
RESPONSE TO REVIEWER #1 FOR GEOSCIENTIFIC MODEL 

DEVELOPMENT: MANUSCRIPT EGUSPHERE-2024-3770 

We thank Reviewer #1 for the thoughtful and constructive feedback. In this response, 

reviewer comments are in blue italics, author responses are in black, and changes to 

the manuscript are marked in red with line numbers referring to those in the revised 

manuscript. 

  



Reviewer #1 

This well-structured manuscript presents a novel approach for climate model-tuning and the 

results that such tuning yields for a given model (GAMIL3) under 3 different model 

configurations: 1 year AMIP for tuning , 10 year AMIP and 30 year coupled pre-industrial 

Control. The presented tuning method is potentially relevant for other climate models. The 

authors show that the DFO-LS method is able to systematically improve the ‘a priori’ model 

parameter values and that the improvements hold across the different model configurations. 

The text is well written, with some potential however for more precise and less verbose 

language. In general, the manuscript could improve by adding some comparison or references 

to similar past efforts on model tuning, but I acknowledge that often findings and results are 

quite model-specific. 

Reply: We thank the reviewer for this comment. 

Comment 1: L45-46 Some references would be welcome. 

Reply: In the revised version, we have incorporated several relevant references to 

support this point:” In recent decades, significant progress has been made in advancing the 

major components of the Earth system—such as the atmosphere, ocean, land, and human 

systems (Prinn 2012; Bogenschutz et al., 2018; Fox-Kemper et al., 2019; Blockley et al., 2020; 

Blyth et al., 2021)—as well as in developing the coupling techniques required to form fully 

integrated ESMs (Valcke et al., 2012; Smith et al., 2021; Liu et al., 2023).” (Lines 46-51). 

Comment 2: L186: Not strictly necessary, but perhaps having a sketch showing the sequence 

of experiments performed would help the reader. 

Reply: We have added a flow chart in the revised manuscript, as shown below. 



 

Figure 2. Overview of all experiments conducted in this study, including the 1-year AMIP 

(AMIP2011) optimization runs for the 10- and 20-parameter cases, the 10-year AMIP (AMIP2005-

2014) simulations, and the 30-year piControl simulations using the optimized parameter sets. Note 

that piControl simulations were not conducted for the varying 10-parameter cases, which are 

indicated in brown. 

Comment 3: L186: The text has no literature reference for GAMIL3. If no documentation 

exists for this model version, a more detailed description of it would be needed, as an 

Appendix if needed. The current description between L187-203 is vague and full of 

ambiguities (‘updates to the planetary boundary layer scheme’, ’GAMIL3 integrates several 

parametrizations recommended by CMIP6’). 

Reply: GAMIL3, with a 2-degree (180 × 80 grid) horizontal resolution, is the atmospheric 

component of FGOALS-g3; both have completed the CMIP6-related experiments (Li et al., 

2020a, b). In this study, we use its higher-resolution 1-degree (360 × 180 grid) version, which 

is identical to GAMIL3 except for the time step of the dynamical core. Accordingly, we have 

removed the introduction of GAMIL2 and revised the relevant sections to place greater 

emphasis on GAMIL3: “In this study, we employ GAMIL3, which adopts a finite difference 

dynamical core and a weighted equal-area longitude-latitude grid to maintain numerical 

stability near the polars without the need for filtering or smoothing (Wang et al., 2004; Li et 

al., 2020a). GAMIL3, with an approximate 2° (180×80) horizontal resolution, serves as the 

atmospheric component of the Flexible Global Ocean–Atmosphere–Land System Model 

Grid-point Version 3 (FGOALS-g3), which participated in CMIP6 (Li et al., 2020b). For this 



study, the model’s horizontal resolution is refined to about 1° (360 × 160), with 26 vertical σ-

layers extending to the model top at 2.19 hPa. To ensure numerical stability at the higher 

resolution, the dynamical core time step is reduced from 120s to 60s, while the physical 

parameterizations and their time step (600s) remain unchanged. As in many other climate 

models (e.g., Santos et al., 2021; Wan et al., 2021; Schneider et al., 2024), the performance 

of GAMIL3 is sensitive to the resolution, the model time step, and the coupling frequency 

between dynamics and physics. Therefore, it is necessary to re-tune the uncertain 

parameters for the new 1° configuration.”(Lines 211-224). 

Comment 4: L280: Is there any reason or reference why you would give twice as much weight 

to C_i than to C_0? 

Reply: We applied a doubling factor to the variability component because both model 

simulations and observations contain internal variability. Assuming two independent sources 

of variability justifies using twice the estimate from control simulations. This reflects a 

conservative assumption that both sources contribute comparable levels of noise. This 

approach follows the practice of Tett et al. (2022), and we have included this clarification in 

the revised manuscript:” Consistent with Tett et al., (2022), we account for internal 

variability in both model simulations and observations by doubling the model-based 

estimate, reflecting a conservative assumption of comparable noise contributions.” (Lines 

331-333). 

Comment 5: L296: put the definition of the Jacobians in context. Why are you presenting it? 

where in the paper is used? 

Reply: We have added background information on the Jacobian prior to its introduction 

in the revised manuscript:” The Jacobian matrix, J, defined as the partial derivatives of the 

simulated outputs with respect to the parameters being optimized, is used to assess the 

influence of tuning parameters on the simulated variables.” (Lines 348-350). The sensitivity 

of the tuning parameters to the simulated outputs is illustrated in Figs. 8 and 13, both of 

which analyze the parameters’ impact on the modelled variables. 

