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Supplementary Texts 

Text S1. Bayesian Memory Dynamic Linear Model to estimate time-varying sensitivity 
We employ the Multivariate Dynamic Linear Model (MDLM) to ascertain the time-varying sensitivities of 
the ESI with respect to its own lags over the previous 1-5 periods, as well as to various external driving 
factors. The MDLM, an extension of the Dynamic Linear Model (DLM), comprises both an observation 
equation and a state evolution equation: 

𝑦𝑦𝑡𝑡 = 𝐅𝐅𝑡𝑡𝑇𝑇𝜽𝜽𝑡𝑡 + 𝑣𝑣𝑡𝑡 (1𝑎𝑎) 
𝜽𝜽𝑡𝑡 = 𝑮𝑮𝜽𝜽𝑡𝑡−1 + 𝐰𝐰𝑡𝑡 (1𝑏𝑏) 

The model disaggregates the ESI time series observations (𝑦𝑦𝑡𝑡) into three distinct components: the 
local/trend (subscript 𝑙𝑙), seasonal (subscript 𝑠𝑠), and regression (subscript 𝑟𝑟) elements. Correspondingly, the 
regressor vector (𝑭𝑭𝑡𝑡), state vector (𝜽𝜽𝑡𝑡, representing the sensitivity coefficients), and state evolution matrix 
(𝑮𝑮) are each comprised of three analogous components. The observation noise 𝑣𝑣𝑡𝑡, adheres to a Gaussian 
distribution with a mean of zero, while the state evolution noise 𝐰𝐰𝑡𝑡, also conforms to a Gaussian 
distribution with a mean of zero and is independent from 𝑣𝑣𝑡𝑡. 
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The local component is the mean and trend of the ESI, with 
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where 𝜃𝜃𝑙𝑙1,𝑡𝑡 and 𝜃𝜃𝑙𝑙2,𝑡𝑡 indicate the local mean and trend of ESI in the time 𝑡𝑡, respectively. 
The seasonal component comprises a blend of three Fourier series representing seasonality, with 
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Based on historical data up to time step 𝑡𝑡, the expected value of the seasonal component at time 𝑡𝑡 + 𝑘𝑘 can 
be represented by the sum of three cosine functions, each characterized by distinct frequencies, amplitudes, 
and phases. 
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where 𝐴𝐴𝑖𝑖,𝑡𝑡 and 𝜙𝜙𝑖𝑖,𝑡𝑡 represent the magnitudes and phases of the harmonic components, respectively. Both 
𝐴𝐴𝑖𝑖,𝑡𝑡 and 𝜙𝜙𝑖𝑖,𝑡𝑡 are dictated by 𝜽𝜽𝑠𝑠(𝑖𝑖),𝑡𝑡.  
The regression component employs a set of independent variables (𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑝𝑝) to model their impact on 
the dependent variable 𝑦𝑦𝑡𝑡. 

𝑭𝑭𝑟𝑟,𝑡𝑡 = [𝑥𝑥1,𝑡𝑡 , 𝑥𝑥2,𝑡𝑡 , . . . , 𝑥𝑥𝑝𝑝,𝑡𝑡]𝑇𝑇,𝑮𝑮𝑟𝑟 = 𝑰𝑰𝑝𝑝 
where 𝑰𝑰𝑝𝑝 is the identity matrix of dimension 𝑝𝑝. The set of independent variables comprises the 
deseasonalized and detrended anomalies of the ESI from the preceding five time periods (Lag1~Lag5), as 
well as the anomalies of the driving factors for the current time step. These deseasonalized and detrended 
ESI anomalies are derived by applying a DLM devoid of regression elements, effectively eliminating the 
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trend and seasonal fluctuations from the ESI time series. The terms Lag1~Lag5 refer to the cumulative 
average of the respective preceding time periods. Specifically, Lag1 corresponds to the immediate prior 
interval, encompassing the past 8 days; Lag2 covers the time span from 8 to 16 days prior, exclusive of 
Lag1; and so forth. Consideration is limited to Lag1 through Lag5 because the impact of more distant time 
periods is deemed sufficiently minimal to warrant exclusion.  
To address the aforementioned MDLM, we employed a technique known as forward filtering. This 
approach is conceptually akin to Kalman Filtering but incorporates an extra step to retroactively refine the 
posterior estimate of 𝑦𝑦𝑡𝑡 in order to derive the posterior estimate of 𝜽𝜽𝑡𝑡. Initially, we presuppose that the 
variances of the noise components 𝑣𝑣𝑡𝑡 and 𝐰𝐰𝑡𝑡 are predetermined. 
(1) Posterior at 𝑡𝑡 − 1. Given all observations 𝐷𝐷𝑡𝑡−1 = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑡𝑡−1}, 𝜽𝜽𝑡𝑡−1is assumed to follow a 
multivariate normal distribution: 

