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Abstract. We evaluate regional and interannual variations in tropospheric ozone in five chemical reanalyses, consisting of 

the Copernicus Atmosphere Monitoring Service reanalysis (CAMSRA), the second-generation Tropospheric Chemistry 

Reanalysis (TCR-2), the GEOS-Chem reanalysis, the Community Multiscale Air Quality (CMAQ) regional analysis, and the 

Chinese air quality reanalysis (CAQRA). We find that there are large regional differences (about 10–15 nmol mol-1) in mean 20 

surface ozone between the reanalyses. GEOS-Chem has high ozone relative to the ensemble mean across most continental 

regions, whereas CAMSRA has low ozone. Comparison with surface ozone observations shows that the reanalyses are 

biased high relative to the observations, with surface ozone biases exceeding 10 nmol mol-1 in GEOS-Chem. We find that 

CAMSRA has the smallest bias with respect to the observations, with negative biases in Europe, and in the central and 

western US, and positive biases everywhere else. In the free troposphere the reanalyses are in good agreement, and the mean 25 

bias between the reanalyses and ozonesonde observations are small, less than 4 nmol mol-1 at 500 hPa. In addition, the 

correlations between the ozonesondes and the reanalyses are as high as 0.8 and 0.9 in the southern and northern midlatitudes 

respectively. The results suggest that chemical reanalyses should provide valuable information for quantifying variations in 

ozone in the free troposphere. However, to enhance the utility of the surface ozone analyses, improvements in the reanalyses 

are needed to better exploit assimilated observations to mitigate the impact of discrepancies in the model chemistry and 30 

ozone precursor emissions. 
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1 Introduction  

Tropospheric ozone (O3) plays a critical role in the chemistry of the troposphere. It is an important precursor of the 

hydroxyl radical (OH), the main atmospheric oxidant. It is also a greenhouse gas and an air quality pollutant. It is produced 35 

by reaction of volatile organic compounds (VOCs) and carbon monoxide (CO) in the presence of nitrogen oxides (NOx = 

NO + NO2), and its distribution reflects the combined influence of atmospheric transport and local chemical sources and 

sinks. Observations of surface level ozone indicate that across eastern North America and parts of Europe surface ozone 

concentrations have decreased during the past two decades (Strode et al., 2015; Chang et al., 2017). Satellite observations 

have also revealed associated reductions in ozone precursors such as NOx and CO (e.g., Worden et al., 2013; Lamsal et al., 40 

2015; Duncan et al., 2016; Elshorbany et al., 2024). Despite these reductions, it is estimated that 126 million people in the 

United States (US) in 2023 lived in counties in which ozone levels exceeded the US national ambient air quality standards 

(NAAQS) for ozone (EPA, 2024).  

A challenge with quantifying and monitoring changes in surface ozone globally is that the surface observing network is 

sparse, with measurements concentrated mainly in North America, Europe, and East Asia. Space-based observations of 45 

ozone and its precursors have provided significantly greater observational coverage, starting with the Total Ozone Mapping 

Spectrometer (TOMS) in the 1980s (Ziemke et al., 2005) and the Global Ozone Monitoring Experiment (GOME; Burrows et 

al., 1999) and Measurement of Pollution In The Troposphere satellite instruments (MOPITT; Drummond 1992, Drummond 

et al., 2010) in the 1990s. However, satellite instruments that measure in the thermal infrared (TIR) part of the spectrum have 

limited sensitivity to the lower troposphere. Instruments that measure in the ultraviolet and visible (UV/VIS) or the 50 

shortwave infrared (SWIR) have greater sensitivity to the lower troposphere, but still lack sensitivity to the surface (Boersma 

et al., 2016), and offer limited information on the vertical distribution of trace gases in the troposphere. Satellite retrievals 

that combine information from the SWIR and TIR (e.g., Worden et al., 2010; Deeter et al., 2011), or the UV/VIS and TIR 

(e.g., Fu et al., 2013; Colombi et al., 2021, Cuesta et al., 2013 provide more information near the surface and greater 

constraints on the vertical distribution of trace gases. However, for these multispectral retrievals, the trace gas information 55 

near the surface reflects a blend of information from the surface and free troposphere, which complicates the use of these 

retrievals for interpreting variations in trace gases at the surface.  

Atmospheric chemistry models provide a means of filling the observational gaps in both the surface and space-based 

networks, but atmospheric chemistry models typically exhibit spatially and temporally varying biases (e.g., Shindell et al., 

2006; Stevenson et al. 2006; Young et al., 2013, 2018; Wild et al., 2020). Young et al. (2018), for example, found that 60 

atmospheric chemistry models typically have positive biases throughout the northern troposphere and negative biases in the 

southern troposphere. Parrish et al (2014) showed that models underestimate the observed long-term, decadal changes in 

tropospheric ozone. These discrepancies can arise from a number of issues in the models. First, the specified emission 

inventories in the model can have large uncertainties (e.g., Elguindi et al., 2020), which will adversely impact the fidelity of 

the models. Second, discrepancy in transport in the models will impact the simulated spatial distribution of ozone and its 65 
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precursors. Third, the spatial resolution of the model can also impact the model fidelity. Coarse resolution global models 

typically exhibit excessive stratosphere-troposphere exchange (STE), which degrades the model simulation in the upper 

troposphere and lower stratosphere (UTLS) (Strahan and Polansky, 2006), with implications for the lower troposphere. Lin 

et al. (2012) showed that in a model with a high resolution of 50 km x 50 km, episodic stratospheric intrusions could enhance 

daily maximum 8-hour average (MDA8) ozone at surface sites in the western United States (US) by as much as 20–40 nmol 70 

mol-1. They found that the intrusions enhanced the influence of the stratosphere on springtime surface ozone in the western 

US by a factor of 2–3 compared to previous studies using lower resolution models. Wild and Prather (2006) showed that 

ozone production in the planetary boundary layer (PBL) decreases with increasing model resolution. They also found that at 

coarse resolution, the export of ozone precursors such as NOx from continental source regions is overestimated. They 

suggested that even at a resolution of 1.1° x 1.1° models will overestimate regional ozone production.  75 

Chemical data assimilation seeks to statistically combine models with observations to obtain an improved description of 

the chemical state of the atmosphere. Global space-based observations are available for a suite of atmospheric trace 

constituents including ozone, NO2, CO, nitric acid (HNO3), formaldehyde (HCHO), isoprene, sulfur dioxide (SO2), and 

aerosol optical depth (AOD). These observations, when assimilated into a model, can provide valuable constraints on 

tropospheric ozone chemistry. The assimilation provides a means of correcting for discrepancies in the modeled chemical 80 

processes while the model fills the spatiotemporal gaps in the observing network. Chemical reanalyses extend this data 

assimilation approach in time to produce a consistent, long-term record of changes in atmospheric composition. Assimilation 

of satellite limb measurements for ozone profiles and nadir measurements for ozone columns has been used to evaluate 

ozone changes in the stratosphere and the upper troposphere (e.g., Stajner and Wargan, 2004; Jackson, 2007; Barré et al., 