Comment 6: L351: Why ke and captlmt are explicity mentioned? please explain 



Reply: Our intention here is to highlight the parameters that underwent substantial 

changes through tuning compared to others. We have revised the corresponding sentences 

to clarify this point: “In this experiment, several parameters—such as ke and captlmt—

changed significantly from their default values, while cmftau and c0 showed only small 

changes (Fig. 3a)” (Lines 403-405). 

Comment 7: L414: Any illustrative example of compensating errors in the model? 

Reply: We used the term 'compensating errors' to emphasize the underlying 

interactions whereby adjustments to one parameter can offset or amplify the effects of 

another. An example for cmftau is discussed in detail in the paper:” Although the 10-

parameter case has a higher threshold for low level cloud formation than the 20-parameter 

case, Fig. 9c-9d shows the different result, which can be explained by the compensatory 

effects of other parameters. Optimized results indicate that cmftau, another key parameter, 

has a lower value in the 20-parameter case (~4284) compared to the default (~4800) and the 

10-parameter case (~4931). This decrease in cmftau likely strengthens shallow convection 

while weakening deep convection, reducing upward water transport and RH throughout the 

troposphere, contributing to the decreased low-level cloud fraction (Xie et al., 2018) and 

further reducing precipitation (Fig. 5h). Consequently, the lower low-level cloud fraction in 

the 20-parameter case, compared to the 10-parameter case, reflects the compensatory 

effects of these key parameters, with the influence of the reduced cmftau outweighing that 

of rhminl.” (Lines 598-609). For the parameter Dcs, its counteracting effects with the 

parameters rhminl are discussed in the paper:” Additionally, raising the autoconversion 

threshold from ice to snow is expected to allow more ice to remain in the atmosphere, 

directly leading to a reduction in precipitation (red line in Fig. 5h), and increased cloud 

optical thickness, thereby enhancing the reflection of incoming shortwave radiation. This 

enhanced reflectivity partially offsets the impact of reduced low-level cloud cover on the 

RSR in the 20-parameter case, leading to a smaller decrease in RSR compared to the 10-

parameter case (Fig. 5e and 7e), consistent with known radiative differences among cloud 

types (Chen et al., 2000).” (Lines 624-631). The ke parameter, has a contrasting effect on 



OLR and RSR to the capelmt parameter, although its impact on most simulated variables is 

minor, as shown by the Jacobian (Fig. 8).  

We have revised this sentence to be more precise:” These differences may be 

attributed to the compensating errors within in the model, where adjustments to one 

parameter can offset or amplify the effects of another—a phenomenon further explored in 

Section 3.3.” (Lines 466-468). 

Comment 8: L503: I’d re-name this section as ‘’Coupled model evaluation’ 

Reply: We have revised the title of Section 3.4 to ‘Coupled Model Evaluation.’ Since 

Section 3.3 focuses on providing a physical explanation of the tuning results for the 10- and 

20-parameter cases, we have also updated its title to ‘3.3 Impacts of Tuning on GAMIL3’ to 

better reflect its content and avoid potential misunderstandings. 

Comment 9: L521: lower rhcrit could, a priori, also enhance precip. Lower rhcrit would 

enhance convection and, this, precipitation. Even if it is not the case in the simulations, it 

may be worth being mentioned 

Reply: We agree with the reviewer that, in principle, a lower rhcrit should increase 

precipitation. However, our simulations show a net reduction, which is likely attributable to 

compensating effects such as moisture redistribution. We have added this discussion to the 

revised manuscript:” While a lower rhcrit threshold would theoretically enhance 

precipitation by promoting deeper convection, our simulations instead show an overall 

decrease in precipitation. This apparent discrepancy suggests the parameter's effect is 

modulated by compensating atmospheric processes. Specifically, enhanced vertical moisture 

transport (Fig. 9a-9b) reduces low-level humidity availability, thereby weakening updrafts 

and ultimately decreasing total precipitation (blue line in Fig. 5h).” (Lines 589-595). 

Comment 10: L533: contributing to the decreased low-level cloud fraction and further 

reducing precipitation (since this was mentioned in the previous paragraph)  



Reply: We have refined the sentence to better maintain the logical connection between 

cloud fraction and precipitation as follows:” contributing to the decreased low-level cloud 

fraction (Xie et al., 2018) and further reducing precipitation (Fig. 5h).” (Lines 605-606). 

Comment 11: L569: Describe for how long the coupled model was run, one can only infer it 

from the Figures 

Reply: Thank you for the reminder. We have added an explicit clarification in the 

manuscript:” To assess the impacts of atmospheric parameter tuning on coupled model 

performance, we conducted a 30-year piControl simulation using GAMIL3 coupled to land, 

ocean, and sea ice components (see Methods 2.2), analyzing the final 15-year period after 

model spin-up.”. (Lines 639-642). 

Comment 12: L569: for coupled simulations it is quite relevant to explain how the land, and 

specially the ocean, were initialized.  This is relevant because a perfect model should drift if 

the ocean is not correctly initialized, and you would not like to tune your model to 

compensate for an ocean-caused drift 

Reply: This is an important point. Apart from the difference in the resolution of the 

atmospheric component, we used the same model as FGOALS-g3, which participated in 

CMIP6. The initial conditions for the piControl run were derived from the climatological 

mean state of atmospheric reanalysis for the atmospheric model (default configuration), and 

from the equilibrated state of the OMIP simulation—a long ocean-only run forced by 

atmospheric reanalysis—for the ocean model. No prescribed initial conditions were used for 

the land component; instead, its state was generated during the coupled integration. To 

minimize the impact of potential initialization drift, the first 15 years were treated as a spin-

up period and excluded from the analysis. This clarification has been added to the Methods 

section:” The initial condition for the atmospheric model was the climatological mean state from 

atmospheric reanalysis (default configuration), while the ocean model was initialized from the 

equilibrated state of an OMIP simulation (a long ocean-only run forced by atmospheric 

reanalysis). The land model was not provided with a prescribed initial condition; instead, its state 

was generated dynamically during the coupled integration. To minimize the influence of potential 



initialization drift, the first 15 years were treated as a spin-up period and excluded from the 

analysis.” (Lines 249-256). 