𝜽𝜽𝑡𝑡−1|𝐷𝐷𝑡𝑡−1 ∼ 𝑁𝑁(𝒎𝒎𝑡𝑡−1,𝑪𝑪𝑡𝑡−1) (4) 
where 𝒎𝒎𝑡𝑡−1 is the predicted mean, and 𝑪𝑪𝑡𝑡−1 is the variance matrix.  
(2) Prior at 𝑡𝑡. Together with Eq. 2, we can get the prior distribution of 𝜽𝜽𝑡𝑡, 

𝜽𝜽𝑡𝑡|𝐷𝐷𝑡𝑡−1 ∼ 𝑁𝑁(𝒂𝒂𝑡𝑡 ,𝑹𝑹𝑡𝑡) (5) 
where 

𝒂𝒂𝑡𝑡 = 𝑮𝑮𝑡𝑡𝒎𝒎𝑡𝑡−1,𝑹𝑹𝑡𝑡 = 𝑮𝑮𝑡𝑡𝑪𝑪𝑡𝑡−1𝑮𝑮𝑡𝑡𝑇𝑇 + 𝑾𝑾𝑡𝑡  
(3) One step forecast. Together with Eq. 1, the predictive distribution of 𝑦𝑦𝑡𝑡 is 

𝑦𝑦𝑡𝑡|𝐷𝐷𝑡𝑡−1 ∼ 𝑁𝑁(𝑓𝑓𝑡𝑡 ,𝑞𝑞𝑡𝑡) (6) 
where 

𝑓𝑓𝑡𝑡 = 𝑭𝑭𝑡𝑡𝑇𝑇𝒂𝒂𝑡𝑡 ,𝑞𝑞𝑡𝑡 = 𝑭𝑭𝑡𝑡𝑇𝑇𝑹𝑹𝑡𝑡𝑭𝑭𝑡𝑡 + 𝑣𝑣𝑡𝑡 
 
(4) Posterior at 𝑡𝑡. Compared with the observed 𝑦𝑦𝑡𝑡, the posterior estimate of 𝜽𝜽𝑡𝑡 based on all observations up 
to time 𝑡𝑡 is derived using Bayes' rule: 

𝑝𝑝(𝜽𝜽𝑡𝑡|𝐷𝐷𝑡𝑡) = 𝑝𝑝(𝜽𝜽𝑡𝑡|𝑦𝑦𝑡𝑡,𝐷𝐷𝑡𝑡−1) ∝ 𝑝𝑝(𝜽𝜽𝑡𝑡|𝑦𝑦𝑡𝑡 ,𝐷𝐷𝑡𝑡−1)𝑝𝑝(𝑦𝑦𝑡𝑡|𝜽𝜽𝑡𝑡 ,𝐷𝐷𝑡𝑡−1) = 𝑁𝑁(𝒎𝒎𝑡𝑡 ,𝑪𝑪𝑡𝑡) (7) 
with 

