
RESPONSE TO REVIEWER #2 FOR GEOSCIENTIFIC MODEL 

DEVELOPMENT: MANUSCRIPT EGUSPHERE-2024-3770 

We thank Reviewer #2 for the thoughtful and constructive feedback. This response 

document provides a response to each specific comment. Reviewer comments are in 

blue italics, author responses are in black, and changes to the manuscript are marked 

in red with line numbers referring to those in the revised manuscript. 

  



Reviewer #2 

This study presents a derivative-free optimization framework for tuning climate model 

parameters. The framework was applied to the GAMIL3 atmospheric model and evaluated for 

both 10-parameter and 20-parameter cases. The study assessed the framework's effectiveness 

in terms of the initial selection of model parameter values and found that the initial selection 

of model parameter values considerably affects the tuning results. The study also evaluated 

the effectiveness of applying the optimized model parameters, derived from the atmospheric 

model, to an atmosphere-ocean coupled climate model. Model parameterization optimization 

and model tuning are important aspects in the climate modeling community. The paper is well 

written and worth publishing. However, to benefit a wider modeling community, some issues 

need to be addressed and further clarification is necessary. 

Reply: We thank the reviewer for their helpful and constructive comments, and have 

revised the paper accordingly. 

Comment 1: L174-175: Please provide more details about the initial trust region and 

parameter constraints. Is there any difference between parameter constraints and 

parameters' plausible ranges? 

Reply: We have revised the wording related to “parameter constraints” to clarify that it 

refers to constraints applied to the simulated variables, which is distinct from the physical 

parameters we tuned in this work. We have added the following explanation to the 

manuscript:” In the initialization of DFO-LS, we use the default parameter settings provided by 

the DFOLS software package, including the specification of the initial trust region, which is an 

algorithm parameter that governs the size of the local search area. Any constraints on the 

simulated variables are also specified at this stage. The initial trust region radius (rhobeg) is set to 

0.18 (normalized to parameter ranges) based on sensitivity tests. This choice ensures that the 

first iterations explore locally without overstepping physical plausibility, balancing efficient 

convergence and sufficient sampling of the parameter space (Cartis et al., 2019). In addition, we 

apply a constraint to a simulated variable using a parameter μ, which determines the weighting 

of the constraint term (1/(2μ); see Supplementary S1). In this study, following Tett et al (2017, 



2022), this constraint is applied to the global average TOA netflux. To tightly constrain this 

variable, μ is set to 0.18 which corresponds to a total uncertainty of 0.15 W/m² somewhat higher 

than the observational error of 0.1 W/m².” (Lines 177-189). We have also added further 

clarification regarding the distinction between the constraints to the simulated variables and 

plausible parameter ranges, as follows:” While the plausible ranges are defined as the 

maximum physically meaningful bounds (e.g., rhcrit: 0.65–0.95), the constraint on the global 

average TOA net flux ensures it closely matches the observations after tuning.”. (Lines 292-

294). 

Comment 2: L180: In each iteration of the optimization process, how many simulations are 

conducted? 

Reply: Thank you for the comment. We have added further clarification as follows:” In 

addition to the initial K+1 simulation runs required to initialize the DFOLS algorithm for a K-

parameter case, each iteration typically involves 1-3 additional model simulations, 

depending on the trust-region management strategy and the progress of the algorithm. The 

algorithm normally performs one simulation per iteration to evaluate a new candidate 

parameter set, but may conduct 3 simulations when the local quadratic model requires 

improvement or when the actual-to-predicted improvement ratio falls below zero (Cartis et 

al., 2019). Total evaluations include the initial runs plus all subsequent iterations 

evaluations.” (Lines 199-206). 

Comment 3: L215: A 30-year simulation is insufficient to fully evaluate the effectiveness of 

the modified model parameters in a fully coupled model. 

Reply: While we acknowledge that multi-century integrations would provide additional 

insights into the climate equilibrium state, our primary objective was to validate the 

transferability of AMIP-tuned parameters to a coupled framework, and a 30-year piControl 

simulation here in this study is scientifically sufficient to evaluate the effectiveness of the 

tuned parameters. We have added a discussion regarding this issue:” While we acknowledge 

that multi-century integrations would provide additional insight into the model’s equilibrium 

climate response, our primary goal was to test whether AMIP-tuned parameters remain 

valid in a coupled setup. For this purpose, a 30-year piControl run is scientifically adequate. 