Regarding the potential drift induced by the initial state, we have added the following 

discussion:” Drift may occur during the initial integration period due to inconsistencies 

between the OMIP-forced ocean state and the reanalysis-based atmospheric initial 

conditions. However, in both cases using atmosphere-optimized parameters, the system 

stabilized rapidly, and neither the TOA net flux nor ocean temperature exhibits significant 

trends beyond the initial adjustment period of a few years. A small long-term drift is still 

evident in Fig. 10d, which may be related to the adjustment of deep ocean processes. This 

demonstrates that the parameters optimized for the atmospheric model remain effective in 

the coupled system configuration, with no clear evidence of compensation for ocean-related 

drift.” (Lines 681-689). 

Comment 13: L575: While the reduction of OLR is obvious (and interrelated) to the drop of 

T2M, the reduction in RSR seems to have a more complex mechanism and would merit an 

additional explanatory sentence 

Reply: To investigate the issue, we conducted additional analyses. The results indicate 

that the reduction in RSR during the early years of the piControl simulation is primarily 

driven by ocean adjustment processes and the associated changes in low-level clouds:” 

While the decrease in OLR is physically consistent with the cooling of T2M, the reduction in 

RSR is primarily attributed to oceanic adjustment processes. In particular, a cold SST bias 

(Fig. S3b) induced by the original parameter settings leads to a rapid decline in low-level 

cloud cover over tropical and subtropical ocean basins—especially in the western Pacific 

warm pool region and the South Atlantic (Fig. S3c). Most areas of cloud reduction spatially 

coincide with regions of diminished reflected shortwave radiation (Fig. S3d), a relationship 

further supported by changes in shortwave cloud forcing (SWCF; Fig. S3e) .” (Lines 653-660). 



 

Figure S3. Panel (a) shows the 30-year time series of low-level cloud fraction over the mid- to low-

latitude region (60°S–60°N) in the default case. Panels (b)–(e) display the differences between year 

6 and year 1 in the piControl run for the default case, including SST (b), low-level cloud fraction 

(c), RSR (d), and shortwave cloud forcing (SWCF; e). 

Comment 14: L718: a leak of 1.4 W/mw seems quite relevant to me, and , besides being 

present here, it should have been mentioned earlier in the results when discussing NETFLUX  

Reply: We thank the reviewer for highlighting the issue of energy imbalance. 

Accordingly, we have included an explicit discussion early in the Results section to explain 

and discuss the 1.4 W/m² energy leakage:” Further analysis revealed that the relatively large 

energy imbalance primarily originates from the GAMIL3 atmospheric model, which exhibits a 

persistent imbalance of approximately 1.4 W/m² in its AMIP configuration—a feature also 

observed in the piControl runs—due to non-conservation in the dynamical core. This 

systematic issue is consistent with other atmospheric or coupled models (e.g., up to 

1.0 W/m² for CAM6 at 1° resolution (Lauritzen and Williamson, 2019), 1.3 W/m² for FGOALS-

g3, and 3.3 W/m² for INM-CM4-8, calculated from Wild, 2020). Notably, this energy leakage 



remains stable (±0.1 W/m²) across both default and optimized runs, indicating that the 

model improvements, such as reduced climate drift, result from genuine parameter tuning 

rather than compensation for the energy bias. This conclusion is further supported by the 

coupled model’s stabilized energy budget following the spin-up period (Fig. 10).”(Lines 666-

676). 

Comment 15: L727: Mention that the primary experiments where 1 -year long AMIP 

Reply: "We have revised the corresponding sentences as follows: “Two primary 

experiments were conducted using AMIP2011 simulations (2011, with 3-month spin-up): 

one adjusted 10 parameters and another adjusted 20 parameters. Validation was then 

performed through extended AMIP2005-2014 and 30-year coupled piControl simulations to 

assess robustness across timescales.” (Lines 883-887). 

Comment 16: L740:  the maintained improvement over extended periods is good news 

given that you tuned on a single year and ignored interannual variability. Could you 

hypothesise whether (and how much) you would expect a better tuning if you optimize the 

parameters over several years of AMIP? 

Reply: We appreciate this insightful question regarding the potential benefits of multi-

year tuning. A relevant discussion has been added to the manuscript:“ while our 1-year 

optimization produced parameters that remain effective in extended runs (as shown by the 

AMIP2005–2014 and 30-year piControl validations) and internal variability was explicitly 

accounted for in the cost function (Eq. 1), including interannual variability—using a longer 

tuning period like the 5-year approach of Tett et al. (2022)—could further improve results, 

especially for variables with large interannual variability (e.g., MSLP, Lprecip) and dynamical 

outputs sensitive to the chosen year. This is supported by Bonnet et al. (2025), who show 

that short-term tuning works well for physical variables with low interannual variability but 

multi-year tuning better captures dynamical variability. Based on Bonnet et al. (2025) and 

our own results—such as the difference observed between 1-year and 10-year simulations 

for MSLP_TROPICSOCEAN_DGM, which degraded from +20σ to −10σ—we might expect 

approximately 10–20 % better performance for variables that are particularly sensitive to 

interannual variability, such as tropical precipitation patterns or extratropical circulation 



indices, since a longer tuning period would better sample different climate regimes and 

reduce sensitivity to single-year anomalies. However, longer tuning greatly increases 

computational cost—4.2 times higher for 5-year runs. Our current strategy balances 

efficiency and robustness, but certain metrics like T2M and Lprecip might still benefit from 

longer tuning. This trade-off warrants further study, particularly where an accurate 

representation of interannual variability is crucial.” (Lines 818-836). 

