar (OLR, OLRC, and ROSRC) to those in the default case. 565 

Only two variables, RH500 and LprecipPRECIP, are slightly further from the 566 

observations but still within uncertainty. The most striking finding is the improvement 567 

of the variables related to the energy balance equilibrium of the climate system (RSR 568 

and NETFLUX). For the default case, due to the large outgoing shortwave radiation, 569 

NETFLUX has an error of about 5 W/m2. In addition, T500 in the default case is too 570 

cold by almost 2K. After optimization, while OLR shows little change, RSR decreased 571 

by nearly 5 W/m2, considerably reducing the model bias and leading to smaller biases 572 

in NETFLUX and T500. Furthermore, the results suggest that MSLP, RSRC and OLRC 573 

are hard to tune.  In the 20-parameter case, compared to the default, all variables—574 

except RH500, OLR, T2M and LprecipPRECIP—show either reduced biases or biases 575 

that are very close (OLRC and ROSRC) to those in the default case. Both OLR and 576 

Lprecip perform notably worse than in the default case, with both variables being too 577 

low compared to the observations. This is less successful, in relative terms, than the 10 578 

parameter case, where 8 variables exhibit reduced or similar bias relative to the default. 579 

However, T500 and the MSLP—two variables that deviated significantly from the 580 

observations in the default and 10-parameter cases—have been further tuned and now 581 

align more closely with observation. Both the optimized cases show that OLR and 582 

PRECIP perform notably worse than in the default case, with both variables being too 583 

low compared to the observations. 584 

 Similar to the Taylor diagram of the 1-year AMIP2011 results, the 10-year 585 

AMIP2005-2014 simulations (Fig. 5b6b) also demonstrate varying degrees of 586 

improvement across the three metrics for most variables in both optimized cases. For 587 

instance, both cases improve all three metrics for LprecipPRECIP, NETFLUX, and 588 

RSRC compared to the default case, consistent with the 1-year AMIP2011 results. 589 
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While LprecipPRECIP, RSRC, T2M, and NETFLUX in both optimized cases exhibit 590 

similar behaviore to the 1-year AMIP2011 results, MSLP, RH500, and RSR behave 591 

differently. Comparing this with Figss. 43 and 54, the results suggest that this tuning 592 

yields only minor improvements to the spatial patterns of the variables but primarily 593 

reduces their biases relative to observations. Examining zonal averages (Fig. 67) reveals 594 

more specific details, particularly the differences between tropical and extra-tropical 595 

regions. T500 and RSR have large tropical biases which tuning considerably reduces. 596 

In contrast, RH500, OLR, RSRC, and MSLP have larger biases in extra-tropical, 597 

especially polar regions. These regional biases may come from uncertainties in complex 598 

high-latitude processes, such as sea ice and snow cover feedback mechanisms, which 599 

are not well represented in the model (Goosse et al., 2018). Across the three cases, 600 

average performance is similar to that found earlier, with T500, RH500, OLR, RSR, 601 

T2M, and Lprecip PRECIP most affected by tuning and most sensitive to parameter 602 

changes, while OLRC, RSRC, and MSLP are little impacted by optimizing. Specifically, 603 

MSLP is highly sensitive to unresolved gravity wave drag processes (Sandu et al., 2015; 604 

Williams et al., 2020), which were not included in our parameter tuning. Previous 605 

experiments with the IFS model indicate that increasing orographic and surface drag in 606 

the Northern Hemisphere can reduce MSLP biases (Kanehama et al., 2022). While the 607 

global mean OLRC is similar across cases due to regional compensation (Fig. 5d), the 608 

meridional distribution reveals notable differences (Fig. 7d). In the tropics, increased 609 

upper tropospheric water vapor—particularly in the 20-parameter case (Fig. 9a–9b)—610 

enhances the greenhouse effect and reduces outgoing clear sky longwave radiation. In 611 

contrast, decreased water vapor in high-latitude regions, especially in the 20-parameter 612 

case, leads to increased OLRC. RSRC remains nearly unchanged across all simulations 613 

due to the use of identical surface albedo. Additionally, while changing physical 614 

parameters generally affects the entire atmosphere, some variables respond differently 615 

in specific regions. For example, RH500 shows a more pronounced response in tropical 616 

regions, while land T2M responds more noticeably in the extra-tropics. 617 

3.3 Impacts of tuning on GAMIL3Atmospheric model evaluation 618 
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What parameters and processes would affect these model tuning behaviors? 619 

Analyzing the Jacobian results derived from the perturbation parameter simulations can 620 

provide insights into how and to what extent various parameters impact the variables. 621 

As shown in Fig. 78, parameters such as c0_conv, cmftau, rhcrit, rhminl, rhminh, and 622 

Dcs significantly affect simulated variables, particularly NETFLUX, 623 

Lprecip_TROPICSLAND, RSR_TROPICSOCEAN, OLR_TROPICSOCEAN, and 624 

TEMP@500. Notably, most of these parameters have also been adjusted significantly 625 

in the 10- and 20-parameter cases compared to the default. rhcrit defines the RH 626 

threshold for triggering deep convection and is a parameter with a strong influence on 627 

