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Abstract. Parameterization in climate models often involves parameters that are

poorly constrained by observations or theoretical understanding alone. Manual tuning
by experts can be time-consuming, subjective, and prone to underestimating
uncertainties. Automated tuning methods offer a promising alternative, enabling faster,
objective improvements in model performance and better uncertainty quantification.
This study presents an automated parameter-tuning framework that employs a
derivative-free optimization solver (DFO-LS) to simultaneously perturb and tune
multiple convection-related and microphysics parameters. The framework explicitly
accounts for observational and initial condition uncertainties (internal variability) to
calibrate a 1-degree resolution atmospheric model (GAMIL3). Two experiments,
adjusting 10 and 20 parameters, were conducted alongside three sensitivity experiments
that varied initial parameter values for a 10-parameter case. Both of the first two
experiments showed a rapid decrease in the cost function, with the 10-parameter
optimization significantly improving model accuracy in 24 out of 34 variables.

Expanding to 20 parameters further enhanced accuracy, with improvement in 25 of 34
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variables, though some structural model errors emerged. Ten-year AMIP simulations
validated the robustness and stability of the tuning results, showing that the
improvements persisted over extended simulations. Additionally, evaluations of the
coupled model with optimized parameters showed., —compared to the default
parameters settings, —reduced climate drift, a more stable climate system, and more

realistic sea surface temperatures, despite an overall energy imbalance of 2.0 W/m?,

approximately 1.4 W/m? of which originates from the intrinsic imbalance of the

atmospheric component,-shght-energyimbalance— and the presence of some regional

biases. The sensitivity experiments underscored the efficiency of the tuning algorithm

and highlight the importance of expert judgment in selecting initial parameter values.
This tuning framework is broadly applicable to other general circulation models
(GCMs), supporting comprehensive parameter tuning and advancing model

development.

1 Introduction

Assessing current and future climate change risks to natural and human systems
heavily relies on numerical simulations using advanced climate or Earth System
Models (ESMs). In recent decades, significant progress has been made in advancing
develeping-the major components of the Earth system—-(-essuch as the atmosphere,

ocean, land,_and human systems;—ete-_(Prinn 2012; Bogenschutz et al., 2018; Fox-

Kemper et al., 2019; Blockley et al., 2020; Blyth et al., 2021)—as well as and-in

developing the coupling techniques required to form fully integrated ESMs_(Valcke et

al., 2012; Smith et al., 2021; Liu et al., 2023). However, many unresolved issues remain

in the development of ESMs, including but not limited to simulation bias in air-sea
interactions (Ham et al., 20134; Bellucci et al., 2021; Wei et al., 2021; Meng et al.,
2022), the double Intertropical Convergence Zone (ITCZ) problem (Tian et al., 2020),

and the coupling of biogeochemical cycles such as the carbon cycle_or; nutrient cycles

with the physical climate system (Erickson et al., 2008). The complexity of the Earth's
climate system and the inherent uncertainties in climate models present significant

challenges in achieving reliable projections. One of the key sources of uncertainty arises
2
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from the representation of unresolved physical processes through parameterizations
(Gentine et al., 2021; Jebeile et al., 2023).

Parameterizations are crucial when accounting for processes that occur at
unresolved scales or are missing from the model formulation. Parameterizations
provide simplified representations of sub-grid processes like cloud convection and
turbulence, which cannot be explicitly resolved at scales smaller than the model's grid
resolution—due—to—computational—constraints. For example, processes such as
atmospheric radiative transfer and cloud microphysics are too complex to be
represented in full detail within ESMs, so parameterizations offer simplified
approximations to capture their essential effects. Parameterization often involves
parameters whose values are frequently not well-constrained by either observations or
theory alone (Ludovic, 2021:—Jekele—et—al;—2023), which can directly affect the
performance of the model simulation. Consequently, parameter tuning, the process of
estimating these uncertain parameters to minimize the discrepancy between specific
observations and model results, becomes a critical step in climate model development
(Hourdin et al., 2017).

Appropriate parameter tuning can improve the accuracy and skill of climate model
outputs by optimizing parameter values to better match observations or high-resolution
simulations used as calibration targets (Mauritsen et al., 2012; Bhouri et al., 2023). For
example, parameter tuning allows adjusting the values of parameters in
parameterizations that approximate these unresolved processes like cloud convection,
turbulence, etc (Golaz et al., 2013; Zou et al., 2014; Mignot et al., 2021; Xie et al.,
2023). By tuning parameter values during the model calibration process, modelers can
partly compensate for known structural errors, deficiencies, or missing processes in the
underlying model formulation itself (Williamson et al., 2015; Hourdin et al., 2017; Tett
et al., 2017; Schneider et al., 2024). What’s more, exploring the range of plausible
parameter values through tuning allows quantifying parametric uncertainties and their
impacts on model outputs and projections (Jackson_et al., 2004; Neelin et al, 2010;
Williamson et al., 2013; Tett et al., 2013; Qian et al., 2016).

Broadly speaking, parameter tuning methods aim to quickly optimize a cost
3
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function that measures the distance between model simulations and a small collection
of observations. Applications of such methods in climate science include studies by
Bellprat et al. (2012), Tett et al. (2013), Yang et al. (2013), Zou et al. (2014), Zhang et
al. (2015b), and Tett et al. (2017). For instance, in the experiments conducted by Tett et
al. (2017) with an atmospheric GCM, 7 and 14 parameters were estimated using
variants of the Gauss-Newton algorithm (Tett et al., 2013) to minimize the difference
between simulated and observed large-scale, multi-year averaged net radiative fluxes.
These optimized parameters were then applied in a coupled GCM. Zhang et al. (2015)
utilized an improved downhill simplex method, focusing on seven parameters, and
reported successful optimization of an atmospheric model. This improved method
overcomes the limitations of the traditional downbhill simplex method and offers better
computational efficiency compared to evolutionary optimization algorithms.
Traditionally, uncertain parameters have been tuned manually through extensive
comparisons of model simulations with available observations. This approach is
subjective, labor-intensive, computationally expensive, and can lead to under-
exploration of the parameter space, potentially underestimating uncertainties and
leaving model biases unresolved (Allen et al., 2000; Hakkarainen et al., 2012; Hourdin
et al. 2017; Hourdin et al., 2023). By contrast, automatic and objective parameter
calibration techniques have advanced rapidly due to their efficiency, effectiveness, and
wider applicability (Chen et al., 1999; Elkinton et al., 2008; Bardenet et al., 2013;
Zhang et al., 2015). Bardenet et al. (2013) combined surrogate-based ranking and
optimization techniques for surrogate-based collaborative tuning, proposing a generic
method to incorporate knowledge from previous experiments. This approach can
effectively improve upon manual hyperparameter tuning. Zhang et al. (2015) proposed
a "three-step" methodology for parameters tuning. Before the final step of applying the
downhill simplex method, they introduced two preliminary steps: determining the
model's sensitivity to the parameters and selecting the optimum initial values for those
sensitive parameters. By following this process, they were able to automatically and
effectively obtain the optimal combination of key parameters in cloud and convective

parameterizations.



120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

However, previous studies were either semi-automatic or lacked sufficient
observational constraints, such as the net flux at the top of the atmosphere (TOA).
Moreover, earlier objective tuning methods that relied on cost functions often
overlooked key sources of uncertainty, including observational uncertainty and the
internal variability of variables. To address these limitations, we developed a new
objective and automatic parameter tuning framework that is more efficient for tuning
parameters in GCMs. Compared to previous automatic tuning efforts, this system
operates entirely within a Python environment and includes several new optimization
algorithms, including Gauss-Newton (Burke et al., 1995; Kim et al., 2008; Tett et al.,
2017), the Python Surrogate Optimization Toolbox (pySOT; Regis and Shoemaker,
2012), and the Derivative-Free Optimizer for Least-Squares (DFO-LS; Cartis et al.,
2019; Hough et al., 2022). The DFO-LS package is designed to find local solutions to
nonlinear least-squares minimization problems without requiring derivatives of the
objective function, and has been numerically tested to be particularly effective in
finding global optimization solutions. Our framework supports multiple observations
and constraints as optimization targets. Additionally, it considers the internal variability
of GCMs and integrates sensitivity analysis with the optimization process, making it a
more flexible and efficient model tuning system overall. Moreover, systematically and
simultaneously perturbing multiple parameters addresses the concern that optimizing a
single objective may lead to suboptimal solutions for other objectives and might
overlook the global optimum for the overall tuning metric (Qian et al., 2015;
Williamson et al., 2015). We have designed and implemented an automatic workflow
to streamline the calibration process, enhancing efficiency. This method and workflow
are readily applicable to GCMs, facilitating accelerated model development processes.
Using this framework, we tune the latest released version 3 of the Grid-Point
Atmospheric Model developed at the State Key Laboratory of Numerical Modeling for
Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) in the Institute of
Atmospheric Physics (IAP), named GAMIL3_(Li et al., 2020a). Fhe—newlyreleased

GAMIL3 has a higher horizontal resolution (~1°) and a shorter dynamical time step

(60s) compared to the-previous—version2its CMIP6 version (~2-8°_and 120s; Li et al.,
5
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2020b). This adjustment requires re-tuning, as climate model performance is highly

sensitive to changes in resolution and time step;-and-several-parameterization-schemes
ared. This

study demonstrates how the tuning framework can automatically and effectively
optimize model parameters to achieve better performance against observations.