Technical corrections: 

Comment 1: L51 difficult to understand the complete sentence.  Perhaps ‘carbon cycle or 

nutrient cycles’ would clarify it. 

Reply: Revised to “the coupling of biogeochemical cycles such as the carbon cycle or 

nutrient cycles with the physical climate system (Erickson et al., 2008).”(Lines 54-56). 

Comment 2: L60: remove ‘computational constrains’ as it only adds confusion to the 

sentence. 

Reply: Deleted. 

Comment 3: L239: ‘discussed in a later section’. Please state at which specific section.  

Reply: Revised to “will be discussed further in section 2.4.”(Line 284). 

Comment 4: L250: listed in the first [instead of last] column of Table 2. 

Comment 5: L254: listed in the first [instead of last] column of Table 2. 

Reply to the above two: Both revised. 

Comment 6: L273-L277: Break the sentence, it is difficult to follow. L288-L291: assuming 

there are no typos in the equations, there is inconsistent information in these lines: N is 

defined twice and differently, and C is defined although missing in the equation.  

Reply: We revised the first sentence to” For the four radiation variables (OLR, OLRC, 

RSR, and RSRC), uncertainties are based on the estimates from Loeb et al. (2018)” (Lines 

325-327). 

The formula is correct, and we have revised its explanation as follows “ 



The cost function is given by: 

                          𝐹2(𝑝) =
1

𝑁
(𝑆 − 𝑂)𝑇𝐶−1(𝑆 − 𝑂)              (2), 

 where S is the simulated values; O is the target (observed) values; N is the number 

of observations; (𝑆 − 𝑂)𝑇 is the transpose of the difference between simulated and 

observed values; 𝐶−1 is the inverse of the covariance matrix C discussed above.”(Lines 338-

343). 

Comment 7: L357: why not just mention total number of iterations, instead of excluding the 

first 10? 

Reply: We thank the reviewer for this valuable suggestion. The initial 11 (or 21, 

depending on the number of tuning parameters) iterations correspond to the mandatory 

parameter perturbation phase of DFO-LS, during which each parameter is individually 

perturbed and simulated prior to the optimization process. Since these runs serve as an 

initialization step rather than part of the iterative optimization, we explicitly distinguished 

them to avoid overcounting computational costs. For clarity, we have now revised the text in 

both the Results and Methods sections to report the total number of model evaluations (29 

for 10 parameters and 31 for 20 parameters), and we have added a footnote explaining that 

this count includes the initial perturbation phase. The revision in the Methods section reads 

as follows:” The optimization process begins with a parameter perturbation phase, in which 

K+1 simulations are conducted: one reference simulation using the initial parameter set, and 

K additional simulations—each perturbing one of the K tunable parameters individually—

relative to the reference. These initial simulations establish baseline paramet er sensitivities 

and provide finite-difference gradient estimates for the DFO-LS algorithm. The subsequent 

optimization phase then iteratively modifies parameter values through trust-region managed 

steps, where each iteration evaluates candidate points, updates local quadratic models of the 

cost function, and adjusts parameters based on actual versus predicted improvement ratios 

until convergence criteria are satisfied.” (Lines 190-199). The relevant Results section has 

been revised as follows:” In the 10-parameter case, the optimization required 29 total model 

evaluations (11 initial perturbation runs + 18 iteration runs), reaching the lowest cost function 



value of approximately 3.5. The cost function drops rapidly from about 7.5 to 3.5 during the initial 

perturbation phase, followed by a slower decline with some fluctuations.” (Lines 408-412). 

Comment 8: L403: remove ‘’an. 

Reply: Removed. 

Comment 9: L464: variables.  

Reply: Revised. 

Comment 10: L475: this is less succesfull, in relative terms, than the 10 parameter case. 

Reply: Revised as suggested:” This is less successful, in relative terms, than the 10 

parameter case, where 8 variables exhibit reduced or similar bias relative to the default.” 

(Lines 538-540). 

Comment 11: L486: exhibit similar behaviour  

Reply: Revised 

Comment 12: L603:  which improvements for which case? 

Reply: Revised to:“ with simulated radiation improvements primarily observed in 

shortwave radiation for the 10-parameter case and in longwave radiation for the 20-

parameter case.” (Lines 697-699). 

Comment 13: L606:  flux of energy towards the ocean, instead of ocean surface flux.  

Reply: Revised. 

Comment 14: L691: a common issue. 

Reply: Revised. 

Comment 15: All figures: larger legends would be good.  

Reply: We have made larger legends for all the figures as suggested. 

Comment 16: Table 2: add units (if they have) to the parameters, as it may help to 

understand their role. 

Reply: Added. 