𝒎𝒎𝑡𝑡 = 𝒂𝒂𝑡𝑡 + 𝑨𝑨𝑡𝑡𝑒𝑒𝑡𝑡 ,𝑪𝑪𝑡𝑡 = 𝑹𝑹𝑡𝑡 − 𝑞𝑞𝑡𝑡𝑨𝑨𝑡𝑡𝑨𝑨𝑡𝑡𝑇𝑇 
where 

𝑒𝑒𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑓𝑓𝑡𝑡 ,𝑨𝑨𝑡𝑡 = 𝑹𝑹𝑡𝑡𝑭𝑭𝑡𝑡/𝑞𝑞𝑡𝑡 
Here, 𝑨𝑨𝑡𝑡 is the matrix of adaptive coefficients, 𝑒𝑒𝑡𝑡 represents the one-step forecast errors. When 𝑦𝑦𝑡𝑡 is 
missing due to cloud or snow, the prior from historical data 𝑝𝑝(𝜽𝜽𝑡𝑡|𝐷𝐷𝑡𝑡−1) from Eq. 4 is used to estimate 𝜽𝜽𝑡𝑡. 
In practice, the variance of noise 𝜈𝜈 and 𝑾𝑾𝑡𝑡 are unknown. Consequently, we have refined the process for 
variance estimation. Initially, we posit that 𝑣𝑣𝑡𝑡 ∼ 𝑁𝑁(0, 𝜈𝜈) and 𝒘𝒘𝑡𝑡 ∼ 𝑁𝑁(0, 𝜈𝜈𝑾𝑾𝑡𝑡

∗). Both 𝜈𝜈 and 𝑾𝑾𝑡𝑡
∗ are 

unknown parameters, with 𝑾𝑾𝑡𝑡
∗ being a rescaled version of 𝑾𝑾𝑡𝑡. Given 𝜈𝜈, Eqs. 4-7 adheres to a consistent 

format, 
𝜽𝜽𝑡𝑡−1|𝐷𝐷𝑡𝑡−1, 𝜈𝜈 ∼ 𝑁𝑁(𝒎𝒎𝑡𝑡−1, 𝜈𝜈𝑪𝑪𝑡𝑡−1∗ ) (8) 

𝜽𝜽𝑡𝑡|𝐷𝐷𝑡𝑡−1, 𝜈𝜈 ∼ 𝑁𝑁(𝒂𝒂𝑡𝑡 , 𝜈𝜈𝑹𝑹𝑡𝑡∗) (9) 
𝑦𝑦𝑡𝑡|𝐷𝐷𝑡𝑡−1, 𝜈𝜈 ∼ 𝑁𝑁(𝑓𝑓𝑡𝑡 , 𝜈𝜈𝑞𝑞𝑡𝑡∗) (10) 
𝜽𝜽𝑡𝑡|𝐷𝐷𝑡𝑡 , 𝜈𝜈 ∼ 𝑁𝑁(𝒎𝒎𝑡𝑡 , 𝜈𝜈𝐶𝐶𝑡𝑡∗) (11) 

We assume the variation of observational error (𝜈𝜈) follows an inverse-gamma (IG) distribution, 
𝜈𝜈|𝐷𝐷𝑡𝑡−1 ∼ 𝐼𝐼𝐼𝐼(𝑛𝑛𝑡𝑡−1/2,𝑑𝑑𝑡𝑡−1/2) (12) 

𝜈𝜈|𝐷𝐷𝑡𝑡 ∼ 𝐼𝐼𝐼𝐼(𝑛𝑛𝑡𝑡/2,𝑑𝑑𝑡𝑡/2) (13) 
𝑛𝑛𝑡𝑡 = 𝑛𝑛𝑡𝑡−1 + 1 

𝑑𝑑𝑡𝑡 = 𝑑𝑑𝑡𝑡−1 + 𝑒𝑒𝑡𝑡2/𝑞𝑞𝑡𝑡∗ 
where 𝑛𝑛𝑡𝑡 is the degree of freedom, and 

𝜽𝜽𝑡𝑡−1|𝐷𝐷𝑡𝑡−1 ∼ 𝑇𝑇(𝒎𝒎𝑡𝑡−1, 𝑠𝑠𝑡𝑡−1𝑪𝑪𝑡𝑡−1∗ ) (14) 
𝜽𝜽𝑡𝑡|𝐷𝐷𝑡𝑡−1 ∼ 𝑇𝑇(𝒂𝒂𝑡𝑡 , 𝑠𝑠𝑡𝑡−1𝑹𝑹𝑡𝑡∗) (15) 
𝑦𝑦𝑡𝑡|𝐷𝐷𝑡𝑡−1 ∼ 𝑇𝑇(𝑓𝑓𝑡𝑡 , 𝑠𝑠𝑡𝑡−1𝑞𝑞𝑡𝑡∗) (16) 
𝜽𝜽𝑡𝑡|𝐷𝐷𝑡𝑡 ∼ 𝑇𝑇(𝒎𝒎𝑡𝑡 , 𝑠𝑠𝑡𝑡𝑪𝑪𝑡𝑡∗) (17) 
𝑠𝑠𝑡𝑡−1 = 𝑑𝑑𝑡𝑡−1/𝑛𝑛𝑡𝑡 
𝑠𝑠𝑡𝑡 = 𝑑𝑑𝑡𝑡/𝑛𝑛𝑡𝑡 