Our objectives are as follows:

1. To assess the performance of the tuning algorithm in the GAMIL3 atmospheric
model;

2. To investigate the impact of various parameters and initial values on the tuning
results;

3. To evaluate the performance of the optimized parameters in decadal simulations
and long-term coupled model runs.

The paper is organized as follows: Section 2 introduces the proposed automatic
framework, the tuning model and experiments, observational data and metrics, and the
tuning algorithm. Section 3 presents the evaluation of the tuning results in short- to
long-tern simulations, including coupled model runs. This is followed by a discussion

in Section 4 and a conclusion in Section 5.

2 Methods

2.1 The automatic tuning framework

Here we present the automatic tuning framework (Fig. 1) we have developed,
which includes, but is not limited to, functions such as model compiling, (re)submitting,
parameter tuning, results evaluation, and diagnostics. Specifically, the framework
comprises three main processing modules that collectively control the entire system:
the model preprocessing module (the lower left panel in Fig. 1), the model optimizing
module (the middle panel in Fig. 1), and the model post-processing module (the right
panel in Fig. 1).

The preprocessing module prepares various input data for the optimization process,
with particular focus on model internal variations and observational uncertainties (Tett

et al., 2017), which will be further discussed in a later section. The optimizing module,

6
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which uses the DFO-LS optimization method, is the core component of this tuning
system and is primarily responsible for updating model parameters and running

simulations. In the initialization of DFO-LS, the-meodule-definesthewe use the default

wnitial-parameters ssettings —provided by the DFOLS software package, including the

specification of the initial trust region, which —(whieh-is an algorithm parameter_that

governs the size of the local search area)fortheseparameters—and-anyparameter

constraints. Any constraints on the simulated variables are also specified at this stage.

The initial trust region radius (rhobeg) is set to 0.18 (normalized to parameter ranges)

based on sensitivity tests. This choice ensures that the first iterations explore locally

without overstepping physical plausibility, balancing efficient convergence and

sufficient sampling of the parameter space (Cartis et al.. 2019). In addition, we apply a

constraint to a simulated variable using a parameter ., which determines the weighting

of the constraint term (1/(2w); see Supplementary S1). In this study, following Tett et al

(2017, 2022). this constraint is applied to the global average TOA netflux. To tightly

constrain this variable, u is set to 0.18 which corresponds to a total uncertainty of 0.15

W/m? somewhat higher than the observational error of 0.1 W/m?.

The optimization process begins with a parameter perturbation phase, in which

K+1 simulations are conducted: one reference simulation using the initial parameter set,

and K additional simulations—each perturbing one of the K tunable parameters

individually—relative to the reference. These initial simulations establish baseline

parameter sensitivities and provide finite-difference gradient estimates for the DFO-LS

aleorithm. The subsequent optimization phase then iteratively modifies parameter

values through trust-region managed steps, where each iteration evaluates candidate

points, updates local quadratic models of the cost function, and adjusts parameters

based on actual versus predicted improvement ratios until convergence criteria are

salislicd. bathieptheonbam Deo sobomsn el popedien seenebe L saeasaeap
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parameters—In addition to the initial K+1 simulation runs required to initialize the

DFOLS algorithm for a K-parameter case, each iteration typically involves 1-3

additional model simulations, depending on the trust-region management strategy and

the progress of the algorithm. The algorithm normally performs one simulation per

iteration to evaluate a new candidate parameter set, but may conduct 3 simulations

when the local quadratic model requires improvement or when the actual-to-predicted

improvement ratio falls below zero (Cartis et al., 2019). Total evaluations include the

initial runs plus all subsequent iterations evaluations. The post-processing module

receives the output from the optimization module, including the optimized parameters,
the sensitivity of variables to the parameters, and the cost function values from different

iterations, and further analyzes these results based on user requirements.
2.2 Model description and experiments

In this study, we stilize-employ thelatest-version3-of the-Grid-point-Atmespherie

he D hinege A dem a
: a v

Setenees;—Betjing—China— AP FASGGAMHB3GAMIL3, which adopts a finite

difference dynamical core and a weighted equal-area longitude-latitude grid to maintain

numerical stability near the polars without the need for filtering or smoothing (Wang et

al., 2004; Li et al., 2020a). GAMIL3. with an approximate 2° (180x80) horizontal

resolution, serves as the atmospheric component of the Flexible Global Ocean—

Atmosphere—Land System Model Grid-point Version 3 (FGOALS-g3), which

participated in CMIP6 (Li et al.. 2020b). For this study, the model’s horizontal

resolution is refined to about 1°Fhis-versionrepresents-a-significantadvancement-over

nredecesca AN 1 e A I ntrad e hyvherd D decomno on
3 v Siea- 3 7

strueture-of (360 x 160), with 26 vertical c-layers extending to the model top at 2.19

hPa. To ensure numerical stability at the higher resolution, the dynamical core time step
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is reduced from 120s to 60s, while the physical parameterizations and their time step

(600s) remain unchangedlengitudetatitude-cellsprovidingahorizontal resolution-of

many other climate models (e.g.. Santos et al., 2021: Wan et al.. 2021: Schneider et al.,

2024). the performance of GAMILS3 is sensitive to the resolution, the model time step,

and the coupling frequency between dynamics and physics. Therefore, it is necessary

to re-tune the uncertain parameters for the new 1° configuration.

During optimization, each model simulation is performed for 15 months, forced by
observed sea-surface temperature (SST) and sea ice, in an Atmospheric Model
Intercomparison Project (AMIP) experiment (Eyring et al., 2016). The period runs from
1 October 2010 to 31 December 2011_(hereafter referred to as AMIP2011), with the

first 3 months excluded for model spin-up, leaving 12 months for analysis against
observations. This method is commonly used for model uncertainty quantification and
parameter tuning (Yang et al., 2013; Xie et al., 2023; 2025). After optimization, the
parameter set that best fits the observations is referred to as the optimized parameter
set. We use this to conduct a 10-year AMIP simulation from January 1, 2005, to
December 31, 2014 _(hereafter referred to as AMIP2005-2014), enabling comparison

with observed climate data.

Additienallyy—tTo assess whether tuning atmospheric parameters results in a
reasonable coupled model, the GAMIL3 atmospheric model is coupled with land (CAS-
LSM: Xie et al., 2020), ocean (LICOM3: Yu et al., 2018), and sea ice (CICE4) models,

consistent with the configuration used in FGOALS-g3 (Li et al.., 2020b), which
9
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participated in CMIP6. Aand-a 30-year piControl simulation (Eyring et al., 2016) is-was

then conducted_using the optimized parameter set-(Eyringet-al;204+6)—, based on the

assumption that parameters performing well under observed forcings (e.g.. prescribed

SST, sea ice, and greenhouse gases) in the standalone atmospheric model will also

improve performance in the coupled system. In our case, the TOA energy imbalance in

the AMIP run mainly results from the radiative forcing of greenhouse gases, which trap

outgoing longwave radiation. Since the piControl experiment is forced by constant pre-

industrial greenhouse gas levels, this radiative effect is absent. Therefore, if the AMIP-

tuned parameters correctly capture this effect, the coupled model under piControl

conditions should vield a near-zero TOA net flux, as expected. The initial condition for

the atmospheric model was the climatological mean state from atmospheric reanalysis

(default configuration), while the ocean model was initialized from the equilibrated

state of an OMIP simulation (a long ocean-only run forced by atmospheric reanalysis).

The land model was not provided with a prescribed initial condition; instead. its state

was generated dynamically during the coupled integration. To minimize the influence

of potential initialization drift, the first 15 years were treated as a spin-up period and

excluded from the analysis. Lastly, three additional sensitivity experiments, varying the

initial values of the first 10 parameters, are carried out to examine the impact of initial

parameter selection on the optimized results._ These three cases are referred to as the

“randoml”. “random2”. and “random3” cases in the captions of all relevant figures. All

experiments conducted in this study are illustrated in Fig. 2

2.3 Observations and parameter selection

To set up our optimization problem, we focus on the large-scale performance of the
model and consider the differences between land and ocean, particularly in the tropical
region. This region is characterized by distinct air-sea interactions, such as those over
the Western Pacific warm pool (Wyrtki, 1975), the Eastern Pacific equatorial cold
tongue region (Philander, 1983), and the Indian Ocean Dipole region (Saji et al., 1999).
Therefore, following the methods outlined by Tett et al. (2017), we separate the analysis

into four regions based on latitude (6. defined as positive northward from the equator):

10
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the northern hemispheric extra-tropical region (6 > 30° N), the tropical region (30° S >
0 <30° N), subdivided into tropical land and ocean, and the southern hemispheric extra-
tropical region (6 <30° S).