2013; Emili et al., 2014). Long-term integrated data sets of stratospheric ozone have been produced by combining multiple 85 

satellite retrieval data sets (e.g., van der A et al., 2015). The first tropospheric chemistry reanalysis (TCR-1), which was 

conducted for 2005-2012 (Miyazaki et al., 2012, 2015), was a pioneer study for providing long-term integrated data of 

tropospheric composition. Global chemical reanalysis products also have been produced for 2003-2010 by the Monitoring 

Atmospheric Composition and Climate (MACC; Inness et al., 2013) and Copernicus Atmospheric Service (CAMS; 

Flemming et al., 2017) projects. Chemical reanalyses were used to study decadal changes in NOx and CO emissions 90 

(Miyazaki et al., 2014; Jiang et al., 2017; Miyazaki et al., 2017a) and evaluate chemistry climate models (Miyazaki et al., 

2017b; Kuai et al., 2020) and satellite retrievals (Cady-Pereira et al. 2017; Cuesta et al., 2018; Fu et al. 2018). The Multi-

Model Multi-Component Chemistry (MOMO-Chem) framework (Miyazaki et al., 2020a) is a methodological advance that 

applies the same assimilation system to multiple models, and is a unique approach to provide the range of uncertainty in the 

assimilation due to model errors and differences in chemistry governing air pollutant production. The recent reanalysis 95 

products have been used in various science applications (Thompson et al., 2019; Miyazaki et al., 2019; Park et al., 2020; 

Gaubert et al. 2020).  

In support of the International Global Atmospheric Chemistry (IGAC) Tropospheric Ozone Assessment Report Phase II 

(TOAR-II) Chemical Reanalysis Focus Working Group, we present here an evaluation of the potential utility of the 
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following five chemical reanalyses, which are listed in Table 1, for quantifying regional and interannual variations in 100 

tropospheric ozone: TCR-2 (Miyazaki et al., 2020b), the Copernicus Atmosphere Monitoring Service reanalysis (CAMSRA) 

(Inness et al., 2019), GEOS-Chem (Qu et al., 2020), the Chinese air quality reanalysis (CAQRA) (Kong et al., 2021), and the 

Community Multiscale Air Quality (CMAQ) chemical reanalysis (Kumar et al, 2024). The CAMSRA, GEOS-Chem, and 

TCR-2 reanalyses are global, whereas CAQRA and CMAQ are regional reanalyses. A companion TOAR-II study by Sekiya 

et al. (2024) examines the impact of the choice of assimilated ozone and ozone precursor observations in the chemical 105 

reanalyses on the resulting ozone fields. We begin in Section 2 with a description of the five chemical reanalyses and the 

independent data sets used for the evaluation. The results of the evaluation are presented in Section 3, followed by a 

discussion in Section 4. We end with a summary in Section 5. 

 

Table 1. Chemical reanalyses used in this study. 110 

Reanalysis 

system 
Resolution 

Assimilation 

scheme 
Period* Domain Reference 

TCR-2 1.1° × 1.1° LETKF 2005–2019 Global Miyazaki et al. (2020b) 

CAMSRA 0.75° × 0.75° 4D-Var 2003–2021 Global Inness et al. (2019) 

GEOS-Chem 2° × 2.5° 4D-Var 2006–2017 Global Qu et al. (2020) 

CMAQ 12 km × 12 km 3D-Var 2005–2018 CONUS Kumar et al. (2024) 

CAQRA 15 km × 15 km LETKF 2013–2020 China Kong et al. (2021) 

*This refers to the period for which reanalysis data was available. The work presented here focused on the 2006-2016 period, 
unless otherwise noted, to maximize overlap between the reanalyses.  

 

 

2 Data and Models 115 

2.1 TCR-2  

The TCR-2 product employs the MIROC-Chem global chemistry transport model. The model has a T106 (1.1° x 1.1°) 

horizontal resolution with 32 vertical levels extending from the surface to 4 hPa. The TCR-2 meteorological fields are 

produced using the MIROC-AGCM (Watanabe et al., 2011) general circulation model with the model simulation nudged 

toward 6-hourly ERA-Interim reanalysis fields (Dee et al., 2011). The chemical mechanism in the model consists of 92 120 

chemical species and 292 reactions. A priori anthropogenic emissions in the model are from the HTAP version 2 inventory 
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(Janssens-Maenhout et al., 2015). NOx emissions from soils are based on the Global Emissions Inventory Activity (GEIA) 

(Graedel et al., 1993). Biomass burning emissions are from the Global Fire Emissions Database version 4 (GFED4) 

(Randerson et al., 2018). 

TCR-2 used a Local Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007) to assimilate NO2 observations 125 

from the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY), the Ozone 

Monitoring Instrument (OMI), and GOME-2; ozone observations from the Tropospheric Emission Spectrometer (TES) and 

the Microwave Limb Sounder (MLS); CO data from MOPITT; HNO3 observations from MLS; and SO2 data from OMI. The 

assimilated observations were used to optimize the atmospheric mixing ratio of ozone, NOx, HNO3, pernitric acid (HNO4), 

dinitrogen pentoxide (N2O5), peroxyacetyl nitrate (PAN), and peroxymethacryloyl nitrate (MPAN). Emissions of NOx (from 130 

the surface and lightning), SO2, and CO were also optimized in the assimilation. Although the model has 92 chemical 

species, the state vector in the assimilation consisted of a smaller subset of 35 species as well as the NOx, CO, and SO2 

emissions. The emissions were optimized using a state augmentation approach that used the background error covariance, 

determined from the forecast ensemble, to link the emissions and the atmospheric concentrations in the optimization. 

2.2 CAMSRA 135 

The Copernicus Atmosphere Monitoring Service reanalysis (CAMSRA) product (Inness et al., 2019) is produced using 

the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The product 

has a horizontal resolution of T255 (≈0.75°), with 60 vertical levels from the surface to 0.1 hPa. The chemical mechanism in 

IFS is an extended version of the CB05 (Yarwood et al., 2005) chemical mechanism for the troposphere, which consists of 

55 chemical species and 126 reactions. Explicit chemistry is not included in the stratosphere. Instead, stratospheric ozone 140 

chemistry is parameterized using the “Cariolle-scheme” (Cariolle and Déqué, 1986; Cariolle and Teyssèdre, 2007). 