RH. Fig. 2a 3a shows that rhcrit decreased from the default case, whose value is 0.85, 628 

to the 10-paramter case and 20-parameter case, whose values are 0.83 and 0.82, 629 

respectively. A lower rhcrit significantly promotes deep convection by reducing the 630 

triggering threshold, which enhances water vapor transport from the lower to the mid 631 

and upper atmospheric layers. This could lead to a drop in RH below troposphere and 632 

a rise above it (Fig. 8a9a). This effect is especially pronounced in the tropics, where 633 

deep convection dominates vertical moisture transport (Fig. 4b5b, 6b7b, and 8b9b). 634 

While a lower rhcrit threshold would theoretically enhance precipitation by promoting 635 

deeper convection, our simulations instead show an overall decrease in precipitation. 636 

This apparent discrepancy suggests the parameter's effect is modulated by 637 

compensating atmospheric processes. Specifically, enhanced vertical moisture 638 

transport (Fig. 9a-9b) reduces low-level humidity availability, thereby weakening 639 

updrafts and ultimately decreasing total precipitation Additionally, low RH below 640 

troposphere can limit moisture availability, weakening updrafts and reducing overall 641 

precipitation (blue line in Fig. 4h5h). This negative impact on precipitation outweighs 642 

the positive effect of increased precipitation efficiency (c0_conv; Fig. 7). 643 

A deficit in low-level cloud fraction is evident in Fig. 8c9c-8d9d, primary due to 644 

the increase in rhminl from the default value of 0.95 to 0.97 and 0.96 in the 10- and 20-645 

parameter cases, respectively. Although the 10-parameter case has a higher threshold 646 

for low level cloud formation than the 20-parameter case, Fig. 8c9c-8d 9d shows the 647 

opposite different result, which can be explained by the compensatory effects of other 648 
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parameters. Optimized results indicate that cmftau, another key parameter, has a lower 649 

value in the 20-parameter case (~4284) compared to the default (~4800) and the 10-650 

parameter case (~4931). This decrease in cmftau likely strengthens shallow convection 651 

while weakening deep convection, reducing upward water transport and RH throughout 652 

the troposphere, contributing to the decreased low-level cloud fraction (Xie et al., 2018) 653 

and further reducing precipitation (Fig. 5h). Consequently, the lower low-level cloud 654 

fraction in the 20-parameter case, compared to the 10-parameter case, reflects the 655 

compensatory effects of these key parameters, with the influence of the reduced cmftau 656 

outweighing that of rhminl. High-level clouds trap heat by limiting radiation emission 657 

into space, thereby warming the atmosphere, while Llow-level clouds strongly reflect 658 

shortwave radiationsunlight, producing a cooling effect. Therefore, a reduction in low-659 

level clouds allows more shortwave radiation to penetrate the lower atmosphere, 660 

reducing outgoing shortwave radiation to space (blue lines in Fig. 4e 5e and 6e7e) and 661 

warming the region (blue lines in Fig. 5a and 7a; Fig. 9e), including near the surface 662 

(blue lines in Fig. 4g5g and 6a;  Fig. 8e). 663 

Comparing the 20-parameter case to the default case, the tuning results show that 664 

one sensitive parameter, Dcs—the autoconversion size threshold for ice to snow—has 665 

been significantly increased. This adjustment suggests that a higher Dcs leads to 666 

increased RSR and T2M, while also resulting in lower OLR and Lprecip PRECIP (Fig. 667 

78). ccrit, which sets the minimum turbulent threshold for triggering shallow 668 

convection, affects both OLR and Lprecip in a manner similar to Dcs. Specifically, 669 

clouds with higher ice content trap more OLR from the Earth's surface, potentially 670 

amplifying the greenhouse effect by retaining more infrared radiation (red lines in Fig. 671 

5c 6c and 7c8c). This results in a warming effect, particularly at lower atmospheric 672 

levels and even near the surface, especially during nighttime or in polar regions (red 673 

lines in Fig. 5a, 4g5g, 6a7a, and 6g7g; Fig. 8f9f). Additionally, raising the 674 

autoconversion threshold from ice to snow is expected to allow more ice to remain in 675 

the atmosphere, directly leading to a reduction in precipitation (red line in Fig. 4h5h), 676 

and increased cloud optical thickness, thereby enhancing the reflection of incoming 677 

shortwave radiation. This enhanced reflectivity partially offsets the impact of reduced 678 
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low-level cloud cover on the RSR in the 20-parameter case, leading to a smaller 679 

decrease in RSR compared to the 10-parameter case (Fig. 5e and 7e), consistent with 680 

known radiative differences among cloud types (Chen et al., 2000)..  These effects 681 

align with the results shown in Fig. 7, with the exception of RSR. Theoretically, 682 

increasing Dcs (which delays the conversion from ice to snow) could increase ice mass, 683 

raising cloud optical thickness and enhancing the cloud's ability to reflect incoming 684 

shortwave radiation. However, this expectation contrasts with the findings in Figs. 4e 685 

and 6e, which show a slightly lower RSR in the 20-parameter case compared to the 686 

default case. This discrepancy can be attributed to compensatory effect among different 687 

parameters. As shown in Fig. 7, changes to the parameters c0_chg, rhminl, and cmftau 688 

in the 20-parameter case negatively impact RSR, potentially offsetting the positive 689 

effect of Dcs and resulting in an RSR slightly lower than that of the default case. 690 

Increasing ccrit suppresses shallow convection by requiring stronger turbulence to 691 

initiate cloud formation, thereby reducing low-level cloud cover. This reduction 692 

enhances outgoing longwave radiation and surface solar heating, which in turn 693 

promotes evaporation and increases Lprecip. Therefore, adjusting Dcs and ccrit in 694 

future work may offer a promising approach for improving the simulation of OLR and 695 