The observational variables used in this study are detailed in Table 1. While most

variables are divided into four regions—labeled TROPICSLAND_ (tropical land:

30°S—-30°N over land), TROPICSOCEAN (tropical ocean: 30° S—30° N over ocean),
~_NHX__ (Northern Hemispheric extra-tropics: >30°N), and SHX_ (Southern

Hemispheric extra-tropics: <—30° S)—each with its own target and uncertainty,

NETFLUX is averaged over all regions and serves as a global constraint. Specifically,
the target values for variables T500, RH500, and MSLP are derived from ECMWF
Reanalysis v5 data (ERAS; Hersbach et al., 2020); the radiation variables (OLR, OLRC,
RSR, RSRC, and NETFLUX) are sourced from Clouds and the Earth's Radiant Energy
System (CERES; Wielicki et al., 1998); and the Land Air Temperature (LAT) and Land

precipitation (LprecipPRECIP) data come from the Climatic Research Unit (CRU;

Jones et al., 2012; Harris et al., 2017). The uncertainties of the variables are derived
from the absolute error among different data sources, which will be discussed further
in atater-section 2.4. All targets and uncertainties of the variables in Table 1 are for the
year 2011, primarily used for model optimization.

The atmospheric model parameters we calibrated are detailed in Table 2,
encompassing selections from deep convection, shallow convection, microphysics,
cloud fraction, and turbulence schemes. The selection of these parameters, along with
their default values and plausible ranges, is based on expert judgment as recommended
by the GAMIL3 developers and corresponds to the model configuration used in CMIP6

experiments. While the plausible ranges are defined as the maximum physically

meaningful bounds (e.g., rherit: 0.65-0.95). the constraint on the global average TOA

net flux ensures it closely matches the observations after tuning. For visualization, all

parameters are normalized based on their plausible ranges, with 0 representing the
minimum value of the range and 1 representing the maximum one. Then two
experiments are conducted to assess the impacts of varying the number of parameters

on the optimized results:
11
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1. We selected the first 10 parameters (listed in the last-first column of Table 2)
from deep convection, shallow convection, microphysics, and cloud fraction
schemes. These parameters are identified as the most sensitive to the model's
performance based on Xie et al. (2023), and are therefore chosen for tuning.

This case is denoted as the “10-param.” case in the captions of all relevant

figures.

2. An additional set of the next 10 parameters (also listed in the last-first column
of Table 2), related to microphysics and turbulence schemes, is included
alongside the initial 10 parameters. This approach aims to explore the impact
of varying the number of tuning parameters on the optimization results._This

case is denoted as the “20-param.” case in the captions of all relevant figures.

2.4 Covariance matrices for observations and model

Two covariance matrices need to be prepared before the optimization process
begins. The first matrix assesses the internal variability of the model system (C;). To
derive this, perturbed initial condition experiments are conducted. In this study, these
experiments involve running a total of 20 simulations, each with the three-dimensional
atmospheric temperature initial state perturbed by increments of +1e-20, while all other
settings remain identical to those used in the optimization. The second matrix estimates
the uncertainty of observations (C;), which isgenerallyset to be diagonal, assuming no
correlation between different observations, and its values are derived from absolute
difference between the two available datasets for each variable after regridding and

area-weightingthe—difference—between—two—observation—datasets. —Specifically, data

from ERAS and National Center for Environmental Predictions/Department of Energy

(DOE) 2 Reanalysis dataset (NCEP2; Kanamitsu et al., 2002) are used to derive the
observation error for variable T500, RH500, and MSLP. Precipitation data from CRU
and Global Precipitation Climatology Project (GPCP; Adler et al., 2003) are used for
Land Precipitation (Lprecip). Data from CRU and Berkeley Earth Surface Temperature
(BEST; Muller et al., 2013) are used for Land-AirTFemperature(LAT). For the four
radiation variables (OLR, OLRC, RSR, and RSRC), uncertainties are based on results

12
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the estimates from Loeb et al. (2018)-giving-thataFOA-imbalancerange-of0-2-Whn2

aa a nole v an on N\/ an o A e Qe he neo Nz o

NETFEEXat2- W2, Both matrices contribute to the total uncertainty in the variables
relative to the target observations. The total covariance matrix C is composed of the
two uncertainties introduced above, calculated as:

C=Cy+2¢ (1

Consistent with Tett et al.. (2022). we account for internal variability in both model

simulations and observations by doubling the model-based estimate. reflecting a

conservative assumption of comparable noise contributions. During optimization, all

observation values are standardized using the square root of the diagonal elements of

matrix C.

2.5 Evaluation methods
The cost function F(p) is used to measure the difference between the simulated
values S and the target observations O based on the parameters p. The cost function is
given by:
F2(p) = - (S = 0)'C™(S - 0) @.
where S is the simulated values; O is the target (observed) values:—C—is—the

covariancematrix(as-discussed-above}; N is the number of observations; (S —0)7T is

the transpose of the difference between simulated and observed values; C™! is the

inverse of the covariance matrix_ C_discussed above:MN—is—the—number—oftuning
parameters. This cost function quantifies how far the simulation is from the

observations, considering the uncertainty (through C) and correlation between different
observations. The cost function can be modified to include additional constraints, such
as the net radiation flux at the TOA, along with global averages for surface air
temperature and precipitation.

The Jacobian matrix, J, defined as FheJacobian-matrix-/s-the partial derivatives

of the simulated results-outputs with respect to the parameters being optimized, is used

to assess the influence of tuning parameters on the simulated variables. For each

simulated model output S; and parameter pj, the Jacobian element J;; is given by:

13
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Jij = £ 3)

This measures how much a small change in the parameter p; will affect the
simulated model outputs S;(p), revealing the impact of each parameter on the variables
and providing insights into their sensitivity. The Jacobians are normalized by the
parameter range and internal variability. Further details about the cost function and the
Jacobian are available in Tett et al. (2017).

In order to assess the extent to which the optimization has improved the
performance of the simulated values, the ratios (Z) of the difference between the

optimized and the default one to the standard error was adopted:

7 = |VDefau1t_VObservation|_|V0ptimized_V0bservation| (4)
Standard error

The Vopservation  Vbefaurt » and  Voprimizea represent the observation value,
simulated values using the default and optimized parameter sets, respectively. The
Standard error represents the observation error of the corresponding variables.
Improvement is expected for the variable if Z > 0, while if Z < 0, no improvement

is anticipated, and performance may even worsen.

2.6 Optimization algorithm

The challenge of optimizing the model parameters numerically lies in the high
computational cost and potential noise associated with model evaluations, making
traditional derivative-based optimization methods impractical. There are several
optimization algorithms the system provides, such as (derivative-free) Gauss-Newton
variants, the pySOT algorithm, and the DFO-LS algorithm. We use the DFO-LS
algorithm as it appears to have better performance in model calibration (Oliver et al.,
2022, 2024; Tett et al., 2022) relative to other algorithms such as Gauss-Newton (Tett
et at., 2017) or CMA-ES (Hansen, 2016). This algorithm is a sophisticated optimization
method designed to handle nonlinear least-squares problems without requiring
derivative information. This algorithm is particularly useful in scenarios where function
evaluations are expensive or noisy. Inspired by the Gauss-Newton method, DFO-LS
constructs simplified linear regression models for the residuals, allowing it to make

progress with a minimal number of objective evaluations (Cartis et al., 2019).
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The underlying algorithmic methodology for the DFO-LS algorithm is detailed in
Cartis et al. (2019). Here, we provide a brief overview of the algorithm, with a detailed
description of its parameter settings available in Supplementary S1. The optimization

problem is defined as minimizing the sum of the squared residuals

. Z?I:1ri(p)2
flp):===—= (5),

where r(p) represents the differences between model outputs and observations;

in our case, 1;(p):=C %(Si — 0;) . DFO-LS approximates the residuals without
derivatives by creating a linear regression model at the current iteration. DFO-LS
employs a trust region framework for stable optimization, which dynamically adjusts
the search region to balance exploration and exploitation. After constructing the
regression model, the algorithm solves the trust region subproblem to determine the
step size and direction for updating parameters. The actual versus predicted reduction
in the cost function is calculated to decide whether to accept or reject the step, with
adjustments made to the trust region size accordingly. The algorithm follows these steps:
initialization of parameters and trust region, model construction at each iteration,
solving the trust region subproblem, accepting or rejecting steps, updating the
interpolation set, and checking termination criteria. This structured approach ensures

robust and efficient optimization in minimizing model discrepancies.