Comment 17: Figure 2: the numbers written in the experiment color code are very hard to 

read. Also, the caption does not explain what they mean, nor the meaning of the vertical 

dashed lines in b) and c) 

Reply: We have replotted the figure and updated the caption to include further 

explanation as follows:” Normalized values of tuning parameters for the default and all five 

optimized cases (a); changes in the cost function values over iterations for the two main 

optimized cases (b) and the three sensitivity experiment cases (c). The vertical solid lines 

indicate the 11 and 21 runs from the initial perturbation phase, while vertical dashed lines 

mark the iterations at which the cost function reach its minimum.” (Lines 1255-1259). 

Furthermore, we have clarified in the manuscript that abbreviations such as ‘10-param.’ 

used in the captions of all relevant figures are explicitly defined in the text, e.g., “This case is 

denoted as the “10-param.” case in the captions of all relevant figures” (Lines 303–304). 

Comment 18: Figure 3: I would rename AMIP@10years by AMIP2005-2014, here and 

wherever mentioned in the text.  

Reply: Revised as suggested. 

Comment 19: Figure 7: there is a red ‘v’. 

Reply: Revised. 

Comment 20: Figure 8: percent instead of precent 

Reply: Revised. 

Comment 21: Figure 12: change colorcode as it uses the same as Figure 7. In Fig 7, however, 

the numbers in the Table display the actual Jacobians, while here it displays the range 

between Jacobians. A change of colorcode would help explain that we are not looking at the 

exact same metric. 

Reply: Changed as suggested. 



RESPONSE TO REVIEWER #2 FOR GEOSCIENTIFIC MODEL 

DEVELOPMENT: MANUSCRIPT EGUSPHERE-2024-3770 

We thank Reviewer #2 for the thoughtful and constructive feedback. This response 

document provides a response to each specific comment. Reviewer comments are in 

blue italics, author responses are in black, and changes to the manuscript are marked 

in red with line numbers referring to those in the revised manuscript. 

  



Reviewer #2 

This study presents a derivative-free optimization framework for tuning climate model 

parameters. The framework was applied to the GAMIL3 atmospheric model and evaluated for 

both 10-parameter and 20-parameter cases. The study assessed the framework's effectiveness 

in terms of the initial selection of model parameter values and found that the initial selection 

of model parameter values considerably affects the tuning results. The study also evaluated 

the effectiveness of applying the optimized model parameters, derived from the atmospheric 

model, to an atmosphere-ocean coupled climate model. Model parameterization optimization 

and model tuning are important aspects in the climate modeling community. The paper is well 

written and worth publishing. However, to benefit a wider modeling community, some issues 

need to be addressed and further clarification is necessary. 

Reply: We thank the reviewer for their helpful and constructive comments, and have 

revised the paper accordingly. 

Comment 1: L174-175: Please provide more details about the initial trust region and 

parameter constraints. Is there any difference between parameter constraints and 

parameters' plausible ranges? 

Reply: We have revised the wording related to “parameter constraints” to clarify that it 

refers to constraints applied to the simulated variables, which is distinct from the physical 

parameters we tuned in this work. We have added the following explanation to the 

manuscript:” In the initialization of DFO-LS, we use the default parameter settings provided by 

the DFOLS software package, including the specification of the initial trust region, which is an 

algorithm parameter that governs the size of the local search area. Any constraints on the 

simulated variables are also specified at this stage. The initial trust region radius (rhobeg) is set to 

0.18 (normalized to parameter ranges) based on sensitivity tests. This choice ensures that the 

first iterations explore locally without overstepping physical plausibility, balancing efficient 

convergence and sufficient sampling of the parameter space (Cartis et al., 2019). In addition, we 

apply a constraint to a simulated variable using a parameter μ, which determines the weighting 

of the constraint term (1/(2μ); see Supplementary S1). In this study, following Tett et al (2017, 



2022), this constraint is applied to the global average TOA netflux. To tightly constrain this 

variable, μ is set to 0.18 which corresponds to a total uncertainty of 0.15 W/m² somewhat higher 

than the observational error of 0.1 W/m².” (Lines 177-189). We have also added further 

clarification regarding the distinction between the constraints to the simulated variables and 

plausible parameter ranges, as follows:” While the plausible ranges are defined as the 

maximum physically meaningful bounds (e.g., rhcrit: 0.65–0.95), the constraint on the global 

average TOA net flux ensures it closely matches the observations after tuning.”. (Lines 292-

294). 

Comment 2: L180: In each iteration of the optimization process, how many simulations are 

conducted? 

Reply: Thank you for the comment. We have added further clarification as follows:” In 

addition to the initial K+1 simulation runs required to initialize the DFOLS algorithm for a K-

parameter case, each iteration typically involves 1-3 additional model simulations, 

depending on the trust-region management strategy and the progress of the algorithm. The 

algorithm normally performs one simulation per iteration to evaluate a new candidate 

parameter set, but may conduct 3 simulations when the local quadratic model requires 

improvement or when the actual-to-predicted improvement ratio falls below zero (Cartis et 

al., 2019). Total evaluations include the initial runs plus all subsequent iterations 

evaluations.” (Lines 199-206). 

Comment 3: L215: A 30-year simulation is insufficient to fully evaluate the effectiveness of 

the modified model parameters in a fully coupled model. 

Reply: While we acknowledge that multi-century integrations would provide additional 

insights into the climate equilibrium state, our primary objective was to validate the 

transferability of AMIP-tuned parameters to a coupled framework, and a 30-year piControl 

simulation here in this study is scientifically sufficient to evaluate the effectiveness of the 

tuned parameters. We have added a discussion regarding this issue:” While we acknowledge 

that multi-century integrations would provide additional insight into the model’s equilibrium 

climate response, our primary goal was to test whether AMIP-tuned parameters remain 

valid in a coupled setup. For this purpose, a 30-year piControl run is scientifically adequate. 