Lprecip, both of which are underestimated relative to the default case. 696 

3.4 Coupled model resultsevaluation 697 

In order to evaluate the performance of different parameter sets in long-term 698 

climate simulations, it is essential to apply them to a coupled model. Here, the GAMIL3 699 

atmospheric model, coupled with land model (CLM2; Bonan et al., 2002) and ocean 700 

and sea ice model (LICOM2.0; Liu et al., 2013), was used tTo assess whether tuningthe 701 

impacts of atmospheric parameter tunings leads to a reasonableon coupled model 702 

performance, we conducted a 30-year piControl simulation using GAMIL3 coupled to 703 

land, ocean, and sea ice components (see Methods 2.2), analyzing the final 15-year 704 

period after model spin-up. 705 

In the default case the model starts with a large negative NETFLUX of around -4 706 

W/m² (Fig. 9a10a), consistent with the results in Fig. 4j5j, indicating that the climate 707 
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system is losing energy at this stage. As the model integrates, the NETFLUX increases, 708 

approaching zero after approximately five model years, achieving a stable energy 709 

budget for the remaining simulation period. This change in NETFLUX is found to be 710 

almost equally driven by a ~2 W/m² reduction in both RSR (Fig. 9b10b) and OLR (Fig. 711 

9c10c) simultaneously. However, despite these radiation variables, particularly the 712 

NETFLUX, approaching a stable state, the ocean continues to lose energy rapidly (Fig. 713 

9d10d) with no signs of stabilization by the end of the simulation. For the T2M (Fig. 714 

10e), the simulated values in the piControl run deviate significantly from the the tuning 715 

target range is of 13.6 ± 0.5°C (Williamson et al., 2013), which differs significantly 716 

from the model’s default case results (Fig. 9e). While the decrease in OLR is physically 717 

consistent with the cooling of T2M, the reduction in RSR is primarily attributed to 718 

oceanic adjustment processes. In particular, a cold SST bias (Fig. S3b) induced by the 719 

original parameter settings leads to a rapid decline in low-level cloud cover over 720 

tropical and subtropical ocean basins—especially in the western Pacific warm pool 721 

region and the South Atlantic (Fig. S3c). Most areas of cloud reduction spatially 722 

coincide with regions of diminished reflected shortwave radiation (Fig. S3d), a 723 

relationship further supported by changes in shortwave cloud forcing (SWCF; Fig. S3e). 724 

ConsequentlyOverall, although the NETFLUX appears to reach a stable state, the 725 

system continues to lose energy and remains far from the tuning target in the default 726 

case. Furthermore, the piControl simulation for the default case is notably fragile and 727 

prone to crashes due to unstable iterations, particularly in contrast to the two optimized 728 

cases. This instability poses a critical challenge, especially for long-term climate 729 

simulations. 730 

 For both optimized cases, the NETFLUX (Fig. 9a10a) remains stable throughout 731 

the 30-year simulations, with values of about 2 W/m². Although slightly further from 732 

the target of 0 W/m², they are still within the model spread range of -3 to 4 W/m² 733 

(Mauritsen et al., 2012). Further analysis revealed that the relatively large energy 734 

imbalance primarily originates from the GAMIL3 atmospheric model, which exhibits 735 

a persistent imbalance of approximately 1.4 W/m² in its AMIP configuration—a feature 736 

also observed in the piControl runs—due to non-conservation in the dynamical core. 737 
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This systematic issue is consistent with other atmospheric or coupled models (e.g., up 738 

to 1.0 W/m² for CAM6 at 1° resolution (Lauritzen and Williamson, 2019), 1.3 W/m² for 739 

FGOALS-g3, and 3.3 W/m² for INM-CM4-8, calculated from Wild, 2020). Notably, 740 

this energy leakage remains stable (±0.1 W/m²) across both default and optimized runs, 741 

indicating that the model improvements, such as reduced climate drift, result from 742 

genuine parameter tuning rather than compensation for the energy bias. This conclusion 743 

is further supported by the coupled model’s stabilized energy budget following the spin-744 

up period (Fig. 10). Specifically, tThe change in NETFLUX in the 10-parameter case 745 

is primarily driven by a decrease in RSR (Fig. 109b), while in the 20-parameter case, it 746 

is mostly due to a reduction in OLR (Fig. 109c), consistent with the results in Figs. 54c 747 

and 54e. Both the volume-averaged ocean temperature (Fig. 109d) and the T2M (Fig. 748 

