Supplement of

Assessment of regional and interannual variations in tropospheric ozone in chemical reanalyses

Dylan B. A. Jones¹, Lucas Prates¹, Zhen Qu², William Y. Y. Cheng³, Kazuyuki Miyazaki⁴, Takashi Sekiya⁵, Antje Inness⁶, Rajesh Kumar³, Xiao Tang^{7,8}, Helen Worden³, Gerbrand Koren⁹, Vincent Huijnen¹⁰

¹Department of Physics, University of Toronto, Toronto, Ontario, Canada

¹⁰Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands

Contents of this file: Figures S1-S7

²Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27607, USA

³NSF National Center for Atmospheric Research, Boulder, CO, USA

⁴Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA, USA

⁵Japan Agency for Marine-Earth Science and Technology, Yokohama 2360001, Japan

⁶European Centre for Medium-range Weather Forecasts (ECMWF), Reading, UK

⁷LAPC & ICCES, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China

⁸College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China

⁹Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands

Figure S1. Seasonal mean differences (nmol mol⁻¹) between ozone in the individual reanalyses and the ensemble mean at the surface.

Figure S2. Seasonal mean differences (nmol mol⁻¹) between ozone in the individual reanalyses and the ensemble mean at 500 hPa.

Figure S3. Seasonal mean differences (nmol mol⁻¹) between ozone in the individual reanalyses and the ensemble mean at 250 hPa.

Figure S4. Regional domains used in the regional evaluation. The boundaries of the regions are given in Table 1.

Figure S5. Seasonal mean bias (nmol mol⁻¹) between ozone in the individual reanalyses and the TOAR-I ozone observations (2006–2014) at the surface. The TOAR-I observations and the reanalyses were regridded onto a 2° x 2° grid and only rural observations were used in the comparison.

Figure S6. Time series (2003–2022) of ozone in the reanalyses and ozonesonde observations at 500 hPa at individual ozonesonde sites. The ozonesonde data are in black, GEOS-Chem is in red, TCR-2 is in green, and CAMSRA is in blue. The regional reanalyses are not show since only surface fields were available from the regional reanalyses.

Figure S6. Continued.

Figure S6. Continued.

Figure S6. Continued.

Figure S6. Continued.

Figure S7. Time series (2003–2022) of ozone in the reanalyses and ozonesonde observations at 250 hPa at individual ozonesonde sites. The ozonesonde data are in black, GEOS-Chem is in red, TCR-2 is in green, and CAMSRA is in blue. The regional reanalyses are not show since only surface fields were available from the regional reanalyses.

Figure S7. Continued.

Figure S7. Continued.

Figure S7. Continued.

Figure S7. Continued.