Anthropogenic emissions in CAMSRA are from the MACCity inventory (Granier et al., 2011), with modifications to 

increase wintertime road traffic emissions over North America and Europe following the correction of Stein et al. (2014). 

Biogenic emissions are from version 2.3 of the Model of Emissions of Gases and Aerosols from Nature (MEGAN2.1; 

Guenther et al., 2006, 2012) driven by meteorological fields from the Modern-Era Retrospective analysis for Research and 145 

Applications, Version 2 (MERRA-2; Gelaro et al., 2017). Soil and oceanic emissions are from the Precursors of Ozone and 

their Effects in the Troposphere (POET) database for 2000 (Olivier et al., 2003; Granier et al., 2005). Biomass burning 

emissions are from the Global Fire Assimilation System, version 1.2 (GFASv1.2; Kaiser et al., 2012). 

The CAMSRA assimilation scheme is an incremental four-dimensional variational (4D-Var) data assimilation scheme 

(Courtier et al., 1994) with 12-hour assimilation windows from 09:00–21:00 and 21:00–09:00 UTC. Background error 150 

covariances are diagonal so that chemical species in the control vector are optimized independently. CAMSRA optimizes 

ozone, CO, NO2, and aerosol mass mixing ratios using observations of ozone from SCIAMACHY, the Michelson 

Interferometer for Passive Atmospheric Sounding (MIPAS), MLS, OMI, GOME-2, and the Solar Backscatter Ultraviolet 
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Radiometer (SBUV/2), together with CO observations from MOPITT and NO2 observations from SCIAMACHY, OMI, and 

GOME-2. Ozone precursor emissions are not optimized in the assimilation.  155 

2.3 GEOS-Chem 

The GEOS-Chem reanalysis (Qu et al., 2020) was produced using version v35k of the GEOS-Chem adjoint model 

(Henze et al., 2007). The model is driven by MERRA-2 meteorological fields at a horizontal resolution of 2° x 2.5° with 47 

levels from the surface to 0.01 hPa. The model has detailed tropospheric ozone chemistry, with parameterized stratospheric 

ozone based on the linearized ozone scheme of McLinden et al. (2000). A priori anthropogenic emissions in the model are 160 

from the HTAP version 2 inventory (Janssens-Maenhout et al., 2015). Biomass burning emissions are from GFED4 

(Randerson et al., 2018) and NOx emissions from soils are based on Yienger and Levy (1995). 

GEOS-Chem uses a 4D-Var data assimilation scheme to assimilate NO2 slant column densities (SCD) from OMI to 

optimize NOx emissions. The GEOS-Chem reanalysis presented here assimilated OMI NO2 retrievals from version 3 of the 

NASA standard product OMNO2 (Krotkov et al., 2017). The assimilation minimizes a cost function that is the sum of 165 

observation-error-weighted differences between the modeled and retrieved SCDs and departures of the emission scaling 

factors from the prior estimates weighted by the prior emissions error. In constructing the cost function, the modeled NO2 

vertical column densities (VCDs) are converted to SCDs using scattering weights from the OMI retrievals. Additional details 

of the GEOS-Chem assimilation are discussed in Qu et al. (2020). 

2.4 CMAQ 170 

The CMAQ regional reanalysis (Kumar et al., 2024) uses version 5.3.2 of the CMAQ model driven by meteorological 

fields from version 4.1 of the Weather Research and Forecasting (WRF) model (Skamarock and Klemp, 2008). The 

reanalysis was conducted at a horizonal resolution of 12 km x 12 km over the contiguous United States (CONUS) with 35 

vertical levels from the surface to 50 hPa. The meteorological initial and boundary conditions for WRF are from the ERA-

Interim reanalyses, while chemical initial and boundary conditions for CMAQ are from the Whole Atmosphere Community 175 

Climate Model (Marsh et al., 2013; Gettelman et al., 2019). The chemical mechanism in the model is based the Carbon Bond 

6 version r3 scheme for gas-phase chemistry with the AERO7 aerosol module for aerosol processes, including secondary 

organic aerosols (Appel et al., 2021). A priori anthropogenic emissions in CMAQ are based on the US EPA National 

Emissions Inventory (NEIv2) for 2011. WRF meteorology was used with the Sparse Matrix Operator Kernel Emissions 

(SMOKE) to produce meteorology-dependent anthropogenic emissions for 2011, 2014, and 2017, which were adjusted in 180 

time using EPA reported annual state-wise trends. Biomass burning emissions are from the Fire Inventory from NCAR 

(FINN) version 2.2 (Wiedinmyer et al., 2023). Biogenic emissions are specified using the Biogenic Emission Inventory 

System (BEIS). 

CMAQ assimilated standard Level 2 Collection 6.1 AOD from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) and Version 8 of the MOPITT CO multispectral retrievals using a three-dimensional variational (3D-Var) data 185 
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assimilation scheme. The assimilation optimized total aerosol mass per mode (Aiken, accumulation, and coarse) and CO 

mixing ratios. Background error covariance matrices generated for January and July are used seasonally to represent 

wintertime and summertime background error covariances, respectively. The wintertime background error covariance matrix 

is used for assimilating observations between November to March, while the summertime background error covariance 

matrix is used during the other months. 190 

2.5 CAQRA 

The CAQRA product (Kong et al., 2021) is a regional reanalysis for Asia that employs the Nested Air Quality 

Prediction Modeling System (NAQPMS) chemical transport model (Wang et al., 2000). The model is driven by 

meteorological fields from WRF at a horizontal resolution of 15 km x 15 km. The meteorological initial and boundary 

conditions for WRF are from the NCAR-NCEP reanalysis, while chemical boundary conditions are from the Model for 195 

Ozone and Related Chemical Tracers (MOZART; Brasseur et al., 1998; Hauglustaine et al., 1998) model. The chemical 

mechanism in CAQRA is the carbon bond mechanism Z (Zaveri and Peters, 1999), with aqueous-phase chemistry and wet 

deposition based on the Regional Acid Deposition Model (RADM) mechanism from version 4.6 of CMAQ and inorganic 

aerosol processes represented by ISORROPIA1.7 (Nenes et al., 1998). Anthropogenic emissions in the model are from the 

HTAP version 2.2 inventory with a 2010 base year (Janssens-Maenhout et al., 2015). Emissions of VOCs are from the 200 

MEGAN-MACC model (Sindelarova et al., 2014). Biomass burning emissions are from GFED4 (Randerson et al., 2018), 

soil NOx emissions are from the Regional Emission Inventory in Asia (Yan et al., 2003), and oceanic emissions are from the 

POET database (Granier et al., 2005).  