109e) exhibit a slight initial adjustment during the first initial five few years, followed 749 

by stabilization. Drift may occur during the initial integration period due to 750 

inconsistencies between the OMIP-forced ocean state and the reanalysis-based 751 

atmospheric initial conditions. However, in both cases using atmosphere-optimized 752 

parameters, the system stabilized rapidly, and neither the TOA net flux nor ocean 753 

temperature exhibits significant trends beyond the initial adjustment period of a few 754 

years. A small long-term drift is still evident in Fig. 10d, which may be related to the 755 

adjustment of deep ocean processes. This demonstrates that the parameters optimized 756 

for the atmospheric model remain effective in the coupled system configuration, with 757 

no clear evidence of compensation for ocean-related drift. 758 

Results from the simulated SST anomalies biases in Fig. 110a–110c for the default 759 

case show strong cold biases anomalies relative to observations, with maximum 760 

deviations exceeding -4°C over the North of Pacific and Atlantic. The simulated SST 761 

biases anomalies in Fig. 110d–110i indicate that both optimized cases show substantial 762 

improvement over the default case in terms of SST patterns and deviations, although 763 

some negative deviations in the northern Pacific and Atlantic persist—a common issue 764 

for most GCMs (Zhang and Zhao, 2015a; Wang et al., 2018). Previous findings suggest 765 

that the two optimized cases exhibit cloud fraction significantly different from the 766 

default case, with simulated radiation improvements primarily observed in shortwave 767 
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radiation for the 10-parameter case and in longwave radiation in for the each case20-768 

parameter case, respectively. Therefore, it is necessary to investigate the shortwave and 769 

longwave cloud forcing in these two cases (Fig. 121). The results for both cases show 770 

that the combined effect of these two cloud forcings acts as a significant positive 771 

influence globally, contributing to the flux of energy towards the oceanocean surface 772 

flux and increasing ocean temperature. Specifically, the shortwave cloud forcing has a 773 

greater weight than the longwave in the 10-parameter case, mainly due to the 774 

parameters rhcrit and rhminl, as mentioned earlier. In contrast, the longwave cloud 775 

forcing outweighs the shortwave in the 20-parameter case, primarily due to the effects 776 

of Dcs. While the shortwave cloud forcing exerts a negative effect over the tropical 777 

ocean, the longwave cloud forcing provides a significant compensatory effect. A similar 778 

behavior is observed in the 20-parameter case. 779 

Overall, the two optimized cases result in a more realistic coupled model, not only 780 

maintaining the model's energy balance and reducing climate drift, but also improving 781 

the simulated ocean state, such as SST distribution. Although the two optimized cases 782 

exhibit different behaviors—with the 10-parameter case showing lower RSR and the 783 

20-parameter case showing lower OLR—tuning has allowed them to achieve stability 784 

through distinct mechanisms. While we acknowledge that multi-century integrations 785 

would provide additional insight into the model’s equilibrium climate response, our 786 

primary goal was to test whether AMIP-tuned parameters remain valid in a coupled 787 

setup. For this purpose, a 30-year piControl run is scientifically adequate. The results 788 

show that the model quickly reaches energy balance stability for both the 10- and 20-789 

parameter cases (TOA net flux drift < 0.05 W m⁻² per decade) and that ocean heat 790 

content drift remains minimal (< 0.008 °C per decade) after year 15, indicating that 791 

the system achieves a quasi-equilibrium state. This timescale is reasonable, since the 792 

upper ocean—where much of the adjustment occurs—has a relatively short adjustment 793 

timescale of about 1–5 years. The stabilized climate indicators and consistent system 794 

behavior (Figs. 9 and 10) confirm that the tuned parameters yield a credible coupled 795 

climate without introducing systematic drifts. Similar integration lengths have been 796 

used in other studies (e.g., Tett et al., 2017). While longer runs could refine the 797 
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equilibrium further, they are unlikely to change our main conclusion that the parameter 798 

transfer is robust. 799 

3.5 Sensitivity of initial parameters 800 

As stated in the previous section, the initial parameter values used for tuning are 801 

primarily informed by expert judgment, which has been recognized as crucial and 802 

necessary in other studies (Hourdin et al., 2017; Williamson et al., 2017; Jebeile et al., 803 

2023; Lguensat et al., 2023). To further investigate the extent to which initial parameter 804 

choices influence tuning results, we conducted three additional sensitivity experiments 805 

with randomly selected initial parameter values (Table S2), focusing on the first 10 806 

parameters. 807 

The optimized parameter values in these randomized experiments (represented by 808 

stars in Fig. 32a) exhibit significantly larger spreads compared to the default and 809 

original optimized values (blue dots), particularly for parameters such as c0_conv, 810 

capelmt, and c0, which nearly span their entire plausible ranges. This finding indicates 811 

that the model could reach entirely different optimized states depending on initial 812 

values. During the tuning process, the cost function (Fig. 32c) for these cases exhibited 813 

a rapid decrease, stabilizing at similar values across all three experiments after 814 

approximately 10 iterations, with an additional 10–20 runs required to reach the 815 

optimized state. This pattern further demonstrates the efficiency and robustness of the 816 

tuning algorithm. 817 

Given the substantial differences in the optimized parameters, it is worthwhile to 818 

further investigate their Jacobian differences to gain a more comprehensive 819 

understanding of each parameter's impact on the variables. Fig. 132 shows the Jacobian 820 

ranges for four cases (including the original optimized case), with Jacobian calculated 821 

around the optimized parameter set for each case. The results generally demonstrate 822 

consistency with the parameter sensitivities shown in Fig. 87. Variables sensitive to 823 

most parameters exhibit substantial variability, while highly sensitive parameters, such 824 

as c0_conv, cmftau, rhcrit, rhminl, and rhminh, introduce considerable uncertainty 825 

across multiple variables, depending on their initial values and interactions with other 826 
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parameters. Conversely, RSRC and OLRC remain largely insensitive to parameter 827 

changes, whereas MSLP, NETFLUX, Lprecip, and TEM@500hPa are influenced by 828 

most parameters, also aligning with the findings in Fig. 87. 829 

The performance of these three optimized parameter sets in the 10-year 830 

AMIP2005-2014 simulations is shown in Fig. S2. Generally, NETFLUX was most 831 

closely aligned with observations across all cases, primarily due to the additional 832 

constraint incorporated into the tuning algorithm. However, notable differences across 833 

different cases remain, with each case following a distinct optimization pathway, 834 

though most results still fall within uncertainty ranges. For example, the third 835 

experiment achieved the closest alignment for T500 but at the expense of T2M and 836 