3 Results
3.1 +-year-AMIP2011 simulations

3.1.1 GAMIL3 10-parameter case

The first experiment aims to optimize the ten sensitive parameters related to
convection and microphysics parameterization schemes (Table 2). In this experiment,
several parameters—inelading—such as ke and captimt—were—adjustedchanged
significantly from their default values, -while cmftau and c0 showed only minessmall
adjustments-changes (Fig. 2a3a). Fig. 2b-3b shows the progression of the cost function
over iterations for the 10- and 20-parameter cases. Note that the cost function is divided

by the number of observations, and a smaller cost function indicates better simulation
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accuracy against observations. In the 10-parameter case, the optimization required 29

total model evaluations (11 initial perturbation runs + 18 iteration runs), system

reachinges #s-the lowest cost function value of approximately 3.5-after19-iterations;.

exeludingthe—initial H0—+uns—The cost function drops rapidly from about 7.5 to 3.5
during the initial perturbation phaseafter—the1+0—nitial-runs, followed by a slower

decline with some fluctuations.

Fig. 3-4 shows the reduction or increase in simulation error in terms of the number
of standard errors through optimization. In the 10-parameter case (solid dots), 24 out of
34 variables (approximately 71%) show Z values greater than zero, indicating improved
performance against the default case. Moreover, for 11 of these 24 variables, the
optimization reduced the error by more than 1 standard error, with 5 of these showing
improvements greater than 3. This is particularly evident in the RSR, MSLP, and the
tropical variables of T500. While most variables can be effectively tuned, several
variables, such as OLR, OLRC, and LAT, are worse than the default case. However,
except for LAT NHX, the performance of these variables did not degrade by more than
one standard error. The blue dots in Fig. 4-5 represent the global area-weighted mean
of different variables for the tuning year (2011) in the 10-parameter case. Comparing
to the observational values, the optimization successfully improved most variables (9
out of 10), bringing them closer to the observations. Although some variables showed
slight deviations from the observations after optimization, nearly all remained within
their uncertainty range (except for OLRC), which is also reasonable in model tuning.

Since the cost function is a simple statistical indicator of the distance between the
area-weighted mean of the simulations and the observations, analyzing the spatial
distribution of the variables is crucial when evaluating the performance of the optimized
parameter sets. Fig. Sa-6a presents Taylor diagrams for all tuning variables under three
parameter cases for the optimized year (2011). The results indicate that, compared to
the default case (green patterns), most variables' performance improved to varying
degrees in the 10-parameter case (blue patterns). For instance, while the standard
deviation (SD) of the MSLP in the default result was much closer to the observations,

the 10-parameter case exhibited a larger pattern correlation (PC) coefficient and a
16
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smaller root mean square deviation (RMSD). Some variables, including
LprecipPRECIHR, NETFLUX, and T500, showed improvements in all three metrics (SD,
PC, and RMSD). However, other variables, such as OLR and RH500, showed slight
deterioration after optimization, as partially suggested in Fig. 43.

The "optimized" parameter set referred to in this study is the set where the cost
function reaches its lowest value. However, the robustness of this parameter set,
compared to others with similar cost function values, remains to be evaluated. To
address this, two additional experiments were conducted (Table S1 and Fig. S1),
selecting parameter sets with cost function values closest to the optimized one to
evaluate the potential impact of this choice. Table S1 shows that the parameter values
for the two sets (Experiment] and Experiment2), which have cost function values close
to the minimum (Optimized), are quite similar, particularly for Experimentl, which has
the closest cost function value. The results from the +0—wear—AMIP2005-2014
simulations show that, while most variables exhibit patterns similar to those of the
Optimized set, notable differences are observed in T2M and LprecipPRECHR. Overall,
although differences in model behavior arise from the choice of the optimized
parameter set, these differences are not substantial enough to significantly alter the

model’s performance.

3.1.2 GAMIL3 20-parameter case

To investigate the impact of different numbers of tuning parameters on
optimization and the robustness of the tuning results, an—additional 10 parameters
related to microphysics and turbulence schemes (Table 2) were included alongside the
existing 10 parameters. In the 20-parameter case, the initial perturbations for the
original 10 parameters were kept the same as in the 10-parameter case to ensure a fair
comparison. Comparing the optimal values of the 20-parameter case with the default
values shows that several parameters had large changes. Parameters such as c0_conv,
ke, capelmt, dzmin, Dcs, and ecr showed significant deviations from their default values
(Fig. 2a3a). Comparing the two sets of optimal parameters reveals both differences and

consistencies. While most parameters, such as capelmt, alfa, and rhcrit, change in the

17



501

502

503

504

505

506

507

508

509

510

511
512
513
514
515
516
517
‘518
519
‘520
521
522
523
524
525
526
527
528
529

530

same direction and display similar magnitudes, some parameters, like ke and cmftau,
are adjusted in the opposite direction. These differences may be attributed to the

compensating errors within in the model, where adjustments to one parameter can offset

or amplify the effects of another—a phenomenon further explored in Section 3.3.-

When examining the tuning procedure (Fig. 2b3b), it is evident that the cost function
dropped rapidly to a value very close to the minimum after the initial 20 perturbation
runs, similar to the 10-parameter case. The system required a total of 31 runs_ (21 initial

perturbation runs + 10 iteration runs) to reach the lowest cost function_value (2.87),

which is only two more than that required for the 10-parameter caserust-two-more-than

the10-parameter—ease. This suggests that adding ten additional parameters increases
the total number of evaluations only marginally, indicating that when optimizing with
DFOLS, there is no need to be overly selective about parameter choice. The minimum
cost achieved is comparable to that of the 10-parameter case, with fewer additional runs
required after the initial phase to reach the minimum. This implies that including more
tuning parameters has a small impact on the total cost but enhances tuning efficiency.
This improvement can be attributed to the inclusion of additional parameters related to
other parameterization schemes, which enhances model tuning and yields more realistic
results compared to observations.

Comparing the Z values from the 20-parameter case to those from the 10-parameter
case (Fig. 34), we find that 25 out of 34 variables (approximately 74%) have Z values
greater than zero, slightly higher than in the 10-parameter case. Among these, 11
variables show improvements of more than 1 standard error, with 6 exhibiting
significant improvements of over 3 standard errors (notably in T500 and MSLP), which
is also better than the 10-parameter case. While most variables in the 20-parameter case
demonstrate equal or greater improvements than in the 10-parameter case, some, like
OLR and OLRC, perform worse. The global area-weighted mean of all variables
(shown by red dots in Fig. 45) indicates that, except for OLR, RH500 and
LprecipPRECIR, variables improved compared to the default case. Although RH500
shows a greater deviation from observation, it still falls within the uncertainty range.

Significant differences between the 20-parameter and 10-parameter cases are observed
18
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in the two radiation variables (OLR and RSR) and the two surface-related variables
(T2M and LprecipPRECHP). These differences may partly result from certain
parameters compensating for each other, which will be discussed later. The Taylor
diagram in Fig. 5a-6a shows that most variables have improved compared to the default
case. Relative to the 10-parameter case, OLR, RSR, RSRC, MSLP, and Lprecip
PRECIHP perform better in the 20-parameter case. However, NETFLUX and T2M

perform worse.

3.2 10-year-AMIP2005-2014 simulations

Although our cost function explicitly accounts for internal variability (Eqg. 1),

tFuning and evaluating the model using only a one-year simulation may still introduce

uncertainties due to atmospheric the-internal medel's-eapaeity-to-simulate-phenomena

with-significant-interannual-variability (Bonnet et al., 20254), such as phase shifts in
the North Atlantic Oscillation (NAQO) or the-stochastic tropical convection patterns like

the Madden-Julian OscillationE}l-Nifie-Seuthern—Oseilation(ENSO). Therefore, a

longer simulation with adjusted parameter settings using AMIP drivers is necessary to

assess thethe robustness of the tuning across different phases of intrinsic variabilityef

the—tantng. Thus 10-year simulations from 1 January 2005 to 31 December 2014 are
conducted for the default and two optimized parameter sets. Compared to the results
from 2011, the 10—year—average AMIP2005-2014 results (Fig. 3b4b) show no
significant differences between the two cases, as both exhibit similar changes across
most variables. For example, TS00 and RSR show much improvement in both cases,
while OLR and OLRC perform worse. However, several variables show differences
between the two conditions. For instance, while the standardized
MSLP_TROPICSOCEAN DGM improved by over 20 in the 2011 simulation with the
10-parameter case, it deviates from the observation by more than 10 standard errors in
the 10-year simulation. Additionally, while the 20-parameter case demonstrated
improvement in the 2011 simulation, its performance declined in the 10-year simulation.