CAQRA uses an LETFK data assimilation scheme to assimilate surface observations of ozone, CO, NO2, SO2, PM2.5, 

and PM10 to optimize the atmospheric concentration of these constituents. In constructing the background error covariance, 205 

inter-species correlation is neglected. Thus, in the assimilation, each chemical species is optimized using only observations 

of that species. The assimilation also employs species-specific inflation factors that vary in space and time. Additional 

details of the CAQRA assimilation configuration are available in Kong et al. (2021). 

2.6 Ozonesondes 

To evaluate the reanalyses, we use ozonesonde observations from the TOAR-II Harmonization and Evaluation of 210 

Ground-based Instruments for Free Tropospheric Ozone Measurements (HEGIFTOM) effort 

(https://hegiftom.meteo.be/datasets/ozonesondes). The measurement precision for the ozonesondes is better than 3–5% with 

an accuracy of about 5–10% (Smit et al., 2007). The HEGIFTOM ozonesonde data were harmonized to remove systematic 

biases and to provide an uncertainty estimate for every measurement. The database contains time series observations from 43 

sites. Here we use data from 39 sites that each had a minimum of 48 measurements between January 2003 and December 215 

2022.  
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2.7 Surface ozone observations 

Surface ozone observations from the TOAR-I data set (Schultz et al. 2017) were used for evaluation of the reanalyses. 

The dataset consists of a consistent long-term record (1990–2014) of surface ozone observations that have been harmonized 

and processed with consistent quality control. We used the 2° x 2° grided monthly mean observations for the period 2003-220 

2014 for comparison with the reanalysis. All of the reanalyses were regrided onto the ozone 2° x 2° grid for the evaluation. 

The ozone data are available for both rural and urban sites. However, since the lowest resolution of the available reanalyses 

is 2° x 2.5°, which cannot reliably distinguish between urban and rural locations, we follow the approach of Huijnen et al. 

(2020) and Sekiya et al. (2024) and use only rural TOAR-I observations in the evaluation of the reanalyses.  

3 Results  225 

3.1 Climatological ozone distribution 

The mean ozone distribution at the surface from the five reanalyses for 2006-2016 and the differences between the 

individual reanalyses and the ensemble mean are shown in Fig. 1. The global mean distribution (Fig. 1a) consists of a band 

of high ozone across the northern subtropics and a minimum in the tropics. In North America, there are high values over the 

southeastern US and the mountain west. In Asia, high ozone values are located over northern India. Figure 1b shows that 230 

GEOS-Chem is high everywhere relative to the ensemble mean, with differences exceeding 10 nmol mol-1 in Asia and 

western North America. In contrast, CAMSRA is low over all continental regions, with the largest difference of about 10-15 

nmol mol-1 over central Africa and parts of Asia. TCR-2 is slightly lower than the ensemble mean at the high latitudes and 

about 5–10 nmol mol-1 higher over tropical South America and central Africa. For the regional reanalyses, CAQRA is about 

5 to 15 nmol mol-1 lower across much of Asia, with small positive differences over Thailand and Myanmar, whereas CMAQ 235 

had small differences of less than 5 nmol mol-1 across much of the US, with positive differences in the Pacific Northwest and 

negative differences in the southeastern US. Examination of the seasonal differences between the individual reanalyses and 

the ensemble mean (Fig. S1) reveals that the pattern of differences shown in Fig. 2 is relatively consistent seasonally in all 

reanalyses, with the exception of CMAQ, although the magnitude of the differences is generally larger in the winter 

hemisphere. CMAQ has positive differences across much of the US in December–February (DJF), and negative differences 240 

in June–August (JJA).  

In the middle troposphere, the mean ozone distribution, shown in Fig 2a, is similar to that at the surface, with a band of 

high ozone across the northern subtropics, but with fewer small-scale features than at the surface. Note that only the global 

reanalyses are evaluated in the free troposphere since only surface fields are available from the regional reanalyses. 

Examination of the differences between the individual global reanalyses and the ensemble mean (in Fig. 3a) shows that the 245 

reanalyses are all closer to the mean in the middle troposphere. The mean differences in the individual reanalyses are 

generally less than 5 nmol mol-1. For all three global reanalyses, the mean differences with respect to the ensemble mean are 

https://doi.org/10.5194/egusphere-2024-3759
Preprint. Discussion started: 14 January 2025
c© Author(s) 2025. CC BY 4.0 License.



9 
 

mainly in the tropics and subtropics, with TCR-2 and GEOS-Chem exhibiting an opposite pattern of differences. TCR-2 has 

a large difference with respect to the ensemble mean over the tropical Atlantic, northern South America, and the Indian 

Ocean, whereas GEOS-Chem is slightly different over the tropical Atlantic, northern South America, and the Indian Ocean. 250 

CAMSRA has small positive differences over the Pacific and small negative differences over Africa and the southern 

tropical Atlantic and Indian Oceans. The pattern of the differences in the reanalyses is consistent seasonally (see Fig. S2) but 

with a seasonally-dependent latitudinal shift. In GEOS-Chem and TCR-2 the difference pattern is shifted into the tropics of 

the summer hemisphere in a manner similar to the seasonal shift of the Intertropical Convergence Zone (ITCZ). 

At 250 hPa the mean ozone distribution shown in Fig. 2b reveals the influence of the extratropical lower stratosphere 255 

with high ozone at the high-latitudes. In the tropics there is a minimum in ozone over the warm pool of the tropical western 

Pacific, which reflects the influence of convective transport (e.g., Pan et al., 2017). The mean differences between the 

individual reanalyses and the ensemble mean (Fig 3b) are relatively small, with the largest differences mainly in the southern 

midlatitudes. The spatial pattern of the differences in TCR-2 is opposite that in GEOS-Chem, which has high ozone in the 

southern midlatitudes relative to the ensemble mean, while TCR-2 is low in the southern midlatitudes. The high ozone in 260 

GEOS-Chem extends across the southern extratropics in DJF and MAM (see Fig S3), whereas it is confined to the southern 

midlatitudes in JJA and SON. In TCR-2, the differences in the southern midlatitudes are largest in JJA and SON. CAMSRA 

has high ozone relative to the ensemble mean in the northern high-latitudes in JJA and low ozone in the southern high-

latitudes in DJF.  