The results show that the model quickly reaches energy balance stability for both the 10- 

and 20-parameter cases (TOA net flux drift < 0.05 W m⁻² per decade) and that ocean heat 

content drift remains minimal (< 0.008 °C per decade) after year 15, indicating that the 

system achieves a quasi-equilibrium state. This timescale is reasonable, since the upper 

ocean—where much of the adjustment occurs—has a relatively short adjustment timescale 

of about 1–5 years. The stabilized climate indicators and consistent system behavior (Figs. 9 

and 10) confirm that the tuned parameters yield a credible coupled climate without 

introducing systematic drifts. Similar integration lengths have been used in other studies 

(e.g., Tett et al., 2017). While longer runs could refine the equilibrium further, they are 

unlikely to change our main conclusion that the parameter transfer is robust. ” (Lines 715-

729). 

Comment 4: L226-228: \theta is not defined. 

Reply: Revised the text to:” we separate the analysis into four regions based on latitude 

(θ, defined as positive northward from the equator)” (Lines 267-268). 

Comment 5: L230-231: _TROPICALLAND, _TROPICALOCEAN, _NHX and _SHX are not defined 

Reply: Revised the text to:” While most variables are divided into four regions—labeled 

_TROPICSLAND (tropical land: 30° S–30° N over land), _TROPICSOCEAN (tropical ocean: 

30° S–30° N over ocean), _NHX (Northern Hemispheric extra-tropics: >30° N), and _SHX 

(Southern Hemispheric extra-tropics: <−30° S)—each with its own target and uncertainty.” 

(Lines 272-276). 

Comment 6: L236: LAT is not defined 

Reply: Revised the text to:” Land Air Temperature (LAT)” (Line 281). 

Comment 7: L237-238: Please clarify how the uncertainty is derived from the absolute error 

Reply: Thank you for the reminder. In Section 2.4, we have clarified the different data 

sources used for each variable. To further improve clarity regarding our methodology, we 

added the following explanation:” The second matrix estimates the uncertainty of 

observations (𝐶0), which set to be diagonal, assuming no correlation between different 



observations, and its values are derived from absolute difference between the two available 

datasets for each variable after regridding and area-weighting … …For the four radiation 

variables (OLR, OLRC, RSR, and RSRC), uncertainties are based on the estimates from Loeb et 

al. (2018).” (Lines 316-327). 

Comment 8: L250: I can’t find them in the last column of Table 2 

Reply: Revised the text to “the first column”. 

Comment 9: L405-407: The tuning process of the 20-parameter case was affected by using 

the same initial perturbations for the original 10 parameters. It is important to evaluate the 

effectiveness of the tuning method in terms of adding more parameters by comparing the 

10-parameter and 20-parameter cases with independent initial parameter perturbations 

Reply: In our original experimental design, we intentionally maintained identical initial 

perturbations for the first 10 parameters in both the 10- and 20-parameter cases to 

establish a controlled comparison of how expanding the parameter space affects 

optimization outcomes. By holding the initial perturbations constant for these shared 

parameters, we ensured that any differences in the final tuned results could be directly 

attributed to the inclusion of additional parameters rather than variations in initialization. 

However, in direct response to the reviewer's comment, we conducted a new 

experiment with completely independent initial perturbations for the 20-parameter case as 

a complementary. Since the optimized parameters from this experiment show quite similar 

performance to the original 20-parameter case, we have added this results to the discussion 

and supplementary: “to assess how the number of tuning parameters affects the 

optimization process, we used the same initial perturbation runs for the ten shared 

parameters in both the 10- and 20-parameter cases, enabling a consistent evaluation of 

their sensitivity to the simulated results. While this approach allows a straight forward 

comparison, it may also constrain the optimization in the 20-parameter case by introducing 

bias into the initial search space. To address this potential limitation, we conducted 

additional experiments in which all twenty parameters were initialized with independent 

perturbations (Fig. S4–S6) by adjusting the rhobeg parameter in the DFO-LS algorithm from 



its default value of 0.18 to 0.23. These additional experiments yielded several important 

insights that strengthen our original conclusions. First, although the optimized parameter 

values in the new 20-parameter case differ somewhat from those in the original setup, most 

shift in the same direction relative to the default values (Fig. S4). Moreover, the optimization 

consistently converged to similar cost function values (2.68 vs. 2.87), despite differences in 

the initial perturbations and optimization pathways, highlighting the robustness of our 

tuning framework. Second, both approaches produced nearly identical simulation 

performance in the 10-year AMIP and 30-year piControl experiments (Fig. S5–S6), despite 

relying on different parameter sets. This suggests that the performance in the 20-parameter 

case may be dominated by a subset of the most sensitive parameters, such as Dcs, rhcrit, 

c0_conv, and cmftau, which have been shown to strongly influence the simulated results. 

These findings provide strong evidence that our conclusions regarding the robustness of the 

optimization and the effect of increasing the number of tuning parameters remain valid.” 

(Lines 837-858). 

Comment 10: L416-417: What does “the initial 20 runs” refer to? Are these the initial 

perturbation runs conducted before the optimizing iterations begin? If so, please clarify this 

point. It appears that both the 10-parameter and 20-parameter cases achieve nearly the 

same STABLE performance by the 21 iterations. Does this mean the total number of runs for 

the two cases are 31 and 41 runs, respectively? 

Reply: The reviewer has raised an important point that warrants further clarification. 