The results show that the model quickly reaches energy balance stability for both the 10- 

and 20-parameter cases (TOA net flux drift < 0.05 W m⁻² per decade) and that ocean heat 

content drift remains minimal (< 0.008 °C per decade) after year 15, indicating that the 

system achieves a quasi-equilibrium state. This timescale is reasonable, since the upper 

ocean—where much of the adjustment occurs—has a relatively short adjustment timescale 

of about 1–5 years. The stabilized climate indicators and consistent system behavior (Figs. 9 

and 10) confirm that the tuned parameters yield a credible coupled climate without 

introducing systematic drifts. Similar integration lengths have been used in other studies 

(e.g., Tett et al., 2017). While longer runs could refine the equilibrium further, they are 

unlikely to change our main conclusion that the parameter transfer is robust. ” (Lines 715-

729). 

Comment 4: L226-228: \theta is not defined. 

Reply: Revised the text to:” we separate the analysis into four regions based on latitude 

(θ, defined as positive northward from the equator)” (Lines 267-268). 

Comment 5: L230-231: _TROPICALLAND, _TROPICALOCEAN, _NHX and _SHX are not defined 

Reply: Revised the text to:” While most variables are divided into four regions—labeled 

_TROPICSLAND (tropical land: 30° S–30° N over land), _TROPICSOCEAN (tropical ocean: 

30° S–30° N over ocean), _NHX (Northern Hemispheric extra-tropics: >30° N), and _SHX 

(Southern Hemispheric extra-tropics: <−30° S)—each with its own target and uncertainty.” 

(Lines 272-276). 

Comment 6: L236: LAT is not defined 

Reply: Revised the text to:” Land Air Temperature (LAT)” (Line 281). 

Comment 7: L237-238: Please clarify how the uncertainty is derived from the absolute error 

Reply: Thank you for the reminder. In Section 2.4, we have clarified the different data 

sources used for each variable. To further improve clarity regarding our methodology, we 

added the following explanation:” The second matrix estimates the uncertainty of 

observations (𝐶0), which set to be diagonal, assuming no correlation between different 



observations, and its values are derived from absolute difference between the two available 

datasets for each variable after regridding and area-weighting … …For the four radiation 

variables (OLR, OLRC, RSR, and RSRC), uncertainties are based on the estimates from Loeb et 

al. (2018).” (Lines 316-327). 

Comment 8: L250: I can’t find them in the last column of Table 2 

Reply: Revised the text to “the first column”. 

Comment 9: L405-407: The tuning process of the 20-parameter case was affected by using 

the same initial perturbations for the original 10 parameters. It is important to evaluate the 

effectiveness of the tuning method in terms of adding more parameters by comparing the 

10-parameter and 20-parameter cases with independent initial parameter perturbations 

Reply: In our original experimental design, we intentionally maintained identical initial 

perturbations for the first 10 parameters in both the 10- and 20-parameter cases to 

establish a controlled comparison of how expanding the parameter space affects 

optimization outcomes. By holding the initial perturbations constant for these shared 

parameters, we ensured that any differences in the final tuned results could be directly 

attributed to the inclusion of additional parameters rather than variations in initialization. 

However, in direct response to the reviewer's comment, we conducted a new 

experiment with completely independent initial perturbations for the 20-parameter case as 

a complementary. Since the optimized parameters from this experiment show quite similar 

performance to the original 20-parameter case, we have added this results to the discussion 

and supplementary: “to assess how the number of tuning parameters affects the 

optimization process, we used the same initial perturbation runs for the ten shared 

parameters in both the 10- and 20-parameter cases, enabling a consistent evaluation of 

their sensitivity to the simulated results. While this approach allows a straight forward 

comparison, it may also constrain the optimization in the 20-parameter case by introducing 

bias into the initial search space. To address this potential limitation, we conducted 

additional experiments in which all twenty parameters were initialized with independent 

perturbations (Fig. S4–S6) by adjusting the rhobeg parameter in the DFO-LS algorithm from 