Lprecip PRECIP compared to other cases, highlighting inherent trade-offs and model 837 

structural errors that hinder simultaneous optimization of these variables. As seen in 838 

prior findings, RSRC and MSLP proved difficult to tune, while OLRC was adjustable 839 

but deviated in the opposite direction from observations, accompanied by a discrepancy 840 

in RH500 alignment. 841 

Overall, these sensitivity experiments confirm the efficiency of the tuning 842 

algorithm and underscore the importance of expert judgment in selecting initial 843 

parameter values. Expert selection not only ensures satisfactory model performance at 844 

the start of tuning but also enhances tuning effectiveness, even though structural errors 845 

in the model remain. 846 

4 Discussion 847 

In this study, we developed an objective and automatic parameter tuning 848 

framework using the Derivative-Free Optimizer for Least-Squares (DFO-LS) method 849 

to tune the newest version of the Grid-Point Atmospheric Model (GAMIL3). The 850 

results highlight the effectiveness of this method in tuning atmospheric parameters, 851 

particularly those initially set based on expert judgment, as demonstrated by notable 852 

improvements in model accuracy across multiple variables and enhanced climate 853 

system stability. However, several aspects of this work require further clarification. 854 

Firstly, as noted earlier, the 'optimized' parameter set in this study refers to the set 855 
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at which the cost function achieves its minimum value. However, results in Figss. 32b 856 

and 32c indicate that, for each case, there are several cost function values close to this 857 

minimum. We have shown that these differences are not substantial enough to 858 

significantly alter the model’s performance. However, this finding suggests that 859 

parameter ranges associated with similar cost function values may provide valuable 860 

insights into the acceptable parameter space for model optimization. We acknowledge 861 

that focusing exclusively on minimizing cost function values to obtain a single 862 

optimized parameter set during tuning can increase the risk of overfitting and 863 

compensating errors, which is a common challenge in model tuning. Although the 864 

results of this study show no clear signs of overfitting—both the 10- and 20-parameter 865 

optimized cases, starting from expert-judged initial values, ultimately produce 866 

reasonable coupled model results—it remains important to carefully consider potential 867 

overfitting impacts. 868 

Secondly, this study shows that tuning either different numbers of parameters or 869 

varying initial parameter values can yield diverse optimized results, each improving 870 

certain aspects of the model. This suggests that although tuning can lower the cost 871 

function to comparable levels, the final tuned state of the model is not necessarily 872 

unique—an common issue encountered in model tuning (Hakkarainen et al., 2013; 873 

Hourdin et al., 2017; Eidhammer et al., 2024), likely due to the compensating errors 874 

within the model and uncertainties in the observational data. On one hand, introducing 875 

constraints, such as assigning greater weight in key variables during tuning, could help 876 

achieve more realistic results. For instance, applying constraints on NETFLUX during 877 

tuning ensures consistently good performance across all the cases in the 10-year 878 

AMIP2005-2014 simulations. In the 20-parameter case, adding constraints on OLR and 879 

RSR would maintain their performance while also improving T500 and MSLP. On the 880 

other hand, while different parameter sets satisfied the lowest cost function in different 881 

ways, it is important to remember that the cost function is simply a statistical measure 882 

of the distance between the area-weighted mean of the simulations and observations. 883 

Therefore, a comprehensive evaluation is essential to identify the most suitable 884 

parameter set (Eidhammer et al., 2024). Beyond minimizing cost function values and 885 
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aligning statistical indicators with observations, it is crucial to evaluate the spatial 886 

distributions of variables, the equilibrium state of the climate system in coupled models, 887 

and the model’s climate sensitivity (Tett et al., 2022; Eidhammer et al., 2024). These 888 

aspects should be further evaluated to ensure robust model performance. 889 

Thirdly, while our 1-year optimization produced parameters that remain effective 890 

in extended runs (as shown by the AMIP2005–2014 and 30-year piControl validations) 891 

and internal variability was explicitly accounted for in the cost function (Eq. 1), 892 

including interannual variability—using a longer tuning period like the 5-year approach 893 

of Tett et al. (2022)—could further improve results, especially for variables with large 894 

interannual variability (e.g., MSLP, Lprecip) and dynamical outputs sensitive to the 895 

chosen year. This is supported by Bonnet et al. (2025), who show that short-term tuning 896 

works well for physical variables with low interannual variability but multi-year tuning 897 

better captures dynamical variability. Based on Bonnet et al. (2025) and our own 898 

results—such as the difference observed between 1-year and 10-year simulations for 899 

MSLP_TROPICSOCEAN_DGM, which degraded from +20σ to −10σ—we might 900 

expect approximately 10–20 % better performance for variables that are particularly 901 

sensitive to interannual variability, such as tropical precipitation patterns or 902 

extratropical circulation indices, since a longer tuning period would better sample 903 

different climate regimes and reduce sensitivity to single-year anomalies. However, 904 

longer tuning greatly increases computational cost—about 5–6 times higher for 5-year 905 

runs. Our current strategy balances efficiency and robustness, but certain metrics like 906 