Indeed, the initial 11/21 runs mentioned in the text refer to the perturbation runs conducted 

prior to the start of the optimization iterations. We have added the clarification to the 

Methods section; please refer to Comment 7 in our response to Reviewer #1.  

Regarding the second comment—“Does this mean the total number of runs for the two 

cases are 31 and 41 runs, respectively?” —yes, the total number of model evaluations 

includes both the initial perturbation runs and the subsequent optimization iterations. For 

the two cases shown in Fig. 3, a total of 35 simulations (11 initial + 24 iterations) were 

conducted for the 10-parameter case, and 41 simulations (21 initial + 20 iterations) for the 

20-parameter case. We have clarified this more explicitly in the revised manuscript by 



focusing on the total number of iterations required to reach the minimum cost function 

value:” In the 10-parameter case, the optimization required 29 total model evaluations (11 

initial perturbation runs + 18 iteration runs), reaching the lowest cost function value of 

approximately 3.5” (Lines 408-410) and “The system required a total of 31 runs (21 initial 

perturbation runs + 10 iteration runs) to reach the lowest cost function value (2.87), which is 

only two more than that required for the 10-parameter case.” (Lines 471-473) 

Comment 11: L448: In an AMIP simulation, sea surface temperatures are specified, so ENSO 

(El Niño-Southern Oscillation) is not a suitable example in this context 

Reply: Thanks for pointing this out. We have revised the sentence to:” Although our 

cost function explicitly accounts for internal variability (Eq. 1), tuning and evaluating the 

model using only a one-year simulation may still introduce uncertainties due to atmospheric 

internal variability (Bonnet et al., 2025), such as phase shifts in the North Atlantic Oscillation 

(NAO) or stochastic tropical convection patterns like the Madden-Julian Oscillation.” (Lines 

502-506) 

Comment 12: L456-461: Does this indicate that the tuned results are tied to a specific climate 

background 

Reply: We acknowledge the reviewer’s point regarding the tuning results for some 

variables, such as MSLP, which are somewhat tied to the specific climate background of the 

tuning period. However, most other variables (e.g., T500, RSR, NETFLUX) showed consistent 

improvements across both periods, demonstrating robustness against interannual 

variability. We have added further discussion on this in the manuscript and suggested that 

future work could explore tuning based on multi-year composites to better assess the 

generalizability of the results:” This temporal inconsistency suggests that certain parameter 

adjustments may be sensitive to the specific climate state of 2011, which was characterized by a 

moderate La Niña. In contrast, variables such as T500, RSR, and NETFLUX exhibit consistent 

improvements across both simulations, indicating a robust response to parameter tuning that is 

less dependent on interannual variability ” (Lines 519-523) and added some discussion; please 

refer to Comment 16 in our response to Reviewer #1. 



Comment 13: L466-467: replace “equilibrium” with “energy balance” 

Reply: Replaced. 

Comment 14: L471: Why are MSL, RSRC, and LRC difficult to tune? 

Reply: We appreciate this technical question. The challenges in tuning MSLP and the 

two clear-sky radiation variables primarily stem from the gravity wave drag parameterization 

and the greenhouse gas effect related to water vapor. We have added a detailed 

explanation of these issues in the revised manuscript:” Specifically, MSLP is highly sensitive to 

unresolved gravity wave drag processes (Sandu et al., 2015; Williams et al., 2020), which were 

not included in our parameter tuning. Previous experiments with the IFS model indicate that 

increasing orographic and surface drag in the Northern Hemisphere can reduce MSLP biases 

(Kanehama et al., 2022). While the global mean OLRC is similar across cases due to regional 

compensation (Fig. 5d), the meridional distribution reveals notable differences (Fig. 7d). In the 

tropics, increased upper tropospheric water vapor—particularly in the 20-parameter case (Fig. 

9a–9b)—enhances the greenhouse effect and reduces outgoing clear sky longwave radiation. In 

contrast, decreased water vapor in high-latitude regions, especially in the 20-parameter case, 

leads to increased OLRC. RSRC remains nearly unchanged across all simulations due to the use of 

identical surface albedo.” (Lines 560-571) 

Comment 15: L474: OSRC is not defined 

Reply: Revised to RSRC. 

Comment 16: L476: TEMP@500 has been profoundly affected by tuning. Please explain the 

physical causes 

Reply: We thank the reviewer for highlighting this important point, which was 

previously underemphasized in the manuscript. We have revised the text accordingly. As 

shown in Fig. 8, nearly all of the first 10 parameters have a significant impact on TEMP@500, 

with adjustments to rhcrit and Dcs exerting the greatest influence in the 10- and 20-

parameter cases, respectively. In this paper, we illustrate their potential impact from two 

perspectives: (a) convective heating profiles and (b) the radiative effects of upper-



tropospheric ice clouds—both of which are key drivers of the mid-tropospheric thermal 

structure. Of course, we acknowledge that different parameters may influence the 

simulated variables through different pathways, and while exploring these effects would be 

valuable, it lies beyond the scope of this study. 

The physical explanations are presented in the manuscript for the 10-parameter case:” 

Low-level clouds strongly reflect shortwave radiation, producing a cooling effect. Therefore, 

a reduction in low-level clouds allows more shortwave radiation to penetrate the lower 

atmosphere, reducing outgoing shortwave radiation to space (blue lines in Fig. 5e and 7e) 

and warming the region (blue lines in Fig. 5a and 7a; Fig. 9e), including near the surface (blue 

lines in Fig. 5g).” (Lines 609-613), and for the 20-parameter case:” Specifically, clouds with 

higher ice content trap more OLR from the Earth's surface, potentially amplifying the 

greenhouse effect by retaining more infrared radiation (red lines in Fig. 6c and 8c). This 

results in a warming effect, particularly at lower atmospheric levels and even near the 

surface, especially during nighttime or in polar regions (red lines in Fig. 5a, 5g, 7a, and 7g; 

Fig. 9f).” (Lines 619-624). 