This temporal inconsistency suggests that certain parameter adjustments may be

sensitive to the specific climate state of 2011, which was characterized by a moderate
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La Nifa. In contrast, variables such as T500, RSR, and NETFLUX exhibit consistent

improvements across both simulations, indicating a robust response to parameter tuning

that is less dependent on interannual variability.

The time series of the +0—year- AMIP2005-2014 simulations in Fig. 4-5 show that,
for the 10-parameter case, 8 out of 10 variables are either much closer to the
observations or very similar (OLR, OLRC, and ROSRC) to those in the default case.
Only two variables, RH500 and LprecipPRECH2, are slightly further from the

observations but still within uncertainty. The most striking finding is the improvement

of the variables related to the energy balance equilibrivm-of the climate system (RSR
and NETFLUX). For the default case, due to the large outgoing shortwave radiation,
NETFLUX has an error of about 5 W/m?. In addition, T500 in the default case is too
cold by almost 2K. After optimization, while OLR shows little change, RSR decreased
by nearly 5 W/m?, considerably reducing the model bias and leading to smaller biases
in NETFLUX and T500. Furthermore, the results suggest that MSLP, RSRC and OLRC
are hard to tune.—_In the 20-parameter case, compared to the default, all variables—
except RH500, OLR, T2M and LprecipPRECH —show either reduced biases or biases
that are very close (OLRC and ROSRC) to those in the default case. Both OLR and

Lprecip perform notably worse than in the default case, with both variables being too

low compared to the observations. This is less successful, in relative terms, than the 10

parameter case, where 8§ variables exhibit reduced or similar bias relative to the default.
However, T500 and the MSLP—two variables that deviated significantly from the

observations in the default and 10-parameter cases—have been further tuned and now

align more closely with observation.—-Beth-the-optimized-casesshowthat OLRand

Similar to the Taylor diagram of the——wear AMIP2011 results, the +0-year
AMIP2005-2014 simulations (Fig. Sb6b) also demonstrate varying degrees of
improvement across the three metrics for most variables in both optimized cases. For
instance, both cases improve all three metrics for LprecipPRECH, NETFLUX, and

RSRC compared to the default case, consistent with the +—ear—-AMIP2011 results.
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While LprecipPRECIR, RSRC, T2M, and NETFLUX in both optimized cases exhibit
similar behaviore to the +—year-AMIP2011 results, MSLP, RH500, and RSR behave
differently. Comparing this with Figss. 43 and 54, the results suggest that this tuning
yields only minor improvements to the spatial patterns of the variables but primarily
reduces their biases relative to observations. Examining zonal averages (Fig. 67) reveals
more specific details, particularly the differences between tropical and extra-tropical
regions. T500 and RSR have large tropical biases which tuning considerably reduces.
In contrast, RH500, OLR, RSRC, and MSLP have larger biases in extra-tropical,
especially polar regions. These regional biases may come from uncertainties in complex
high-latitude processes, such as sea ice and snow cover feedback mechanisms, which
are not well represented in the model (Goosse et al., 2018). Across the three cases,
average performance is similar to that found earlier, with T500, RH500, OLR, RSR,
T2M, and Lprecip PRECIHP-most affected by tuning and most sensitive to parameter
changes, while OLRC, RSRC, and MSLP are little impacted by optimizing. Specifically,

MSLP is highly sensitive to unresolved gravity wave drag processes (Sandu et al., 2015:

Williams et al.. 2020). which were not included in our parameter tuning. Previous

experiments with the IFS model indicate that increasing orographic and surface drag in

the Northern Hemisphere can reduce MSLP biases (Kanechama et al., 2022). While the

global mean OLRC is similar across cases due to regional compensation (Fig. 5d). the

meridional distribution reveals notable differences (Fig. 7d). In the tropics, increased

upper tropospheric water vapor—particularly in the 20-parameter case (Fig. 9a—9b)—

enhances the greenhouse effect and reduces outgoing clear sky longwave radiation. In

contrast, decreased water vapor in high-latitude regions, especially in the 20-parameter

case, leads to increased OLRC. RSRC remains nearly unchanged across all simulations

due to the use of identical surface albedo. Additionally, while changing physical

parameters generally affects the entire atmosphere, some variables respond differently
in specific regions. For example, RH500 shows a more pronounced response in tropical

regions, while land T2M responds more noticeably in the extra-tropics.

3.3 Impacts of tuning on GAMIL3Atmesphericmodel-evaluation
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What parameters and processes would affect these model tuning behaviors?

As shown in Fig. 78, parameters such as c¢0 conv, cmftau, rhcrit, vhminl, rhminh, and

Dcs  significantly affect simulated variables, particularly NETFLUX,
Lprecip TROPICSLAND, RSR_TROPICSOCEAN, OLR TROPICSOCEAN, and
TEMP@500. Notably, most of these parameters have also been adjusted significantly
in the 10- and 20-parameter cases compared to the default. rhcrit defines the RH
threshold for triggering deep convection and is a parameter with a strong influence on
RH. Fig. 2a-3a shows that rhcrit decreased from the default case, whose value is 0.85,
to the 10-paramter case and 20-parameter case, whose values are 0.83 and 0.82,
respectively. A lower rhcrit significantly promotes deep convection by reducing the
triggering threshold, which enhances water vapor transport from the lower to the mid
and upper atmospheric layers. This could lead to a drop in RH below troposphere and
a rise above it (Fig. 8a9a). This effect is especially pronounced in the tropics, where
deep convection dominates vertical moisture transport (Fig. 4b5b, 6b7b, and €b9b).

While a lower rhcrit threshold would theoretically enhance precipitation by promoting

deeper convection, our simulations instead show an overall decrease in precipitation.

This apparent discrepancy suggests the parameter's effect is modulated by

compensating atmospheric processes. Specifically, enhanced vertical moisture

transport (Fig. 9a-9b) reduces low-level humidity availability, thereby weakenin

updrafts and ultimately decreasing total precipitation Additionathztow—RH below

A deficit in low-level cloud fraction is evident in Fig. 8€9¢-8d9d, primary due to

the increase in rhminl from the default value 0f 0.95 to 0.97 and 0.96 in the 10- and 20-
parameter cases, respectively. Although the 10-parameter case has a higher threshold
for low level cloud formation than the 20-parameter case, Fig. 8¢9c-84-9d shows the

oppesite-different result, which can be explained by the compensatory effects of other
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parameters. Optimized results indicate that cmffau, another key parameter, has a lower
value in the 20-parameter case (~4284) compared to the default (~4800) and the 10-
parameter case (~4931). This decrease in cmftau likely strengthens shallow convection
while weakening deep convection, reducing upward water transport and RH throughout
the troposphere, contributing to the decreased low-level cloud fraction (Xie et al., 2018)

and further reducing precipitation (Fig. 5h). Consequently, the lower low-level cloud

fraction in the 20-parameter case, compared to the 10-parameter case, reflects the
compensatory effects of these key parameters, with the influence of the reduced cmftau
outweighing that of rhminl. High-level-cloudstrap-heat by hmiting radiation-emission
nto-spacethereby-warming-the-atmesphere—while-Llow-level clouds strongly reflect

shortwave radiationsunlight, producing a cooling effect. Therefore, a reduction in low-

level clouds allows more shortwave radiation to penetrate the lower atmosphere,
reducing outgoing shortwave radiation to space (blue lines in Fig. 4e-5¢ and 6e7¢) and
warming the region_(blue lines in Fig. 5a and 7a; Fig. 9¢), including near the surface
(blue lines in Fig. 45 g-and-6a—Fig—8e).

Comparing the 20-parameter case to the default case, the tuning results show that

one sensitive parameter, Dcs—the autoconversion size threshold for ice to snow—has
been significantly increased. This adjustment suggests that a higher Dcs leads to
increased RSR and T2M, while also resulting in lower OLR and Lprecip PRECH(Fig.