its default value of 0.18 to 0.23. These additional experiments yielded several important 

insights that strengthen our original conclusions. First, although the optimized parameter 

values in the new 20-parameter case differ somewhat from those in the original setup, most 

shift in the same direction relative to the default values (Fig. S4). Moreover, the optimization 

consistently converged to similar cost function values (2.68 vs. 2.87), despite differences in 

the initial perturbations and optimization pathways, highlighting the robustness of our 

tuning framework. Second, both approaches produced nearly identical simulation 

performance in the 10-year AMIP and 30-year piControl experiments (Fig. S5–S6), despite 

relying on different parameter sets. This suggests that the performance in the 20-parameter 

case may be dominated by a subset of the most sensitive parameters, such as Dcs, rhcrit, 

c0_conv, and cmftau, which have been shown to strongly influence the simulated results. 

These findings provide strong evidence that our conclusions regarding the robustness of the 

optimization and the effect of increasing the number of tuning parameters remain valid.” 

(Lines 837-858). 

Comment 10: L416-417: What does “the initial 20 runs” refer to? Are these the initial 

perturbation runs conducted before the optimizing iterations begin? If so, please clarify this 

point. It appears that both the 10-parameter and 20-parameter cases achieve nearly the 

same STABLE performance by the 21 iterations. Does this mean the total number of runs for 

the two cases are 31 and 41 runs, respectively? 

Reply: The reviewer has raised an important point that warrants further clarification. 

Indeed, the initial 11/21 runs mentioned in the text refer to the perturbation runs conducted 

prior to the start of the optimization iterations. We have added the clarification to the 

Methods section; please refer to Comment 7 in our response to Reviewer #1.  

Regarding the second comment—“Does this mean the total number of runs for the two 

cases are 31 and 41 runs, respectively?” —yes, the total number of model evaluations 

includes both the initial perturbation runs and the subsequent optimization iterations. For 

the two cases shown in Fig. 3, a total of 35 simulations (11 initial + 24 iterations) were 

conducted for the 10-parameter case, and 41 simulations (21 initial + 20 iterations) for the 

20-parameter case. We have clarified this more explicitly in the revised manuscript by 



focusing on the total number of iterations required to reach the minimum cost function 

value:” In the 10-parameter case, the optimization required 29 total model evaluations (11 

initial perturbation runs + 18 iteration runs), reaching the lowest cost function value of 

approximately 3.5” (Lines 408-410) and “The system required a total of 31 runs (21 initial 

perturbation runs + 10 iteration runs) to reach the lowest cost function value (2.87), which is 

only two more than that required for the 10-parameter case.” (Lines 471-473) 

Comment 11: L448: In an AMIP simulation, sea surface temperatures are specified, so ENSO 

(El Niño-Southern Oscillation) is not a suitable example in this context 

Reply: Thanks for pointing this out. We have revised the sentence to:” Although our 

cost function explicitly accounts for internal variability (Eq. 1), tuning and evaluating the 

model using only a one-year simulation may still introduce uncertainties due to atmospheric 

internal variability (Bonnet et al., 2025), such as phase shifts in the North Atlantic Oscillation 

(NAO) or stochastic tropical convection patterns like the Madden-Julian Oscillation.” (Lines 

502-506) 

Comment 12: L456-461: Does this indicate that the tuned results are tied to a specific climate 

background 

Reply: We acknowledge the reviewer’s point regarding the tuning results for some 

variables, such as MSLP, which are somewhat tied to the specific climate background of the 

tuning period. However, most other variables (e.g., T500, RSR, NETFLUX) showed consistent 

improvements across both periods, demonstrating robustness against interannual 

variability. We have added further discussion on this in the manuscript and suggested that 

future work could explore tuning based on multi-year composites to better assess the 

generalizability of the results:” This temporal inconsistency suggests that certain parameter 

adjustments may be sensitive to the specific climate state of 2011, which was characterized by a 

moderate La Niña. In contrast, variables such as T500, RSR, and NETFLUX exhibit consistent 

improvements across both simulations, indicating a robust response to parameter tuning that is 

less dependent on interannual variability ” (Lines 519-523) and added some discussion; please 

refer to Comment 16 in our response to Reviewer #1. 