We estimate 𝑾𝑾𝑡𝑡 using a discounting approach. Based on Eq. 5, the prior variance of 𝜽𝜽𝑡𝑡 as 𝑉𝑉𝑎𝑎𝑟𝑟(𝜽𝜽𝑡𝑡| =
𝐷𝐷𝑡𝑡−1) = 𝑹𝑹𝑡𝑡 = 𝑮𝑮𝑡𝑡𝑪𝑪𝑡𝑡−1𝑮𝑮𝑡𝑡𝑇𝑇 + 𝑾𝑾𝑡𝑡 = 𝑷𝑷𝑡𝑡 + 𝑾𝑾𝑡𝑡, where 𝑷𝑷𝑡𝑡 is the variance without stochastic noise, that is, 𝑾𝑾𝑡𝑡 
= 0. If 𝑾𝑾𝑡𝑡 ≠ 0, we assert that 𝑹𝑹𝑡𝑡 = 𝑷𝑷𝑡𝑡/𝛿𝛿, with the parameter 𝛿𝛿 ∈ (0,1]. This indicates that stochastic noise 
leads to an inflation of the variance by a factor of 1

𝛿𝛿
− 1 at each step, correspondingly diminishing the 
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degrees of freedom from 𝑛𝑛𝑡𝑡 to 𝛿𝛿𝑛𝑛𝑡𝑡. Consequently, a smaller 𝛿𝛿 incurs more significant fluctuations in 𝜽𝜽𝑡𝑡, 
and the inverse is true. To ensure the stability of local trends and seasonal components, minimally 
influenced by anomalies, we employ diverse 𝛿𝛿 values, selected through a grid search algorithm from the set 
[0.97,0.98,0.99,0.995,0.999]. We initialize the model at time step 0 using non-informative priors 𝒎𝒎0 =
0,𝑪𝑪0 = 𝑰𝑰,𝑛𝑛0 = 𝑝𝑝,𝑑𝑑0 = 0.22𝑛𝑛0, permitting the parameter 𝜽𝜽𝑡𝑡 to fluctuate freely initially and then gradually 
converge with the accumulation of more observations. To mitigate the effects of the initial substantial 
fluctuation and facilitate a gradual convergence of variance, we employ the first five years of ESI and 
drivers' data twice in a preparatory phase known as the "spin-up" period. 
The model parsing process, influenced by Bayesian updating and Markov assumptions, introduces error 
terms and noise, necessitating the optimization of the 𝛿𝛿 value(Simoen et al., 2013; Zhang et al., 2011). For 
each pixel, the original sequence is partitioned into a training set and a validation set with an 80:20 ratio. 
Subsequently, we compute the coefficient of determination (R2), root mean square error (RMSE), and mean 
absolute error (MAE) by comparing the original ESI sequence with the aggregate of the three components 
post-MDLM decomposition for both segments. This approach facilitates the evaluation of MDLM's 
precision in deconstructing and tracking the influence and reaction of evolving environmental conditions on 
evaporation stress (Fig. S10 for verification results). 
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Supplementary Figures 
 

 

Figure S1. Comparison of the spatial distribution of the multi-year average potential evapotranspiration 
(ETp). (a) calculated by the traditional Penman-Monteith equation and (b) the modified Penman-Monteith 
equation that incorporates the CO2 water-saving effect. The maximum value, minimum value, and average 
value are marked in the lower left corner of the figure. 

 

Figure S2. Spatial distribution of the multi-year average of ESI calculated from ETa and ETp products 
from different datasets. Panel a originates from GLEAM, panel b from MODIS, and panel c from ERA5. 
The ETp calculations for MODIS and ERA5 utilize the traditional Penman-Monteith (PM) formula tailored 
for specific ideal vegetation types, aligning more closely with the mechanistic hypothesis depicted in Fig. 
1, which outlines the hydrology-climate-vegetation balance relationship. Conversely, GLEAM data 
incorporate considerations for the diversity of actual vegetation types. 
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Figure S3. Spatial distribution of the tendency in ESI over the past 20 years. Same as Figs. 4cde in the 
main text, but ESI is calculated based on ETp that takes into account the CO2 effect, with the time span 
from 2001 to 2020.  
 