MDA8 ozone is a daily metric widely used for air quality standards and for ozone exposure studies (e.g., Turner et al., 265 

2015; Flemming et al., 2018; Lyu et al., 2019; Chen et al., 2024). The ensemble mean MDA8 ozone distribution and the 

differences between the individual reanalyses and the ensemble mean are shown in Fig. 4. The spatial pattern of differences 

in MDA8 (Fig. 4b) is similar to that shown for ozone in Fig. 1b, except for the CMAQ reanalysis. In CMAQ, MDA8 ozone 

is high relative to the ensemble mean over the western and central US, in contrast to the pattern of differences in mean ozone 

shown in Fig. 1b. Overall, we find that the regional differences in MDA8 ozone between the individual reanalyses and the 270 

ensemble mean are generally smaller than the differences shown for surface ozone in Fig. 1b. The exception is the TCR-2 

reanalysis which has larger MDA8 differences with respect to the ensemble mean over South America and central Africa. 

 

3.2 Regional ozone variations 

The seasonal variations in regional mean ozone are shown in Fig. 5 for the nine regions defined in Table 2 (and shown 275 

in Fig S4). At the surface (Fig 5a), the seasonal cycle is consistent across all the reanalyses. In all regions, CAMSRA has the 

lowest ozone mixing ratios. For example, in the US, ozone in CAMSRA is about 5 nmol mol-1 lower than in TCR-2. In 

contrast, GEOS-Chem ozone is 5–10 nmol mol-1 higher than in TCR-2. Indeed, GEOS-Chem has the highest ozone 

concentrations in all regions except for South America and the US. In South America, TCR-2 has higher mean ozone than 
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GEOS-Chem in all months except for July and August. In the US, CMAQ is higher than GEOS-Chem between December-280 

March, whereas in China, CAQRA is fairly consistent with CAMSRA. 

In the free troposphere, at 500 hPa (Fig 5b), the seasonality of the global reanalyses is generally consistent in the 

extratropics, which is in agreement with the results shown in Fig. 3a. In the tropics, there are larger discrepancies between 

the reanalyses over South America, North Africa, and the Middle East. Over South America, for example, TCR-2 has higher 

ozone concentrations between January–June and September–December, similar to the discrepancies observed at the surface 285 

(Fig 5a). Over the US, ozone concentrations peak about three months later in GEOS-Chem than in the other reanalyses. And 

over China, GEOS-Chem has a broader ozone maximum than CAMSRA and TCR-2. In the UTLS (Fig. 5c), TCR-2 and 

CAMSRA are generally in agreement in terms of the ozone concentrations and variability in all regions, probably due to the 

assimilation of ozone measurements from MLS (Sekiya et al., 2024). However, over the US and Europe, ozone in GEOS-

Chem is low relative to TCR-2 and CAMSRA. In addition, over South America and southern Africa, GEOS-Chem exhibits a 290 

larger seasonal cycle than CAMSRA and TCR-2. The discrepancy could be attributed to the lack of assimilation of ozone 

measurements in GEOS-Chem. 

The time series of the regional mean ozone concentrations are shown in Fig. 6. As can be seen in Fig 6a, the lower 

ozone mixing ratios at the surface in CAMSRA are present in all years. The differences in the mean concentrations between 

CAMSRA and the other reanalyses is particularly pronounced in the three African regions. Across most regions, with the 295 

exception of South America, the three global reanalyses have similar interannual variability in surface ozone, with a high 

ozone bias in GEOS-Chem and a low ozone bias in CAMSRA. In South America, ozone in TCR-2 is generally higher than 

20 ppb throughout the year, while CAMSRA ozone is lower than 10 ppb during the summer months. For the regional 

reanalyses, we find that in the US, surface ozone variability in CMAQ is similar to that in GEOS-Chem, whereas in China, 

CAQRA is similar to CAMSRA. In the northern extratropical middle troposphere, over the US, Europe, and China (Fig 6b), 300 

the variability in the three global reanalyses is remarkably similar. The worst agreement is found over Northern Africa, 

where the interannual variability is significantly different in each of the three global reanalyses. Over South America and 

central Africa the simulation of the ozone maxima in TCR-2 is consistent with the other reanalyses, but TCR-2 significantly 

overestimates the ozone minima. In the UTLS (Fig. 6c), Northern Africa is the region with the greatest disagreement 

between the reanalyses in their simulation of the ozone variability. The reanalyses are in good agreement in all other regions. 305 

In general, the simulated variability is most different in GEOS-Chem. For example, over Europe and the US, GEOS-Chem 

underestimates the ozone maxima (also seen in Fig. 5c) and fails to reproduce the year-to-year variability in the ozone 

maxima simulated by CAMSRA and TCR-2. 

The linear trend in surface ozone in the reanalyses is shown in Fig. 7. There are large regional differences between the 

reanalyses in the trends. For example, in Europe, GEOS-Chem has positive trends of 0.1–0.2 nmol mol-1 per year 310 

everywhere, whereas TCR-2 has negative trends that are comparable in magnitude. In CAMSRA there are negative trends in 

southern and eastern Europe and positive trends in parts of northern Europe. In Asia TCR-2 has positive trends (that are as 

much as 0.4 nmol mol-1 per year), whereas CAMSRA has large negative trends in East Asia (exceeding −0.4 nmol mol-1 per 
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year) with small positive trends in South Asia. In North America, the pattern of the trends is similar in CAMSRA, GEOS-

Chem, and CMAQ, with negative trends over the southeastern US and the mountain west, and positive trends over northern 315 

and eastern Canada. However, in TCR-2 there are negative trends over much of North America.  

 

Table 2. Regional definitions used in the ozone evaluation. 

Region Latitude range Longitude range 

United States  28.0°N–50.0°N 70.0°W–125.0°W 

Europe 35.0°N–60.0°N 10.0°W–30.0°E 

India 8.0°N–33.0°N 68.0°E–89.0°E 

China 30.0°N–40.0°N 110.0°E–123.0°E 

Middle East 12.5°N–37.5°N 30.0°E–60.0°E 

Northern Africa Equator–20.0°N 20.0°W–40.0°E 

Central Africa Equator–20.0°S 10.0°E–40.0°E 

Southern Africa 22.0°S–31.0°S 25.0°E–34.0°E 

South America Equator–20.0°S 50.0°W–70.0°W 

 

3.3 Evaluation with independent observations 320 

The mean surface ozone observations from TOAR-I for 2006-2014 and the differences between the individual 

reanalyses and the TOAR observations are plotted in Fig. 8. The evaluation only extends to 2014 because observations 

TOAR-I database are not available after 2014. In addition, the CAQRA reanalysis was not included in this evaluation 

because of the short temporal overlap between CAQRA and the TOAR-I database and the limited number of TOAR-1 

observations over Asia. As can be seen in Fig 8b, GEOS-Chem, TCR-2, and CMAQ are biased high relative to the TOAR 325 

observations, with GEOS-Chem exhibiting the highest global bias of about 14 nmol mol-1. The global mean bias for 