T2M and Lprecip might still benefit from longer tuning. This trade-off warrants further 907 

study, particularly where an accurate representation of interannual variability is crucial. 908 

Lastly, to assess how the number of tuning parameters affects the optimization 909 

process, we used the same initial perturbation runs for the ten shared parameters in both 910 

the 10- and 20-parameter cases, enabling a consistent evaluation of their sensitivity to 911 

the simulated results. While this approach allows a straight forward comparison, it may 912 

also constrain the optimization in the 20-parameter case by introducing bias into the 913 

initial search space. To address this potential limitation, we conducted additional 914 

experiments in which all twenty parameters were initialized with independent 915 
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perturbations (Fig. S4–S6) by adjusting the rhobeg parameter in the DFO-LS algorithm 916 

from its default value of 0.18 to 0.23. These additional experiments yielded several 917 

important insights that strengthen our original conclusions. First, although the 918 

optimized parameter values in the new 20-parameter case differ somewhat from those 919 

in the original setup, most shift in the same direction relative to the default values (Fig. 920 

S4). Moreover, the optimization consistently converged to similar cost function values 921 

(2.68 vs. 2.87), despite differences in the initial perturbations and optimization 922 

pathways, highlighting the robustness of our tuning framework. Second, both 923 

approaches produced nearly identical simulation performance in the 10-year AMIP and 924 

30-year piControl experiments (Fig. S5–S6), despite relying on different parameter sets. 925 

This suggests that the performance in the 20-parameter case may be dominated by a 926 

subset of the most sensitive parameters, such as Dcs, rhcrit, c0_conv, and cmftau, which 927 

have been shown to strongly influence the simulated results. These findings provide 928 

strong evidence that our conclusions regarding the robustness of the optimization and 929 

the effect of increasing the number of tuning parameters remain valid. 930 

 Some limitations remain. For instance, although the coupled model simulations 931 

show improvements in energy stability and reduced climate drift, certain regional biases 932 

in SST persist. These biases suggest that while tuning enhances model performance, 933 

there may be systematic issues within the model’s physics that cannot be fully addressed 934 

through parameter tuning alone. Resolving these regional discrepancies may require 935 

further refinement of model physics or additional modifications to the tuning 936 

framework. Additionally, the optimized cases show a relatively large energy imbalance 937 

at the TOA. Although still within model uncertainty, this issue warrants further 938 

investigation. One possible cause could be the non-conservation of energy in the 939 

atmospheric model. Preliminary results indicate that the difference between the TOA 940 

and Earth’s surface energy imbalances in the  1-year AMIP2011 tuning is 941 

approximately 1.4 W/m², and remains similar at 1.5 W/m² in the piControl runs, 942 

highlighting one of the model’sa persistent  structural errorsbias in the model. This 943 

suggests that even in the optimized cases, the atmospheric model may be consuming 944 

excess energy, a bias that could carry over to the coupled model. Consequently, one of 945 
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the lessons from this study is that when tuning the model, attention should also be paid 946 

to structural errors, particularly those related to energy conservation. Finally, because 947 

variables such as lower tropospheric temperature, humidity, cloud fraction, and cloud 948 

radiative effects are highly sensitive to the model time step and the coupling frequency 949 

between dynamics and physics, it would be valuable to explore the tuning performance 950 

under different time step settings in future work. 951 

5 Conclusions 952 

The study focuses on optimizing an atmospheric model by simultaneously 953 

perturbing and tuning multiple parameters associated with convection, microphysics, 954 

turbulence, and other physical schemes. Two primary experiments were conducted 955 

using AMIP2011 simulations (2011, with 3-month spin-up): one involving the 956 

adjustmentadjusted of 10 parameters, and anotherthe other with adjusted 20 parameters. 957 

Validation was then performed through extended AMIP2005-2014 and 30-year coupled 958 

piControl simulations to assess robustness across timescales. In the 10-parameter 959 

tuning, significant changes were made to several sensitive parameters, resulting in a 960 

notable reduction in the cost function and improved model accuracy. Out of 34 variables, 961 

24 showed improved performance, although some remained challenging to optimize 962 

due to structure errors in the model. In the 20-parameter tuning, additional parameters 963 

related to microphysics and turbulence were introduced, resulting in slight performance 964 

improvements for 25 out 34 variables. However, certain variables experienced a decline 965 

in performance. While the 20-parameter case achieved a lower cost function more 966 

quickly than the 10-parameter case, the increased complexity required careful 967 

management of parameter interactions and compensatory effects.  968 

To evaluate the robustness of the tuning results, we conducted 10-year AMIP2005-969 

2014 simulations. The findings showed that the optimized parameter sets maintained 970 

their performance improvements over extended simulation periods, though variables 971 

like MSLP exhibited variability depending on the specific period analyzed. Time series 972 

analyses indicated that the optimized models more accurately captured the energy 973 

balance equilibrium of the climate system, particularly by improving the balance of 974 
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outgoing shortwave and longwave radiation and stabilizing surface temperatures. 975 