 
Figure S4. Time series and linear fitting of the regional average ESI. Same as Fig. 4a, but here it is for 
different climate zones and land use types, where (a) is dryland, (b) is non-dryland, (c) is cropland, (d) is 
grassland, and (e) is forest. 
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Figure S5. Identification of the key external drivers of ESI.  Same as Fig. 5, but applying the XGBoost 
regressor. It is consistent with the overall results identified by the RF classifier, except that it fails to 
distinctly differentiate between surface soil moisture and precipitation. 
 

 

Figure S6. Importance and partial dependence of external drivers influencing ESI. Same as Fig. 6, but here 
examines the 16-day temporal resolution. The hierarchy of importance is as follows: water, climate, energy, 
and then vegetation. Compared to the 8-day temporal resolution findings, the importance of water and 
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vegetation factors remains virtually unchanged, with SVM0-7, VPD, and Rn as the most influential 
variables within their respective categories. However, kNDVI now stands out as the most effective metric 
for vegetation. The interdependencies between critical factors align closely with those identified in the 8-
day interval analysis, yet the monotonic influence of CO2 on the system appears to be more pronounced. 
 
 

 

Figure S7. Importance and partial dependence of external drivers influencing ESI. Same as Fig. 6 & S6, 
but here analyze monthly series data. The order of importance is water > climate > vegetation > energy. 
Compared to the results from the 8-day and 16-day temporal results, the significance of water is amplified 
(with an increase to 0.71), whereas the contributions of meteorological and energy factors are diminished, 
with the latter being particularly affected. Factors such as SVM0-7, VPD, LAI, and Rn continue to be the 
most influential within their respective categories, aligning with observations from the 8-day temporal 
scale. The dependency direction of the pivotal factor aligns with that of the other two temporal dimensions. 
It is essential to note, however, that apart from Rn, an escalation in temporal scale granularity generally 
results in a decrease in the linearity and monotonicity of the Partial Dependence Plots (c-j) for the 
variables. It can be ascribed to the intricate interactions introduced by data averaging, or the distortion 
effects of noise, which tend to obscure the relationship. 
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Figure S8. Sensitivity of the ESI to pivotal external drivers and its dynamic trajectory. Consistent with 
Figs. 7c-e, time series graphs are presented illustrating the sensitivity of CO2 (a), atmospheric pressure-P 
(b), wind speed-U (c), net radiation-Rn (d), and temperature-T (e). The sensitivity values and trends of 
these factors are 1-2 orders of magnitude smaller than those for svm, VPD, and LAI, which are not 
elaborated upon in the main text. It is noteworthy that Rn, despite its lower sensitivity value, displays a 
marked annual cyclical pattern and an upward trend in sensitivity. In contrast, the remaining four variables 
exhibit an overall downward trend. 
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Figure S9. Sensitivity of the ESI to pivotal external drivers and its dynamic trajectory. Same as Figs. 7 & 
S8, but here the MLDM model, encompassing lag1-5, was used to establish the sensitivity profile for the 
following external factors: Precipitation -Prec, Rn, T, VPD, U, CO2, and LAI (Parameter Set: R1). It was 
discerned that ESI exhibits considerably lower sensitivity to precipitation than to soil water (0.06% vs 
1.30%). The sensitivity of additional factors displayed a consistent pattern in both magnitude and 
directional trend, with a slight uptick in values, potentially attributable to the limited role of Prec in 
explaining ESI compared to svm. The observed trend aligns with the R0 scenario that incorporates soil 
water input, thereby corroborating the robustness of research findings. These findings indicate heightened 
sensitivity to both water supply and VPD, coupled with a diminished sensitivity of LAI. 
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Figure S10. Simulation accuracy and validation of the MDLM model. For each pixel, simulations were 
conducted using two distinct parameter sets, R0 and R1. The dataset was partitioned into a training set and 
a validation set at a ratio of 8:2, facilitating the evaluation of the model's ability to accurately fit the actual 
ESI sequence, along with its local, seasonal, and trend components. This process is exemplified through the 
analysis of a single pixel in (g), with the method detailed in Text S1. (a-c) The distribution of the R2, 
RMSE, and MAE for the validation set, with R0 parameter set. These figures include insets that show the 