78). ccrit, which sets the minimum turbulent threshold for triggering shallow

convection, affects both OLR and Lprecip in a manner similar to Dcs. Specifically,

clouds with higher ice content trap more OLR from the Earth's surface, potentially
amplifying the greenhouse effect by retaining more infrared radiation (red lines in Fig.
Se-6c and 7e8c). This results in a warming effect, particularly at lower atmospheric
levels and even near the surface, especially during nighttime or in polar regions (red
lines in Fig. 5a, 4g5g 6a7a, and 6g7g; Fig. &9f). Additionally, raising the
autoconversion threshold from ice to snow is expected to allow more ice to remain in
the atmosphere, directly leading to a reduction in precipitation (red line in Fig. 4h5h),

and increased cloud optical thickness. thereby enhancing the reflection of incoming

shortwave radiation. This enhanced reflectivity partially offsets the impact of reduced
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low-level cloud cover on the RSR in the 20-parameter case, leading to a smaller

decrease in RSR compared to the 10-parameter case (Fig. 5e and 7e), consistent with

known radiative differences among cloud types (Chen et al., 2000).- —Fhese—effeets

Increasing ccrit suppresses shallow convection by requiring stronger turbulence to

initiate cloud formation, thereby reducing low-level cloud cover. This reduction

enhances outgoing longwave radiation and surface solar heating, which in turn

promotes evaporation and increases Lprecip. Therefore, adjusting Des and ccrit in

future work may offer a promising approach for improving the simulation of OLR and

Lprecip, both of which are underestimated relative to the default case.

3.4 Coupled model resultsevaluation

In order to evaluate the performance of different parameter sets in long-term

climate simulations, it is essential to apply them to a coupled model. Here;the GAMIL3

st pede O ORI O Dpet ] S0 o070 A88CSS bethertninas he
impacts of atmospheric parameter_tunings leads—te—a—reasenableon coupled model

performance, we conducted a 30-year piControl simulation using GAMIL3 coupled to

land, ocean, and sea ice components (see Methods 2.2). analyzing the final 15-year

period after model spin-up.

In the default case the model starts with a large negative NETFLUX of around -4

W/m? (Fig. 9al0a), consistent with the results in Fig. 435], indicating that the climate
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system is losing energy at this stage. As the model integrates, the NETFLUX increases,
approaching zero after approximately five model years, achieving a stable energy
budget for the remaining simulation period. This change in NETFLUX is found to be
almost equally driven by a ~2 W/m? reduction in both RSR (Fig. 9b510b) and OLR (Fig.
9¢10c) simultaneously. However, despite these radiation variables, particularly the
NETFLUX, approaching a stable state, the ocean continues to lose energy rapidly (Fig.
9d10d) with no signs of stabilization by the end of the simulation. For the-T2M_(Fig.

10e), the simulated values in the piControl run deviate significantly from the the-tuning

target range is-of 13.6 = 0.5°C (Williamson et al., 2013)—which-ditferssigniticantly
fromthe-model’ s-defaultcaseresults-(Fig—9e). While the decrease in OLR is physically

consistent with the cooling of T2M. the reduction in RSR is primarily attributed to

oceanic adjustment processes. In particular, a cold SST bias (Fig. S3b) induced by the

original parameter settings leads to a rapid decline in low-level cloud cover over

tropical and subtropical ocean basins—especially in the western Pacific warm pool

region and the South Atlantic (Fig. S3c). Most areas of cloud reduction spatially

coincide with regions of diminished reflected shortwave radiation (Fig. S3d)., a

relationship further supported by changes in shortwave cloud forcing (SWCEF: Fig. S3e).

CeonseguentlyOverall, although the NETFLUX appears to reach a stable state, the

system continues to lose energy and remains far from the tuning target in the default

For both optimized cases, the NETFLUX (Fig. 9al0a) remains stable throughout
the 30-year simulations, with values of about 2 W/m?. Although slightly further from
the target of 0 W/m?, they are still within the model spread range of -3 to 4 W/m?

(Mauritsen et al., 2012). Further analysis revealed that the relatively large energy

imbalance primarily originates from the GAMIL3 atmospheric model., which exhibits

a persistent imbalance of approximately 1.4 W/m? in its AMIP configuration—a feature

also observed in the piControl runs—due to non-conservation in the dynamical core.
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This systematic issue is consistent with other atmospheric or coupled models (e.g.. up

to 1.0 W/m? for CAMBS at 1° resolution (Lauritzen and Williamson, 2019). 1.3 W/m? for

FGOALS-¢23. and 3.3 W/m? for INM-CM4-8. calculated from Wild, 2020). Notably,

this energy leakage remains stable (£0.1 W/m?) across both default and optimized runs,

indicating that the model improvements, such as reduced climate drift, result from

genuine parameter tuning rather than compensation for the energy bias. This conclusion

is further supported by the coupled model’s stabilized energy budget following the spin-

up period (Fig. 10). SpeeificalztThe change in NETFLUX in the 10-parameter case

is primarily driven by a decrease in RSR (Fig. 109b), while in the 20-parameter case, it
is mostly due to a reduction in OLR (Fig. 109c¢), consistent with the results in Figs. 54c
and 54e. Both the volume-averaged ocean temperature (Fig. 109d) and the T2M (Fig.

109e) exhibit a slight initial adjustment during the first-initial five-few years, followed

by stabilization._ Drift may occur during the initial integration period due to

inconsistencies between the OMIP-forced ocean state and the reanalysis-based

atmospheric initial conditions. However, in both cases using atmosphere-optimized

parameters, the system stabilized rapidly, and neither the TOA net flux nor ocean

temperature exhibits significant trends beyond the initial adjustment period of a few

years. A small long-term drift is still evident in Fig. 10d, which may be related to the

adjustment of deep ocean processes. This demonstrates that the parameters optimized

for the atmospheric model remain effective in the coupled system configuration, with

no clear evidence of compensation for ocean-related drift.

Results from the simulated SST anemalies-biases in Fig. 118a—110c for the default
case show strong cold biases anemalies—relative to observations, with maximum
deviations exceeding -4°C over the North of Pacific and Atlantic. The simulated SST
biases anemalies-in Fig. 110d—1161 indicate that both optimized cases show substantial
improvement over the default case in terms of SST patterns and deviations, although
some negative deviations in the northern Pacific and Atlantic persist—a common issue
for most GCMs (Zhang and Zhao, 2015a; Wang et al., 2018). Previous findings suggest
that the two optimized cases exhibit cloud fraction significantly different from the

default case, with simulated radiation improvements primarily observed in shortwave
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radiation for the 10-parameter case and in longwave radiation #-for the each-ease20-

parameter casesrespeetively. Therefore, it is necessary to investigate the shortwave and

longwave cloud forcing in these two cases (Fig. 124). The results for both cases show
that the combined effect of these two cloud forcings acts as a significant positive

influence globally, contributing to the flux of energy towards the oceaneeean—surface

#flux and increasing ocean temperature. Specifically, the shortwave cloud forcing has a
greater weight than the longwave in the 10-parameter case, mainly due to the
parameters rhcrit and rhminl, as mentioned earlier. In contrast, the longwave cloud
forcing outweighs the shortwave in the 20-parameter case, primarily due to the effects
of Dcs. While the shortwave cloud forcing exerts a negative effect over the tropical
ocean, the longwave cloud forcing provides a significant compensatory effect. A similar
behavior is observed in the 20-parameter case.

Overall, the two optimized cases result in a more realistic coupled model, not only
maintaining the model's energy balance and reducing climate drift, but also improving
the simulated ocean state, such as SST distribution. Although the two optimized cases
exhibit different behaviors—with the 10-parameter case showing lower RSR and the
20-parameter case showing lower OLR—tuning has allowed them to achieve stability

through distinct mechanisms._While we acknowledge that multi-century integrations

would provide additional insight into the model’s equilibrium climate response, our

primary goal was to test whether AMIP-tuned parameters remain valid in a coupled

setup. For this purpose, a 30-year piControl run is scientifically adequate. The results

show that the model quickly reaches energy balance stability for both the 10- and 20-

parameter cases (TOA net flux drift < 0.05 Wm2 per decade) and that ocean heat

content drift remains minimal (< 0.008 ° C per decade) after year 15, indicating that

the system achieves a quasi-equilibrium state. This timescale is reasonable. since the

upper ocean—where much of the adjustment occurs—has a relatively short adjustment

timescale of about 1-5 years. The stabilized climate indicators and consistent system

behavior (Figs. 9 and 10) confirm that the tuned parameters vield a credible coupled

climate without introducing systematic drifts. Similar integration lengths have been

used in other studies (e.g.. Tett et al.. 2017). While longer runs could refine the
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equilibrium further, they are unlikely to change our main conclusion that the parameter

transfer is robust.

3.5 Sensitivity of initial parameters

As stated in the previous section, the initial parameter values used for tuning are
primarily informed by expert judgment, which has been recognized as crucial and
necessary in other studies (Hourdin et al., 2017; Williamson et al., 2017; Jebeile et al.,
2023; Lguensat et al., 2023). To further investigate the extent to which initial parameter
choices influence tuning results, we conducted three additional sensitivity experiments
with randomly selected initial parameter values (Table S2), focusing on the first 10
parameters.