However, some variables remained challenging to optimize consistently across 976 

different regions and timescales. The optimized parameter sets were further tested in a 977 

coupled model setup that integrated land, ocean, and sea ice components. The results 978 

demonstrated improved energy budget stability, reducing climate drift and leading to 979 

more realistic SST simulations. Both the 10- and 20-parameter optimizations yielded 980 

more reasonable behavior in the coupled model, though persistent regional biases, 981 

particularly in the northern Pacific and Atlantic, remained. 982 

Three additional experiments, in which the initial values of the first 10 parameters 983 

were randomly selected, were conducted to evaluate its impact on the optimized results. 984 

The results further confirm the efficiency and robustness of the algorithm, as it rapidly 985 

minimizes the cost function after the first 10 runs, although the optimized parameter 986 

values and their performance across different cases show significant variation. Overall, 987 

these findings emphasize the importance of expert judgment in parameter selection and 988 

its role in enhancing model performance. 989 

In conclusion, the proposed DFO-LS-based tuning framework presents a robust 990 

and efficient approach for enhancing climate model performance. This work was 991 

primarily conducted by a researcher over 12 months, highlighting the efficiency of the 992 

approach in terms of human resources. The adaptability of this methodology to other 993 

GCMs holds great potential for accelerating model development and improving the 994 

accuracy and reliability of future climate projections. By integrating this framework 995 

into broader model tuning efforts, the climate modeling community can make 996 

significant strides in addressing parametric uncertainties and advancing the precision 997 

of climate forecastsprediction. 998 
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 1373 
Figure 1. Automatic tuning framework structure. Perturbed simulation results for each parameter 1374 

are used for sensitivity analysis and determining the trust region size. Two key covariance metrics—1375 

observational error and model internal variation—help adjust parameter values in the objective 1376 

function. The DFO-LS algorithm optimizes the parameters, and the post-processing module 1377 

analyzes sensitivity, cost function results, and generates visualizations. 1378 

 1379 

Figure 2. All experiments conducted in this study, including the AMIP2011 optimization runs for 1380 

10- and 20-parameter cases, the AMIP2005-2014 simulations using the optimized parameter sets, 1381 

and the 30-year piControl simulations. Note that piControl simulations were not performed for the 1382 

varying 10-parameter cases, which are shown in brown. 1383 

Table 1: Observations used for model evaluation, along with their target values and associated 1384 

uncertainties .  1385 

Variables name Description Classifications Target Uncertainty 

MSLP Mean sea MSLP_NHX_DGM 277.52 22.85 
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level 

pressure 

(hPa); 

MSLP_TROPICSLAND_DGM 35.42 13.69 

MSLP_TROPICSOCEAN_DGM 187.34 1.04 

T500 

Temperature 

at 500hPa 

(K) 

TEMP@500_NHX 251.42 0.12 

TEMP@500_SHX 249.38 0.56 

TEMP@500_TROPICSLAND 266.27 0.27 

TEMP@500_TROPICSOCEAN 266.60 0.23 

RH500 

Relative 

humidity at 

500hPa (%) 

RH@500_NHX 52.75 7.04 

RH@500_SHX 51.05 4.79 

RH@500_TROPICSLAND 40.36 6.67 

RH@500_TROPICSOCEAN 32.57 3.01 

NETFLUX 

Net heat flux 

at top of 

atmosphere 

(W/m2) 

netflux_GLOBAL 0.98 0.152.0 

OLR 

Outgoing 

long wave 

flux at top of 

atmosphere 

(W/m2) 

OLR_NHX 223.57- 

2.5 
OLR_SHX 216.86 

OLR_TROPICSLAND 255.09 

OLR_TROPICSOCEAN 261.35 

OLRC 

Outgoing 

long wave 

clearsky flux 

at top of 

atmosphere 

(W/m2) 

OLRC_NHX 247.71 

4.5 

OLRC_SHX 243.59 

OLRC_TROPICSLAND 288.64 

OLRC_TROPICSOCEAN 290.21 

RSR 

Outgoing 

shortwave 

flux at top of 

atmosphere  

(W/m2) 

RSR_NHX 100.91 

2.5 
RSR_SHX 107.55 

RSR_TROPICSLAND 116.04 

RSR_TROPICSOCEAN 86.92 

RSRC 

Outgoing 

shortwave 

clearsky flux 

at top of 

atmosphere  

(W/m2) 

RSRC_NHX 57.98 

5.0 

RSRC_SHX 53.65 

RSRC_TROPICSLAND 75.67 

RSRC_TROPICSOCEAN 42.42 

LprecipPRECIP 

TotalLand 

precipitation 

(m/s) 

Lprecip_NHX 1.60e-8 0.35e-9 

Lprecip_SHX 1.42e-8 4.29e-9 

Lprecip_TROPICSLAND 4.47e-8 0.37e-9 

T2M Temperature LAT_NHX 275.72- 0.06 



50 

 

at 2 meters 

(K) 