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distributions across the region, with the mean and median values delineated by red and green dashed lines, 
respectively. (d-f) The model's performance using the R1 parameter set. The analyses reveal that the 
MDLM model achieves a consistently high fitting accuracy with both parameter sets, evidenced by an 
average R2 of 0.91, an RMSE of 0.17, and an MAE of 0.11. It is noted that results exhibit suboptimal 
performance in specific regions of the Tibetan Plateau, however, remain relatively high credibility in other 
areas. 
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Figure S11. Sensitivity of the ESI to pivotal external drivers and its dynamic sensitivity trajectory. In 
accordance with Figs. 7c-e & S8, the sensitivity series was deduced using the Multiple Linear Regression 
(MLR) model with the following external drivers as inputs (R0): svm0-7, Rn, T, VPD, U, CO2, and LAI. 
The temporal trend is analogous to that derived from MDLM, indicating an initial rise followed by a 
decline in 𝜽𝜽𝒔𝒔𝒔𝒔𝒎𝒎, with an aggregate significant increase of 0.81% d-1 (p<0.001). Concurrently, 𝜽𝜽𝑽𝑽𝑷𝑷𝑽𝑽 
exhibited a significant overall rise of 0.07% d-1 (p<0.001), whereas 𝜽𝜽𝑳𝑳𝑨𝑨𝑰𝑰 displayed a notable decrease of -
0.04% d-1 (p<0.001). The general trend directions for the remaining variables align with those observed in 
the MDLM outcomes (Fig. S8), which substantiates the robustness of the research discoveries and the 
efficacy of the MDLM approach. (i) The spatial distribution of the MLR model's coefficient of 
determination (R2), with the red line denoting the mean (0.62) and the green line the median (0.64). This 
demonstrates that the model provides a high explanatory power, with the exception of the southwestern 
mountainous region. 
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Figure S12. Sensitivity of the ESI to pivotal external drivers and its dynamic sensitivity trajectory. Same as 
Fig. S9 c-j, but the sensitivity is derived from the MLR model with the external driving factors input (R1): 
Prec, Rn, T, VPD, U, CO2, and LAI. The trend directions of the variables are consistent with Figure S9, 
confirming the validity of the MLDM results. Additionally, the trend direction of b-h is consistent with Fig. 
S11, corroborating the robustness of the findings. (i) The distribution of decision coefficients R2 across 
pixels reveals that both the mean (indicated by a red line at 0.61) and the median (indicated by a green line 
at 0.62) are below the goodness-of-fit values found in the R0 scenario. This indicates that, in the context of 
ESI fluctuations, precipitation as a source of water supply offers less explanatory power than soil moisture. 
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Figure S13. Spatiotemporal heterogeneity in svm0-7, VPD, and LAI sensitivity. Same as Fig. S9c-j, but the 
sensitivity is derived from the MLR model with the external driving factors input (R0): svm0-7, Rn, T, 
VPD, U, CO2, and LAI. Given that the MLR model generates an averaged sensitivity series within a 5-year 
moving window, and the MLDM produces time-specific sequences, the figure is not numerically 
comparable to Figure 8. Instead, it serves to contrast the spatial distribution patterns and relative 
magnitudes across different categories. The patterns for 𝜽𝜽𝒔𝒔𝒔𝒔𝒎𝒎 and 𝜽𝜽𝑽𝑽𝑷𝑷𝑽𝑽 depicted in figures (a-f) are 
consistent with Fig. 8, affirming the results' robustness. While the distributions in (g) and (h) resemble 
those in Fig. 8, notable disparities are present in the Tibetan Plateau and areas south of the Yangtze River's 
middle and lower reaches. (i) displays greater sensitivity in humid regions compared to arid ones, diverging 
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from the findings of Fig. 8i. Moreover, (j) does not reveal any differences between dry and humid regions 
but indicates a more pronounced trend in grasslands than in forests, deviating from Fig. 8j. Consequently, 
investigations into the interplay between moisture, climate, and vegetation in relation to vegetation change 
response might require consideration of temporal scale variations. 
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Figure S14. Spatiotemporal patterns of regional hydrological, meteorological, and vegetation variables 
over the period from 2001 to 2020. (a) Surface soil water at 0-7 cm depth (svm0-7); (b) total precipitation 
(Prec); (c) net radiation (Rn); (d) air temperature at 2m (T); (e) Vapor Pressure Deficit (VPD); (f) wind 
speed at 2m (U); (g) atmospheric pressure (P); (h) atmospheric CO2 concentration; (i) Leaf Area Index 
(LAI). 
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Figure S15. The number of grids in each bin grouped along the greening trend and aridity across mainland 
China. 
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Supplementary Tables 