Comment 17: L479-480: Please add some discussion on how to tune the model performance 

for OLR and PRECIP 

Reply: Thank you for pointing this out. There was an incorrect expression in the original 

manuscript. While both optimized cases show worse PRECIP performance compared to the 

default case—particularly the 20-parameter case—the OLR for the 10-parameter case 

remains quite close to that of the default model. We have revised the original sentence to 

better emphasize the OLR and PRECIP performance differences, especially in the 20-

parameter case:” In the 20-parameter case … …Both OLR and Lprecip perform notably worse 

than in the default case, with both variables being too low compared to the observations .” 

(Lines 534-538). Additionally, we have included a discussion on possible tuning methods for 

these variables:” ccrit, which sets the minimum turbulent threshold for triggering shallow 

convection, affects both OLR and Lprecip in a manner similar to Dcs ……. Increasing ccrit 

suppresses shallow convection by requiring stronger turbulence to initiate cloud formation, 

thereby reducing low-level cloud cover. This reduction enhances outgoing longwave 



radiation and surface solar heating, which in turn promotes evaporation and increases 

Lprecip. Therefore, adjusting Dcs and ccrit in future work may offer a promising approach for 

improving the simulation of OLR and Lprecip, both of which are underestimated relative to 

the default case.” (Lines 617-636). 

Comment 18: L534-542: The 10-parameter case shows a larger difference in TOA outgoing 

shortwave flux (RSR) compared to the 20-parameter case relative to the default case (Fig. 4e 

and 6e). However, the 20-parameter case exhibits a larger difference in cloud compared to 

the 10-parameter case relative to the default case (Fig. 8d-e). Please explain this discrepancy 

Reply: We thank the reviewer for identifying this behavior, which we agree should have 

been stated more explicitly. The apparent discrepancy between changes in RSR and cloud 

fraction arises from competing microphysical and radiative effects in the 20-parameter case. 

We have added a detailed explanation for this in the revised manuscript:” Additionally, 

raising the autoconversion threshold from ice to snow is expected to allow more ice to 

remain in the atmosphere, directly leading to a reduction in precipitation (red line in Fig. 5h), 

and increased cloud optical thickness, thereby enhancing the reflection of incoming 

shortwave radiation. This enhanced reflectivity partially offsets the impact of reduced low-

level cloud cover on the RSR in the 20-parameter case, leading to a smaller decrease in RSR 

compared to the 10-parameter case (Fig. 5e and 7e), consistent with known radiative 

differences among cloud types (Chen et al., 2000).” (Lines 624-631). 

Comment 19: L594-613: anomalies => biases 

Reply: Revised. 

Comment 20: L565-619: Does the coupled model directly utilize the optimized parameters 

from the AMIP simulations? If so, the TOA energy imbalance caused by the optimized 

parameters would eventually lead to climate drift in the long-term integration of the coupled 

model. This undermines the rationale and effectiveness of applying parameters tuned for an 

atmospheric model to an atmosphere-ocean coupled model. Meanwhile, a 2 W/m² energy 

imbalance at TOA is not a "slight energy imbalance" as stated in the abstract  



Reply: The parameter sets used in the coupled model were directly adopted from the 

AMIP-optimized results, which is a common practice in climate model tuning (Zhang et al. 

2015; Hourdin et al., 2016; Tett et al., 2017;). The net flux at the TOA in AMIP simulations 

includes the effect of greenhouse gases, whereas this effect is not represented in the 

piControl (coupled) runs. We have incorporated this detailed clarification into the revised 

manuscript:” based on the assumption that parameters performing well under observed 

forcings (e.g., prescribed SST, sea ice, and greenhouse gases) in the standalone atmospheric 

model will also improve performance in the coupled system. In our case, the TOA energy 

imbalance in the AMIP run mainly results from the radiative forcing of greenhouse gases, 

which trap outgoing longwave radiation. Since the piControl experiment is forced by 

constant pre-industrial greenhouse gas levels, this radiative effect is absent. Therefore, if the 

AMIP-tuned parameters correctly capture this effect, the coupled model under piControl 

conditions should yield a near-zero TOA net flux, as expected.” (Lines 241-249). 

Regarding the relatively large energy imbalance at the TOA observed in the coupled runs 

for both optimized cases, we acknowledge this as an intrinsic limitation of the atmospheric 

model. This imbalance primarily originates from a persistent energy imbalance in the 

atmospheric component’s dynamical core, which is carried over from the AMIP simulations 

into the piControl runs. We have included a detailed discussion of this issue in the revised 

manuscript. Please refer to our response to Reviewer #1, Comment 14, for further details. 

In addition, we have revised the abstract to:” Additionally, evaluations of the coupled 

model with optimized parameters showed, compared to the default parameters settings, 

reduced climate drift, a more stable climate system, and more realistic sea surface 

temperatures, despite an overall energy imbalance of 2.0 W/m², approximately 1.4 W/m² of 

which originates from the intrinsic imbalance of the atmospheric component, and the 

presence of some regional biases.” (Lines 33-38) 

Comment 21: L767: forecasts -> prediction 

Reply: Revised. 