Comment 13: L466-467: replace “equilibrium” with “energy balance” 

Reply: Replaced. 

Comment 14: L471: Why are MSL, RSRC, and LRC difficult to tune? 

Reply: We appreciate this technical question. The challenges in tuning MSLP and the 

two clear-sky radiation variables primarily stem from the gravity wave drag parameterization 

and the greenhouse gas effect related to water vapor. We have added a detailed 

explanation of these issues in the revised manuscript:” Specifically, MSLP is highly sensitive to 

unresolved gravity wave drag processes (Sandu et al., 2015; Williams et al., 2020), which were 

not included in our parameter tuning. Previous experiments with the IFS model indicate that 

increasing orographic and surface drag in the Northern Hemisphere can reduce MSLP biases 

(Kanehama et al., 2022). While the global mean OLRC is similar across cases due to regional 

compensation (Fig. 5d), the meridional distribution reveals notable differences (Fig. 7d). In the 

tropics, increased upper tropospheric water vapor—particularly in the 20-parameter case (Fig. 

9a–9b)—enhances the greenhouse effect and reduces outgoing clear sky longwave radiation. In 

contrast, decreased water vapor in high-latitude regions, especially in the 20-parameter case, 

leads to increased OLRC. RSRC remains nearly unchanged across all simulations due to the use of 

identical surface albedo.” (Lines 560-571) 

Comment 15: L474: OSRC is not defined 

Reply: Revised to RSRC. 

Comment 16: L476: TEMP@500 has been profoundly affected by tuning. Please explain the 

physical causes 

Reply: We thank the reviewer for highlighting this important point, which was 

previously underemphasized in the manuscript. We have revised the text accordingly. As 

shown in Fig. 8, nearly all of the first 10 parameters have a significant impact on TEMP@500, 

with adjustments to rhcrit and Dcs exerting the greatest influence in the 10- and 20-

parameter cases, respectively. In this paper, we illustrate their potential impact from two 

perspectives: (a) convective heating profiles and (b) the radiative effects of upper-



tropospheric ice clouds—both of which are key drivers of the mid-tropospheric thermal 

structure. Of course, we acknowledge that different parameters may influence the 

simulated variables through different pathways, and while exploring these effects would be 

valuable, it lies beyond the scope of this study. 

The physical explanations are presented in the manuscript for the 10-parameter case:” 

Low-level clouds strongly reflect shortwave radiation, producing a cooling effect. Therefore, 

a reduction in low-level clouds allows more shortwave radiation to penetrate the lower 

atmosphere, reducing outgoing shortwave radiation to space (blue lines in Fig. 5e and 7e) 

and warming the region (blue lines in Fig. 5a and 7a; Fig. 9e), including near the surface (blue 

lines in Fig. 5g).” (Lines 609-613), and for the 20-parameter case:” Specifically, clouds with 

higher ice content trap more OLR from the Earth's surface, potentially amplifying the 

greenhouse effect by retaining more infrared radiation (red lines in Fig. 6c and 8c). This 

results in a warming effect, particularly at lower atmospheric levels and even near the 

surface, especially during nighttime or in polar regions (red lines in Fig. 5a, 5g, 7a, and 7g; 

Fig. 9f).” (Lines 619-624). 

Comment 17: L479-480: Please add some discussion on how to tune the model performance 

for OLR and PRECIP 

Reply: Thank you for pointing this out. There was an incorrect expression in the original 

manuscript. While both optimized cases show worse PRECIP performance compared to the 

default case—particularly the 20-parameter case—the OLR for the 10-parameter case 

remains quite close to that of the default model. We have revised the original sentence to 

better emphasize the OLR and PRECIP performance differences, especially in the 20-

parameter case:” In the 20-parameter case … …Both OLR and Lprecip perform notably worse 

than in the default case, with both variables being too low compared to the observations .” 