Table S1. Site characteristics of Eddy Covariance Flux Tower.   

No. Site 
Name Lon (°E) Lat(°N

) 

Vegetation 
Type 

(IGBP) 

Altitude 
(m) Duration Source 

Resid
ual 

Energ
y 

(W/m2

) 

Reference 

1 CBF 128.10 42.40 DBF 2180m 2003.01-
2010.12 

ChinaFlux  

21.50 

(Yu et al., 
2006, 2008, 

2014) 

2 DXG 91.08 30.85 GRA 4400m 2004.01-
2010.12 -15.65 

3 DHF 112.53 23.17 MF  2003.01-
2010.12 15.90 

4 HBGS 101.33 37.67 GRA 3400m 2003.01-
2010.12 2.09 

5 NMG 116.40 43.33 GRA  2004.01-
2010.12 9.85 

6 QYF 115.07 26.73 ENF  2003.01-
2010.12 15.14 

7 YCA 116.57 36.83 CRO 30m 2003.01-
2010.12 6.46 

8 BNXF 101.27 21.90 CVM  2010.07-
2014.12 23.85 (Yu et al., 

2021) 

9 HZF 121.02 51.78 DNF 773m 2014.01-
2018.12 34.45 (Yan et al., 

2023) 

10 XLG 116.67 43.55 GRA 1250m 2006.01-
2015.12 8.76 (Wang et al., 

2023) 

11 ALF 101.03 24.54 EBF 2400-
2600m 

2009.01-
2013.12 12.20 (Qi et al., 

2021) 

12 ZOG 102.55 32.80 GRA 3500m 2015.06-
2020.12 18.63 (Chen et al., 

2023) 

13 CLC 123.47 44.60 CRO 143 2018.06-
2020.12 16.47 (Dong et al., 

2023) 

14 CN-
Du2 116.28 42.05 GRA 1324m 2006.01-

2008.12 

FLUXNET  

6.11 
(Chen et al., 

2009; 
Pastorello et 

al., 2020) 

15 CN-
Cng 123.50 44.58 GRA 171m 2007.01-

2010.12 -0.60 

(Pastorello 
et al., 2020) 

16 CN-
Du3 116.28 42.06 GRA 1324m 2009.01-

2010.12 19.73 

17 CN-
Sw2 111.90 41.79 GRA 1456m 2010.01-

2012.12 12.96 

18 DZF 109.48 19.55 EBF 144m 2010.01-
2018.12 

Chinese 
Academy 

of Tropical 
Agricultura
l Sciences 

22.74 (Yang et al., 
2022) 
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(CATAS) 

19 WSC 116.05 36.65 CRO 30m 2005.05-
2006.09 

(Tsinghua 
University) 

THU 
13.26 (Lei and 

Yang, 
2010a, b) 

20 DSG 98.94 38.84 GRA 3739m 2015.01-
2017.12 

HiWATER  

-42.08 

(Che et al., 
2019; Liu et 

al., 2011, 
2016, 2018, 

2023) 

21 EJB 100.24 38.01 BSV 1054m 2015.06-
2017.09 3.82 

22 HZB 100.32 38.76 BSV 1731m 2018.01-
2020.12 -8.16 

23 EJM 101.13 41.99 MF 874m 2013.08-
2017.12 -1.13 

24 JYG 101.11 37.84 GRA 3750m 2018.08-
2020.12 4.38 

25 XYG 101.86 37.56 GRA 3616m 2019.04-
2020.12 

Cold and 
Arid 

Research 
Network of 

Lanzhou 
university 
(CARN) 

10.79 
(Changming 

Zhao and 
Renyi 
Zhang, 
2021) 