CAMSRA and TCR-2 is 1.6 nmol mol-1 and 5.5 nmol mol-1, respectively. Over the US, CMAQ has a mean high bias of 6.4 

nmol mol-1. The CAMSRA global mean bias reflects the compensating influence of negative biases over the central and 

western US and over central and eastern Europe, and positive biases everywhere else. Examination of the seasonality of the 

bias (see Fig. S5) reveals that in GEOS-Chem the largest global mean bias with respect to the TOAR observations is 16.6 330 

nmol mol-1 in JJA and the smallest mean bias is 10.5 nmol mol-1 in DJF. In TCR-2 and CAMSRA the largest mean bias is 
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9.8 nmol mol-1 and 5.3 nmol mol-1, respectively, in JJA and the smallest mean bias is 1.7 nmol mol-1 and −1.6 nmol mol-1, 

respectively, in DJF. In CMAQ the largest total mean bias is 10.4 nmol mol-1 in DJF, while the smallest total mean bias is 

4.3 nmol mol-1 in JJA.   

A comparison of the global reanalyses with ozonesonde data in the middle troposphere and UTLS is shown in Fig. 9. 335 

The ozonesonde data were binned into the following three latitude bins: 20°S–60°S, 20°S–20°N, and 20°N–60°N. At 500 

hPa the reanalyses capture the variability in the ozonesonde data well, with correlations of about 0.8 and 0.9 in the southern 

and northern midlatitudes, respectively. The correlation is lower in the tropics, with values between 0.5–0.7. The time series 

of the reanalyses at the individual ozonesonde sites are shown in Figs. S6 and S7. The higher correlation in the midlatitudes 

is expected since ozone transport in this region is dominated by large-scale synoptic processes that are well constrained by 340 

meteorological reanalyses. In contrast, transport in the tropics is dominated by convective processes, which are less well 

constrained by models and meteorological reanalyses. The mean bias across all three regions in the middle troposphere is 

less than 4 nmol mol-1. In the northern midlatitudes, the largest bias, which is in the GEOS-Chem reanalysis, is only about 2 

nmol mol-1. The standard deviation is also low, less than 4 nmol mol-1, in the tropics and northern midlatitudes. The standard 

deviation increases to about 6 nmol mol-1 in the southern midlatitudes. However, it should be noted that there are only three 345 

ozonesonde sites in the southern midlatitude region.  

In the UTLS (at 250 hPa) the correlations in the midlatitudes are just as high as at 500 hPa. However, the correlations in 

the upper tropical troposphere are slightly lower. In the northern midlatitudes, the largest mean bias is about 10 nmol mol-1, 

which is relatively small given that the mean ozone mixing ratio varies from about 75 nmol mol-1 at 20°N to about 200 nmol 

mol-1 near 60°N (see Fig. 2b). In the tropics, where the ozone mixing ratio is lower, the mean bias is smaller. The largest 350 

mean bias, exceeding 20 nmol mol-1, is found in GEOS-Chem in the southern midlatitudes. The standard deviation in the 

UTLS is larger than at 500 hPa, particularly in the midlatitudes, which is expected given the higher ozone mixing ratios in 

the lower stratosphere and the small-scale meteorological processes that drive variability in the tropopause region. At 250 

hPa the ozone distribution will be strongly influenced by variations in the tropopause and it is a challenge for models to 

reproduce the small-scale, dynamically-driven variations in ozone in this region.   355 

3.4. Surface NO2 distribution 

As NO2 is a key ozone precursor, examination of the NO2 distribution in the reanalyses could provide insight in the 

source of the differences in surface ozone between the reanalyses. The ensemble mean NO2 distribution and the differences 

between the individual reanalyses and the ensemble mean are plotted in Fig. 10. As shown in Fig. 10b, the ensemble mean 

reflects the combined influence of low NO2 mixing ratios in GEOS-Chem and high NO2 in CAMSRA. CMAQ has low NO2 360 

in the US, whereas CAQRA generally has high NO2 in eastern China and low NO2 in western China, northern India, and 

southeast Asia. The seasonal variations in regional mean NO2 at the surface are shown in Fig. 11. Across all region, GEOS-

Chem has low NO2 seasonally compared to the other reanalyses. For most regions, except South America and China, 

CAMSRA has higher NO2 than TCR-2. For example, over North America, India, and the Middle East, CAMSRA has much 
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higher NO2 than TCR-2. The large discrepancies in surface NO2 between the reanalyses is due, in part, to the differences in 365 

the assimilation configuration employed in the reanalyses. For example, GEOS-Chem constrained only NOx emissions, 

CAMSRA constrained NO2 and ozone mixing ratios, TCR-2 constrained NO2 and ozone mixing ratios as well NOx 

emissions, and CMAQ constrained aerosol mass and CO mixing ratios. In addition, GEOS-Chem has the lowest spatial 

resolution at 2° x 2.5°. These differences will have a significant impact on the simulated surface NO2 in the reanalyses since 

NOx emissions represent a strong forcing on surface NO2 mixing ratios in the assimilation, with implications for surface 370 

ozone.  

4. Discussion 

The larger biases in ozone at the surface compared to the free troposphere is consistent with previous studies that 

showed that atmospheric chemistry models tend to overestimate surface ozone concentrations (e.g., Reidmiller et al., 2009; 

Travis et al., 2016). The large positive mean biases of up 10–15 nmol mol-1 found here are similar to those reported by 375 

Young et al (2018) in their evaluation of models used in the Atmospheric Chemistry and Climate Model Intercomparison 

Project (ACCMIP). One potential contributor to the overestimate of surface ozone in the reanalyses could be the model 

resolution, since according to Wild and Prather (2006), even at a horizontal resolution of 1.1° x 1.1° models will 

overestimate regional ozone production. Furthermore, it was suggested by Valin et al. (2011) that high spatial resolution of 

4–12 km is required to capture the non-linear NOx chemistry. CMAQ was run at a high spatial resolution of 12 km x 12 km, 380 

however only aerosol optical depth and the CO mixing ratio were optimized in the analysis. Thus, in CMAQ, ozone was 

adjusted indirectly through changes in the model chemistry. TCR-2 and CAMSRA both optimized the ozone mixing ratio, 

but the spatial resolution of both models, 1.1° and 0.75°, respectively, is still coarse. Higher resolution is also important to 

more effectively assimilate the satellite observations to analyze emissions and concentrations on a megacity scale (Sekiya et 

al., 2021). GEOS-Chem has the lowest spatial resolution (at 2° x 2.5°) and the highest ozone bias. Another possible source of 385 

the high surface ozone in GEOS-Chem is bias in the chemical mechanism in the model. Qu et al. (2020) found that using the 

a posteriori NOx emissions from the GEOS-Chem reanalysis in a more recent version of the model resulted in lower ozone 

mixing ratios, which they attributed to differences in the chemical mechanism and VOC emissions in the two versions of 

GEOS-Chem. 