The optimized parameter values in these randomized experiments (represented by
stars in Fig. 32a) exhibit significantly larger spreads compared to the default and
original optimized values (blue dots), particularly for parameters such as c0 conv,
capelmt, and c(, which nearly span their entire plausible ranges. This finding indicates
that the model could reach entirely different optimized states depending on initial
values. During the tuning process, the cost function (Fig. 32c) for these cases exhibited
a rapid decrease, stabilizing at similar values across all three experiments after
approximately 10 iterations, with an additional 10-20 runs required to reach the
optimized state. This pattern further demonstrates the efficiency and robustness of the
tuning algorithm.

Given the substantial differences in the optimized parameters, it is worthwhile to
further investigate their Jacobian differences to gain a more comprehensive
understanding of each parameter's impact on the variables. Fig. 132 shows the Jacobian
ranges for four cases (including the original optimized case), with Jacobian calculated
around the optimized parameter set for each case. The results generally demonstrate
consistency with the parameter sensitivities shown in Fig. 87. Variables sensitive to
most parameters exhibit substantial variability, while highly sensitive parameters, such
as c0 conv, cmftau, rherit, rhminl, and rhminh, introduce considerable uncertainty

across multiple variables, depending on their initial values and interactions with other
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parameters. Conversely, RSRC and OLRC remain largely insensitive to parameter
changes, whereas MSLP, NETFLUX, Lprecip, and TEM@500hPa are influenced by
most parameters, also aligning with the findings in Fig. 87.

The performance of these three optimized parameter sets in the 10-year
AMIP2005-2014 simulations is shown in Fig. S2. Generally, NETFLUX was most
closely aligned with observations across all cases, primarily due to the additional
constraint incorporated into the tuning algorithm. However, notable differences across
different cases remain, with each case following a distinct optimization pathway,
though most results still fall within uncertainty ranges. For example, the third
experiment achieved the closest alignment for T500 but at the expense of T2M and
Lprecip PRECH-compared to other cases, highlighting inherent trade-offs and model
structural errors that hinder simultaneous optimization of these variables. As seen in
prior findings, RSRC and MSLP proved difficult to tune, while OLRC was adjustable
but deviated in the opposite direction from observations, accompanied by a discrepancy
in RH500 alignment.

Overall, these sensitivity experiments confirm the efficiency of the tuning
algorithm and underscore the importance of expert judgment in selecting initial
parameter values. Expert selection not only ensures satisfactory model performance at
the start of tuning but also enhances tuning effectiveness, even though structural errors

in the model remain.

4 Discussion

In this study, we developed an objective and automatic parameter tuning
framework using the Derivative-Free Optimizer for Least-Squares (DFO-LS) method
to tune the newest version of the Grid-Point Atmospheric Model (GAMIL3). The
results highlight the effectiveness of this method in tuning atmospheric parameters,
particularly those initially set based on expert judgment, as demonstrated by notable
improvements in model accuracy across multiple variables and enhanced climate
system stability. However, several aspects of this work require further clarification.

Firstly, as noted earlier, the 'optimized' parameter set in this study refers to the set
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at which the cost function achieves its minimum value. However, results in Figss. 32b
and 32c indicate that, for each case, there are several cost function values close to this
minimum. We have shown that these differences are not substantial enough to
significantly alter the model’s performance. However, this finding suggests that
parameter ranges associated with similar cost function values may provide valuable
insights into the acceptable parameter space for model optimization. We acknowledge
that focusing exclusively on minimizing cost function values to obtain a single
optimized parameter set during tuning can increase the risk of overfitting and
compensating errors, which is a common challenge in model tuning. Although the
results of this study show no clear signs of overfitting—both the 10- and 20-parameter
optimized cases, starting from expert-judged initial values, ultimately produce
reasonable coupled model results—it remains important to carefully consider potential
overfitting impacts.

Secondly, this study shows that tuning either different numbers of parameters or
varying initial parameter values can yield diverse optimized results, each improving
certain aspects of the model. This suggests that although tuning can lower the cost
function to comparable levels, the final tuned state of the model is not necessarily
unique—asn common issue encountered in model tuning (Hakkarainen et al., 2013;
Hourdin et al., 2017; Eidhammer et al., 2024), likely due to the compensating errors
within the model and uncertainties in the observational data. On one hand, introducing
constraints, such as assigning greater weight in key variables during tuning, could help
achieve more realistic results. For instance, applying constraints on NETFLUX during
tuning ensures consistently good performance across all the cases in the 10-year
AMIP2005-2014 simulations. In the 20-parameter case, adding constraints on OLR and
RSR would maintain their performance while also improving T500 and MSLP. On the
other hand, while different parameter sets satisfied the lowest cost function in different
ways, it is important to remember that the cost function is simply a statistical measure
of the distance between the area-weighted mean of the simulations and observations.
Therefore, a comprehensive evaluation is essential to identify the most suitable

parameter set (Eidhammer et al., 2024). Beyond minimizing cost function values and
30



886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

aligning statistical indicators with observations, it is crucial to evaluate the spatial
distributions of variables, the equilibrium state of the climate system in coupled models,
and the model’s climate sensitivity (Tett et al., 2022; Eidhammer et al., 2024). These
aspects should be further evaluated to ensure robust model performance.

Thirdly, while our 1-year optimization produced parameters that remain effective
in extended runs (as shown by the AMIP2005-2014 and 30-year piControl validations)

and internal variability was explicitly accounted for in the cost function (Eq. 1),

including interannual variability—using a longer tuning period like the 5-year approach

of Tett et al. (2022)——could further improve results, especially for variables with large

interannual variability (e.g.., MSLP, Lprecip) and dynamical outputs sensitive to the

chosen vear. This is supported by Bonnet et al. (2025), who show that short-term tuning

works well for physical variables with low interannual variability but multi-year tuning

better captures dynamical variability. Based on Bonnet et al. (2025) and our own

results—such as the difference observed between 1-year and 10-year simulations for

MSLP_TROPICSOCEAN DGM, which degraded from +20c to —10c—we might

expect approximately 1020 % better performance for variables that are particularly

sensitive to interannual variability, such as tropical precipitation patterns or

extratropical circulation indices, since a longer tuning period would better sample

different climate regimes and reduce sensitivity to single-year anomalies. However,

longer tuning greatly increases computational cost—about 5—6 times higher for 5-year

runs. Our current strategy balances efficiency and robustness, but certain metrics like

T2M and Lprecip might still benefit from longer tuning. This trade-off warrants further

study, particularly where an accurate representation of interannual variability is crucial.

Lastly, to assess how the number of tuning parameters affects the optimization

process, we used the same initial perturbation runs for the ten shared parameters in both

the 10- and 20-parameter cases, enabling a consistent evaluation of their sensitivity to

the simulated results. While this approach allows a straight forward comparison, it may

also constrain the optimization in the 20-parameter case by introducing bias into the
initial search space. To address this potential limitation, we conducted additional

experiments in which all twenty parameters were initialized with independent
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perturbations (Fig. S4—S6) by adjusting the rhobeg parameter in the DFO-LS algorithm

from its default value of 0.18 to 0.23. These additional experiments vielded several

important insights that strengthen our original conclusions. First. although the

optimized parameter values in the new 20-parameter case differ somewhat from those

in the original setup, most shift in the same direction relative to the default values (Fig.

S4). Moreover, the optimization consistently converged to similar cost function values

(2.68 vs. 2.87). despite differences in the initial perturbations and optimization

pathways, highlighting the robustness of our tuning framework. Second, both

approaches produced nearly identical simulation performance in the 10-year AMIP and

30-vear piControl experiments (Fig. S5-S6). despite relying on different parameter sets.

This suggests that the performance in the 20-parameter case may be dominated by a

subset of the most sensitive parameters, such as Dcs, rhcrit, c0_conv, and cmftau, which

have been shown to strongly influence the simulated results. These findings provide

strong evidence that our conclusions regarding the robustness of the optimization and

the effect of increasing the number of tuning parameters remain valid.

Some limitations remain. For instance, although the coupled model simulations
show improvements in energy stability and reduced climate drift, certain regional biases
in SST persist. These biases suggest that while tuning enhances model performance,
there may be systematic issues within the model’s physics that cannot be fully addressed
through parameter tuning alone. Resolving these regional discrepancies may require
further refinement of model physics or additional modifications to the tuning
framework. Additionally, the optimized cases show a relatively large energy imbalance
at the TOA. Although still within model uncertainty, this issue warrants further
investigation. One possible cause could be the non-conservation of energy in the
atmospheric model. Preliminary results indicate that the difference between the TOA
and Earth’s surface energy imbalances in the_ —1—year—AMIP2011 tuning is

approximately 1.4 W/m?, and remains similar at 1.5 W/m? in the piControl runs,

highlighting ene-of-the-medel’sa persistent —structural errersbias in the model. This

suggests that even in the optimized cases, the atmospheric model may be consuming

excess energy, a bias that could carry over to the coupled model. Consequently, one of
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the lessons from this study is that when tuning the model, attention should also be paid

to structural errors, particularly those related to energy conservation._Finally, because

variables such as lower tropospheric temperature, humidity, cloud fraction, and cloud

radiative effects are highly sensitive to the model time step and the coupling frequency

between dynamics and physics, it would be valuable to explore the tuning performance

under different time step settings in future work.