26 MQB 103.67 39.21 BSV 1020m 2019.08-
2020.12 31.06 

According to the International Geosphere-Biosphere Programme (IGBP) classification, BSV = Barren 
Sparse Vegetation, CRO = Croplands, CVM = Cropland/Natural Vegetation Mosaics, DBF = Deciduous 
Broadleaf Forests, DNF = Deciduous Needleleaf Forests, EBF = Evergreen Broadleaf Forests, ENF = 
Evergreen Needleleaf Forests, GRA = Grasslands, MF = Mixed Forests, WET = Permanent Wetlands 
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Table S2. List of Variance Inflation Factor. 
For each grid, collinearity tests were conducted on the anomaly series of variables across three temporal 
scales. The table lists the average values of the VIF (Variance Inflation Factor) for all grids, along with the 
5th percentile (superscript) and the 95th percentile (subscript). Two scenarios, R0 and R1, have been 
established based on different combinations of input parameters to isolate and contrast the effects of soil 
moisture and precipitation. 
 
Parameter Set: R0  

Temporal 
resolution svm0-7 Rn T VPD U P CO2 LAI 

8day 1.592.14
1.20 2.043.18

1.09 2.103.32
1.34 2.854.15

1.87 1.372.03
1.06 1.431.98

1.07 1.011.02
1.00 1.081.23

1.01 

16day 1.642.30
1.20 2.053.19

1.11 2.143.40
1.33 3.004.65

1.84 1.432.25
1.07 1.401.90

1.07 1.011.03
1.00 1.111.30

1.02 

month 1.672.41
1.19 2.093.35

1.15 2.273.87
1.35 3.165.21

1.84 1.542.60
1.09 1.421.89

1.07 1.011.04
1.00 1.151.39

1.03 

 
 
Parameter Set: R1 

Temporal 
resolution Prec Rn T VPD U P CO2 LAI 

8day 1.852.64
1.45 2.303.53

1.21 2.283.69
1.37 2.964.72

1.95 1.382.05
1.06 1.011.02

1.00 1.452.00
1.09  1.051.16

1.01 

16day 1.983.01
1.49 2.313.54

1.18 2.374.28
1.37 3.235.73

1.99  1.442.28
1.07 1.011.02

1.00 1.421.92
1.09 1.081.24

1.01 

month 2.073.32
1.46 2.283.60

1.17 2.525.13
1.37 3.596.73

2.09 1.542.62
1.09 1.011.03

1.00 1.441.92
1.08 1.121.35

1.02 
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Table S3. Interpretation of sensitivity obtained from Memory Dynamic Linear Model. 
Absolute values of 𝜃𝜃 depict the evapotranspiration stress resistance to anomalies in each variable. Large 
absolute values indicate strong evapotranspiration stress responses to corresponding variable anomalies. 
 

Classify Description Sign 

Water-related 
Factors 

𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 
Positive - Wetter conditions than average induce positive ESI 
anomalies, meaning that evaporative stress is alleviated. 

𝜃𝜃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃 

Vegetation-
related Factors 𝜃𝜃𝐿𝐿𝐿𝐿𝐿𝐿 

Positive - Denser and healthier vegetation conditions than average 
induce positive ESI anomalies, meaning that evaporative stress is 
alleviated. 

Energy-related 
Factors 

𝜃𝜃𝑅𝑅𝑅𝑅 
Negative - Above-average thermal conditions induce negative ESI 
anomalies, meaning that evaporative stress is aggravated. 

𝜃𝜃𝑇𝑇 

Atmosphere-
related Factors 

𝜃𝜃𝑈𝑈 Positive - Faster wind speeds than average induce positive ESI 
anomalies, meaning that evaporative stress is alleviated. 

𝜃𝜃𝑉𝑉𝑃𝑃𝑉𝑉 
Negative - More deficient atmospheric vapor pressure than 
average induce negative ESI anomalies, meaning that evaporative 
stress is aggravated. 

𝜃𝜃𝑃𝑃 
Negative - Higher atmospheric pressure than average induce 
negative ESI anomalies, meaning that evaporative stress is 
aggravated. 

𝜃𝜃𝐶𝐶𝐶𝐶2 
Negative - Higher 𝐶𝐶𝐶𝐶2 concentration than average induce 
negative ESI anomalies, meaning that evaporative stress is 
aggravated. 
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