The regional discrepancies in surface ozone between the reanalyses clearly reflects the fact that atmospheric 390 

composition measurements from space have less sensitivity to ozone and its precursors near the surface. However, the 

discrepancies in surface ozone in the reanalyses also reflect differences in the assimilation configuration employed in the 

reanalyses as well as discrepancies in the chemical mechanisms used in the models. Near the surface the ozone lifetime is 

shorter than in the middle and upper troposphere, thus, near-surface information from the observations ingested in the 

assimilation will be rapidly destroyed and the surface ozone analysis will be strongly influenced by discrepancies in the 395 

model chemistry and precursor emissions at the surface. As a result, the configuration of the assimilation will have a 
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significant impact on the surface ozone analysis. For the reanalyses considered here, GEOS-Chem optimized only NOx 

emissions, CAMSRA optimized the atmospheric concentration of ozone and its precursors, CMAQ optimized the 

atmospheric concentration of aerosols and CO, and CAQRA assimilated only in situ surface observations, but optimized the 

atmospheric concentration ozone, CO, NO2, SO2, and particulate matter. Zhang et al. (2019) showed that optimizing only 400 

NOx emissions can result in large regional differences in the inferred emissions compared jointly optimizing the emissions 

together with the ozone concentrations due to the influence of discrepancies in the ozone field on the NO2 concentrations. 

TCR-2 is the only reanalysis that optimized both the atmospheric concentrations of ozone and its precursor as well as the 

precursor emissions. To mitigate the impact of discrepancies in model chemistry and ozone precursor emissions, 

improvements in the chemical reanalyses are required to jointly optimize the atmospheric concentrations of ozone and its 405 

precursors together with the ozone precursor emissions. In this context, the construction of better background error 

covariances in the reanalyses is needed to propagate the information from the observations in space, time, and, in particular, 

across species. 

In our evaluation of the reanalyses, we have focused on discrepancies in NO2 as possible factor influences the ozone 

analysis. However, VOCs also play an important role in ozone formation and none of the reanalyses examined here 410 

assimilated observations to constrain the VOC emissions. Isoprene is the dominant non-methane VOC (Guenther et al., 

2012) and HCHO is a key byproduct of isoprene oxidation. Assimilation of satellite observations of HCHO have been 

widely used to quantify isoprene emissions (e.g., Palmer et al., 2003; Millet et al., 2008; Stavrakou et al., 2015; Kaiser et al., 

2018). In addition, satellite observations of isoprene are now available from the Cross-Track Infrared Sounder (CrIS) 

satellite instrument and can provide constraints on isoprene emissions (Wells et al., 2020). Integrating HCHO and isoprene 415 

observations should provide greater constrains on tropospheric ozone. For the first time, observations of ozone, NO2, and 

HCHO are also available from geostationary (GEO) orbit by the Geostationary Environment Monitoring Spectrometer 

(GEMS) and the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instruments. In contrast to low-earth orbiting 

(LEO) satellites, GEO instruments greater daytime temporal coverage to capture diurnal variations in ozone, NO2, and 

HCHO. Park et al. (2024) and Hsu et al. (2024) showed that assimilating GEO observations of NO2 results in improved NOx 420 

emission estimates compared to those inferred from assimilating LEO data. Integrating GEO and LEO observations will 

enhance the constraints on tropospheric ozone in the reanalyses. Ultimately, given the limitations in the vertical sensitivity of 

the satellite measurements near the surface, and the limitations in the observational coverage of the surface network, 

integrating the surface and satellite observations in the reanalyses to exploit their complementarity will provide valuable 

constraints on surface ozone variability. 425 

5. Summary  

We have conducted an evaluation of the regional and interannual variations in tropospheric ozone in five chemical 

reanalyses, consisting of three global (TCR-2, CAMSRA, and GEOS-Chem) and two regional (CMAQ and CAQRA) 
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reanalyses. We found that at the surface there can be large regional differences in mean ozone (exceeding 10 nmol mol-1) 

between the reanalyses. In general, the GEOS-Chem reanalysis was biased high relative to the ensemble mean across most 430 

continental regions, whereas CAMSRA was biased low. The TCR-2 reanalysis was closest to the ensemble mean at the 

surface except in tropical South America and central Africa. In the free troposphere the global reanalyses were in closer 

agreement. At 500 hPa the mean bias between individual reanalyses and the ensemble mean was less than 5 nmol mol-1 in 

most regions. Similarly, in the UTLS the mean bias between the individual reanalyses and the ensemble mean was less than 

5 nmol mol-1, except in the northern high-latitudes where the biases exceeded 30 nmol mol-1, with GEOS-Chem and 435 

CAMSRA exhibiting large positive bias and negative biases, respectively.  

Regionally, at the surface the reanalyses were generally consistent in their simulation of the seasonal cycle and 

interannual variations in regional mean ozone, with high ozone in GEOS-Chem and low ozone in CAMSRA at the surface. 

In the free troposphere the reanalyses are in better agreement in their simulation of the ozone variability as well as the ozone 

mixing ratio, with a few exceptions. At 500 hPa the seasonal maximum in ozone over the US occurs three months later in 440 

GEOS-Chem than in the other reanalyses. At 250 hPa the amplitude of the seasonal cycle in ozone is larger over South 

America and southern Africa in GEOS-Chem than in CAMSRA or TCR-2. At both 500 hPa and 250 hPa there are 

significant differences across the reanalyses in the interannual variability in ozone over northern Africa.  

Evaluation of the reanalyses with TOAR surface ozone observations reveal that GEOS-Chem, TCR-2, and CMAQ are 

biased high, with surface ozone biases exceeding 10 nmol mol-1 in GEOS-Chem. The CAMSRA product has the smallest 445 

bias with negative biases in central, eastern, and southern Europe, and in the central and western US, and positive biases 

everywhere else. We did not evaluate CAQRA with the surface ozone observations because of the limited number of 

observations available in Asia in the TOAR-I database. In the free troposphere the biases in the reanalyses relative to the 

ozonesonde data are small, for example, less than 4 nmol mol-1 everywhere at 500 hPa. The correlations between the 

reanalyses and the ozonesonde data were about 0.9 and 0.8 for the northern and southern midlatitudes, respectively, with 450 

lower correlations of between 0.4–0.7 in the tropics. The higher correlations in the midlatitudes likely reflect that fact that 

ozone transport in the extratropical free troposphere is controlled by large-scale synoptic processes that are well represented 

by meteorological reanalyses. In contrast, in the tropics, despite the constraints that satellite observations provide on 

atmospheric composition, transport of trace gases is dominated by convective processes, which are less well captured in 

meteorological reanalyses. 455 

Our results suggest that chemical reanalyses should provide valuable information for quantifying regional and 

interannual variations in ozone in the free troposphere. Large regional discrepancies in ozone at the surface between the 

reanalyses impact their utility for surface ozone studies. The discrepancies reflect differences in the configuration of the 

assimilation schemes employed in the reanalyses as well as discrepancies in the chemical mechanisms in the models. 