(Lines 534-538). Additionally, we have included a discussion on possible tuning methods for 

these variables:” ccrit, which sets the minimum turbulent threshold for triggering shallow 

convection, affects both OLR and Lprecip in a manner similar to Dcs ……. Increasing ccrit 

suppresses shallow convection by requiring stronger turbulence to initiate cloud formation, 

thereby reducing low-level cloud cover. This reduction enhances outgoing longwave 



radiation and surface solar heating, which in turn promotes evaporation and increases 

Lprecip. Therefore, adjusting Dcs and ccrit in future work may offer a promising approach for 

improving the simulation of OLR and Lprecip, both of which are underestimated relative to 

the default case.” (Lines 617-636). 

Comment 18: L534-542: The 10-parameter case shows a larger difference in TOA outgoing 

shortwave flux (RSR) compared to the 20-parameter case relative to the default case (Fig. 4e 

and 6e). However, the 20-parameter case exhibits a larger difference in cloud compared to 

the 10-parameter case relative to the default case (Fig. 8d-e). Please explain this discrepancy 

Reply: We thank the reviewer for identifying this behavior, which we agree should have 

been stated more explicitly. The apparent discrepancy between changes in RSR and cloud 

fraction arises from competing microphysical and radiative effects in the 20-parameter case. 

We have added a detailed explanation for this in the revised manuscript:” Additionally, 

raising the autoconversion threshold from ice to snow is expected to allow more ice to 

remain in the atmosphere, directly leading to a reduction in precipitation (red line in Fig. 5h), 

and increased cloud optical thickness, thereby enhancing the reflection of incoming 

shortwave radiation. This enhanced reflectivity partially offsets the impact of reduced low-

level cloud cover on the RSR in the 20-parameter case, leading to a smaller decrease in RSR 

compared to the 10-parameter case (Fig. 5e and 7e), consistent with known radiative 

differences among cloud types (Chen et al., 2000).” (Lines 624-631). 

Comment 19: L594-613: anomalies => biases 

Reply: Revised. 

Comment 20: L565-619: Does the coupled model directly utilize the optimized parameters 

from the AMIP simulations? If so, the TOA energy imbalance caused by the optimized 

parameters would eventually lead to climate drift in the long-term integration of the coupled 

model. This undermines the rationale and effectiveness of applying parameters tuned for an 

atmospheric model to an atmosphere-ocean coupled model. Meanwhile, a 2 W/m² energy 

imbalance at TOA is not a "slight energy imbalance" as stated in the abstract  



Reply: The parameter sets used in the coupled model were directly adopted from the 

AMIP-optimized results, which is a common practice in climate model tuning (Zhang et al. 

2015; Hourdin et al., 2016; Tett et al., 2017;). The net flux at the TOA in AMIP simulations 

includes the effect of greenhouse gases, whereas this effect is not represented in the 

piControl (coupled) runs. We have incorporated this detailed clarification into the revised 

manuscript:” based on the assumption that parameters performing well under observed 

forcings (e.g., prescribed SST, sea ice, and greenhouse gases) in the standalone atmospheric 

model will also improve performance in the coupled system. In our case, the TOA energy 

imbalance in the AMIP run mainly results from the radiative forcing of greenhouse gases, 

which trap outgoing longwave radiation. Since the piControl experiment is forced by 

constant pre-industrial greenhouse gas levels, this radiative effect is absent. Therefore, if the 

AMIP-tuned parameters correctly capture this effect, the coupled model under piControl 

conditions should yield a near-zero TOA net flux, as expected.” (Lines 241-249). 

Regarding the relatively large energy imbalance at the TOA observed in the coupled runs 

for both optimized cases, we acknowledge this as an intrinsic limitation of the atmospheric 

model. This imbalance primarily originates from a persistent energy imbalance in the 

atmospheric component’s dynamical core, which is carried over from the AMIP simulations 

into the piControl runs. We have included a detailed discussion of this issue in the revised 

manuscript. Please refer to our response to Reviewer #1, Comment 14, for further details. 

In addition, we have revised the abstract to:” Additionally, evaluations of the coupled 

model with optimized parameters showed, compared to the default parameters settings, 

reduced climate drift, a more stable climate system, and more realistic sea surface 

temperatures, despite an overall energy imbalance of 2.0 W/m², approximately 1.4 W/m² of 

which originates from the intrinsic imbalance of the atmospheric component, and the 

presence of some regional biases.” (Lines 33-38) 

Comment 21: L767: forecasts -> prediction 

Reply: Revised. 