LAT_SHX 280.08 0.49 

LAT_TROPICSLAND 297.10 0.31 

 1386 

Table 2: Summary of tunable parameters in GAMIL3, including their default values and plausible 1387 

ranges. 1388 

Parameters Description (units if applicable) Range 
Default 

Values 

c0_conv Precipitation efficiency for deep convection 1.e-4-5.e-3 1.e-3 

rhcrit Threshold value for RH for deep convection 0.65-0.95 0.85 

capetlmt 
Tthreshold value for cape for deep convection 

(J/kg) 
20-200 70 

alfa Initial deep convection cloud downdraft mass flux 0.05-0.6 0.2 

ke 
Evaporation efficiency of deep convection 

precipitation () 
1.e-6-1.5e-5 9.e-6 

c0 Rrain water autoconversion coefficient (1/m) 3.e-5-2.e-4 5.e-5 

cmftau Ccharacteristic adjustment time scale (s) 1800-14400 4800 

rhminl Threshold RH for low stable clouds 0.8-0.99 0.95 

rhminh Threshold RH for high stable clouds 0.4-0.99 0.5 

dthdpmn 
Most stable lapse rate below 750hPa, stability 

trigger for stratus clouds (K/mb) 
-0.15- -0.05 -0.08 

sh1 

Amplification factor (shallow convective cloud 

fraction)Parameters for shallow convection cloud 

fraction 

0.0-1.0 0.04 

sh2 Scale factor for shallow convective mass flux— 10-1000 500 

dp1 

Amplification factor (deep convective cloud 

fraction)Parameters for deep convection cloud 

fraction 

0.0-1.0 0.1 

dp2 Scale factor for deep convective mass flux— 10-1000 500 

ccrit Minimum allowable sqrt(TKE)/wstar 0.0-1.0 0.5 

dzmin Mminimum cloud depth to precipitate (m) 0.0-100.0 0.0 

Dcs Autoconversion size threshold for ice to snow (m) 1.e-5-1.e-3 2.e-4 

ecr Ccollection efficiency cloud droplets/rain 0.5-2.0 1.0 

ai Fall speed parameter for stratiform cloud ice (1/s) 500-1500 700 

qcvar 
Inverse relative variance of subgrid scale cloud 

water 
0.1-2.0 1.0 

 1389 
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 1391 

Figure 32. Normalized values of tuning parameters for the default  and  all five optimized cases 1392 

(a);, along with changes in the cost function values over iterations for the 10- and 20-parametertwo 1393 

main optimized cases (b) and the three sensitivity experiments cases (c). The vertical solid lines 1394 

indicate the 11 and 21 runs from the initial perturbation phase, while vertical dashed lines mark the 1395 

iterations at which the cost function reach its minimum.1396 
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 1398 

Figure 43. Z values for the 1-yearAMIP2011 (a) and 10-yearAMIP2005-2014 (b) AMIP simulations. 1399 

Solid and hollow dots represent tuning with 10 and 20 parameters, respectively. Blue dots indicate 1400 

improved performance, while red dots show deterioration. The black dashed line at Z = 0 separates 1401 

improved from non-improved variables. 1402 
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 1405 

Figure 54. 1-year AMIP2011 results (dots) and time series (lines) for three cases for: T500 (a), 1406 

RH500 (b), OLR (c), OLRC (d), RSR (e), RSRC (f), T2M (g), Lprecip PRECIP (h), MSLP (i) and 1407 

NETFLUX (j). The cases include the default case (green lines and dots), 10-parameter case (blue 1408 

lines and dots), and 20-parameter case (red lines and dots). The black lines and shadings represent 1409 

the observations and their associated uncertainties. 1410 



57 

 

 1411 



58 

 

 1412 

Figure 65. Taylor-diagram showing all variables for three cases in 2011 (a) and the 10-year 1413 

AMIP2005-2014 simulations (b). Shown are default case (green), 10-parameter case (blue), and 20-1414 

parameter case (red). 1415 

 1416 
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1417 

 1418 

 1419 
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Figure 76. Meridional distributions of the annual mean bias between three cases and observations 1420 

for: T500 (a), RH500 (b), OLR (c), OLRC (d), RSR (e), RSRC (f), T2M (g), Lprecip PRECIP (h) 1421 

and MSLP (i) from the 10-year AMIP2005-2014 simulations. Shown are default case (green), 10-1422 

parameter case (blue), and 20-parameter case (red).  1423 

 1424 

Figure 87. Normalized Jacobian for all 20 parameters, with values normalized by the total 1425 

covariance metrics. The x-axis shows the parameter names, while the y-axis represents the variables. 1426 

Black parameters are used in the 10-parameter case, and green ones are added in the 20-parameter 1427 

case. Red and blue indicate positive and negative effects, respectively, with darker shades showing 1428 

greater impact. 1429 
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 1432 

Figure 98. Latitude-pressure anomaly distributions relative to the default case for relative humidity 1433 

(a, b), cloud fraction (c, d), and temperature (e, f) from 10-year AMIP2005-2014 simulations: 10-1434 

parameter case (a, c, e) and 20-parameter case (b, d, f). 1435 
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 1438 

Figure 109. Results from the 30-year piControl simulation for NETFLUX (a), RSR (b) and OLR 1439 

(c) radiation, mean volume-averaged ocean temperature (d), and T2M in the default (green), 10- 1440 

parameter (blue), and 20-parameter cases (red) cases.  1441 
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 1443 

 1444 

Figure 110. Sea surface temperature biases relative to observations (HadISST; Rayner et al., 1445 

2003) from the last 15 years of piControl simulations for the default case (a, b, c) and two 1446 

optimized cases (d-i). 1447 
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1448 

 1449 

 1450 

Figure 121. Distribution of shortwave (a, b) and longwave (c, d) cloud forcing differences 1451 

between the two optimized cases and the default case. 1452 
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 1454 

Figure 132. Similar as Fig. 7, but showing the range of Jacobians calculated from the optimized 1455 

parameter set across four cases: the original optimized case and three sensitivity cases. 1456 