Improvements in the reanalyses are needed to mitigate these discrepancies by better exploiting the assimilated observations, 460 

both satellite and in situ observations, to jointly optimize the atmospheric concentrations of ozone and its precursors together 

with the ozone precursor emissions. Incorporating newly available satellite observations, such as isoprene observations from 
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CrIS and high temporal resolution GEO observations of ozone, NO2, and HCHO from GEMS and TEMPO, will provide 

greater constraints on tropospheric ozone. This will enhance the consistency and quality of the surface ozone analyses and 

thus the utility of the reanalyses for quantifying regional and long-term variations in surface ozone. 465 
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 800 
Figure 1. a) Ensemble mean ozone (nmol mol-1) at the surface for the global reanalyses (CAMSRA, GEOS-Chem, and TCR-

2) for 2006–2016 (top), the global reanalyses and CMAQ over the United States (top right), and the global reanalyses and 

CAQRA over Asia (bottom). b) Mean differences (nmol mol-1) between surface ozone in the individual reanalyses and the 

ensemble mean. The ensemble mean and the differences from the mean for the CAQRA evaluation were calculated for 

2013–2016 since CAQRA data are only available starting in 2013. 805 

a) Ensemble mean

b) Reanalysis − ensemble mean

Figure 1N
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Figure 2. Ensemble mean ozone (nmol mol-1) at 500 hPa (a) and 250 hPa (b) for the three global reanalyses for 2006-2016. 810 
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b) Ensemble mean ozone at 250 hPa

a) Ensemble mean ozone at 500 hPa Figure 2N
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 820 
Figure 3. Mean differences (nmol mol-1) between the individual reanalyses and the ensemble mean (shown in Figure 2) at 

500 hPa (a) and 250 hPa (b). 
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a) Reanalysis − ensemble mean ozone at 500 hPa

b) Reanalysis − ensemble mean ozone at 250 hPa

Figure 3N
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 830 

 
 

Figure 4. a) Ensemble mean MDA8 ozone (nmol mol-1) at the surface for the global reanalyses (CAMSRA, GEOS-Chem, 

and TCR-2) for 2006–2016 (top), the global reanalyses and CMAQ over the United States (top right), and the global 

reanalyses and CAQRA over Asia (bottom). b) Mean differences (nmol mol-1) between MDA8 ozone in the individual 835 

reanalyses and the ensemble mean. The ensemble mean and the differences from the mean for the CAQRA evaluation were 

calculated for 2013–2016 since CAQRA data are only available starting in 2013. 

a) Ensemble mean

Figure 4N

b) Reanalysis − ensemble mean
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 840 

 
Figure 5a. Seasonal variations in regional mean ozone (nmol mol-1) at the surface for the regions defined in Table 1. Shown 

are the monthly mean fields for CAMSRA (blue), GEOS-Chem (red), TCR-2 (green), CMAQ (black), and CAQRA 

(yellow). The monthly fields were averaged for 2006–2016, except for CAQRA, which was averaged for 2013–2016. The 

regional and temporal standard deviation for each month is indicated by the shading. 845 
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Figure 5b. As in Figure 5a, but for 500 hPa.  
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Figure 5c. As in Figure 5a, but for 250 hPa. 
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Figure 6a. Time series of regional mean ozone (nmol mol-1) at the surface for 2006–2016 for the regions defined in Table 1 875 

(and shown in Fig S4). Shown are the monthly mean fields for CAMSRA (blue), GEOS-Chem (red), TCR-2 (green), CMAQ 

(black), and CAQRA (yellow). The time series for the CAQRA product extends from 2013–2016. 
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 885 
Figure 6b. As in Figure 6a, but for 500 hPa. 
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Figure 6c. As in Figure 6a, but for 250 hPa. 
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Figure 7. Spatial distribution of the linear trends (nmol mol-1 per year) in surface ozone for 2006–2016 for the individual 910 

reanalysis. The trend was not calculated for CAQRA since the CAQRA fields are only available starting in 2013. 
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Figure 8. a) Mean surface ozone (nmol mol-1) for 2006–2014 from the TOAR-I database. b) Mean bias (nmol mol-1) 925 

between surface ozone in the individual reanalyses and the TOAR-I observations. The CAQRA product was not included in 

the evaluation because of the short temporal overlap between CAQRA and the TOAR-I database and the limited number of 

TOAR-1 observations over Asia. 
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Figure 8N
a) 2006-2014 mean TOAR-I ozone (nmol mol-1)

b) Reanalysis − mean TOAR-I ozone (nmol mol-1)
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Figure 9. Regional statistics for the evaluation of the reanalyses with ozonesondes at 250 hPa (top row) and 500 hPa (bottom 

row). Shown are the mean bias (nmol mol-1) between the reanalyses and the ozonesondes (left column), the standard 940 

deviation between the reanalyses and the ozonesondes (middle column), and the correlation between the reanalyses and the 

ozonesondes (right column). 
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Figure 10. Ensemble mean NO2 (ppbv) at the surface for the global reanalyses (CAMSRA, GEOS-Chem, and TCR-2) for 955 

2006–2016 (top), the global reanalyses and CMAQ over the United States (top right), and the global reanalyses and CAQRA 

over Asia (bottom). b) Mean differences (ppbv) between surface NO2 in the individual reanalyses and the ensemble mean. 

The ensemble mean and the differences from the mean for the CAQRA evaluation were calculated for 2013–2016 since 

CAQRA data are only available starting in 2013. 
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Figure 10N

a) Ensemble mean

b) Reanalysis − ensemble mean
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Figure 11. Seasonal variations in regional mean NO2 (ppbv) at the surface for the regions defined in Table 1. Shown are the 965 

monthly mean fields for CAMSRA (blue), GEOS-Chem (red), TCR-2 (green), CMAQ (black), and CAQRA (yellow). The 

monthly fields were averaged for 2006–2016, except for CAQRA, which was averaged for 2013–2016. The regional and 

temporal standard deviation for each month is indicated by the shading. 
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