5 Conclusions

The study focuses on optimizing an atmospheric model by simultaneously
perturbing and tuning multiple parameters associated with convection, microphysics,
turbulence, and other physical schemes. Two primary experiments were conducted

using AMIP2011 simulations (2011, with 3-month spin-up): one #avelvingthe

adjustmentadjusted e 10 parameters; and anotherthe-other with-adjusted 20 parameters.
Validation was then performed through extended AMIP2005-2014 and 30-year coupled

piControl simulations to assess robustness across timescales. In the 10-parameter

tuning, significant changes were made to several sensitive parameters, resulting in a
notable reduction in the cost function and improved model accuracy. Out of 34 variables,
24 showed improved performance, although some remained challenging to optimize
due to structure errors in the model. In the 20-parameter tuning, additional parameters
related to microphysics and turbulence were introduced, resulting in slight performance
improvements for 25 out 34 variables. However, certain variables experienced a decline
in performance. While the 20-parameter case achieved a lower cost function more
quickly than the 10-parameter case, the increased complexity required careful
management of parameter interactions and compensatory effects.

To evaluate the robustness of the tuning results, we conducted +0—ear-AMIP2005-
2014 simulations. The findings showed that the optimized parameter sets maintained
their performance improvements over extended simulation periods, though variables
like MSLP exhibited variability depending on the specific period analyzed. Time series
analyses indicated that the optimized models more accurately captured the energy

balance eguiibrivim-of the climate system, particularly by improving the balance of
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outgoing shortwave and longwave radiation and stabilizing surface temperatures.
However, some variables remained challenging to optimize consistently across
different regions and timescales. The optimized parameter sets were further tested in a
coupled model setup that integrated land, ocean, and sea ice components. The results
demonstrated improved energy budget stability, reducing climate drift and leading to
more realistic SST simulations. Both the 10- and 20-parameter optimizations yielded
more reasonable behavior in the coupled model, though persistent regional biases,
particularly in the northern Pacific and Atlantic, remained.

Three additional experiments, in which the initial values of the first 10 parameters
were randomly selected, were conducted to evaluate its impact on the optimized results.
The results further confirm the efficiency and robustness of the algorithm, as it rapidly
minimizes the cost function after the first 10 runs, although the optimized parameter
values and their performance across different cases show significant variation. Overall,
these findings emphasize the importance of expert judgment in parameter selection and
its role in enhancing model performance.

In conclusion, the proposed DFO-LS-based tuning framework presents a robust
and efficient approach for enhancing climate model performance. This work was
primarily conducted by a researcher over 12 months, highlighting the efficiency of the
approach in terms of human resources. The adaptability of this methodology to other
GCMs holds great potential for accelerating model development and improving the
accuracy and reliability of future climate projections. By integrating this framework
into broader model tuning efforts, the climate modeling community can make
significant strides in addressing parametric uncertainties and advancing the precision

of climate fereeastsprediction.
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Figure 1. Automatic tuning framework structure. Perturbed simulation results for each parameter
are used for sensitivity analysis and determining the trust region size. Two key covariance metrics—
observational error and model internal variation—help adjust parameter values in the objective
function. The DFO-LS algorithm optimizes the parameters, and the post-processing module

analyzes sensitivity, cost function results, and generates visualizations.

Experiments Design

1-year optimization for
10 parameters \

GAMIL3
atmospheric
model

10-year LS 30-year coupled
AMIP runs model runs

1-year optimization for
20 parameters

1-year optimization by
varying 10 parameters

Figure 2. All experiments conducted in this study, including the AMIP2011 optimization runs for

10- and 20-parameter cases, the AMIP2005-2014 simulations using the optimized parameter sets,

and the 30-year piControl simulations. Note that piControl simulations were not performed for the

varying 10-parameter cases, which are shown in brown.

Table 1: Observations used for model evaluation, along with their target values and associated

uncertainties-.
Variables name Description Classifications Target  Uncertainty
MSLP Mean sea MSLP NHX DGM  277.52 22.85
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at 2 meters LAT SHX  280.08 0.49
() LAT TROPICSLAND  297.10 0.31
1386
1387  Table 2: Summary of tunable parameters in GAMIL3, including their default values and plausible
1388 ranges.
. o . Default
| Parameters Description_(units if applicable) Range
Values
c0_conv Precipitation efficiency for deep convection 1.e-4-5.e-3 l.e-3
rherit Threshold value for RH for deep convection 0.65-0.95 0.85
Tthreshold value for cape for deep convection_
capetlmt 20-200 70
J/k
alfa Initial deep convection cloud downdraft mass flux 0.05-0.6 0.2
Evaporation efficiency of deep convection
ke - 1.e-6-1.5e-5 9.e-6
precipitation ()
c0 Rrain water autoconversion coefficient (1/m) 3.e-5-2.¢-4 5.e-5
cmftau Ceharacteristic adjustment time scale _(s) 1800-14400 4800
rhminl Threshold RH for low stable clouds 0.8-0.99 0.95
rhminh Threshold RH for high stable clouds 0.4-0.99 0.5
Most stable lapse rate below 750hPa, stability
dthdpmn ) -0.15--0.05 -0.08
trigger for stratus clouds (K/mb)
Amplification factor (shallow convective cloud
shl [raction)Rarmmeters-torshalow-convection-cloud- 0.0-1.0 0.04
{raction
sh2 Scale factor for shallow convective mass flux— 10-1000 500
Amplification factor (deep convective cloud
dpl fraction)Parameters-for decp-conveetion-cloud- 0.0-1.0 0.1
fraction
dp2 Scale factor for deep convective mass flux— 10-1000 500
cerit Minimum allowable sqrt(TKE)/wstar 0.0-1.0 0.5
dzmin Mminimum cloud depth to precipitate (m) 0.0-100.0 0.0
Dcs Autoconversion size threshold for ice to snow (m) l.e-5-1.e-3 2.e-4
ecr Ceollection efficiency cloud droplets/rain 0.5-2.0 1.0
ai Fall speed parameter for stratiform cloud ice (1/s) 500-1500 700
Inverse relative variance of subgrid scale cloud
gcvar 0.1-2.0 1.0
water
1389
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Solid and hollow dots represent tuning with 10 and 20 parameters, respectively. Blue dots indicate

improved performance, while red dots show deterioration. The black dashed line at Z

improved from non-improved variables.
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420  Figure 76. Meridional distributions of the annual mean bias between three cases and observations
421 for: T500 (a), RH500 (b), OLR (c), OLRC (d), RSR (e), RSRC (f), T2M (g), Lprecip PRECIP-(h)
422  and MSLP (i) from the +0—year- AMIP2005-2014 simulations. Shown are default case (green), 10-

1423 parameter case (blue), and 20-parameter case (red).
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1425 Figure 87. Normalized Jacobian for all 20 parameters, with values normalized by the total
1426  covariance metrics. The x-axis shows the parameter names, while the y-axis represents the variables.
1427  Black parameters are used in the 10-parameter case, and green ones are added in the 20-parameter
1428 case. Red and blue indicate positive and negative effects, respectively, with darker shades showing

1429  greater impact.
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1433  Figure 98. Latitude-pressure anomaly distributions relative to the default case for relative humidity
1434  (a, b), cloud fraction (c, d), and temperature (e, f) from +0-year- AMIP2005-2014 simulations: 10-
1435  parameter case (a, ¢, €) and 20-parameter case (b, d, f).
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1439  Figure 109. Results from the 30-year piControl simulation for NETFLUX (a), RSR (b) and OLR
1440  (c) radiation, mean volume-averaged ocean temperature (d), and T2M in the default (green), 10-
1441  parameter (blue), and 20-parameter cases (red) cases.
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Figure 110. Sea surface temperature biases relative to observations (HadISST; Rayner et al.,

2003) from the last 15 years of piControl simulations for the default case (a, b, ¢) and two

optimized cases (d-i).
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between the two optimized cases and the default case.

Figure 121. Distribution of shortwave (a, b) and longwave (c, d) cloud forcing differences
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1455  Figure 132. Similar as Fig. 7, but showing the range of Jacobians calculated from the optimized

1456  parameter set across four cases: the original optimized case and three sensitivity cases.
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